kern_ntptime.c revision 56458
1/***********************************************************************
2 *								       *
3 * Copyright (c) David L. Mills 1993-1999			       *
4 *								       *
5 * Permission to use, copy, modify, and distribute this software and   *
6 * its documentation for any purpose and without fee is hereby	       *
7 * granted, provided that the above copyright notice appears in all    *
8 * copies and that both the copyright notice and this permission       *
9 * notice appear in supporting documentation, and that the name	       *
10 * University of Delaware not be used in advertising or publicity      *
11 * pertaining to distribution of the software without specific,	       *
12 * written prior permission. The University of Delaware makes no       *
13 * representations about the suitability this software for any	       *
14 * purpose. It is provided "as is" without express or implied	       *
15 * warranty.							       *
16 *								       *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 *
31 * $FreeBSD: head/sys/kern/kern_ntptime.c 56458 2000-01-23 14:52:37Z phk $
32 */
33
34#include "opt_ntp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sysproto.h>
39#include <sys/kernel.h>
40#include <sys/proc.h>
41#include <sys/time.h>
42#include <sys/timex.h>
43#include <sys/timepps.h>
44#include <sys/sysctl.h>
45
46/*
47 * Single-precision macros for 64-bit machines
48 */
49typedef long long l_fp;
50#define L_ADD(v, u)	((v) += (u))
51#define L_SUB(v, u)	((v) -= (u))
52#define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
53#define L_NEG(v)	((v) = -(v))
54#define L_RSHIFT(v, n) \
55	do { \
56		if ((v) < 0) \
57			(v) = -(-(v) >> (n)); \
58		else \
59			(v) = (v) >> (n); \
60	} while (0)
61#define L_MPY(v, a)	((v) *= (a))
62#define L_CLR(v)	((v) = 0)
63#define L_ISNEG(v)	((v) < 0)
64#define L_LINT(v, a)	((v) = (long long)(a) << 32)
65#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
66
67/*
68 * Generic NTP kernel interface
69 *
70 * These routines constitute the Network Time Protocol (NTP) interfaces
71 * for user and daemon application programs. The ntp_gettime() routine
72 * provides the time, maximum error (synch distance) and estimated error
73 * (dispersion) to client user application programs. The ntp_adjtime()
74 * routine is used by the NTP daemon to adjust the system clock to an
75 * externally derived time. The time offset and related variables set by
76 * this routine are used by other routines in this module to adjust the
77 * phase and frequency of the clock discipline loop which controls the
78 * system clock.
79 *
80 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
81 * defined), the time at each tick interrupt is derived directly from
82 * the kernel time variable. When the kernel time is reckoned in
83 * microseconds, (NTP_NANO undefined), the time is derived from the
84 * kernel time variable together with a variable representing the
85 * leftover nanoseconds at the last tick interrupt. In either case, the
86 * current nanosecond time is reckoned from these values plus an
87 * interpolated value derived by the clock routines in another
88 * architecture-specific module. The interpolation can use either a
89 * dedicated counter or a processor cycle counter (PCC) implemented in
90 * some architectures.
91 *
92 * Note that all routines must run at priority splclock or higher.
93 */
94
95/*
96 * Phase/frequency-lock loop (PLL/FLL) definitions
97 *
98 * The nanosecond clock discipline uses two variable types, time
99 * variables and frequency variables. Both types are represented as 64-
100 * bit fixed-point quantities with the decimal point between two 32-bit
101 * halves. On a 32-bit machine, each half is represented as a single
102 * word and mathematical operations are done using multiple-precision
103 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
104 * used.
105 *
106 * A time variable is a signed 64-bit fixed-point number in ns and
107 * fraction. It represents the remaining time offset to be amortized
108 * over succeeding tick interrupts. The maximum time offset is about
109 * 0.5 s and the resolution is about 2.3e-10 ns.
110 *
111 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
112 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
113 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
114 * |s s s|			 ns				   |
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116 * |			    fraction				   |
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 *
119 * A frequency variable is a signed 64-bit fixed-point number in ns/s
120 * and fraction. It represents the ns and fraction to be added to the
121 * kernel time variable at each second. The maximum frequency offset is
122 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
123 *
124 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * |s s s s s s s s s s s s s|	          ns/s			   |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |			    fraction				   |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 */
132/*
133 * The following variables establish the state of the PLL/FLL and the
134 * residual time and frequency offset of the local clock.
135 */
136#define SHIFT_PLL	4		/* PLL loop gain (shift) */
137#define SHIFT_FLL	2		/* FLL loop gain (shift) */
138
139static int time_state = TIME_OK;	/* clock state */
140static int time_status = STA_UNSYNC;	/* clock status bits */
141static long time_constant;		/* poll interval (shift) (s) */
142static long time_precision = 1;		/* clock precision (ns) */
143static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
144static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
145static long time_reftime;		/* time at last adjustment (s) */
146static long time_tick;			/* nanoseconds per tick (ns) */
147static l_fp time_offset;		/* time offset (ns) */
148static l_fp time_freq;			/* frequency offset (ns/s) */
149static l_fp time_adj;			/* resulting adjustment */
150
151#ifdef PPS_SYNC
152/*
153 * The following variables are used when a pulse-per-second (PPS) signal
154 * is available and connected via a modem control lead. They establish
155 * the engineering parameters of the clock discipline loop when
156 * controlled by the PPS signal.
157 */
158#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
159#define PPS_FAVGDEF	7		/* default freq avg int (s) (shift) */
160#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
161#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
162#define PPS_VALID	120		/* PPS signal watchdog max (s) */
163#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
164#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
165
166static struct timespec pps_tf[3];	/* phase median filter */
167static l_fp pps_offset;		/* time offset (ns) */
168static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
169static long pps_fcount;			/* frequency accumulator */
170static long pps_jitter;			/* nominal jitter (ns) */
171static long pps_stabil;			/* nominal stability (scaled ns/s) */
172static long pps_lastsec;		/* time at last calibration (s) */
173static int pps_valid;			/* signal watchdog counter */
174static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
175static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
176static int pps_intcnt;			/* wander counter */
177static int pps_letgo;			/* PLL frequency hold-off */
178
179/*
180 * PPS signal quality monitors
181 */
182static long pps_calcnt;			/* calibration intervals */
183static long pps_jitcnt;			/* jitter limit exceeded */
184static long pps_stbcnt;			/* stability limit exceeded */
185static long pps_errcnt;			/* calibration errors */
186#endif /* PPS_SYNC */
187/*
188 * End of phase/frequency-lock loop (PLL/FLL) definitions
189 */
190
191static void ntp_init(void);
192static void hardupdate(long offset);
193
194/*
195 * ntp_gettime() - NTP user application interface
196 *
197 * See the timex.h header file for synopsis and API description.
198 */
199static int
200ntp_sysctl SYSCTL_HANDLER_ARGS
201{
202	struct ntptimeval ntv;	/* temporary structure */
203	struct timespec atv;	/* nanosecond time */
204
205	nanotime(&atv);
206	ntv.time.tv_sec = atv.tv_sec;
207	ntv.time.tv_nsec = atv.tv_nsec;
208	ntv.maxerror = time_maxerror;
209	ntv.esterror = time_esterror;
210	ntv.time_state = time_state;
211
212	/*
213	 * Status word error decode. If any of these conditions occur,
214	 * an error is returned, instead of the status word. Most
215	 * applications will care only about the fact the system clock
216	 * may not be trusted, not about the details.
217	 *
218	 * Hardware or software error
219	 */
220	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
221
222	/*
223	 * PPS signal lost when either time or frequency synchronization
224	 * requested
225	 */
226	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
227	    !(time_status & STA_PPSSIGNAL)) ||
228
229	/*
230	 * PPS jitter exceeded when time synchronization requested
231	 */
232	    (time_status & STA_PPSTIME &&
233	    time_status & STA_PPSJITTER) ||
234
235	/*
236	 * PPS wander exceeded or calibration error when frequency
237	 * synchronization requested
238	 */
239	    (time_status & STA_PPSFREQ &&
240	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
241		ntv.time_state = TIME_ERROR;
242	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
243}
244
245SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
246SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
247	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
248
249#ifdef PPS_SYNC
250SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
251SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
252
253SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
254SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
255SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_offset, CTLFLAG_RD, &pps_offset, sizeof(pps_offset), "I", "");
256#endif
257/*
258 * ntp_adjtime() - NTP daemon application interface
259 *
260 * See the timex.h header file for synopsis and API description.
261 */
262#ifndef _SYS_SYSPROTO_H_
263struct ntp_adjtime_args {
264	struct timex *tp;
265};
266#endif
267
268int
269ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
270{
271	struct timex ntv;	/* temporary structure */
272	long freq;		/* frequency ns/s) */
273	int modes;		/* mode bits from structure */
274	int s;			/* caller priority */
275	int error;
276
277	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
278	if (error)
279		return(error);
280
281	/*
282	 * Update selected clock variables - only the superuser can
283	 * change anything. Note that there is no error checking here on
284	 * the assumption the superuser should know what it is doing.
285	 */
286	modes = ntv.modes;
287	if (modes)
288		error = suser(p);
289	if (error)
290		return (error);
291	s = splclock();
292	if (modes & MOD_FREQUENCY) {
293		freq = (ntv.freq * 1000LL) >> 16;
294		if (freq > MAXFREQ)
295			L_LINT(time_freq, MAXFREQ);
296		else if (freq < -MAXFREQ)
297			L_LINT(time_freq, -MAXFREQ);
298		else
299			L_LINT(time_freq, freq);
300
301#ifdef PPS_SYNC
302		pps_freq = time_freq;
303#endif /* PPS_SYNC */
304	}
305	if (modes & MOD_MAXERROR)
306		time_maxerror = ntv.maxerror;
307	if (modes & MOD_ESTERROR)
308		time_esterror = ntv.esterror;
309	if (modes & MOD_STATUS) {
310		time_status &= STA_RONLY;
311		time_status |= ntv.status & ~STA_RONLY;
312	}
313	if (modes & MOD_TIMECONST) {
314		if (ntv.constant < 0)
315			time_constant = 0;
316		else if (ntv.constant > MAXTC)
317			time_constant = MAXTC;
318		else
319			time_constant = ntv.constant;
320	}
321#ifdef PPS_SYNC
322	if (modes & MOD_PPSMAX) {
323		if (ntv.shift < PPS_FAVG)
324			pps_shiftmax = PPS_FAVG;
325		else if (ntv.shift > PPS_FAVGMAX)
326			pps_shiftmax = PPS_FAVGMAX;
327		else
328			pps_shiftmax = ntv.shift;
329	}
330#endif /* PPS_SYNC */
331	if (modes & MOD_NANO)
332		time_status |= STA_NANO;
333	if (modes & MOD_MICRO)
334		time_status &= ~STA_NANO;
335	if (modes & MOD_CLKB)
336		time_status |= STA_CLK;
337	if (modes & MOD_CLKA)
338		time_status &= ~STA_CLK;
339	if (modes & MOD_OFFSET) {
340		if (time_status & STA_NANO)
341			hardupdate(ntv.offset);
342		else
343			hardupdate(ntv.offset * 1000);
344	}
345
346	/*
347	 * Retrieve all clock variables
348	 */
349	if (time_status & STA_NANO)
350		ntv.offset = L_GINT(time_offset);
351	else
352		ntv.offset = L_GINT(time_offset) / 1000;
353	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
354	ntv.maxerror = time_maxerror;
355	ntv.esterror = time_esterror;
356	ntv.status = time_status;
357	ntv.constant = time_constant;
358	if (time_status & STA_NANO)
359		ntv.precision = time_precision;
360	else
361		ntv.precision = time_precision / 1000;
362	ntv.tolerance = MAXFREQ * SCALE_PPM;
363#ifdef PPS_SYNC
364	ntv.shift = pps_shift;
365	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
366	if (time_status & STA_NANO)
367		ntv.jitter = pps_jitter;
368	else
369		ntv.jitter = pps_jitter / 1000;
370	ntv.stabil = pps_stabil;
371	ntv.calcnt = pps_calcnt;
372	ntv.errcnt = pps_errcnt;
373	ntv.jitcnt = pps_jitcnt;
374	ntv.stbcnt = pps_stbcnt;
375#endif /* PPS_SYNC */
376	splx(s);
377
378	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
379	if (error)
380		return (error);
381
382	/*
383	 * Status word error decode. See comments in
384	 * ntp_gettime() routine.
385	 */
386	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
387	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
388	    !(time_status & STA_PPSSIGNAL)) ||
389	    (time_status & STA_PPSTIME &&
390	    time_status & STA_PPSJITTER) ||
391	    (time_status & STA_PPSFREQ &&
392	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
393		p->p_retval[0] = TIME_ERROR;
394	else
395		p->p_retval[0] = time_state;
396	return (error);
397}
398
399/*
400 * second_overflow() - called after ntp_tick_adjust()
401 *
402 * This routine is ordinarily called immediately following the above
403 * routine ntp_tick_adjust(). While these two routines are normally
404 * combined, they are separated here only for the purposes of
405 * simulation.
406 */
407void
408ntp_update_second(struct timecounter *tcp)
409{
410	u_int32_t *newsec;
411
412	newsec = &tcp->tc_offset_sec;
413	/*
414	 * On rollover of the second both the nanosecond and microsecond
415	 * clocks are updated and the state machine cranked as
416	 * necessary. The phase adjustment to be used for the next
417	 * second is calculated and the maximum error is increased by
418	 * the tolerance.
419	 */
420	time_maxerror += MAXFREQ / 1000;
421
422	/*
423	 * Leap second processing. If in leap-insert state at
424	 * the end of the day, the system clock is set back one
425	 * second; if in leap-delete state, the system clock is
426	 * set ahead one second. The nano_time() routine or
427	 * external clock driver will insure that reported time
428	 * is always monotonic.
429	 */
430	switch (time_state) {
431
432		/*
433		 * No warning.
434		 */
435		case TIME_OK:
436		if (time_status & STA_INS)
437			time_state = TIME_INS;
438		else if (time_status & STA_DEL)
439			time_state = TIME_DEL;
440		break;
441
442		/*
443		 * Insert second 23:59:60 following second
444		 * 23:59:59.
445		 */
446		case TIME_INS:
447		if (!(time_status & STA_INS))
448			time_state = TIME_OK;
449		else if ((*newsec) % 86400 == 0) {
450			(*newsec)--;
451			time_state = TIME_OOP;
452		}
453		break;
454
455		/*
456		 * Delete second 23:59:59.
457		 */
458		case TIME_DEL:
459		if (!(time_status & STA_DEL))
460			time_state = TIME_OK;
461		else if (((*newsec) + 1) % 86400 == 0) {
462			(*newsec)++;
463			time_state = TIME_WAIT;
464		}
465		break;
466
467		/*
468		 * Insert second in progress.
469		 */
470		case TIME_OOP:
471		time_state = TIME_WAIT;
472		break;
473
474		/*
475		 * Wait for status bits to clear.
476		 */
477		case TIME_WAIT:
478		if (!(time_status & (STA_INS | STA_DEL)))
479			time_state = TIME_OK;
480	}
481
482	/*
483	 * Compute the total time adjustment for the next second
484	 * in ns. The offset is reduced by a factor depending on
485	 * whether the PPS signal is operating. Note that the
486	 * value is in effect scaled by the clock frequency,
487	 * since the adjustment is added at each tick interrupt.
488	 */
489#ifdef PPS_SYNC
490	/* XXX even if signal dies we should finish adjustment ? */
491	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) {
492		time_adj = pps_offset;
493		L_RSHIFT(time_adj, pps_shift);
494		L_SUB(pps_offset, time_adj);
495	} else {
496		time_adj = time_offset;
497		L_RSHIFT(time_adj, SHIFT_PLL + time_constant);
498		L_SUB(time_offset, time_adj);
499	}
500#else
501	time_adj = time_offset;
502	L_RSHIFT(time_adj, SHIFT_PLL + time_constant);
503	L_SUB(time_offset, time_adj);
504#endif /* PPS_SYNC */
505	L_ADD(time_adj, time_freq);
506	tcp->tc_adjustment = time_adj;
507#ifdef PPS_SYNC
508	if (pps_valid > 0)
509		pps_valid--;
510	else
511		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
512		    STA_PPSWANDER | STA_PPSERROR);
513#endif /* PPS_SYNC */
514}
515
516/*
517 * ntp_init() - initialize variables and structures
518 *
519 * This routine must be called after the kernel variables hz and tick
520 * are set or changed and before the next tick interrupt. In this
521 * particular implementation, these values are assumed set elsewhere in
522 * the kernel. The design allows the clock frequency and tick interval
523 * to be changed while the system is running. So, this routine should
524 * probably be integrated with the code that does that.
525 */
526static void
527ntp_init()
528{
529
530	/*
531	 * The following variable must be initialized any time the
532	 * kernel variable hz is changed.
533	 */
534	time_tick = NANOSECOND / hz;
535
536	/*
537	 * The following variables are initialized only at startup. Only
538	 * those structures not cleared by the compiler need to be
539	 * initialized, and these only in the simulator. In the actual
540	 * kernel, any nonzero values here will quickly evaporate.
541	 */
542	L_CLR(time_offset);
543	L_CLR(time_freq);
544#ifdef PPS_SYNC
545	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
546	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
547	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
548	pps_fcount = 0;
549	L_CLR(pps_freq);
550#endif /* PPS_SYNC */
551}
552
553SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
554
555/*
556 * hardupdate() - local clock update
557 *
558 * This routine is called by ntp_adjtime() to update the local clock
559 * phase and frequency. The implementation is of an adaptive-parameter,
560 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
561 * time and frequency offset estimates for each call. If the kernel PPS
562 * discipline code is configured (PPS_SYNC), the PPS signal itself
563 * determines the new time offset, instead of the calling argument.
564 * Presumably, calls to ntp_adjtime() occur only when the caller
565 * believes the local clock is valid within some bound (+-128 ms with
566 * NTP). If the caller's time is far different than the PPS time, an
567 * argument will ensue, and it's not clear who will lose.
568 *
569 * For uncompensated quartz crystal oscillators and nominal update
570 * intervals less than 256 s, operation should be in phase-lock mode,
571 * where the loop is disciplined to phase. For update intervals greater
572 * than 1024 s, operation should be in frequency-lock mode, where the
573 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
574 * is selected by the STA_MODE status bit.
575 */
576static void
577hardupdate(offset)
578	long offset;		/* clock offset (ns) */
579{
580	long ltemp, mtemp;
581	l_fp ftemp;
582
583	/*
584	 * Select how the phase is to be controlled and from which
585	 * source. If the PPS signal is present and enabled to
586	 * discipline the time, the PPS offset is used; otherwise, the
587	 * argument offset is used.
588	 */
589	if (!(time_status & STA_PLL))
590		return;
591	ltemp = offset;
592	if (ltemp > MAXPHASE)
593		ltemp = MAXPHASE;
594	else if (ltemp < -MAXPHASE)
595		ltemp = -MAXPHASE;
596	if (!(time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL))
597		L_LINT(time_offset, ltemp);
598
599	/*
600	 * Select how the frequency is to be controlled and in which
601	 * mode (PLL or FLL). If the PPS signal is present and enabled
602	 * to discipline the frequency, the PPS frequency is used;
603	 * otherwise, the argument offset is used to compute it.
604	 */
605	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
606		time_reftime = time_second;
607		return;
608	}
609	if (time_status & STA_FREQHOLD || time_reftime == 0)
610		time_reftime = time_second;
611	mtemp = time_second - time_reftime;
612	L_LINT(ftemp, ltemp);
613	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
614	L_MPY(ftemp, mtemp);
615	L_ADD(time_freq, ftemp);
616	time_status &= ~STA_MODE;
617	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
618		L_LINT(ftemp, (ltemp << 4) / mtemp);
619		L_RSHIFT(ftemp, SHIFT_FLL + 4);
620		L_ADD(time_freq, ftemp);
621		time_status |= STA_MODE;
622	}
623	time_reftime = time_second;
624	if (L_GINT(time_freq) > MAXFREQ)
625		L_LINT(time_freq, MAXFREQ);
626	else if (L_GINT(time_freq) < -MAXFREQ)
627		L_LINT(time_freq, -MAXFREQ);
628}
629
630#ifdef PPS_SYNC
631/*
632 * hardpps() - discipline CPU clock oscillator to external PPS signal
633 *
634 * This routine is called at each PPS interrupt in order to discipline
635 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
636 * and leaves it in a handy spot for the hardclock() routine. It
637 * integrates successive PPS phase differences and calculates the
638 * frequency offset. This is used in hardclock() to discipline the CPU
639 * clock oscillator so that the intrinsic frequency error is cancelled
640 * out. The code requires the caller to capture the time and
641 * architecture-dependent hardware counter values in nanoseconds at the
642 * on-time PPS signal transition.
643 *
644 * Note that, on some Unix systems this routine runs at an interrupt
645 * priority level higher than the timer interrupt routine hardclock().
646 * Therefore, the variables used are distinct from the hardclock()
647 * variables, except for the actual time and frequency variables, which
648 * are determined by this routine and updated atomically.
649 */
650void
651hardpps(tsp, nsec)
652	struct timespec *tsp;	/* time at PPS */
653	long nsec;		/* hardware counter at PPS */
654{
655	long u_sec, u_nsec, v_nsec, w_nsec; /* temps */
656	l_fp ftemp;
657
658	/*
659	 * The signal is first processed by a frequency discriminator
660	 * which rejects noise and input signals with frequencies
661	 * outside the range 1 +-MAXFREQ PPS. If two hits occur in the
662	 * same second, we ignore the later hit; if not and a hit occurs
663	 * outside the range gate, keep the later hit but do not
664	 * process it.
665	 */
666	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
667	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
668	pps_valid = PPS_VALID;
669	u_sec = tsp->tv_sec;
670	u_nsec = tsp->tv_nsec;
671	if (u_nsec >= (NANOSECOND >> 1)) {
672		u_nsec -= NANOSECOND;
673		u_sec++;
674	}
675	v_nsec = u_nsec - pps_tf[0].tv_nsec;
676	if (u_sec == pps_tf[0].tv_sec && v_nsec < -MAXFREQ) {
677		return;
678	}
679	pps_tf[2] = pps_tf[1];
680	pps_tf[1] = pps_tf[0];
681	pps_tf[0].tv_sec = u_sec;
682	pps_tf[0].tv_nsec = u_nsec;
683
684	/*
685	 * Compute the difference between the current and previous
686	 * counter values. If the difference exceeds 0.5 s, assume it
687	 * has wrapped around, so correct 1.0 s. If the result exceeds
688	 * the tick interval, the sample point has crossed a tick
689	 * boundary during the last second, so correct the tick. Very
690	 * intricate.
691	 */
692	u_nsec = nsec;
693	if (u_nsec > (NANOSECOND >> 1))
694		u_nsec -= NANOSECOND;
695	else if (u_nsec < -(NANOSECOND >> 1))
696		u_nsec += NANOSECOND;
697	pps_fcount += u_nsec;
698	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) {
699		return;
700	}
701	time_status &= ~STA_PPSJITTER;
702
703	/*
704	 * A three-stage median filter is used to help denoise the PPS
705	 * time. The median sample becomes the time offset estimate; the
706	 * difference between the other two samples becomes the time
707	 * dispersion (jitter) estimate.
708	 */
709	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
710		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
711			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
712			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
713		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
714			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
715			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
716		} else {
717			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
718			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
719		}
720	} else {
721		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
722			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
723			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
724		} else  if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
725			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
726			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
727		} else {
728			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
729			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
730		}
731	}
732
733	/*
734	 * Nominal jitter is due to PPS signal noise and  interrupt
735	 * latency. If it exceeds the popcorn threshold,
736	 * the sample is discarded. otherwise, if so enabled, the time
737	 * offset is updated. We can tolerate a modest loss of data here
738	 * without degrading time accuracy.
739	 */
740	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
741		time_status |= STA_PPSJITTER;
742		pps_jitcnt++;
743	} else if (time_status & STA_PPSTIME) {
744		L_LINT(time_offset, -v_nsec);
745		L_LINT(pps_offset, -v_nsec);
746
747		if (pps_letgo >= 2) {
748			L_LINT(ftemp, -v_nsec);
749			L_RSHIFT(ftemp, (pps_shift * 2));
750			L_ADD(ftemp, time_freq);
751			w_nsec = L_GINT(ftemp);
752			if (w_nsec > MAXFREQ)
753				L_LINT(ftemp, MAXFREQ);
754			else if (w_nsec < -MAXFREQ)
755				L_LINT(ftemp, -MAXFREQ);
756			time_freq = ftemp;
757		}
758
759	}
760	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
761	u_sec = pps_tf[0].tv_sec - pps_lastsec;
762	if (u_sec < (1 << pps_shift))
763		return;
764
765	/*
766	 * At the end of the calibration interval the difference between
767	 * the first and last counter values becomes the scaled
768	 * frequency. It will later be divided by the length of the
769	 * interval to determine the frequency update. If the frequency
770	 * exceeds a sanity threshold, or if the actual calibration
771	 * interval is not equal to the expected length, the data are
772	 * discarded. We can tolerate a modest loss of data here without
773	 * degrading frequency ccuracy.
774	 */
775	pps_calcnt++;
776	v_nsec = -pps_fcount;
777	pps_lastsec = pps_tf[0].tv_sec;
778	pps_fcount = 0;
779	u_nsec = MAXFREQ << pps_shift;
780	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
781	    pps_shift)) {
782		time_status |= STA_PPSERROR;
783		pps_errcnt++;
784		return;
785	}
786
787	/*
788	 * Here the raw frequency offset and wander (stability) is
789	 * calculated. If the wander is less than the wander threshold
790	 * for four consecutive averaging intervals, the interval is
791	 * doubled; if it is greater than the threshold for four
792	 * consecutive intervals, the interval is halved. The scaled
793	 * frequency offset is converted to frequency offset. The
794	 * stability metric is calculated as the average of recent
795	 * frequency changes, but is used only for performance
796	 * monitoring.
797	 */
798	L_LINT(ftemp, v_nsec);
799	L_RSHIFT(ftemp, pps_shift);
800	L_SUB(ftemp, pps_freq);
801	u_nsec = L_GINT(ftemp);
802	if (u_nsec > PPS_MAXWANDER) {
803		L_LINT(ftemp, PPS_MAXWANDER);
804		pps_intcnt--;
805		time_status |= STA_PPSWANDER;
806		pps_stbcnt++;
807	} else if (u_nsec < -PPS_MAXWANDER) {
808		L_LINT(ftemp, -PPS_MAXWANDER);
809		pps_intcnt--;
810		time_status |= STA_PPSWANDER;
811		pps_stbcnt++;
812	} else {
813		pps_intcnt++;
814	}
815	if (!(time_status & STA_PPSFREQ)) {
816		pps_intcnt = 0;
817		pps_shift = PPS_FAVG;
818	} else if (pps_shift > pps_shiftmax) {
819		/* If we lowered pps_shiftmax */
820		pps_shift = pps_shiftmax;
821		pps_intcnt = 0;
822	} else if (pps_intcnt >= 4) {
823		pps_intcnt = 4;
824		if (pps_shift < pps_shiftmax) {
825			pps_shift++;
826			pps_intcnt = 0;
827		}
828	} else if (pps_intcnt <= -4) {
829		pps_intcnt = -4;
830		if (pps_shift > PPS_FAVG) {
831			pps_shift--;
832			pps_intcnt = 0;
833		}
834	}
835	if (u_nsec < 0)
836		u_nsec = -u_nsec;
837	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
838
839	/*
840	 * The PPS frequency is recalculated and clamped to the maximum
841	 * MAXFREQ. If enabled, the system clock frequency is updated as
842	 * well.
843	 */
844	L_ADD(pps_freq, ftemp);
845	u_nsec = L_GINT(pps_freq);
846	if (u_nsec > MAXFREQ)
847		L_LINT(pps_freq, MAXFREQ);
848	else if (u_nsec < -MAXFREQ)
849		L_LINT(pps_freq, -MAXFREQ);
850	if ((time_status & (STA_PPSFREQ | STA_PPSTIME)) == STA_PPSFREQ) {
851		pps_letgo = 0;
852		time_freq = pps_freq;
853	} else if (time_status & STA_PPSTIME) {
854		if (pps_letgo < 2)
855			pps_letgo++;
856	}
857}
858#endif /* PPS_SYNC */
859