kern_ntptime.c revision 137873
1299425Smm/***********************************************************************
2299425Smm *								       *
3299425Smm * Copyright (c) David L. Mills 1993-2001			       *
4299425Smm *								       *
5299425Smm * Permission to use, copy, modify, and distribute this software and   *
6299425Smm * its documentation for any purpose and without fee is hereby	       *
7299425Smm * granted, provided that the above copyright notice appears in all    *
8299425Smm * copies and that both the copyright notice and this permission       *
9299425Smm * notice appear in supporting documentation, and that the name	       *
10299425Smm * University of Delaware not be used in advertising or publicity      *
11299425Smm * pertaining to distribution of the software without specific,	       *
12299425Smm * written prior permission. The University of Delaware makes no       *
13299425Smm * representations about the suitability this software for any	       *
14299425Smm * purpose. It is provided "as is" without express or implied	       *
15299425Smm * warranty.							       *
16299425Smm *								       *
17299425Smm **********************************************************************/
18299425Smm
19299425Smm/*
20299425Smm * Adapted from the original sources for FreeBSD and timecounters by:
21299425Smm * Poul-Henning Kamp <phk@FreeBSD.org>.
22299425Smm *
23299425Smm * The 32bit version of the "LP" macros seems a bit past its "sell by"
24299425Smm * date so I have retained only the 64bit version and included it directly
25299425Smm * in this file.
26299425Smm *
27299425Smm * Only minor changes done to interface with the timecounters over in
28299425Smm * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29299425Smm * confusing and/or plain wrong in that context.
30299425Smm */
31299425Smm
32299425Smm#include <sys/cdefs.h>
33299425Smm__FBSDID("$FreeBSD: head/sys/kern/kern_ntptime.c 137873 2004-11-18 23:44:49Z marks $");
34299425Smm
35299425Smm#include "opt_ntp.h"
36299425Smm
37299425Smm#include <sys/param.h>
38299425Smm#include <sys/systm.h>
39299425Smm#include <sys/sysproto.h>
40299425Smm#include <sys/kernel.h>
41299425Smm#include <sys/proc.h>
42299425Smm#include <sys/lock.h>
43299425Smm#include <sys/mutex.h>
44299425Smm#include <sys/time.h>
45299425Smm#include <sys/timex.h>
46318482Smm#include <sys/timetc.h>
47299425Smm#include <sys/timepps.h>
48299425Smm#include <sys/sysctl.h>
49299425Smm
50299425Smm/*
51299425Smm * Single-precision macros for 64-bit machines
52299425Smm */
53299425Smmtypedef int64_t l_fp;
54299425Smm#define L_ADD(v, u)	((v) += (u))
55299425Smm#define L_SUB(v, u)	((v) -= (u))
56318482Smm#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
57299425Smm#define L_NEG(v)	((v) = -(v))
58299425Smm#define L_RSHIFT(v, n) \
59299425Smm	do { \
60299425Smm		if ((v) < 0) \
61299425Smm			(v) = -(-(v) >> (n)); \
62299425Smm		else \
63299425Smm			(v) = (v) >> (n); \
64299425Smm	} while (0)
65299425Smm#define L_MPY(v, a)	((v) *= (a))
66318482Smm#define L_CLR(v)	((v) = 0)
67299425Smm#define L_ISNEG(v)	((v) < 0)
68299425Smm#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
69311041Smm#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
70311041Smm
71311041Smm/*
72311041Smm * Generic NTP kernel interface
73311041Smm *
74318482Smm * These routines constitute the Network Time Protocol (NTP) interfaces
75311041Smm * for user and daemon application programs. The ntp_gettime() routine
76311041Smm * provides the time, maximum error (synch distance) and estimated error
77299425Smm * (dispersion) to client user application programs. The ntp_adjtime()
78318482Smm * routine is used by the NTP daemon to adjust the system clock to an
79299425Smm * externally derived time. The time offset and related variables set by
80299425Smm * this routine are used by other routines in this module to adjust the
81299425Smm * phase and frequency of the clock discipline loop which controls the
82318482Smm * system clock.
83299425Smm *
84299425Smm * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
85299425Smm * defined), the time at each tick interrupt is derived directly from
86299425Smm * the kernel time variable. When the kernel time is reckoned in
87318482Smm * microseconds, (NTP_NANO undefined), the time is derived from the
88299425Smm * kernel time variable together with a variable representing the
89 * leftover nanoseconds at the last tick interrupt. In either case, the
90 * current nanosecond time is reckoned from these values plus an
91 * interpolated value derived by the clock routines in another
92 * architecture-specific module. The interpolation can use either a
93 * dedicated counter or a processor cycle counter (PCC) implemented in
94 * some architectures.
95 *
96 * Note that all routines must run at priority splclock or higher.
97 */
98/*
99 * Phase/frequency-lock loop (PLL/FLL) definitions
100 *
101 * The nanosecond clock discipline uses two variable types, time
102 * variables and frequency variables. Both types are represented as 64-
103 * bit fixed-point quantities with the decimal point between two 32-bit
104 * halves. On a 32-bit machine, each half is represented as a single
105 * word and mathematical operations are done using multiple-precision
106 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
107 * used.
108 *
109 * A time variable is a signed 64-bit fixed-point number in ns and
110 * fraction. It represents the remaining time offset to be amortized
111 * over succeeding tick interrupts. The maximum time offset is about
112 * 0.5 s and the resolution is about 2.3e-10 ns.
113 *
114 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
115 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
116 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117 * |s s s|			 ns				   |
118 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119 * |			    fraction				   |
120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 *
122 * A frequency variable is a signed 64-bit fixed-point number in ns/s
123 * and fraction. It represents the ns and fraction to be added to the
124 * kernel time variable at each second. The maximum frequency offset is
125 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
126 *
127 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
128 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
129 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 * |s s s s s s s s s s s s s|	          ns/s			   |
131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 * |			    fraction				   |
133 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134 */
135/*
136 * The following variables establish the state of the PLL/FLL and the
137 * residual time and frequency offset of the local clock.
138 */
139#define SHIFT_PLL	4		/* PLL loop gain (shift) */
140#define SHIFT_FLL	2		/* FLL loop gain (shift) */
141
142static int time_state = TIME_OK;	/* clock state */
143static int time_status = STA_UNSYNC;	/* clock status bits */
144static long time_tai;			/* TAI offset (s) */
145static long time_monitor;		/* last time offset scaled (ns) */
146static long time_constant;		/* poll interval (shift) (s) */
147static long time_precision = 1;		/* clock precision (ns) */
148static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
149static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
150static long time_reftime;		/* time at last adjustment (s) */
151static l_fp time_offset;		/* time offset (ns) */
152static l_fp time_freq;			/* frequency offset (ns/s) */
153static l_fp time_adj;			/* tick adjust (ns/s) */
154
155static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
156
157#ifdef PPS_SYNC
158/*
159 * The following variables are used when a pulse-per-second (PPS) signal
160 * is available and connected via a modem control lead. They establish
161 * the engineering parameters of the clock discipline loop when
162 * controlled by the PPS signal.
163 */
164#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
165#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
166#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
167#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
168#define PPS_VALID	120		/* PPS signal watchdog max (s) */
169#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
170#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
171
172static struct timespec pps_tf[3];	/* phase median filter */
173static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
174static long pps_fcount;			/* frequency accumulator */
175static long pps_jitter;			/* nominal jitter (ns) */
176static long pps_stabil;			/* nominal stability (scaled ns/s) */
177static long pps_lastsec;		/* time at last calibration (s) */
178static int pps_valid;			/* signal watchdog counter */
179static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
180static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
181static int pps_intcnt;			/* wander counter */
182
183/*
184 * PPS signal quality monitors
185 */
186static long pps_calcnt;			/* calibration intervals */
187static long pps_jitcnt;			/* jitter limit exceeded */
188static long pps_stbcnt;			/* stability limit exceeded */
189static long pps_errcnt;			/* calibration errors */
190#endif /* PPS_SYNC */
191/*
192 * End of phase/frequency-lock loop (PLL/FLL) definitions
193 */
194
195static void ntp_init(void);
196static void hardupdate(long offset);
197static void ntp_gettime1(struct ntptimeval *ntvp);
198
199static void
200ntp_gettime1(struct ntptimeval *ntvp)
201{
202	struct timespec atv;	/* nanosecond time */
203
204	nanotime(&atv);
205	ntvp->time.tv_sec = atv.tv_sec;
206	ntvp->time.tv_nsec = atv.tv_nsec;
207	ntvp->maxerror = time_maxerror;
208	ntvp->esterror = time_esterror;
209	ntvp->tai = time_tai;
210	ntvp->time_state = time_state;
211
212	/*
213	 * Status word error decode. If any of these conditions occur,
214	 * an error is returned, instead of the status word. Most
215	 * applications will care only about the fact the system clock
216	 * may not be trusted, not about the details.
217	 *
218	 * Hardware or software error
219	 */
220	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
221
222	/*
223	 * PPS signal lost when either time or frequency synchronization
224	 * requested
225	 */
226	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
227	    !(time_status & STA_PPSSIGNAL)) ||
228
229	/*
230	 * PPS jitter exceeded when time synchronization requested
231	 */
232	    (time_status & STA_PPSTIME &&
233	    time_status & STA_PPSJITTER) ||
234
235	/*
236	 * PPS wander exceeded or calibration error when frequency
237	 * synchronization requested
238	 */
239	    (time_status & STA_PPSFREQ &&
240	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
241		ntvp->time_state = TIME_ERROR;
242}
243
244#ifndef _SYS_SYSPROTO_H_
245struct ntp_gettime_args {
246	struct ntptimeval *ntvp;
247};
248#endif
249/* ARGSUSED */
250int
251ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
252{
253	struct ntptimeval ntv;
254
255	ntp_gettime1(&ntv);
256
257	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
258}
259
260/*
261 * ntp_gettime() - NTP user application interface
262 *
263 * See the timex.h header file for synopsis and API description. Note
264 * that the TAI offset is returned in the ntvtimeval.tai structure
265 * member.
266 */
267static int
268ntp_sysctl(SYSCTL_HANDLER_ARGS)
269{
270	struct ntptimeval ntv;	/* temporary structure */
271
272	ntp_gettime1(&ntv);
273
274	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
275}
276
277SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
278SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
279	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
280
281#ifdef PPS_SYNC
282SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
283SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
284SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
285
286SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
287SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
288#endif
289/*
290 * ntp_adjtime() - NTP daemon application interface
291 *
292 * See the timex.h header file for synopsis and API description. Note
293 * that the timex.constant structure member has a dual purpose to set
294 * the time constant and to set the TAI offset.
295 */
296#ifndef _SYS_SYSPROTO_H_
297struct ntp_adjtime_args {
298	struct timex *tp;
299};
300#endif
301
302/*
303 * MPSAFE
304 */
305int
306ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
307{
308	struct timex ntv;	/* temporary structure */
309	long freq;		/* frequency ns/s) */
310	int modes;		/* mode bits from structure */
311	int s;			/* caller priority */
312	int error;
313
314	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
315	if (error)
316		return(error);
317
318	/*
319	 * Update selected clock variables - only the superuser can
320	 * change anything. Note that there is no error checking here on
321	 * the assumption the superuser should know what it is doing.
322	 * Note that either the time constant or TAI offset are loaded
323	 * from the ntv.constant member, depending on the mode bits. If
324	 * the STA_PLL bit in the status word is cleared, the state and
325	 * status words are reset to the initial values at boot.
326	 */
327	mtx_lock(&Giant);
328	modes = ntv.modes;
329	if (modes)
330		error = suser(td);
331	if (error)
332		goto done2;
333	s = splclock();
334	if (modes & MOD_MAXERROR)
335		time_maxerror = ntv.maxerror;
336	if (modes & MOD_ESTERROR)
337		time_esterror = ntv.esterror;
338	if (modes & MOD_STATUS) {
339		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
340			time_state = TIME_OK;
341			time_status = STA_UNSYNC;
342#ifdef PPS_SYNC
343			pps_shift = PPS_FAVG;
344#endif /* PPS_SYNC */
345		}
346		time_status &= STA_RONLY;
347		time_status |= ntv.status & ~STA_RONLY;
348	}
349	if (modes & MOD_TIMECONST) {
350		if (ntv.constant < 0)
351			time_constant = 0;
352		else if (ntv.constant > MAXTC)
353			time_constant = MAXTC;
354		else
355			time_constant = ntv.constant;
356	}
357	if (modes & MOD_TAI) {
358		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
359			time_tai = ntv.constant;
360	}
361#ifdef PPS_SYNC
362	if (modes & MOD_PPSMAX) {
363		if (ntv.shift < PPS_FAVG)
364			pps_shiftmax = PPS_FAVG;
365		else if (ntv.shift > PPS_FAVGMAX)
366			pps_shiftmax = PPS_FAVGMAX;
367		else
368			pps_shiftmax = ntv.shift;
369	}
370#endif /* PPS_SYNC */
371	if (modes & MOD_NANO)
372		time_status |= STA_NANO;
373	if (modes & MOD_MICRO)
374		time_status &= ~STA_NANO;
375	if (modes & MOD_CLKB)
376		time_status |= STA_CLK;
377	if (modes & MOD_CLKA)
378		time_status &= ~STA_CLK;
379	if (modes & MOD_FREQUENCY) {
380		freq = (ntv.freq * 1000LL) >> 16;
381		if (freq > MAXFREQ)
382			L_LINT(time_freq, MAXFREQ);
383		else if (freq < -MAXFREQ)
384			L_LINT(time_freq, -MAXFREQ);
385		else {
386			/*
387			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
388			 * time_freq is [ns/s * 2^32]
389			 */
390			time_freq = ntv.freq * 1000LL * 65536LL;
391		}
392#ifdef PPS_SYNC
393		pps_freq = time_freq;
394#endif /* PPS_SYNC */
395	}
396	if (modes & MOD_OFFSET) {
397		if (time_status & STA_NANO)
398			hardupdate(ntv.offset);
399		else
400			hardupdate(ntv.offset * 1000);
401	}
402
403	/*
404	 * Retrieve all clock variables. Note that the TAI offset is
405	 * returned only by ntp_gettime();
406	 */
407	if (time_status & STA_NANO)
408		ntv.offset = L_GINT(time_offset);
409	else
410		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
411	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
412	ntv.maxerror = time_maxerror;
413	ntv.esterror = time_esterror;
414	ntv.status = time_status;
415	ntv.constant = time_constant;
416	if (time_status & STA_NANO)
417		ntv.precision = time_precision;
418	else
419		ntv.precision = time_precision / 1000;
420	ntv.tolerance = MAXFREQ * SCALE_PPM;
421#ifdef PPS_SYNC
422	ntv.shift = pps_shift;
423	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
424	if (time_status & STA_NANO)
425		ntv.jitter = pps_jitter;
426	else
427		ntv.jitter = pps_jitter / 1000;
428	ntv.stabil = pps_stabil;
429	ntv.calcnt = pps_calcnt;
430	ntv.errcnt = pps_errcnt;
431	ntv.jitcnt = pps_jitcnt;
432	ntv.stbcnt = pps_stbcnt;
433#endif /* PPS_SYNC */
434	splx(s);
435
436	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
437	if (error)
438		goto done2;
439
440	/*
441	 * Status word error decode. See comments in
442	 * ntp_gettime() routine.
443	 */
444	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
445	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
446	    !(time_status & STA_PPSSIGNAL)) ||
447	    (time_status & STA_PPSTIME &&
448	    time_status & STA_PPSJITTER) ||
449	    (time_status & STA_PPSFREQ &&
450	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
451		td->td_retval[0] = TIME_ERROR;
452	} else {
453		td->td_retval[0] = time_state;
454	}
455done2:
456	mtx_unlock(&Giant);
457	return (error);
458}
459
460/*
461 * second_overflow() - called after ntp_tick_adjust()
462 *
463 * This routine is ordinarily called immediately following the above
464 * routine ntp_tick_adjust(). While these two routines are normally
465 * combined, they are separated here only for the purposes of
466 * simulation.
467 */
468void
469ntp_update_second(int64_t *adjustment, time_t *newsec)
470{
471	int tickrate;
472	l_fp ftemp;		/* 32/64-bit temporary */
473
474	/*
475	 * On rollover of the second both the nanosecond and microsecond
476	 * clocks are updated and the state machine cranked as
477	 * necessary. The phase adjustment to be used for the next
478	 * second is calculated and the maximum error is increased by
479	 * the tolerance.
480	 */
481	time_maxerror += MAXFREQ / 1000;
482
483	/*
484	 * Leap second processing. If in leap-insert state at
485	 * the end of the day, the system clock is set back one
486	 * second; if in leap-delete state, the system clock is
487	 * set ahead one second. The nano_time() routine or
488	 * external clock driver will insure that reported time
489	 * is always monotonic.
490	 */
491	switch (time_state) {
492
493		/*
494		 * No warning.
495		 */
496		case TIME_OK:
497		if (time_status & STA_INS)
498			time_state = TIME_INS;
499		else if (time_status & STA_DEL)
500			time_state = TIME_DEL;
501		break;
502
503		/*
504		 * Insert second 23:59:60 following second
505		 * 23:59:59.
506		 */
507		case TIME_INS:
508		if (!(time_status & STA_INS))
509			time_state = TIME_OK;
510		else if ((*newsec) % 86400 == 0) {
511			(*newsec)--;
512			time_state = TIME_OOP;
513			time_tai++;
514		}
515		break;
516
517		/*
518		 * Delete second 23:59:59.
519		 */
520		case TIME_DEL:
521		if (!(time_status & STA_DEL))
522			time_state = TIME_OK;
523		else if (((*newsec) + 1) % 86400 == 0) {
524			(*newsec)++;
525			time_tai--;
526			time_state = TIME_WAIT;
527		}
528		break;
529
530		/*
531		 * Insert second in progress.
532		 */
533		case TIME_OOP:
534			time_state = TIME_WAIT;
535		break;
536
537		/*
538		 * Wait for status bits to clear.
539		 */
540		case TIME_WAIT:
541		if (!(time_status & (STA_INS | STA_DEL)))
542			time_state = TIME_OK;
543	}
544
545	/*
546	 * Compute the total time adjustment for the next second
547	 * in ns. The offset is reduced by a factor depending on
548	 * whether the PPS signal is operating. Note that the
549	 * value is in effect scaled by the clock frequency,
550	 * since the adjustment is added at each tick interrupt.
551	 */
552	ftemp = time_offset;
553#ifdef PPS_SYNC
554	/* XXX even if PPS signal dies we should finish adjustment ? */
555	if (time_status & STA_PPSTIME && time_status &
556	    STA_PPSSIGNAL)
557		L_RSHIFT(ftemp, pps_shift);
558	else
559		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
560#else
561		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
562#endif /* PPS_SYNC */
563	time_adj = ftemp;
564	L_SUB(time_offset, ftemp);
565	L_ADD(time_adj, time_freq);
566
567	/*
568	 * Apply any correction from adjtime(2).  If more than one second
569	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
570	 * until the last second is slewed the final < 500 usecs.
571	 */
572	if (time_adjtime != 0) {
573		if (time_adjtime > 1000000)
574			tickrate = 5000;
575		else if (time_adjtime < -1000000)
576			tickrate = -5000;
577		else if (time_adjtime > 500)
578			tickrate = 500;
579		else if (time_adjtime < -500)
580			tickrate = -500;
581		else
582			tickrate = time_adjtime;
583		time_adjtime -= tickrate;
584		L_LINT(ftemp, tickrate * 1000);
585		L_ADD(time_adj, ftemp);
586	}
587	*adjustment = time_adj;
588
589#ifdef PPS_SYNC
590	if (pps_valid > 0)
591		pps_valid--;
592	else
593		time_status &= ~STA_PPSSIGNAL;
594#endif /* PPS_SYNC */
595}
596
597/*
598 * ntp_init() - initialize variables and structures
599 *
600 * This routine must be called after the kernel variables hz and tick
601 * are set or changed and before the next tick interrupt. In this
602 * particular implementation, these values are assumed set elsewhere in
603 * the kernel. The design allows the clock frequency and tick interval
604 * to be changed while the system is running. So, this routine should
605 * probably be integrated with the code that does that.
606 */
607static void
608ntp_init()
609{
610
611	/*
612	 * The following variables are initialized only at startup. Only
613	 * those structures not cleared by the compiler need to be
614	 * initialized, and these only in the simulator. In the actual
615	 * kernel, any nonzero values here will quickly evaporate.
616	 */
617	L_CLR(time_offset);
618	L_CLR(time_freq);
619#ifdef PPS_SYNC
620	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
621	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
622	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
623	pps_fcount = 0;
624	L_CLR(pps_freq);
625#endif /* PPS_SYNC */
626}
627
628SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
629
630/*
631 * hardupdate() - local clock update
632 *
633 * This routine is called by ntp_adjtime() to update the local clock
634 * phase and frequency. The implementation is of an adaptive-parameter,
635 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
636 * time and frequency offset estimates for each call. If the kernel PPS
637 * discipline code is configured (PPS_SYNC), the PPS signal itself
638 * determines the new time offset, instead of the calling argument.
639 * Presumably, calls to ntp_adjtime() occur only when the caller
640 * believes the local clock is valid within some bound (+-128 ms with
641 * NTP). If the caller's time is far different than the PPS time, an
642 * argument will ensue, and it's not clear who will lose.
643 *
644 * For uncompensated quartz crystal oscillators and nominal update
645 * intervals less than 256 s, operation should be in phase-lock mode,
646 * where the loop is disciplined to phase. For update intervals greater
647 * than 1024 s, operation should be in frequency-lock mode, where the
648 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
649 * is selected by the STA_MODE status bit.
650 */
651static void
652hardupdate(offset)
653	long offset;		/* clock offset (ns) */
654{
655	long mtemp;
656	l_fp ftemp;
657
658	/*
659	 * Select how the phase is to be controlled and from which
660	 * source. If the PPS signal is present and enabled to
661	 * discipline the time, the PPS offset is used; otherwise, the
662	 * argument offset is used.
663	 */
664	if (!(time_status & STA_PLL))
665		return;
666	if (!(time_status & STA_PPSTIME && time_status &
667	    STA_PPSSIGNAL)) {
668		if (offset > MAXPHASE)
669			time_monitor = MAXPHASE;
670		else if (offset < -MAXPHASE)
671			time_monitor = -MAXPHASE;
672		else
673			time_monitor = offset;
674		L_LINT(time_offset, time_monitor);
675	}
676
677	/*
678	 * Select how the frequency is to be controlled and in which
679	 * mode (PLL or FLL). If the PPS signal is present and enabled
680	 * to discipline the frequency, the PPS frequency is used;
681	 * otherwise, the argument offset is used to compute it.
682	 */
683	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
684		time_reftime = time_second;
685		return;
686	}
687	if (time_status & STA_FREQHOLD || time_reftime == 0)
688		time_reftime = time_second;
689	mtemp = time_second - time_reftime;
690	L_LINT(ftemp, time_monitor);
691	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
692	L_MPY(ftemp, mtemp);
693	L_ADD(time_freq, ftemp);
694	time_status &= ~STA_MODE;
695	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
696	    MAXSEC)) {
697		L_LINT(ftemp, (time_monitor << 4) / mtemp);
698		L_RSHIFT(ftemp, SHIFT_FLL + 4);
699		L_ADD(time_freq, ftemp);
700		time_status |= STA_MODE;
701	}
702	time_reftime = time_second;
703	if (L_GINT(time_freq) > MAXFREQ)
704		L_LINT(time_freq, MAXFREQ);
705	else if (L_GINT(time_freq) < -MAXFREQ)
706		L_LINT(time_freq, -MAXFREQ);
707}
708
709#ifdef PPS_SYNC
710/*
711 * hardpps() - discipline CPU clock oscillator to external PPS signal
712 *
713 * This routine is called at each PPS interrupt in order to discipline
714 * the CPU clock oscillator to the PPS signal. There are two independent
715 * first-order feedback loops, one for the phase, the other for the
716 * frequency. The phase loop measures and grooms the PPS phase offset
717 * and leaves it in a handy spot for the seconds overflow routine. The
718 * frequency loop averages successive PPS phase differences and
719 * calculates the PPS frequency offset, which is also processed by the
720 * seconds overflow routine. The code requires the caller to capture the
721 * time and architecture-dependent hardware counter values in
722 * nanoseconds at the on-time PPS signal transition.
723 *
724 * Note that, on some Unix systems this routine runs at an interrupt
725 * priority level higher than the timer interrupt routine hardclock().
726 * Therefore, the variables used are distinct from the hardclock()
727 * variables, except for the actual time and frequency variables, which
728 * are determined by this routine and updated atomically.
729 */
730void
731hardpps(tsp, nsec)
732	struct timespec *tsp;	/* time at PPS */
733	long nsec;		/* hardware counter at PPS */
734{
735	long u_sec, u_nsec, v_nsec; /* temps */
736	l_fp ftemp;
737
738	/*
739	 * The signal is first processed by a range gate and frequency
740	 * discriminator. The range gate rejects noise spikes outside
741	 * the range +-500 us. The frequency discriminator rejects input
742	 * signals with apparent frequency outside the range 1 +-500
743	 * PPM. If two hits occur in the same second, we ignore the
744	 * later hit; if not and a hit occurs outside the range gate,
745	 * keep the later hit for later comparison, but do not process
746	 * it.
747	 */
748	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
749	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
750	pps_valid = PPS_VALID;
751	u_sec = tsp->tv_sec;
752	u_nsec = tsp->tv_nsec;
753	if (u_nsec >= (NANOSECOND >> 1)) {
754		u_nsec -= NANOSECOND;
755		u_sec++;
756	}
757	v_nsec = u_nsec - pps_tf[0].tv_nsec;
758	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
759	    MAXFREQ)
760		return;
761	pps_tf[2] = pps_tf[1];
762	pps_tf[1] = pps_tf[0];
763	pps_tf[0].tv_sec = u_sec;
764	pps_tf[0].tv_nsec = u_nsec;
765
766	/*
767	 * Compute the difference between the current and previous
768	 * counter values. If the difference exceeds 0.5 s, assume it
769	 * has wrapped around, so correct 1.0 s. If the result exceeds
770	 * the tick interval, the sample point has crossed a tick
771	 * boundary during the last second, so correct the tick. Very
772	 * intricate.
773	 */
774	u_nsec = nsec;
775	if (u_nsec > (NANOSECOND >> 1))
776		u_nsec -= NANOSECOND;
777	else if (u_nsec < -(NANOSECOND >> 1))
778		u_nsec += NANOSECOND;
779	pps_fcount += u_nsec;
780	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
781		return;
782	time_status &= ~STA_PPSJITTER;
783
784	/*
785	 * A three-stage median filter is used to help denoise the PPS
786	 * time. The median sample becomes the time offset estimate; the
787	 * difference between the other two samples becomes the time
788	 * dispersion (jitter) estimate.
789	 */
790	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
791		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
792			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
793			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
794		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
795			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
796			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
797		} else {
798			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
799			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
800		}
801	} else {
802		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
803			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
804			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
805		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
806			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
807			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
808		} else {
809			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
810			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
811		}
812	}
813
814	/*
815	 * Nominal jitter is due to PPS signal noise and interrupt
816	 * latency. If it exceeds the popcorn threshold, the sample is
817	 * discarded. otherwise, if so enabled, the time offset is
818	 * updated. We can tolerate a modest loss of data here without
819	 * much degrading time accuracy.
820	 */
821	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
822		time_status |= STA_PPSJITTER;
823		pps_jitcnt++;
824	} else if (time_status & STA_PPSTIME) {
825		time_monitor = -v_nsec;
826		L_LINT(time_offset, time_monitor);
827	}
828	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
829	u_sec = pps_tf[0].tv_sec - pps_lastsec;
830	if (u_sec < (1 << pps_shift))
831		return;
832
833	/*
834	 * At the end of the calibration interval the difference between
835	 * the first and last counter values becomes the scaled
836	 * frequency. It will later be divided by the length of the
837	 * interval to determine the frequency update. If the frequency
838	 * exceeds a sanity threshold, or if the actual calibration
839	 * interval is not equal to the expected length, the data are
840	 * discarded. We can tolerate a modest loss of data here without
841	 * much degrading frequency accuracy.
842	 */
843	pps_calcnt++;
844	v_nsec = -pps_fcount;
845	pps_lastsec = pps_tf[0].tv_sec;
846	pps_fcount = 0;
847	u_nsec = MAXFREQ << pps_shift;
848	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
849	    pps_shift)) {
850		time_status |= STA_PPSERROR;
851		pps_errcnt++;
852		return;
853	}
854
855	/*
856	 * Here the raw frequency offset and wander (stability) is
857	 * calculated. If the wander is less than the wander threshold
858	 * for four consecutive averaging intervals, the interval is
859	 * doubled; if it is greater than the threshold for four
860	 * consecutive intervals, the interval is halved. The scaled
861	 * frequency offset is converted to frequency offset. The
862	 * stability metric is calculated as the average of recent
863	 * frequency changes, but is used only for performance
864	 * monitoring.
865	 */
866	L_LINT(ftemp, v_nsec);
867	L_RSHIFT(ftemp, pps_shift);
868	L_SUB(ftemp, pps_freq);
869	u_nsec = L_GINT(ftemp);
870	if (u_nsec > PPS_MAXWANDER) {
871		L_LINT(ftemp, PPS_MAXWANDER);
872		pps_intcnt--;
873		time_status |= STA_PPSWANDER;
874		pps_stbcnt++;
875	} else if (u_nsec < -PPS_MAXWANDER) {
876		L_LINT(ftemp, -PPS_MAXWANDER);
877		pps_intcnt--;
878		time_status |= STA_PPSWANDER;
879		pps_stbcnt++;
880	} else {
881		pps_intcnt++;
882	}
883	if (pps_intcnt >= 4) {
884		pps_intcnt = 4;
885		if (pps_shift < pps_shiftmax) {
886			pps_shift++;
887			pps_intcnt = 0;
888		}
889	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
890		pps_intcnt = -4;
891		if (pps_shift > PPS_FAVG) {
892			pps_shift--;
893			pps_intcnt = 0;
894		}
895	}
896	if (u_nsec < 0)
897		u_nsec = -u_nsec;
898	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
899
900	/*
901	 * The PPS frequency is recalculated and clamped to the maximum
902	 * MAXFREQ. If enabled, the system clock frequency is updated as
903	 * well.
904	 */
905	L_ADD(pps_freq, ftemp);
906	u_nsec = L_GINT(pps_freq);
907	if (u_nsec > MAXFREQ)
908		L_LINT(pps_freq, MAXFREQ);
909	else if (u_nsec < -MAXFREQ)
910		L_LINT(pps_freq, -MAXFREQ);
911	if (time_status & STA_PPSFREQ)
912		time_freq = pps_freq;
913}
914#endif /* PPS_SYNC */
915
916#ifndef _SYS_SYSPROTO_H_
917struct adjtime_args {
918	struct timeval *delta;
919	struct timeval *olddelta;
920};
921#endif
922/*
923 * MPSAFE
924 */
925/* ARGSUSED */
926int
927adjtime(struct thread *td, struct adjtime_args *uap)
928{
929	struct timeval atv;
930	int error;
931
932	if ((error = suser(td)))
933		return (error);
934
935	mtx_lock(&Giant);
936	if (uap->olddelta) {
937		atv.tv_sec = time_adjtime / 1000000;
938		atv.tv_usec = time_adjtime % 1000000;
939		if (atv.tv_usec < 0) {
940			atv.tv_usec += 1000000;
941			atv.tv_sec--;
942		}
943		error = copyout(&atv, uap->olddelta, sizeof(atv));
944		if (error)
945			goto done2;
946	}
947	if (uap->delta) {
948		error = copyin(uap->delta, &atv, sizeof(atv));
949		if (error)
950			goto done2;
951		time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
952	}
953done2:
954	mtx_unlock(&Giant);
955	return (error);
956}
957
958