kern_ntptime.c revision 126974
1/***********************************************************************
2 *								       *
3 * Copyright (c) David L. Mills 1993-2001			       *
4 *								       *
5 * Permission to use, copy, modify, and distribute this software and   *
6 * its documentation for any purpose and without fee is hereby	       *
7 * granted, provided that the above copyright notice appears in all    *
8 * copies and that both the copyright notice and this permission       *
9 * notice appear in supporting documentation, and that the name	       *
10 * University of Delaware not be used in advertising or publicity      *
11 * pertaining to distribution of the software without specific,	       *
12 * written prior permission. The University of Delaware makes no       *
13 * representations about the suitability this software for any	       *
14 * purpose. It is provided "as is" without express or implied	       *
15 * warranty.							       *
16 *								       *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_ntptime.c 126974 2004-03-14 15:23:05Z phk $");
34
35#include "opt_ntp.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/sysproto.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/lock.h>
43#include <sys/mutex.h>
44#include <sys/time.h>
45#include <sys/timex.h>
46#include <sys/timetc.h>
47#include <sys/timepps.h>
48#include <sys/sysctl.h>
49
50/*
51 * Single-precision macros for 64-bit machines
52 */
53typedef int64_t l_fp;
54#define L_ADD(v, u)	((v) += (u))
55#define L_SUB(v, u)	((v) -= (u))
56#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
57#define L_NEG(v)	((v) = -(v))
58#define L_RSHIFT(v, n) \
59	do { \
60		if ((v) < 0) \
61			(v) = -(-(v) >> (n)); \
62		else \
63			(v) = (v) >> (n); \
64	} while (0)
65#define L_MPY(v, a)	((v) *= (a))
66#define L_CLR(v)	((v) = 0)
67#define L_ISNEG(v)	((v) < 0)
68#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
69#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
70
71/*
72 * Generic NTP kernel interface
73 *
74 * These routines constitute the Network Time Protocol (NTP) interfaces
75 * for user and daemon application programs. The ntp_gettime() routine
76 * provides the time, maximum error (synch distance) and estimated error
77 * (dispersion) to client user application programs. The ntp_adjtime()
78 * routine is used by the NTP daemon to adjust the system clock to an
79 * externally derived time. The time offset and related variables set by
80 * this routine are used by other routines in this module to adjust the
81 * phase and frequency of the clock discipline loop which controls the
82 * system clock.
83 *
84 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
85 * defined), the time at each tick interrupt is derived directly from
86 * the kernel time variable. When the kernel time is reckoned in
87 * microseconds, (NTP_NANO undefined), the time is derived from the
88 * kernel time variable together with a variable representing the
89 * leftover nanoseconds at the last tick interrupt. In either case, the
90 * current nanosecond time is reckoned from these values plus an
91 * interpolated value derived by the clock routines in another
92 * architecture-specific module. The interpolation can use either a
93 * dedicated counter or a processor cycle counter (PCC) implemented in
94 * some architectures.
95 *
96 * Note that all routines must run at priority splclock or higher.
97 */
98/*
99 * Phase/frequency-lock loop (PLL/FLL) definitions
100 *
101 * The nanosecond clock discipline uses two variable types, time
102 * variables and frequency variables. Both types are represented as 64-
103 * bit fixed-point quantities with the decimal point between two 32-bit
104 * halves. On a 32-bit machine, each half is represented as a single
105 * word and mathematical operations are done using multiple-precision
106 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
107 * used.
108 *
109 * A time variable is a signed 64-bit fixed-point number in ns and
110 * fraction. It represents the remaining time offset to be amortized
111 * over succeeding tick interrupts. The maximum time offset is about
112 * 0.5 s and the resolution is about 2.3e-10 ns.
113 *
114 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
115 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
116 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117 * |s s s|			 ns				   |
118 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119 * |			    fraction				   |
120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 *
122 * A frequency variable is a signed 64-bit fixed-point number in ns/s
123 * and fraction. It represents the ns and fraction to be added to the
124 * kernel time variable at each second. The maximum frequency offset is
125 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
126 *
127 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
128 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
129 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 * |s s s s s s s s s s s s s|	          ns/s			   |
131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 * |			    fraction				   |
133 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134 */
135/*
136 * The following variables establish the state of the PLL/FLL and the
137 * residual time and frequency offset of the local clock.
138 */
139#define SHIFT_PLL	4		/* PLL loop gain (shift) */
140#define SHIFT_FLL	2		/* FLL loop gain (shift) */
141
142static int time_state = TIME_OK;	/* clock state */
143static int time_status = STA_UNSYNC;	/* clock status bits */
144static long time_tai;			/* TAI offset (s) */
145static long time_monitor;		/* last time offset scaled (ns) */
146static long time_constant;		/* poll interval (shift) (s) */
147static long time_precision = 1;		/* clock precision (ns) */
148static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
149static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
150static long time_reftime;		/* time at last adjustment (s) */
151static l_fp time_offset;		/* time offset (ns) */
152static l_fp time_freq;			/* frequency offset (ns/s) */
153static l_fp time_adj;			/* tick adjust (ns/s) */
154
155static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
156
157#ifdef PPS_SYNC
158/*
159 * The following variables are used when a pulse-per-second (PPS) signal
160 * is available and connected via a modem control lead. They establish
161 * the engineering parameters of the clock discipline loop when
162 * controlled by the PPS signal.
163 */
164#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
165#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
166#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
167#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
168#define PPS_VALID	120		/* PPS signal watchdog max (s) */
169#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
170#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
171
172static struct timespec pps_tf[3];	/* phase median filter */
173static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
174static long pps_fcount;			/* frequency accumulator */
175static long pps_jitter;			/* nominal jitter (ns) */
176static long pps_stabil;			/* nominal stability (scaled ns/s) */
177static long pps_lastsec;		/* time at last calibration (s) */
178static int pps_valid;			/* signal watchdog counter */
179static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
180static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
181static int pps_intcnt;			/* wander counter */
182
183/*
184 * PPS signal quality monitors
185 */
186static long pps_calcnt;			/* calibration intervals */
187static long pps_jitcnt;			/* jitter limit exceeded */
188static long pps_stbcnt;			/* stability limit exceeded */
189static long pps_errcnt;			/* calibration errors */
190#endif /* PPS_SYNC */
191/*
192 * End of phase/frequency-lock loop (PLL/FLL) definitions
193 */
194
195static void ntp_init(void);
196static void hardupdate(long offset);
197
198/*
199 * ntp_gettime() - NTP user application interface
200 *
201 * See the timex.h header file for synopsis and API description. Note
202 * that the TAI offset is returned in the ntvtimeval.tai structure
203 * member.
204 */
205static int
206ntp_sysctl(SYSCTL_HANDLER_ARGS)
207{
208	struct ntptimeval ntv;	/* temporary structure */
209	struct timespec atv;	/* nanosecond time */
210
211	nanotime(&atv);
212	ntv.time.tv_sec = atv.tv_sec;
213	ntv.time.tv_nsec = atv.tv_nsec;
214	ntv.maxerror = time_maxerror;
215	ntv.esterror = time_esterror;
216	ntv.tai = time_tai;
217	ntv.time_state = time_state;
218
219	/*
220	 * Status word error decode. If any of these conditions occur,
221	 * an error is returned, instead of the status word. Most
222	 * applications will care only about the fact the system clock
223	 * may not be trusted, not about the details.
224	 *
225	 * Hardware or software error
226	 */
227	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
228
229	/*
230	 * PPS signal lost when either time or frequency synchronization
231	 * requested
232	 */
233	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
234	    !(time_status & STA_PPSSIGNAL)) ||
235
236	/*
237	 * PPS jitter exceeded when time synchronization requested
238	 */
239	    (time_status & STA_PPSTIME &&
240	    time_status & STA_PPSJITTER) ||
241
242	/*
243	 * PPS wander exceeded or calibration error when frequency
244	 * synchronization requested
245	 */
246	    (time_status & STA_PPSFREQ &&
247	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
248		ntv.time_state = TIME_ERROR;
249	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
250}
251
252SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
253SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
254	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
255
256#ifdef PPS_SYNC
257SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
258SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
259SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
260
261SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
262SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
263#endif
264/*
265 * ntp_adjtime() - NTP daemon application interface
266 *
267 * See the timex.h header file for synopsis and API description. Note
268 * that the timex.constant structure member has a dual purpose to set
269 * the time constant and to set the TAI offset.
270 */
271#ifndef _SYS_SYSPROTO_H_
272struct ntp_adjtime_args {
273	struct timex *tp;
274};
275#endif
276
277/*
278 * MPSAFE
279 */
280int
281ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
282{
283	struct timex ntv;	/* temporary structure */
284	long freq;		/* frequency ns/s) */
285	int modes;		/* mode bits from structure */
286	int s;			/* caller priority */
287	int error;
288
289	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
290	if (error)
291		return(error);
292
293	/*
294	 * Update selected clock variables - only the superuser can
295	 * change anything. Note that there is no error checking here on
296	 * the assumption the superuser should know what it is doing.
297	 * Note that either the time constant or TAI offset are loaded
298	 * from the ntv.constant member, depending on the mode bits. If
299	 * the STA_PLL bit in the status word is cleared, the state and
300	 * status words are reset to the initial values at boot.
301	 */
302	mtx_lock(&Giant);
303	modes = ntv.modes;
304	if (modes)
305		error = suser(td);
306	if (error)
307		goto done2;
308	s = splclock();
309	if (modes & MOD_MAXERROR)
310		time_maxerror = ntv.maxerror;
311	if (modes & MOD_ESTERROR)
312		time_esterror = ntv.esterror;
313	if (modes & MOD_STATUS) {
314		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
315			time_state = TIME_OK;
316			time_status = STA_UNSYNC;
317#ifdef PPS_SYNC
318			pps_shift = PPS_FAVG;
319#endif /* PPS_SYNC */
320		}
321		time_status &= STA_RONLY;
322		time_status |= ntv.status & ~STA_RONLY;
323	}
324	if (modes & MOD_TIMECONST) {
325		if (ntv.constant < 0)
326			time_constant = 0;
327		else if (ntv.constant > MAXTC)
328			time_constant = MAXTC;
329		else
330			time_constant = ntv.constant;
331	}
332	if (modes & MOD_TAI) {
333		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
334			time_tai = ntv.constant;
335	}
336#ifdef PPS_SYNC
337	if (modes & MOD_PPSMAX) {
338		if (ntv.shift < PPS_FAVG)
339			pps_shiftmax = PPS_FAVG;
340		else if (ntv.shift > PPS_FAVGMAX)
341			pps_shiftmax = PPS_FAVGMAX;
342		else
343			pps_shiftmax = ntv.shift;
344	}
345#endif /* PPS_SYNC */
346	if (modes & MOD_NANO)
347		time_status |= STA_NANO;
348	if (modes & MOD_MICRO)
349		time_status &= ~STA_NANO;
350	if (modes & MOD_CLKB)
351		time_status |= STA_CLK;
352	if (modes & MOD_CLKA)
353		time_status &= ~STA_CLK;
354	if (modes & MOD_FREQUENCY) {
355		freq = (ntv.freq * 1000LL) >> 16;
356		if (freq > MAXFREQ)
357			L_LINT(time_freq, MAXFREQ);
358		else if (freq < -MAXFREQ)
359			L_LINT(time_freq, -MAXFREQ);
360		else {
361			/*
362			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
363			 * time_freq is [ns/s * 2^32]
364			 */
365			time_freq = ntv.freq * 1000LL * 65536LL;
366		}
367#ifdef PPS_SYNC
368		pps_freq = time_freq;
369#endif /* PPS_SYNC */
370	}
371	if (modes & MOD_OFFSET) {
372		if (time_status & STA_NANO)
373			hardupdate(ntv.offset);
374		else
375			hardupdate(ntv.offset * 1000);
376	}
377
378	/*
379	 * Retrieve all clock variables. Note that the TAI offset is
380	 * returned only by ntp_gettime();
381	 */
382	if (time_status & STA_NANO)
383		ntv.offset = L_GINT(time_offset);
384	else
385		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
386	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
387	ntv.maxerror = time_maxerror;
388	ntv.esterror = time_esterror;
389	ntv.status = time_status;
390	ntv.constant = time_constant;
391	if (time_status & STA_NANO)
392		ntv.precision = time_precision;
393	else
394		ntv.precision = time_precision / 1000;
395	ntv.tolerance = MAXFREQ * SCALE_PPM;
396#ifdef PPS_SYNC
397	ntv.shift = pps_shift;
398	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
399	if (time_status & STA_NANO)
400		ntv.jitter = pps_jitter;
401	else
402		ntv.jitter = pps_jitter / 1000;
403	ntv.stabil = pps_stabil;
404	ntv.calcnt = pps_calcnt;
405	ntv.errcnt = pps_errcnt;
406	ntv.jitcnt = pps_jitcnt;
407	ntv.stbcnt = pps_stbcnt;
408#endif /* PPS_SYNC */
409	splx(s);
410
411	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
412	if (error)
413		goto done2;
414
415	/*
416	 * Status word error decode. See comments in
417	 * ntp_gettime() routine.
418	 */
419	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
420	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
421	    !(time_status & STA_PPSSIGNAL)) ||
422	    (time_status & STA_PPSTIME &&
423	    time_status & STA_PPSJITTER) ||
424	    (time_status & STA_PPSFREQ &&
425	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
426		td->td_retval[0] = TIME_ERROR;
427	} else {
428		td->td_retval[0] = time_state;
429	}
430done2:
431	mtx_unlock(&Giant);
432	return (error);
433}
434
435/*
436 * second_overflow() - called after ntp_tick_adjust()
437 *
438 * This routine is ordinarily called immediately following the above
439 * routine ntp_tick_adjust(). While these two routines are normally
440 * combined, they are separated here only for the purposes of
441 * simulation.
442 */
443void
444ntp_update_second(int64_t *adjustment, time_t *newsec)
445{
446	int tickrate;
447	l_fp ftemp;		/* 32/64-bit temporary */
448
449	/*
450	 * On rollover of the second both the nanosecond and microsecond
451	 * clocks are updated and the state machine cranked as
452	 * necessary. The phase adjustment to be used for the next
453	 * second is calculated and the maximum error is increased by
454	 * the tolerance.
455	 */
456	time_maxerror += MAXFREQ / 1000;
457
458	/*
459	 * Leap second processing. If in leap-insert state at
460	 * the end of the day, the system clock is set back one
461	 * second; if in leap-delete state, the system clock is
462	 * set ahead one second. The nano_time() routine or
463	 * external clock driver will insure that reported time
464	 * is always monotonic.
465	 */
466	switch (time_state) {
467
468		/*
469		 * No warning.
470		 */
471		case TIME_OK:
472		if (time_status & STA_INS)
473			time_state = TIME_INS;
474		else if (time_status & STA_DEL)
475			time_state = TIME_DEL;
476		break;
477
478		/*
479		 * Insert second 23:59:60 following second
480		 * 23:59:59.
481		 */
482		case TIME_INS:
483		if (!(time_status & STA_INS))
484			time_state = TIME_OK;
485		else if ((*newsec) % 86400 == 0) {
486			(*newsec)--;
487			time_state = TIME_OOP;
488			time_tai++;
489		}
490		break;
491
492		/*
493		 * Delete second 23:59:59.
494		 */
495		case TIME_DEL:
496		if (!(time_status & STA_DEL))
497			time_state = TIME_OK;
498		else if (((*newsec) + 1) % 86400 == 0) {
499			(*newsec)++;
500			time_tai--;
501			time_state = TIME_WAIT;
502		}
503		break;
504
505		/*
506		 * Insert second in progress.
507		 */
508		case TIME_OOP:
509			time_state = TIME_WAIT;
510		break;
511
512		/*
513		 * Wait for status bits to clear.
514		 */
515		case TIME_WAIT:
516		if (!(time_status & (STA_INS | STA_DEL)))
517			time_state = TIME_OK;
518	}
519
520	/*
521	 * Compute the total time adjustment for the next second
522	 * in ns. The offset is reduced by a factor depending on
523	 * whether the PPS signal is operating. Note that the
524	 * value is in effect scaled by the clock frequency,
525	 * since the adjustment is added at each tick interrupt.
526	 */
527	ftemp = time_offset;
528#ifdef PPS_SYNC
529	/* XXX even if PPS signal dies we should finish adjustment ? */
530	if (time_status & STA_PPSTIME && time_status &
531	    STA_PPSSIGNAL)
532		L_RSHIFT(ftemp, pps_shift);
533	else
534		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
535#else
536		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
537#endif /* PPS_SYNC */
538	time_adj = ftemp;
539	L_SUB(time_offset, ftemp);
540	L_ADD(time_adj, time_freq);
541
542	/*
543	 * Apply any correction from adjtime(2).  If more than one second
544	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
545	 * until the last second is slewed the final < 500 usecs.
546	 */
547	if (time_adjtime != 0) {
548		if (time_adjtime > 1000000)
549			tickrate = 5000;
550		else if (time_adjtime < -1000000)
551			tickrate = -5000;
552		else if (time_adjtime > 500)
553			tickrate = 500;
554		else if (time_adjtime < -500)
555			tickrate = -500;
556		else
557			tickrate = time_adjtime;
558		time_adjtime -= tickrate;
559		L_LINT(ftemp, tickrate * 1000);
560		L_ADD(time_adj, ftemp);
561	}
562	*adjustment = time_adj;
563
564#ifdef PPS_SYNC
565	if (pps_valid > 0)
566		pps_valid--;
567	else
568		time_status &= ~STA_PPSSIGNAL;
569#endif /* PPS_SYNC */
570}
571
572/*
573 * ntp_init() - initialize variables and structures
574 *
575 * This routine must be called after the kernel variables hz and tick
576 * are set or changed and before the next tick interrupt. In this
577 * particular implementation, these values are assumed set elsewhere in
578 * the kernel. The design allows the clock frequency and tick interval
579 * to be changed while the system is running. So, this routine should
580 * probably be integrated with the code that does that.
581 */
582static void
583ntp_init()
584{
585
586	/*
587	 * The following variables are initialized only at startup. Only
588	 * those structures not cleared by the compiler need to be
589	 * initialized, and these only in the simulator. In the actual
590	 * kernel, any nonzero values here will quickly evaporate.
591	 */
592	L_CLR(time_offset);
593	L_CLR(time_freq);
594#ifdef PPS_SYNC
595	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
596	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
597	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
598	pps_fcount = 0;
599	L_CLR(pps_freq);
600#endif /* PPS_SYNC */
601}
602
603SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
604
605/*
606 * hardupdate() - local clock update
607 *
608 * This routine is called by ntp_adjtime() to update the local clock
609 * phase and frequency. The implementation is of an adaptive-parameter,
610 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
611 * time and frequency offset estimates for each call. If the kernel PPS
612 * discipline code is configured (PPS_SYNC), the PPS signal itself
613 * determines the new time offset, instead of the calling argument.
614 * Presumably, calls to ntp_adjtime() occur only when the caller
615 * believes the local clock is valid within some bound (+-128 ms with
616 * NTP). If the caller's time is far different than the PPS time, an
617 * argument will ensue, and it's not clear who will lose.
618 *
619 * For uncompensated quartz crystal oscillators and nominal update
620 * intervals less than 256 s, operation should be in phase-lock mode,
621 * where the loop is disciplined to phase. For update intervals greater
622 * than 1024 s, operation should be in frequency-lock mode, where the
623 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
624 * is selected by the STA_MODE status bit.
625 */
626static void
627hardupdate(offset)
628	long offset;		/* clock offset (ns) */
629{
630	long mtemp;
631	l_fp ftemp;
632
633	/*
634	 * Select how the phase is to be controlled and from which
635	 * source. If the PPS signal is present and enabled to
636	 * discipline the time, the PPS offset is used; otherwise, the
637	 * argument offset is used.
638	 */
639	if (!(time_status & STA_PLL))
640		return;
641	if (!(time_status & STA_PPSTIME && time_status &
642	    STA_PPSSIGNAL)) {
643		if (offset > MAXPHASE)
644			time_monitor = MAXPHASE;
645		else if (offset < -MAXPHASE)
646			time_monitor = -MAXPHASE;
647		else
648			time_monitor = offset;
649		L_LINT(time_offset, time_monitor);
650	}
651
652	/*
653	 * Select how the frequency is to be controlled and in which
654	 * mode (PLL or FLL). If the PPS signal is present and enabled
655	 * to discipline the frequency, the PPS frequency is used;
656	 * otherwise, the argument offset is used to compute it.
657	 */
658	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
659		time_reftime = time_second;
660		return;
661	}
662	if (time_status & STA_FREQHOLD || time_reftime == 0)
663		time_reftime = time_second;
664	mtemp = time_second - time_reftime;
665	L_LINT(ftemp, time_monitor);
666	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
667	L_MPY(ftemp, mtemp);
668	L_ADD(time_freq, ftemp);
669	time_status &= ~STA_MODE;
670	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
671	    MAXSEC)) {
672		L_LINT(ftemp, (time_monitor << 4) / mtemp);
673		L_RSHIFT(ftemp, SHIFT_FLL + 4);
674		L_ADD(time_freq, ftemp);
675		time_status |= STA_MODE;
676	}
677	time_reftime = time_second;
678	if (L_GINT(time_freq) > MAXFREQ)
679		L_LINT(time_freq, MAXFREQ);
680	else if (L_GINT(time_freq) < -MAXFREQ)
681		L_LINT(time_freq, -MAXFREQ);
682}
683
684#ifdef PPS_SYNC
685/*
686 * hardpps() - discipline CPU clock oscillator to external PPS signal
687 *
688 * This routine is called at each PPS interrupt in order to discipline
689 * the CPU clock oscillator to the PPS signal. There are two independent
690 * first-order feedback loops, one for the phase, the other for the
691 * frequency. The phase loop measures and grooms the PPS phase offset
692 * and leaves it in a handy spot for the seconds overflow routine. The
693 * frequency loop averages successive PPS phase differences and
694 * calculates the PPS frequency offset, which is also processed by the
695 * seconds overflow routine. The code requires the caller to capture the
696 * time and architecture-dependent hardware counter values in
697 * nanoseconds at the on-time PPS signal transition.
698 *
699 * Note that, on some Unix systems this routine runs at an interrupt
700 * priority level higher than the timer interrupt routine hardclock().
701 * Therefore, the variables used are distinct from the hardclock()
702 * variables, except for the actual time and frequency variables, which
703 * are determined by this routine and updated atomically.
704 */
705void
706hardpps(tsp, nsec)
707	struct timespec *tsp;	/* time at PPS */
708	long nsec;		/* hardware counter at PPS */
709{
710	long u_sec, u_nsec, v_nsec; /* temps */
711	l_fp ftemp;
712
713	/*
714	 * The signal is first processed by a range gate and frequency
715	 * discriminator. The range gate rejects noise spikes outside
716	 * the range +-500 us. The frequency discriminator rejects input
717	 * signals with apparent frequency outside the range 1 +-500
718	 * PPM. If two hits occur in the same second, we ignore the
719	 * later hit; if not and a hit occurs outside the range gate,
720	 * keep the later hit for later comparison, but do not process
721	 * it.
722	 */
723	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
724	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
725	pps_valid = PPS_VALID;
726	u_sec = tsp->tv_sec;
727	u_nsec = tsp->tv_nsec;
728	if (u_nsec >= (NANOSECOND >> 1)) {
729		u_nsec -= NANOSECOND;
730		u_sec++;
731	}
732	v_nsec = u_nsec - pps_tf[0].tv_nsec;
733	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
734	    MAXFREQ)
735		return;
736	pps_tf[2] = pps_tf[1];
737	pps_tf[1] = pps_tf[0];
738	pps_tf[0].tv_sec = u_sec;
739	pps_tf[0].tv_nsec = u_nsec;
740
741	/*
742	 * Compute the difference between the current and previous
743	 * counter values. If the difference exceeds 0.5 s, assume it
744	 * has wrapped around, so correct 1.0 s. If the result exceeds
745	 * the tick interval, the sample point has crossed a tick
746	 * boundary during the last second, so correct the tick. Very
747	 * intricate.
748	 */
749	u_nsec = nsec;
750	if (u_nsec > (NANOSECOND >> 1))
751		u_nsec -= NANOSECOND;
752	else if (u_nsec < -(NANOSECOND >> 1))
753		u_nsec += NANOSECOND;
754	pps_fcount += u_nsec;
755	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
756		return;
757	time_status &= ~STA_PPSJITTER;
758
759	/*
760	 * A three-stage median filter is used to help denoise the PPS
761	 * time. The median sample becomes the time offset estimate; the
762	 * difference between the other two samples becomes the time
763	 * dispersion (jitter) estimate.
764	 */
765	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
766		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
767			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
768			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
769		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
770			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
771			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
772		} else {
773			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
774			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
775		}
776	} else {
777		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
778			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
779			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
780		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
781			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
782			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
783		} else {
784			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
785			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
786		}
787	}
788
789	/*
790	 * Nominal jitter is due to PPS signal noise and interrupt
791	 * latency. If it exceeds the popcorn threshold, the sample is
792	 * discarded. otherwise, if so enabled, the time offset is
793	 * updated. We can tolerate a modest loss of data here without
794	 * much degrading time accuracy.
795	 */
796	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
797		time_status |= STA_PPSJITTER;
798		pps_jitcnt++;
799	} else if (time_status & STA_PPSTIME) {
800		time_monitor = -v_nsec;
801		L_LINT(time_offset, time_monitor);
802	}
803	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
804	u_sec = pps_tf[0].tv_sec - pps_lastsec;
805	if (u_sec < (1 << pps_shift))
806		return;
807
808	/*
809	 * At the end of the calibration interval the difference between
810	 * the first and last counter values becomes the scaled
811	 * frequency. It will later be divided by the length of the
812	 * interval to determine the frequency update. If the frequency
813	 * exceeds a sanity threshold, or if the actual calibration
814	 * interval is not equal to the expected length, the data are
815	 * discarded. We can tolerate a modest loss of data here without
816	 * much degrading frequency accuracy.
817	 */
818	pps_calcnt++;
819	v_nsec = -pps_fcount;
820	pps_lastsec = pps_tf[0].tv_sec;
821	pps_fcount = 0;
822	u_nsec = MAXFREQ << pps_shift;
823	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
824	    pps_shift)) {
825		time_status |= STA_PPSERROR;
826		pps_errcnt++;
827		return;
828	}
829
830	/*
831	 * Here the raw frequency offset and wander (stability) is
832	 * calculated. If the wander is less than the wander threshold
833	 * for four consecutive averaging intervals, the interval is
834	 * doubled; if it is greater than the threshold for four
835	 * consecutive intervals, the interval is halved. The scaled
836	 * frequency offset is converted to frequency offset. The
837	 * stability metric is calculated as the average of recent
838	 * frequency changes, but is used only for performance
839	 * monitoring.
840	 */
841	L_LINT(ftemp, v_nsec);
842	L_RSHIFT(ftemp, pps_shift);
843	L_SUB(ftemp, pps_freq);
844	u_nsec = L_GINT(ftemp);
845	if (u_nsec > PPS_MAXWANDER) {
846		L_LINT(ftemp, PPS_MAXWANDER);
847		pps_intcnt--;
848		time_status |= STA_PPSWANDER;
849		pps_stbcnt++;
850	} else if (u_nsec < -PPS_MAXWANDER) {
851		L_LINT(ftemp, -PPS_MAXWANDER);
852		pps_intcnt--;
853		time_status |= STA_PPSWANDER;
854		pps_stbcnt++;
855	} else {
856		pps_intcnt++;
857	}
858	if (pps_intcnt >= 4) {
859		pps_intcnt = 4;
860		if (pps_shift < pps_shiftmax) {
861			pps_shift++;
862			pps_intcnt = 0;
863		}
864	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
865		pps_intcnt = -4;
866		if (pps_shift > PPS_FAVG) {
867			pps_shift--;
868			pps_intcnt = 0;
869		}
870	}
871	if (u_nsec < 0)
872		u_nsec = -u_nsec;
873	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
874
875	/*
876	 * The PPS frequency is recalculated and clamped to the maximum
877	 * MAXFREQ. If enabled, the system clock frequency is updated as
878	 * well.
879	 */
880	L_ADD(pps_freq, ftemp);
881	u_nsec = L_GINT(pps_freq);
882	if (u_nsec > MAXFREQ)
883		L_LINT(pps_freq, MAXFREQ);
884	else if (u_nsec < -MAXFREQ)
885		L_LINT(pps_freq, -MAXFREQ);
886	if (time_status & STA_PPSFREQ)
887		time_freq = pps_freq;
888}
889#endif /* PPS_SYNC */
890
891#ifndef _SYS_SYSPROTO_H_
892struct adjtime_args {
893	struct timeval *delta;
894	struct timeval *olddelta;
895};
896#endif
897/*
898 * MPSAFE
899 */
900/* ARGSUSED */
901int
902adjtime(struct thread *td, struct adjtime_args *uap)
903{
904	struct timeval atv;
905	int error;
906
907	if ((error = suser(td)))
908		return (error);
909
910	mtx_lock(&Giant);
911	if (uap->olddelta) {
912		atv.tv_sec = time_adjtime / 1000000;
913		atv.tv_usec = time_adjtime % 1000000;
914		if (atv.tv_usec < 0) {
915			atv.tv_usec += 1000000;
916			atv.tv_sec--;
917		}
918		error = copyout(&atv, uap->olddelta, sizeof(atv));
919		if (error)
920			goto done2;
921	}
922	if (uap->delta) {
923		error = copyin(uap->delta, &atv, sizeof(atv));
924		if (error)
925			goto done2;
926		time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
927	}
928done2:
929	mtx_unlock(&Giant);
930	return (error);
931}
932
933