kern_ntptime.c revision 124937
1/***********************************************************************
2 *								       *
3 * Copyright (c) David L. Mills 1993-2001			       *
4 *								       *
5 * Permission to use, copy, modify, and distribute this software and   *
6 * its documentation for any purpose and without fee is hereby	       *
7 * granted, provided that the above copyright notice appears in all    *
8 * copies and that both the copyright notice and this permission       *
9 * notice appear in supporting documentation, and that the name	       *
10 * University of Delaware not be used in advertising or publicity      *
11 * pertaining to distribution of the software without specific,	       *
12 * written prior permission. The University of Delaware makes no       *
13 * representations about the suitability this software for any	       *
14 * purpose. It is provided "as is" without express or implied	       *
15 * warranty.							       *
16 *								       *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_ntptime.c 124937 2004-01-24 21:48:43Z phk $");
34
35#include "opt_ntp.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/sysproto.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/lock.h>
43#include <sys/mutex.h>
44#include <sys/time.h>
45#include <sys/timex.h>
46#include <sys/timetc.h>
47#include <sys/timepps.h>
48#include <sys/sysctl.h>
49
50/*
51 * Single-precision macros for 64-bit machines
52 */
53typedef long long l_fp;
54#define L_ADD(v, u)	((v) += (u))
55#define L_SUB(v, u)	((v) -= (u))
56#define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
57#define L_NEG(v)	((v) = -(v))
58#define L_RSHIFT(v, n) \
59	do { \
60		if ((v) < 0) \
61			(v) = -(-(v) >> (n)); \
62		else \
63			(v) = (v) >> (n); \
64	} while (0)
65#define L_MPY(v, a)	((v) *= (a))
66#define L_CLR(v)	((v) = 0)
67#define L_ISNEG(v)	((v) < 0)
68#define L_LINT(v, a)	((v) = (long long)(a) << 32)
69#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
70
71/*
72 * Generic NTP kernel interface
73 *
74 * These routines constitute the Network Time Protocol (NTP) interfaces
75 * for user and daemon application programs. The ntp_gettime() routine
76 * provides the time, maximum error (synch distance) and estimated error
77 * (dispersion) to client user application programs. The ntp_adjtime()
78 * routine is used by the NTP daemon to adjust the system clock to an
79 * externally derived time. The time offset and related variables set by
80 * this routine are used by other routines in this module to adjust the
81 * phase and frequency of the clock discipline loop which controls the
82 * system clock.
83 *
84 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
85 * defined), the time at each tick interrupt is derived directly from
86 * the kernel time variable. When the kernel time is reckoned in
87 * microseconds, (NTP_NANO undefined), the time is derived from the
88 * kernel time variable together with a variable representing the
89 * leftover nanoseconds at the last tick interrupt. In either case, the
90 * current nanosecond time is reckoned from these values plus an
91 * interpolated value derived by the clock routines in another
92 * architecture-specific module. The interpolation can use either a
93 * dedicated counter or a processor cycle counter (PCC) implemented in
94 * some architectures.
95 *
96 * Note that all routines must run at priority splclock or higher.
97 */
98/*
99 * Phase/frequency-lock loop (PLL/FLL) definitions
100 *
101 * The nanosecond clock discipline uses two variable types, time
102 * variables and frequency variables. Both types are represented as 64-
103 * bit fixed-point quantities with the decimal point between two 32-bit
104 * halves. On a 32-bit machine, each half is represented as a single
105 * word and mathematical operations are done using multiple-precision
106 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
107 * used.
108 *
109 * A time variable is a signed 64-bit fixed-point number in ns and
110 * fraction. It represents the remaining time offset to be amortized
111 * over succeeding tick interrupts. The maximum time offset is about
112 * 0.5 s and the resolution is about 2.3e-10 ns.
113 *
114 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
115 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
116 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117 * |s s s|			 ns				   |
118 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119 * |			    fraction				   |
120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 *
122 * A frequency variable is a signed 64-bit fixed-point number in ns/s
123 * and fraction. It represents the ns and fraction to be added to the
124 * kernel time variable at each second. The maximum frequency offset is
125 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
126 *
127 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
128 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
129 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 * |s s s s s s s s s s s s s|	          ns/s			   |
131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 * |			    fraction				   |
133 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134 */
135/*
136 * The following variables establish the state of the PLL/FLL and the
137 * residual time and frequency offset of the local clock.
138 */
139#define SHIFT_PLL	4		/* PLL loop gain (shift) */
140#define SHIFT_FLL	2		/* FLL loop gain (shift) */
141
142static int time_state = TIME_OK;	/* clock state */
143static int time_status = STA_UNSYNC;	/* clock status bits */
144static long time_tai;			/* TAI offset (s) */
145static long time_monitor;		/* last time offset scaled (ns) */
146static long time_constant;		/* poll interval (shift) (s) */
147static long time_precision = 1;		/* clock precision (ns) */
148static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
149static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
150static long time_reftime;		/* time at last adjustment (s) */
151static l_fp time_offset;		/* time offset (ns) */
152static l_fp time_freq;			/* frequency offset (ns/s) */
153static l_fp time_adj;			/* tick adjust (ns/s) */
154
155static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
156
157#ifdef PPS_SYNC
158/*
159 * The following variables are used when a pulse-per-second (PPS) signal
160 * is available and connected via a modem control lead. They establish
161 * the engineering parameters of the clock discipline loop when
162 * controlled by the PPS signal.
163 */
164#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
165#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
166#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
167#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
168#define PPS_VALID	120		/* PPS signal watchdog max (s) */
169#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
170#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
171
172static struct timespec pps_tf[3];	/* phase median filter */
173static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
174static long pps_fcount;			/* frequency accumulator */
175static long pps_jitter;			/* nominal jitter (ns) */
176static long pps_stabil;			/* nominal stability (scaled ns/s) */
177static long pps_lastsec;		/* time at last calibration (s) */
178static int pps_valid;			/* signal watchdog counter */
179static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
180static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
181static int pps_intcnt;			/* wander counter */
182
183/*
184 * PPS signal quality monitors
185 */
186static long pps_calcnt;			/* calibration intervals */
187static long pps_jitcnt;			/* jitter limit exceeded */
188static long pps_stbcnt;			/* stability limit exceeded */
189static long pps_errcnt;			/* calibration errors */
190#endif /* PPS_SYNC */
191/*
192 * End of phase/frequency-lock loop (PLL/FLL) definitions
193 */
194
195static void ntp_init(void);
196static void hardupdate(long offset);
197
198/*
199 * ntp_gettime() - NTP user application interface
200 *
201 * See the timex.h header file for synopsis and API description. Note
202 * that the TAI offset is returned in the ntvtimeval.tai structure
203 * member.
204 */
205static int
206ntp_sysctl(SYSCTL_HANDLER_ARGS)
207{
208	struct ntptimeval ntv;	/* temporary structure */
209	struct timespec atv;	/* nanosecond time */
210
211	nanotime(&atv);
212	ntv.time.tv_sec = atv.tv_sec;
213	ntv.time.tv_nsec = atv.tv_nsec;
214	ntv.maxerror = time_maxerror;
215	ntv.esterror = time_esterror;
216	ntv.tai = time_tai;
217	ntv.time_state = time_state;
218
219	/*
220	 * Status word error decode. If any of these conditions occur,
221	 * an error is returned, instead of the status word. Most
222	 * applications will care only about the fact the system clock
223	 * may not be trusted, not about the details.
224	 *
225	 * Hardware or software error
226	 */
227	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
228
229	/*
230	 * PPS signal lost when either time or frequency synchronization
231	 * requested
232	 */
233	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
234	    !(time_status & STA_PPSSIGNAL)) ||
235
236	/*
237	 * PPS jitter exceeded when time synchronization requested
238	 */
239	    (time_status & STA_PPSTIME &&
240	    time_status & STA_PPSJITTER) ||
241
242	/*
243	 * PPS wander exceeded or calibration error when frequency
244	 * synchronization requested
245	 */
246	    (time_status & STA_PPSFREQ &&
247	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
248		ntv.time_state = TIME_ERROR;
249	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
250}
251
252SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
253SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
254	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
255
256#ifdef PPS_SYNC
257SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
258SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
259SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
260
261SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
262SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
263#endif
264/*
265 * ntp_adjtime() - NTP daemon application interface
266 *
267 * See the timex.h header file for synopsis and API description. Note
268 * that the timex.constant structure member has a dual purpose to set
269 * the time constant and to set the TAI offset.
270 */
271#ifndef _SYS_SYSPROTO_H_
272struct ntp_adjtime_args {
273	struct timex *tp;
274};
275#endif
276
277/*
278 * MPSAFE
279 */
280int
281ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
282{
283	struct timex ntv;	/* temporary structure */
284	long freq;		/* frequency ns/s) */
285	int modes;		/* mode bits from structure */
286	int s;			/* caller priority */
287	int error;
288
289	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
290	if (error)
291		return(error);
292
293	/*
294	 * Update selected clock variables - only the superuser can
295	 * change anything. Note that there is no error checking here on
296	 * the assumption the superuser should know what it is doing.
297	 * Note that either the time constant or TAI offset are loaded
298	 * from the ntv.constant member, depending on the mode bits. If
299	 * the STA_PLL bit in the status word is cleared, the state and
300	 * status words are reset to the initial values at boot.
301	 */
302	mtx_lock(&Giant);
303	modes = ntv.modes;
304	if (modes)
305		error = suser(td);
306	if (error)
307		goto done2;
308	s = splclock();
309	if (modes & MOD_MAXERROR)
310		time_maxerror = ntv.maxerror;
311	if (modes & MOD_ESTERROR)
312		time_esterror = ntv.esterror;
313	if (modes & MOD_STATUS) {
314		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
315			time_state = TIME_OK;
316			time_status = STA_UNSYNC;
317#ifdef PPS_SYNC
318			pps_shift = PPS_FAVG;
319#endif /* PPS_SYNC */
320		}
321		time_status &= STA_RONLY;
322		time_status |= ntv.status & ~STA_RONLY;
323	}
324	if (modes & MOD_TIMECONST) {
325		if (ntv.constant < 0)
326			time_constant = 0;
327		else if (ntv.constant > MAXTC)
328			time_constant = MAXTC;
329		else
330			time_constant = ntv.constant;
331	}
332	if (modes & MOD_TAI) {
333		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
334			time_tai = ntv.constant;
335	}
336#ifdef PPS_SYNC
337	if (modes & MOD_PPSMAX) {
338		if (ntv.shift < PPS_FAVG)
339			pps_shiftmax = PPS_FAVG;
340		else if (ntv.shift > PPS_FAVGMAX)
341			pps_shiftmax = PPS_FAVGMAX;
342		else
343			pps_shiftmax = ntv.shift;
344	}
345#endif /* PPS_SYNC */
346	if (modes & MOD_NANO)
347		time_status |= STA_NANO;
348	if (modes & MOD_MICRO)
349		time_status &= ~STA_NANO;
350	if (modes & MOD_CLKB)
351		time_status |= STA_CLK;
352	if (modes & MOD_CLKA)
353		time_status &= ~STA_CLK;
354	if (modes & MOD_FREQUENCY) {
355		freq = (ntv.freq * 1000LL) >> 16;
356		if (freq > MAXFREQ)
357			L_LINT(time_freq, MAXFREQ);
358		else if (freq < -MAXFREQ)
359			L_LINT(time_freq, -MAXFREQ);
360		else
361			L_LINT(time_freq, freq);
362#ifdef PPS_SYNC
363		pps_freq = time_freq;
364#endif /* PPS_SYNC */
365	}
366	if (modes & MOD_OFFSET) {
367		if (time_status & STA_NANO)
368			hardupdate(ntv.offset);
369		else
370			hardupdate(ntv.offset * 1000);
371	}
372
373	/*
374	 * Retrieve all clock variables. Note that the TAI offset is
375	 * returned only by ntp_gettime();
376	 */
377	if (time_status & STA_NANO)
378		ntv.offset = L_GINT(time_offset);
379	else
380		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
381	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
382	ntv.maxerror = time_maxerror;
383	ntv.esterror = time_esterror;
384	ntv.status = time_status;
385	ntv.constant = time_constant;
386	if (time_status & STA_NANO)
387		ntv.precision = time_precision;
388	else
389		ntv.precision = time_precision / 1000;
390	ntv.tolerance = MAXFREQ * SCALE_PPM;
391#ifdef PPS_SYNC
392	ntv.shift = pps_shift;
393	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
394	if (time_status & STA_NANO)
395		ntv.jitter = pps_jitter;
396	else
397		ntv.jitter = pps_jitter / 1000;
398	ntv.stabil = pps_stabil;
399	ntv.calcnt = pps_calcnt;
400	ntv.errcnt = pps_errcnt;
401	ntv.jitcnt = pps_jitcnt;
402	ntv.stbcnt = pps_stbcnt;
403#endif /* PPS_SYNC */
404	splx(s);
405
406	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
407	if (error)
408		goto done2;
409
410	/*
411	 * Status word error decode. See comments in
412	 * ntp_gettime() routine.
413	 */
414	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
415	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
416	    !(time_status & STA_PPSSIGNAL)) ||
417	    (time_status & STA_PPSTIME &&
418	    time_status & STA_PPSJITTER) ||
419	    (time_status & STA_PPSFREQ &&
420	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
421		td->td_retval[0] = TIME_ERROR;
422	} else {
423		td->td_retval[0] = time_state;
424	}
425done2:
426	mtx_unlock(&Giant);
427	return (error);
428}
429
430/*
431 * second_overflow() - called after ntp_tick_adjust()
432 *
433 * This routine is ordinarily called immediately following the above
434 * routine ntp_tick_adjust(). While these two routines are normally
435 * combined, they are separated here only for the purposes of
436 * simulation.
437 */
438void
439ntp_update_second(int64_t *adjustment, time_t *newsec)
440{
441	int tickrate;
442	l_fp ftemp;		/* 32/64-bit temporary */
443
444	/*
445	 * On rollover of the second both the nanosecond and microsecond
446	 * clocks are updated and the state machine cranked as
447	 * necessary. The phase adjustment to be used for the next
448	 * second is calculated and the maximum error is increased by
449	 * the tolerance.
450	 */
451	time_maxerror += MAXFREQ / 1000;
452
453	/*
454	 * Leap second processing. If in leap-insert state at
455	 * the end of the day, the system clock is set back one
456	 * second; if in leap-delete state, the system clock is
457	 * set ahead one second. The nano_time() routine or
458	 * external clock driver will insure that reported time
459	 * is always monotonic.
460	 */
461	switch (time_state) {
462
463		/*
464		 * No warning.
465		 */
466		case TIME_OK:
467		if (time_status & STA_INS)
468			time_state = TIME_INS;
469		else if (time_status & STA_DEL)
470			time_state = TIME_DEL;
471		break;
472
473		/*
474		 * Insert second 23:59:60 following second
475		 * 23:59:59.
476		 */
477		case TIME_INS:
478		if (!(time_status & STA_INS))
479			time_state = TIME_OK;
480		else if ((*newsec) % 86400 == 0) {
481			(*newsec)--;
482			time_state = TIME_OOP;
483			time_tai++;
484		}
485		break;
486
487		/*
488		 * Delete second 23:59:59.
489		 */
490		case TIME_DEL:
491		if (!(time_status & STA_DEL))
492			time_state = TIME_OK;
493		else if (((*newsec) + 1) % 86400 == 0) {
494			(*newsec)++;
495			time_tai--;
496			time_state = TIME_WAIT;
497		}
498		break;
499
500		/*
501		 * Insert second in progress.
502		 */
503		case TIME_OOP:
504			time_state = TIME_WAIT;
505		break;
506
507		/*
508		 * Wait for status bits to clear.
509		 */
510		case TIME_WAIT:
511		if (!(time_status & (STA_INS | STA_DEL)))
512			time_state = TIME_OK;
513	}
514
515	/*
516	 * Compute the total time adjustment for the next second
517	 * in ns. The offset is reduced by a factor depending on
518	 * whether the PPS signal is operating. Note that the
519	 * value is in effect scaled by the clock frequency,
520	 * since the adjustment is added at each tick interrupt.
521	 */
522	ftemp = time_offset;
523#ifdef PPS_SYNC
524	/* XXX even if PPS signal dies we should finish adjustment ? */
525	if (time_status & STA_PPSTIME && time_status &
526	    STA_PPSSIGNAL)
527		L_RSHIFT(ftemp, pps_shift);
528	else
529		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
530#else
531		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
532#endif /* PPS_SYNC */
533	time_adj = ftemp;
534	L_SUB(time_offset, ftemp);
535	L_ADD(time_adj, time_freq);
536
537	/*
538	 * Apply any correction from adjtime(2).  If more than one second
539	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
540	 * until the last second is slewed the final < 500 usecs.
541	 */
542	if (time_adjtime != 0) {
543		if (time_adjtime > 1000000)
544			tickrate = 5000;
545		else if (time_adjtime < -1000000)
546			tickrate = -5000;
547		else if (time_adjtime > 500)
548			tickrate = 500;
549		else if (time_adjtime < -500)
550			tickrate = -500;
551		else if (time_adjtime != 0)
552			tickrate = time_adjtime;
553		else
554			tickrate = 0;	/* GCC sucks! */
555		time_adjtime -= tickrate;
556		L_LINT(ftemp, tickrate * 1000);
557		L_ADD(time_adj, ftemp);
558	}
559	*adjustment = time_adj;
560
561#ifdef PPS_SYNC
562	if (pps_valid > 0)
563		pps_valid--;
564	else
565		time_status &= ~STA_PPSSIGNAL;
566#endif /* PPS_SYNC */
567}
568
569/*
570 * ntp_init() - initialize variables and structures
571 *
572 * This routine must be called after the kernel variables hz and tick
573 * are set or changed and before the next tick interrupt. In this
574 * particular implementation, these values are assumed set elsewhere in
575 * the kernel. The design allows the clock frequency and tick interval
576 * to be changed while the system is running. So, this routine should
577 * probably be integrated with the code that does that.
578 */
579static void
580ntp_init()
581{
582
583	/*
584	 * The following variables are initialized only at startup. Only
585	 * those structures not cleared by the compiler need to be
586	 * initialized, and these only in the simulator. In the actual
587	 * kernel, any nonzero values here will quickly evaporate.
588	 */
589	L_CLR(time_offset);
590	L_CLR(time_freq);
591#ifdef PPS_SYNC
592	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
593	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
594	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
595	pps_fcount = 0;
596	L_CLR(pps_freq);
597#endif /* PPS_SYNC */
598}
599
600SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
601
602/*
603 * hardupdate() - local clock update
604 *
605 * This routine is called by ntp_adjtime() to update the local clock
606 * phase and frequency. The implementation is of an adaptive-parameter,
607 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
608 * time and frequency offset estimates for each call. If the kernel PPS
609 * discipline code is configured (PPS_SYNC), the PPS signal itself
610 * determines the new time offset, instead of the calling argument.
611 * Presumably, calls to ntp_adjtime() occur only when the caller
612 * believes the local clock is valid within some bound (+-128 ms with
613 * NTP). If the caller's time is far different than the PPS time, an
614 * argument will ensue, and it's not clear who will lose.
615 *
616 * For uncompensated quartz crystal oscillators and nominal update
617 * intervals less than 256 s, operation should be in phase-lock mode,
618 * where the loop is disciplined to phase. For update intervals greater
619 * than 1024 s, operation should be in frequency-lock mode, where the
620 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
621 * is selected by the STA_MODE status bit.
622 */
623static void
624hardupdate(offset)
625	long offset;		/* clock offset (ns) */
626{
627	long mtemp;
628	l_fp ftemp;
629
630	/*
631	 * Select how the phase is to be controlled and from which
632	 * source. If the PPS signal is present and enabled to
633	 * discipline the time, the PPS offset is used; otherwise, the
634	 * argument offset is used.
635	 */
636	if (!(time_status & STA_PLL))
637		return;
638	if (!(time_status & STA_PPSTIME && time_status &
639	    STA_PPSSIGNAL)) {
640		if (offset > MAXPHASE)
641			time_monitor = MAXPHASE;
642		else if (offset < -MAXPHASE)
643			time_monitor = -MAXPHASE;
644		else
645			time_monitor = offset;
646		L_LINT(time_offset, time_monitor);
647	}
648
649	/*
650	 * Select how the frequency is to be controlled and in which
651	 * mode (PLL or FLL). If the PPS signal is present and enabled
652	 * to discipline the frequency, the PPS frequency is used;
653	 * otherwise, the argument offset is used to compute it.
654	 */
655	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
656		time_reftime = time_second;
657		return;
658	}
659	if (time_status & STA_FREQHOLD || time_reftime == 0)
660		time_reftime = time_second;
661	mtemp = time_second - time_reftime;
662	L_LINT(ftemp, time_monitor);
663	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
664	L_MPY(ftemp, mtemp);
665	L_ADD(time_freq, ftemp);
666	time_status &= ~STA_MODE;
667	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
668	    MAXSEC)) {
669		L_LINT(ftemp, (time_monitor << 4) / mtemp);
670		L_RSHIFT(ftemp, SHIFT_FLL + 4);
671		L_ADD(time_freq, ftemp);
672		time_status |= STA_MODE;
673	}
674	time_reftime = time_second;
675	if (L_GINT(time_freq) > MAXFREQ)
676		L_LINT(time_freq, MAXFREQ);
677	else if (L_GINT(time_freq) < -MAXFREQ)
678		L_LINT(time_freq, -MAXFREQ);
679}
680
681#ifdef PPS_SYNC
682/*
683 * hardpps() - discipline CPU clock oscillator to external PPS signal
684 *
685 * This routine is called at each PPS interrupt in order to discipline
686 * the CPU clock oscillator to the PPS signal. There are two independent
687 * first-order feedback loops, one for the phase, the other for the
688 * frequency. The phase loop measures and grooms the PPS phase offset
689 * and leaves it in a handy spot for the seconds overflow routine. The
690 * frequency loop averages successive PPS phase differences and
691 * calculates the PPS frequency offset, which is also processed by the
692 * seconds overflow routine. The code requires the caller to capture the
693 * time and architecture-dependent hardware counter values in
694 * nanoseconds at the on-time PPS signal transition.
695 *
696 * Note that, on some Unix systems this routine runs at an interrupt
697 * priority level higher than the timer interrupt routine hardclock().
698 * Therefore, the variables used are distinct from the hardclock()
699 * variables, except for the actual time and frequency variables, which
700 * are determined by this routine and updated atomically.
701 */
702void
703hardpps(tsp, nsec)
704	struct timespec *tsp;	/* time at PPS */
705	long nsec;		/* hardware counter at PPS */
706{
707	long u_sec, u_nsec, v_nsec; /* temps */
708	l_fp ftemp;
709
710	/*
711	 * The signal is first processed by a range gate and frequency
712	 * discriminator. The range gate rejects noise spikes outside
713	 * the range +-500 us. The frequency discriminator rejects input
714	 * signals with apparent frequency outside the range 1 +-500
715	 * PPM. If two hits occur in the same second, we ignore the
716	 * later hit; if not and a hit occurs outside the range gate,
717	 * keep the later hit for later comparison, but do not process
718	 * it.
719	 */
720	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
721	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
722	pps_valid = PPS_VALID;
723	u_sec = tsp->tv_sec;
724	u_nsec = tsp->tv_nsec;
725	if (u_nsec >= (NANOSECOND >> 1)) {
726		u_nsec -= NANOSECOND;
727		u_sec++;
728	}
729	v_nsec = u_nsec - pps_tf[0].tv_nsec;
730	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
731	    MAXFREQ)
732		return;
733	pps_tf[2] = pps_tf[1];
734	pps_tf[1] = pps_tf[0];
735	pps_tf[0].tv_sec = u_sec;
736	pps_tf[0].tv_nsec = u_nsec;
737
738	/*
739	 * Compute the difference between the current and previous
740	 * counter values. If the difference exceeds 0.5 s, assume it
741	 * has wrapped around, so correct 1.0 s. If the result exceeds
742	 * the tick interval, the sample point has crossed a tick
743	 * boundary during the last second, so correct the tick. Very
744	 * intricate.
745	 */
746	u_nsec = nsec;
747	if (u_nsec > (NANOSECOND >> 1))
748		u_nsec -= NANOSECOND;
749	else if (u_nsec < -(NANOSECOND >> 1))
750		u_nsec += NANOSECOND;
751	pps_fcount += u_nsec;
752	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
753		return;
754	time_status &= ~STA_PPSJITTER;
755
756	/*
757	 * A three-stage median filter is used to help denoise the PPS
758	 * time. The median sample becomes the time offset estimate; the
759	 * difference between the other two samples becomes the time
760	 * dispersion (jitter) estimate.
761	 */
762	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
763		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
764			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
765			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
766		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
767			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
768			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
769		} else {
770			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
771			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
772		}
773	} else {
774		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
775			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
776			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
777		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
778			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
779			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
780		} else {
781			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
782			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
783		}
784	}
785
786	/*
787	 * Nominal jitter is due to PPS signal noise and interrupt
788	 * latency. If it exceeds the popcorn threshold, the sample is
789	 * discarded. otherwise, if so enabled, the time offset is
790	 * updated. We can tolerate a modest loss of data here without
791	 * much degrading time accuracy.
792	 */
793	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
794		time_status |= STA_PPSJITTER;
795		pps_jitcnt++;
796	} else if (time_status & STA_PPSTIME) {
797		time_monitor = -v_nsec;
798		L_LINT(time_offset, time_monitor);
799	}
800	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
801	u_sec = pps_tf[0].tv_sec - pps_lastsec;
802	if (u_sec < (1 << pps_shift))
803		return;
804
805	/*
806	 * At the end of the calibration interval the difference between
807	 * the first and last counter values becomes the scaled
808	 * frequency. It will later be divided by the length of the
809	 * interval to determine the frequency update. If the frequency
810	 * exceeds a sanity threshold, or if the actual calibration
811	 * interval is not equal to the expected length, the data are
812	 * discarded. We can tolerate a modest loss of data here without
813	 * much degrading frequency accuracy.
814	 */
815	pps_calcnt++;
816	v_nsec = -pps_fcount;
817	pps_lastsec = pps_tf[0].tv_sec;
818	pps_fcount = 0;
819	u_nsec = MAXFREQ << pps_shift;
820	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
821	    pps_shift)) {
822		time_status |= STA_PPSERROR;
823		pps_errcnt++;
824		return;
825	}
826
827	/*
828	 * Here the raw frequency offset and wander (stability) is
829	 * calculated. If the wander is less than the wander threshold
830	 * for four consecutive averaging intervals, the interval is
831	 * doubled; if it is greater than the threshold for four
832	 * consecutive intervals, the interval is halved. The scaled
833	 * frequency offset is converted to frequency offset. The
834	 * stability metric is calculated as the average of recent
835	 * frequency changes, but is used only for performance
836	 * monitoring.
837	 */
838	L_LINT(ftemp, v_nsec);
839	L_RSHIFT(ftemp, pps_shift);
840	L_SUB(ftemp, pps_freq);
841	u_nsec = L_GINT(ftemp);
842	if (u_nsec > PPS_MAXWANDER) {
843		L_LINT(ftemp, PPS_MAXWANDER);
844		pps_intcnt--;
845		time_status |= STA_PPSWANDER;
846		pps_stbcnt++;
847	} else if (u_nsec < -PPS_MAXWANDER) {
848		L_LINT(ftemp, -PPS_MAXWANDER);
849		pps_intcnt--;
850		time_status |= STA_PPSWANDER;
851		pps_stbcnt++;
852	} else {
853		pps_intcnt++;
854	}
855	if (pps_intcnt >= 4) {
856		pps_intcnt = 4;
857		if (pps_shift < pps_shiftmax) {
858			pps_shift++;
859			pps_intcnt = 0;
860		}
861	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
862		pps_intcnt = -4;
863		if (pps_shift > PPS_FAVG) {
864			pps_shift--;
865			pps_intcnt = 0;
866		}
867	}
868	if (u_nsec < 0)
869		u_nsec = -u_nsec;
870	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
871
872	/*
873	 * The PPS frequency is recalculated and clamped to the maximum
874	 * MAXFREQ. If enabled, the system clock frequency is updated as
875	 * well.
876	 */
877	L_ADD(pps_freq, ftemp);
878	u_nsec = L_GINT(pps_freq);
879	if (u_nsec > MAXFREQ)
880		L_LINT(pps_freq, MAXFREQ);
881	else if (u_nsec < -MAXFREQ)
882		L_LINT(pps_freq, -MAXFREQ);
883	if (time_status & STA_PPSFREQ)
884		time_freq = pps_freq;
885}
886#endif /* PPS_SYNC */
887
888#ifndef _SYS_SYSPROTO_H_
889struct adjtime_args {
890	struct timeval *delta;
891	struct timeval *olddelta;
892};
893#endif
894/*
895 * MPSAFE
896 */
897/* ARGSUSED */
898int
899adjtime(struct thread *td, struct adjtime_args *uap)
900{
901	struct timeval atv;
902	int error;
903
904	if ((error = suser(td)))
905		return (error);
906
907	mtx_lock(&Giant);
908	if (uap->olddelta) {
909		atv.tv_sec = time_adjtime / 1000000;
910		atv.tv_usec = time_adjtime % 1000000;
911		if (atv.tv_usec < 0) {
912			atv.tv_usec += 1000000;
913			atv.tv_sec--;
914		}
915		error = copyout(&atv, uap->olddelta, sizeof(atv));
916		if (error)
917			goto done2;
918	}
919	if (uap->delta) {
920		error = copyin(uap->delta, &atv, sizeof(atv));
921		if (error)
922			goto done2;
923		time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
924	}
925done2:
926	mtx_unlock(&Giant);
927	return (error);
928}
929
930