kern_clocksource.c revision 232919
1/*-
2 * Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification, immediately at the beginning of the file.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/kern_clocksource.c 232919 2012-03-13 10:21:08Z mav $");
29
30/*
31 * Common routines to manage event timers hardware.
32 */
33
34#include "opt_device_polling.h"
35#include "opt_kdtrace.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/bus.h>
40#include <sys/lock.h>
41#include <sys/kdb.h>
42#include <sys/ktr.h>
43#include <sys/mutex.h>
44#include <sys/proc.h>
45#include <sys/kernel.h>
46#include <sys/sched.h>
47#include <sys/smp.h>
48#include <sys/sysctl.h>
49#include <sys/timeet.h>
50#include <sys/timetc.h>
51
52#include <machine/atomic.h>
53#include <machine/clock.h>
54#include <machine/cpu.h>
55#include <machine/smp.h>
56
57#ifdef KDTRACE_HOOKS
58#include <sys/dtrace_bsd.h>
59cyclic_clock_func_t	cyclic_clock_func = NULL;
60#endif
61
62int			cpu_can_deep_sleep = 0;	/* C3 state is available. */
63int			cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64
65static void		setuptimer(void);
66static void		loadtimer(struct bintime *now, int first);
67static int		doconfigtimer(void);
68static void		configtimer(int start);
69static int		round_freq(struct eventtimer *et, int freq);
70
71static void		getnextcpuevent(struct bintime *event, int idle);
72static void		getnextevent(struct bintime *event);
73static int		handleevents(struct bintime *now, int fake);
74#ifdef SMP
75static void		cpu_new_callout(int cpu, int ticks);
76#endif
77
78static struct mtx	et_hw_mtx;
79
80#define	ET_HW_LOCK(state)						\
81	{								\
82		if (timer->et_flags & ET_FLAGS_PERCPU)			\
83			mtx_lock_spin(&(state)->et_hw_mtx);		\
84		else							\
85			mtx_lock_spin(&et_hw_mtx);			\
86	}
87
88#define	ET_HW_UNLOCK(state)						\
89	{								\
90		if (timer->et_flags & ET_FLAGS_PERCPU)			\
91			mtx_unlock_spin(&(state)->et_hw_mtx);		\
92		else							\
93			mtx_unlock_spin(&et_hw_mtx);			\
94	}
95
96static struct eventtimer *timer = NULL;
97static struct bintime	timerperiod;	/* Timer period for periodic mode. */
98static struct bintime	hardperiod;	/* hardclock() events period. */
99static struct bintime	statperiod;	/* statclock() events period. */
100static struct bintime	profperiod;	/* profclock() events period. */
101static struct bintime	nexttick;	/* Next global timer tick time. */
102static struct bintime	nexthard;	/* Next global hardlock() event. */
103static u_int		busy = 0;	/* Reconfiguration is in progress. */
104static int		profiling = 0;	/* Profiling events enabled. */
105
106static char		timername[32];	/* Wanted timer. */
107TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
108
109static int		singlemul = 0;	/* Multiplier for periodic mode. */
110TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
111SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
112    0, "Multiplier for periodic mode");
113
114static u_int		idletick = 0;	/* Run periodic events when idle. */
115TUNABLE_INT("kern.eventtimer.idletick", &idletick);
116SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
117    0, "Run periodic events when idle");
118
119static u_int		activetick = 1;	/* Run all periodic events when active. */
120TUNABLE_INT("kern.eventtimer.activetick", &activetick);
121SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
122    0, "Run all periodic events when active");
123
124static int		periodic = 0;	/* Periodic or one-shot mode. */
125static int		want_periodic = 0; /* What mode to prefer. */
126TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
127
128struct pcpu_state {
129	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
130	u_int		action;		/* Reconfiguration requests. */
131	u_int		handle;		/* Immediate handle resuests. */
132	struct bintime	now;		/* Last tick time. */
133	struct bintime	nextevent;	/* Next scheduled event on this CPU. */
134	struct bintime	nexttick;	/* Next timer tick time. */
135	struct bintime	nexthard;	/* Next hardlock() event. */
136	struct bintime	nextstat;	/* Next statclock() event. */
137	struct bintime	nextprof;	/* Next profclock() event. */
138#ifdef KDTRACE_HOOKS
139	struct bintime	nextcyc;	/* Next OpenSolaris cyclics event. */
140#endif
141	int		ipi;		/* This CPU needs IPI. */
142	int		idle;		/* This CPU is in idle mode. */
143};
144
145static DPCPU_DEFINE(struct pcpu_state, timerstate);
146
147#define FREQ2BT(freq, bt)						\
148{									\
149	(bt)->sec = 0;							\
150	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;	\
151}
152#define BT2FREQ(bt)							\
153	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /		\
154	    ((bt)->frac >> 1))
155
156/*
157 * Timer broadcast IPI handler.
158 */
159int
160hardclockintr(void)
161{
162	struct bintime now;
163	struct pcpu_state *state;
164	int done;
165
166	if (doconfigtimer() || busy)
167		return (FILTER_HANDLED);
168	state = DPCPU_PTR(timerstate);
169	now = state->now;
170	CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
171	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
172			     (unsigned int)(now.frac & 0xffffffff));
173	done = handleevents(&now, 0);
174	return (done ? FILTER_HANDLED : FILTER_STRAY);
175}
176
177/*
178 * Handle all events for specified time on this CPU
179 */
180static int
181handleevents(struct bintime *now, int fake)
182{
183	struct bintime t;
184	struct trapframe *frame;
185	struct pcpu_state *state;
186	uintfptr_t pc;
187	int usermode;
188	int done, runs;
189
190	CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
191	    curcpu, now->sec, (unsigned int)(now->frac >> 32),
192		     (unsigned int)(now->frac & 0xffffffff));
193	done = 0;
194	if (fake) {
195		frame = NULL;
196		usermode = 0;
197		pc = 0;
198	} else {
199		frame = curthread->td_intr_frame;
200		usermode = TRAPF_USERMODE(frame);
201		pc = TRAPF_PC(frame);
202	}
203
204	state = DPCPU_PTR(timerstate);
205
206	runs = 0;
207	while (bintime_cmp(now, &state->nexthard, >=)) {
208		bintime_add(&state->nexthard, &hardperiod);
209		runs++;
210	}
211	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
212	    bintime_cmp(&state->nexthard, &nexthard, >))
213		nexthard = state->nexthard;
214	if (runs && fake < 2) {
215		hardclock_cnt(runs, usermode);
216		done = 1;
217	}
218	runs = 0;
219	while (bintime_cmp(now, &state->nextstat, >=)) {
220		bintime_add(&state->nextstat, &statperiod);
221		runs++;
222	}
223	if (runs && fake < 2) {
224		statclock_cnt(runs, usermode);
225		done = 1;
226	}
227	if (profiling) {
228		runs = 0;
229		while (bintime_cmp(now, &state->nextprof, >=)) {
230			bintime_add(&state->nextprof, &profperiod);
231			runs++;
232		}
233		if (runs && !fake) {
234			profclock_cnt(runs, usermode, pc);
235			done = 1;
236		}
237	} else
238		state->nextprof = state->nextstat;
239
240#ifdef KDTRACE_HOOKS
241	if (fake == 0 && cyclic_clock_func != NULL &&
242	    state->nextcyc.sec != -1 &&
243	    bintime_cmp(now, &state->nextcyc, >=)) {
244		state->nextcyc.sec = -1;
245		(*cyclic_clock_func)(frame);
246	}
247#endif
248
249	getnextcpuevent(&t, 0);
250	if (fake == 2) {
251		state->nextevent = t;
252		return (done);
253	}
254	ET_HW_LOCK(state);
255	if (!busy) {
256		state->idle = 0;
257		state->nextevent = t;
258		loadtimer(now, 0);
259	}
260	ET_HW_UNLOCK(state);
261	return (done);
262}
263
264/*
265 * Schedule binuptime of the next event on current CPU.
266 */
267static void
268getnextcpuevent(struct bintime *event, int idle)
269{
270	struct bintime tmp;
271	struct pcpu_state *state;
272	int skip;
273
274	state = DPCPU_PTR(timerstate);
275	/* Handle hardclock() events. */
276	*event = state->nexthard;
277	if (idle || (!activetick && !profiling &&
278	    (timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
279		skip = idle ? 4 : (stathz / 2);
280		if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
281			skip = tc_min_ticktock_freq;
282		skip = callout_tickstofirst(hz / skip) - 1;
283		CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
284		tmp = hardperiod;
285		bintime_mul(&tmp, skip);
286		bintime_add(event, &tmp);
287	}
288	if (!idle) { /* If CPU is active - handle other types of events. */
289		if (bintime_cmp(event, &state->nextstat, >))
290			*event = state->nextstat;
291		if (profiling && bintime_cmp(event, &state->nextprof, >))
292			*event = state->nextprof;
293	}
294#ifdef KDTRACE_HOOKS
295	if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
296		*event = state->nextcyc;
297#endif
298}
299
300/*
301 * Schedule binuptime of the next event on all CPUs.
302 */
303static void
304getnextevent(struct bintime *event)
305{
306	struct pcpu_state *state;
307#ifdef SMP
308	int	cpu;
309#endif
310	int	c, nonidle;
311
312	state = DPCPU_PTR(timerstate);
313	*event = state->nextevent;
314	c = curcpu;
315	nonidle = !state->idle;
316	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
317#ifdef SMP
318		CPU_FOREACH(cpu) {
319			if (curcpu == cpu)
320				continue;
321			state = DPCPU_ID_PTR(cpu, timerstate);
322			nonidle += !state->idle;
323			if (bintime_cmp(event, &state->nextevent, >)) {
324				*event = state->nextevent;
325				c = cpu;
326			}
327		}
328#endif
329		if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
330			*event = nexthard;
331	}
332	CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
333	    curcpu, event->sec, (unsigned int)(event->frac >> 32),
334			     (unsigned int)(event->frac & 0xffffffff), c);
335}
336
337/* Hardware timer callback function. */
338static void
339timercb(struct eventtimer *et, void *arg)
340{
341	struct bintime now;
342	struct bintime *next;
343	struct pcpu_state *state;
344#ifdef SMP
345	int cpu, bcast;
346#endif
347
348	/* Do not touch anything if somebody reconfiguring timers. */
349	if (busy)
350		return;
351	/* Update present and next tick times. */
352	state = DPCPU_PTR(timerstate);
353	if (et->et_flags & ET_FLAGS_PERCPU) {
354		next = &state->nexttick;
355	} else
356		next = &nexttick;
357	if (periodic) {
358		now = *next;	/* Ex-next tick time becomes present time. */
359		bintime_add(next, &timerperiod); /* Next tick in 1 period. */
360	} else {
361		binuptime(&now);	/* Get present time from hardware. */
362		next->sec = -1;		/* Next tick is not scheduled yet. */
363	}
364	state->now = now;
365	CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
366	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
367			     (unsigned int)(now.frac & 0xffffffff));
368
369#ifdef SMP
370	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
371	bcast = 0;
372	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
373		CPU_FOREACH(cpu) {
374			state = DPCPU_ID_PTR(cpu, timerstate);
375			ET_HW_LOCK(state);
376			state->now = now;
377			if (bintime_cmp(&now, &state->nextevent, >=)) {
378				state->nextevent.sec++;
379				if (curcpu != cpu) {
380					state->ipi = 1;
381					bcast = 1;
382				}
383			}
384			ET_HW_UNLOCK(state);
385		}
386	}
387#endif
388
389	/* Handle events for this time on this CPU. */
390	handleevents(&now, 0);
391
392#ifdef SMP
393	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
394	if (bcast) {
395		CPU_FOREACH(cpu) {
396			if (curcpu == cpu)
397				continue;
398			state = DPCPU_ID_PTR(cpu, timerstate);
399			if (state->ipi) {
400				state->ipi = 0;
401				ipi_cpu(cpu, IPI_HARDCLOCK);
402			}
403		}
404	}
405#endif
406}
407
408/*
409 * Load new value into hardware timer.
410 */
411static void
412loadtimer(struct bintime *now, int start)
413{
414	struct pcpu_state *state;
415	struct bintime new;
416	struct bintime *next;
417	uint64_t tmp;
418	int eq;
419
420	if (timer->et_flags & ET_FLAGS_PERCPU) {
421		state = DPCPU_PTR(timerstate);
422		next = &state->nexttick;
423	} else
424		next = &nexttick;
425	if (periodic) {
426		if (start) {
427			/*
428			 * Try to start all periodic timers aligned
429			 * to period to make events synchronous.
430			 */
431			tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
432			tmp = (tmp % (timerperiod.frac >> 28)) << 28;
433			new.sec = 0;
434			new.frac = timerperiod.frac - tmp;
435			if (new.frac < tmp)	/* Left less then passed. */
436				bintime_add(&new, &timerperiod);
437			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
438			    curcpu, now->sec, (unsigned int)(now->frac >> 32),
439			    new.sec, (unsigned int)(new.frac >> 32));
440			*next = new;
441			bintime_add(next, now);
442			et_start(timer, &new, &timerperiod);
443		}
444	} else {
445		getnextevent(&new);
446		eq = bintime_cmp(&new, next, ==);
447		CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
448		    curcpu, new.sec, (unsigned int)(new.frac >> 32),
449			     (unsigned int)(new.frac & 0xffffffff),
450			     eq);
451		if (!eq) {
452			*next = new;
453			bintime_sub(&new, now);
454			et_start(timer, &new, NULL);
455		}
456	}
457}
458
459/*
460 * Prepare event timer parameters after configuration changes.
461 */
462static void
463setuptimer(void)
464{
465	int freq;
466
467	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
468		periodic = 0;
469	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
470		periodic = 1;
471	singlemul = MIN(MAX(singlemul, 1), 20);
472	freq = hz * singlemul;
473	while (freq < (profiling ? profhz : stathz))
474		freq += hz;
475	freq = round_freq(timer, freq);
476	FREQ2BT(freq, &timerperiod);
477}
478
479/*
480 * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
481 */
482static int
483doconfigtimer(void)
484{
485	struct bintime now;
486	struct pcpu_state *state;
487
488	state = DPCPU_PTR(timerstate);
489	switch (atomic_load_acq_int(&state->action)) {
490	case 1:
491		binuptime(&now);
492		ET_HW_LOCK(state);
493		loadtimer(&now, 1);
494		ET_HW_UNLOCK(state);
495		state->handle = 0;
496		atomic_store_rel_int(&state->action, 0);
497		return (1);
498	case 2:
499		ET_HW_LOCK(state);
500		et_stop(timer);
501		ET_HW_UNLOCK(state);
502		state->handle = 0;
503		atomic_store_rel_int(&state->action, 0);
504		return (1);
505	}
506	if (atomic_readandclear_int(&state->handle) && !busy) {
507		binuptime(&now);
508		handleevents(&now, 0);
509		return (1);
510	}
511	return (0);
512}
513
514/*
515 * Reconfigure specified timer.
516 * For per-CPU timers use IPI to make other CPUs to reconfigure.
517 */
518static void
519configtimer(int start)
520{
521	struct bintime now, next;
522	struct pcpu_state *state;
523	int cpu;
524
525	if (start) {
526		setuptimer();
527		binuptime(&now);
528	}
529	critical_enter();
530	ET_HW_LOCK(DPCPU_PTR(timerstate));
531	if (start) {
532		/* Initialize time machine parameters. */
533		next = now;
534		bintime_add(&next, &timerperiod);
535		if (periodic)
536			nexttick = next;
537		else
538			nexttick.sec = -1;
539		CPU_FOREACH(cpu) {
540			state = DPCPU_ID_PTR(cpu, timerstate);
541			state->now = now;
542			state->nextevent = next;
543			if (periodic)
544				state->nexttick = next;
545			else
546				state->nexttick.sec = -1;
547			state->nexthard = next;
548			state->nextstat = next;
549			state->nextprof = next;
550			hardclock_sync(cpu);
551		}
552		busy = 0;
553		/* Start global timer or per-CPU timer of this CPU. */
554		loadtimer(&now, 1);
555	} else {
556		busy = 1;
557		/* Stop global timer or per-CPU timer of this CPU. */
558		et_stop(timer);
559	}
560	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
561#ifdef SMP
562	/* If timer is global or there is no other CPUs yet - we are done. */
563	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
564		critical_exit();
565		return;
566	}
567	/* Set reconfigure flags for other CPUs. */
568	CPU_FOREACH(cpu) {
569		state = DPCPU_ID_PTR(cpu, timerstate);
570		atomic_store_rel_int(&state->action,
571		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
572	}
573	/* Broadcast reconfigure IPI. */
574	ipi_all_but_self(IPI_HARDCLOCK);
575	/* Wait for reconfiguration completed. */
576restart:
577	cpu_spinwait();
578	CPU_FOREACH(cpu) {
579		if (cpu == curcpu)
580			continue;
581		state = DPCPU_ID_PTR(cpu, timerstate);
582		if (atomic_load_acq_int(&state->action))
583			goto restart;
584	}
585#endif
586	critical_exit();
587}
588
589/*
590 * Calculate nearest frequency supported by hardware timer.
591 */
592static int
593round_freq(struct eventtimer *et, int freq)
594{
595	uint64_t div;
596
597	if (et->et_frequency != 0) {
598		div = lmax((et->et_frequency + freq / 2) / freq, 1);
599		if (et->et_flags & ET_FLAGS_POW2DIV)
600			div = 1 << (flsl(div + div / 2) - 1);
601		freq = (et->et_frequency + div / 2) / div;
602	}
603	if (et->et_min_period.sec > 0)
604		freq = 0;
605	else if (et->et_min_period.frac != 0)
606		freq = min(freq, BT2FREQ(&et->et_min_period));
607	if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
608		freq = max(freq, BT2FREQ(&et->et_max_period));
609	return (freq);
610}
611
612/*
613 * Configure and start event timers (BSP part).
614 */
615void
616cpu_initclocks_bsp(void)
617{
618	struct pcpu_state *state;
619	int base, div, cpu;
620
621	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
622	CPU_FOREACH(cpu) {
623		state = DPCPU_ID_PTR(cpu, timerstate);
624		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
625#ifdef KDTRACE_HOOKS
626		state->nextcyc.sec = -1;
627#endif
628	}
629#ifdef SMP
630	callout_new_inserted = cpu_new_callout;
631#endif
632	periodic = want_periodic;
633	/* Grab requested timer or the best of present. */
634	if (timername[0])
635		timer = et_find(timername, 0, 0);
636	if (timer == NULL && periodic) {
637		timer = et_find(NULL,
638		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
639	}
640	if (timer == NULL) {
641		timer = et_find(NULL,
642		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
643	}
644	if (timer == NULL && !periodic) {
645		timer = et_find(NULL,
646		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
647	}
648	if (timer == NULL)
649		panic("No usable event timer found!");
650	et_init(timer, timercb, NULL, NULL);
651
652	/* Adapt to timer capabilities. */
653	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
654		periodic = 0;
655	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
656		periodic = 1;
657	if (timer->et_flags & ET_FLAGS_C3STOP)
658		cpu_disable_deep_sleep++;
659
660	/*
661	 * We honor the requested 'hz' value.
662	 * We want to run stathz in the neighborhood of 128hz.
663	 * We would like profhz to run as often as possible.
664	 */
665	if (singlemul <= 0 || singlemul > 20) {
666		if (hz >= 1500 || (hz % 128) == 0)
667			singlemul = 1;
668		else if (hz >= 750)
669			singlemul = 2;
670		else
671			singlemul = 4;
672	}
673	if (periodic) {
674		base = round_freq(timer, hz * singlemul);
675		singlemul = max((base + hz / 2) / hz, 1);
676		hz = (base + singlemul / 2) / singlemul;
677		if (base <= 128)
678			stathz = base;
679		else {
680			div = base / 128;
681			if (div >= singlemul && (div % singlemul) == 0)
682				div++;
683			stathz = base / div;
684		}
685		profhz = stathz;
686		while ((profhz + stathz) <= 128 * 64)
687			profhz += stathz;
688		profhz = round_freq(timer, profhz);
689	} else {
690		hz = round_freq(timer, hz);
691		stathz = round_freq(timer, 127);
692		profhz = round_freq(timer, stathz * 64);
693	}
694	tick = 1000000 / hz;
695	FREQ2BT(hz, &hardperiod);
696	FREQ2BT(stathz, &statperiod);
697	FREQ2BT(profhz, &profperiod);
698	ET_LOCK();
699	configtimer(1);
700	ET_UNLOCK();
701}
702
703/*
704 * Start per-CPU event timers on APs.
705 */
706void
707cpu_initclocks_ap(void)
708{
709	struct bintime now;
710	struct pcpu_state *state;
711
712	state = DPCPU_PTR(timerstate);
713	binuptime(&now);
714	ET_HW_LOCK(state);
715	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 && periodic) {
716		state->now = nexttick;
717		bintime_sub(&state->now, &timerperiod);
718	} else
719		state->now = now;
720	hardclock_sync(curcpu);
721	handleevents(&state->now, 2);
722	if (timer->et_flags & ET_FLAGS_PERCPU)
723		loadtimer(&now, 1);
724	ET_HW_UNLOCK(state);
725}
726
727/*
728 * Switch to profiling clock rates.
729 */
730void
731cpu_startprofclock(void)
732{
733
734	ET_LOCK();
735	if (periodic) {
736		configtimer(0);
737		profiling = 1;
738		configtimer(1);
739	} else
740		profiling = 1;
741	ET_UNLOCK();
742}
743
744/*
745 * Switch to regular clock rates.
746 */
747void
748cpu_stopprofclock(void)
749{
750
751	ET_LOCK();
752	if (periodic) {
753		configtimer(0);
754		profiling = 0;
755		configtimer(1);
756	} else
757		profiling = 0;
758	ET_UNLOCK();
759}
760
761/*
762 * Switch to idle mode (all ticks handled).
763 */
764void
765cpu_idleclock(void)
766{
767	struct bintime now, t;
768	struct pcpu_state *state;
769
770	if (idletick || busy ||
771	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
772#ifdef DEVICE_POLLING
773	    || curcpu == CPU_FIRST()
774#endif
775	    )
776		return;
777	state = DPCPU_PTR(timerstate);
778	if (periodic)
779		now = state->now;
780	else
781		binuptime(&now);
782	CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
783	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
784			     (unsigned int)(now.frac & 0xffffffff));
785	getnextcpuevent(&t, 1);
786	ET_HW_LOCK(state);
787	state->idle = 1;
788	state->nextevent = t;
789	if (!periodic)
790		loadtimer(&now, 0);
791	ET_HW_UNLOCK(state);
792}
793
794/*
795 * Switch to active mode (skip empty ticks).
796 */
797void
798cpu_activeclock(void)
799{
800	struct bintime now;
801	struct pcpu_state *state;
802	struct thread *td;
803
804	state = DPCPU_PTR(timerstate);
805	if (state->idle == 0 || busy)
806		return;
807	if (periodic)
808		now = state->now;
809	else
810		binuptime(&now);
811	CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
812	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
813			     (unsigned int)(now.frac & 0xffffffff));
814	spinlock_enter();
815	td = curthread;
816	td->td_intr_nesting_level++;
817	handleevents(&now, 1);
818	td->td_intr_nesting_level--;
819	spinlock_exit();
820}
821
822#ifdef KDTRACE_HOOKS
823void
824clocksource_cyc_set(const struct bintime *t)
825{
826	struct bintime now;
827	struct pcpu_state *state;
828
829	state = DPCPU_PTR(timerstate);
830	if (periodic)
831		now = state->now;
832	else
833		binuptime(&now);
834
835	CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
836	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
837			     (unsigned int)(now.frac & 0xffffffff));
838	CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
839	    curcpu, t->sec, (unsigned int)(t->frac >> 32),
840			     (unsigned int)(t->frac & 0xffffffff));
841
842	ET_HW_LOCK(state);
843	if (bintime_cmp(t, &state->nextcyc, ==)) {
844		ET_HW_UNLOCK(state);
845		return;
846	}
847	state->nextcyc = *t;
848	if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
849		ET_HW_UNLOCK(state);
850		return;
851	}
852	state->nextevent = state->nextcyc;
853	if (!periodic)
854		loadtimer(&now, 0);
855	ET_HW_UNLOCK(state);
856}
857#endif
858
859#ifdef SMP
860static void
861cpu_new_callout(int cpu, int ticks)
862{
863	struct bintime tmp;
864	struct pcpu_state *state;
865
866	CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
867	    curcpu, cpu, ticks);
868	state = DPCPU_ID_PTR(cpu, timerstate);
869	ET_HW_LOCK(state);
870	if (state->idle == 0 || busy) {
871		ET_HW_UNLOCK(state);
872		return;
873	}
874	/*
875	 * If timer is periodic - just update next event time for target CPU.
876	 * If timer is global - there is chance it is already programmed.
877	 */
878	if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
879		tmp = hardperiod;
880		bintime_mul(&tmp, ticks - 1);
881		bintime_add(&tmp, &state->nexthard);
882		if (bintime_cmp(&tmp, &state->nextevent, <))
883			state->nextevent = tmp;
884		if (periodic ||
885		    bintime_cmp(&state->nextevent, &nexttick, >=)) {
886			ET_HW_UNLOCK(state);
887			return;
888		}
889	}
890	/*
891	 * Otherwise we have to wake that CPU up, as we can't get present
892	 * bintime to reprogram global timer from here. If timer is per-CPU,
893	 * we by definition can't do it from here.
894	 */
895	ET_HW_UNLOCK(state);
896	if (timer->et_flags & ET_FLAGS_PERCPU) {
897		state->handle = 1;
898		ipi_cpu(cpu, IPI_HARDCLOCK);
899	} else {
900		if (!cpu_idle_wakeup(cpu))
901			ipi_cpu(cpu, IPI_AST);
902	}
903}
904#endif
905
906/*
907 * Report or change the active event timers hardware.
908 */
909static int
910sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
911{
912	char buf[32];
913	struct eventtimer *et;
914	int error;
915
916	ET_LOCK();
917	et = timer;
918	snprintf(buf, sizeof(buf), "%s", et->et_name);
919	ET_UNLOCK();
920	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
921	ET_LOCK();
922	et = timer;
923	if (error != 0 || req->newptr == NULL ||
924	    strcasecmp(buf, et->et_name) == 0) {
925		ET_UNLOCK();
926		return (error);
927	}
928	et = et_find(buf, 0, 0);
929	if (et == NULL) {
930		ET_UNLOCK();
931		return (ENOENT);
932	}
933	configtimer(0);
934	et_free(timer);
935	if (et->et_flags & ET_FLAGS_C3STOP)
936		cpu_disable_deep_sleep++;
937	if (timer->et_flags & ET_FLAGS_C3STOP)
938		cpu_disable_deep_sleep--;
939	periodic = want_periodic;
940	timer = et;
941	et_init(timer, timercb, NULL, NULL);
942	configtimer(1);
943	ET_UNLOCK();
944	return (error);
945}
946SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
947    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
948    0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
949
950/*
951 * Report or change the active event timer periodicity.
952 */
953static int
954sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
955{
956	int error, val;
957
958	val = periodic;
959	error = sysctl_handle_int(oidp, &val, 0, req);
960	if (error != 0 || req->newptr == NULL)
961		return (error);
962	ET_LOCK();
963	configtimer(0);
964	periodic = want_periodic = val;
965	configtimer(1);
966	ET_UNLOCK();
967	return (error);
968}
969SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
970    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
971    0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
972