g_part_gpt.c revision 292788
1/*-
2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/geom/part/g_part_gpt.c 292788 2015-12-27 18:12:13Z allanjude $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/diskmbr.h>
33#include <sys/endian.h>
34#include <sys/gpt.h>
35#include <sys/kernel.h>
36#include <sys/kobj.h>
37#include <sys/limits.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mutex.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/uuid.h>
46#include <geom/geom.h>
47#include <geom/geom_int.h>
48#include <geom/part/g_part.h>
49
50#include "g_part_if.h"
51
52FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
53
54CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
55CTASSERT(sizeof(struct gpt_ent) == 128);
56
57#define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
58
59#define	MBRSIZE		512
60
61enum gpt_elt {
62	GPT_ELT_PRIHDR,
63	GPT_ELT_PRITBL,
64	GPT_ELT_SECHDR,
65	GPT_ELT_SECTBL,
66	GPT_ELT_COUNT
67};
68
69enum gpt_state {
70	GPT_STATE_UNKNOWN,	/* Not determined. */
71	GPT_STATE_MISSING,	/* No signature found. */
72	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
73	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
74	GPT_STATE_OK		/* Perfectly fine. */
75};
76
77struct g_part_gpt_table {
78	struct g_part_table	base;
79	u_char			mbr[MBRSIZE];
80	struct gpt_hdr		*hdr;
81	quad_t			lba[GPT_ELT_COUNT];
82	enum gpt_state		state[GPT_ELT_COUNT];
83	int			bootcamp;
84};
85
86struct g_part_gpt_entry {
87	struct g_part_entry	base;
88	struct gpt_ent		ent;
89};
90
91static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
92static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
93static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
94
95static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
96    struct g_part_parms *);
97static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
98static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
99static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
100static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
101    struct sbuf *, const char *);
102static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
103static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
104    struct g_part_parms *);
105static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
106    char *, size_t);
107static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
108static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
109static int g_part_gpt_setunset(struct g_part_table *table,
110    struct g_part_entry *baseentry, const char *attrib, unsigned int set);
111static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
112    char *, size_t);
113static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
114static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
115    struct g_part_parms *);
116static int g_part_gpt_recover(struct g_part_table *);
117
118static kobj_method_t g_part_gpt_methods[] = {
119	KOBJMETHOD(g_part_add,		g_part_gpt_add),
120	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
121	KOBJMETHOD(g_part_create,	g_part_gpt_create),
122	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
123	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
124	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
125	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
126	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
127	KOBJMETHOD(g_part_name,		g_part_gpt_name),
128	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
129	KOBJMETHOD(g_part_read,		g_part_gpt_read),
130	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
131	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
132	KOBJMETHOD(g_part_type,		g_part_gpt_type),
133	KOBJMETHOD(g_part_write,	g_part_gpt_write),
134	{ 0, 0 }
135};
136
137static struct g_part_scheme g_part_gpt_scheme = {
138	"GPT",
139	g_part_gpt_methods,
140	sizeof(struct g_part_gpt_table),
141	.gps_entrysz = sizeof(struct g_part_gpt_entry),
142	.gps_minent = 128,
143	.gps_maxent = 4096,
144	.gps_bootcodesz = MBRSIZE,
145};
146G_PART_SCHEME_DECLARE(g_part_gpt);
147
148static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
149static struct uuid gpt_uuid_apple_core_storage =
150    GPT_ENT_TYPE_APPLE_CORE_STORAGE;
151static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
152static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
153static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
154static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
155static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
156static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
157static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
158static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
159static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
160static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
161static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
162static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
163static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
164static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
165static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
166static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
167static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
168static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
169static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
170static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
171static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
172static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
173static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
174static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
175static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
176static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
177static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
178static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
179static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
180static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
181static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
182static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
183static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
184static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
185static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
186static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
187static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
188static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
189static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
190static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
191static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
192static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
193static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
194static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
195static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
196static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
197static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
198static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
199static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
200static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
201static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
202static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
203
204static struct g_part_uuid_alias {
205	struct uuid *uuid;
206	int alias;
207	int mbrtype;
208} gpt_uuid_alias_match[] = {
209	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
210	{ &gpt_uuid_apple_core_storage,	G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
211	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
212	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
213	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
214	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
215	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
216	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
217	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
218	{ &gpt_uuid_chromeos_firmware,	G_PART_ALIAS_CHROMEOS_FIRMWARE,	 0 },
219	{ &gpt_uuid_chromeos_kernel,	G_PART_ALIAS_CHROMEOS_KERNEL,	 0 },
220	{ &gpt_uuid_chromeos_reserved,	G_PART_ALIAS_CHROMEOS_RESERVED,	 0 },
221	{ &gpt_uuid_chromeos_root,	G_PART_ALIAS_CHROMEOS_ROOT,	 0 },
222	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
223	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
224	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
225	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
226	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
227	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
228	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
229	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
230	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
231	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
232	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
233	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
234	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
235	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
236	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
237	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
238	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
239	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
240	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
241	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
242	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
243	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
244	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
245	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
246	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
247	{ &gpt_uuid_ms_recovery,	G_PART_ALIAS_MS_RECOVERY,	 0 },
248	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
249	{ &gpt_uuid_ms_spaces,		G_PART_ALIAS_MS_SPACES,		 0 },
250	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
251	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
252	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
253	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
254	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
255	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
256	{ &gpt_uuid_openbsd_data,	G_PART_ALIAS_OPENBSD_DATA,	 0 },
257	{ &gpt_uuid_prep_boot,		G_PART_ALIAS_PREP_BOOT,		 0x41 },
258	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
259	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
260	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
261	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
262	{ NULL, 0, 0 }
263};
264
265static int
266gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
267    quad_t end)
268{
269
270	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
271		return (EINVAL);
272
273	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
274	mbr[0] = 0;
275	if (start == 1) {
276		/*
277		 * Treat the PMBR partition specially to maximize
278		 * interoperability with BIOSes.
279		 */
280		mbr[1] = mbr[3] = 0;
281		mbr[2] = 2;
282	} else
283		mbr[1] = mbr[2] = mbr[3] = 0xff;
284	mbr[4] = typ;
285	mbr[5] = mbr[6] = mbr[7] = 0xff;
286	le32enc(mbr + 8, (uint32_t)start);
287	le32enc(mbr + 12, (uint32_t)(end - start + 1));
288	return (0);
289}
290
291static int
292gpt_map_type(struct uuid *t)
293{
294	struct g_part_uuid_alias *uap;
295
296	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
297		if (EQUUID(t, uap->uuid))
298			return (uap->mbrtype);
299	}
300	return (0);
301}
302
303static void
304gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
305{
306
307	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
308	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
309	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
310	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
311}
312
313/*
314 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
315 * whole disk anymore. Rather, it covers the GPT table and the EFI
316 * system partition only. This way the HFS+ partition and any FAT
317 * partitions can be added to the MBR without creating an overlap.
318 */
319static int
320gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
321{
322	uint8_t *p;
323
324	p = table->mbr + DOSPARTOFF;
325	if (p[4] != 0xee || le32dec(p + 8) != 1)
326		return (0);
327
328	p += DOSPARTSIZE;
329	if (p[4] != 0xaf)
330		return (0);
331
332	printf("GEOM: %s: enabling Boot Camp\n", provname);
333	return (1);
334}
335
336static void
337gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
338{
339	struct g_part_entry *baseentry;
340	struct g_part_gpt_entry *entry;
341	struct g_part_gpt_table *table;
342	int bootable, error, index, slices, typ;
343
344	table = (struct g_part_gpt_table *)basetable;
345
346	bootable = -1;
347	for (index = 0; index < NDOSPART; index++) {
348		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
349			bootable = index;
350	}
351
352	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
353	slices = 0;
354	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
355		if (baseentry->gpe_deleted)
356			continue;
357		index = baseentry->gpe_index - 1;
358		if (index >= NDOSPART)
359			continue;
360
361		entry = (struct g_part_gpt_entry *)baseentry;
362
363		switch (index) {
364		case 0:	/* This must be the EFI system partition. */
365			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
366				goto disable;
367			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
368			    1ull, entry->ent.ent_lba_end);
369			break;
370		case 1:	/* This must be the HFS+ partition. */
371			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
372				goto disable;
373			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
374			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
375			break;
376		default:
377			typ = gpt_map_type(&entry->ent.ent_type);
378			error = gpt_write_mbr_entry(table->mbr, index, typ,
379			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
380			break;
381		}
382		if (error)
383			continue;
384
385		if (index == bootable)
386			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
387		slices |= 1 << index;
388	}
389	if ((slices & 3) == 3)
390		return;
391
392 disable:
393	table->bootcamp = 0;
394	gpt_create_pmbr(table, pp);
395}
396
397static struct gpt_hdr *
398gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
399    enum gpt_elt elt)
400{
401	struct gpt_hdr *buf, *hdr;
402	struct g_provider *pp;
403	quad_t lba, last;
404	int error;
405	uint32_t crc, sz;
406
407	pp = cp->provider;
408	last = (pp->mediasize / pp->sectorsize) - 1;
409	table->state[elt] = GPT_STATE_MISSING;
410	/*
411	 * If the primary header is valid look for secondary
412	 * header in AlternateLBA, otherwise in the last medium's LBA.
413	 */
414	if (elt == GPT_ELT_SECHDR) {
415		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
416			table->lba[elt] = last;
417	} else
418		table->lba[elt] = 1;
419	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
420	    &error);
421	if (buf == NULL)
422		return (NULL);
423	hdr = NULL;
424	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
425		goto fail;
426
427	table->state[elt] = GPT_STATE_CORRUPT;
428	sz = le32toh(buf->hdr_size);
429	if (sz < 92 || sz > pp->sectorsize)
430		goto fail;
431
432	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
433	bcopy(buf, hdr, sz);
434	hdr->hdr_size = sz;
435
436	crc = le32toh(buf->hdr_crc_self);
437	buf->hdr_crc_self = 0;
438	if (crc32(buf, sz) != crc)
439		goto fail;
440	hdr->hdr_crc_self = crc;
441
442	table->state[elt] = GPT_STATE_INVALID;
443	hdr->hdr_revision = le32toh(buf->hdr_revision);
444	if (hdr->hdr_revision < GPT_HDR_REVISION)
445		goto fail;
446	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
447	if (hdr->hdr_lba_self != table->lba[elt])
448		goto fail;
449	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
450	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
451	    hdr->hdr_lba_alt > last)
452		goto fail;
453
454	/* Check the managed area. */
455	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
456	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
457		goto fail;
458	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
459	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
460		goto fail;
461
462	/* Check the table location and size of the table. */
463	hdr->hdr_entries = le32toh(buf->hdr_entries);
464	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
465	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
466	    (hdr->hdr_entsz & 7) != 0)
467		goto fail;
468	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
469	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
470		goto fail;
471	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
472	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
473		goto fail;
474	lba = hdr->hdr_lba_table +
475	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
476	    pp->sectorsize - 1;
477	if (lba >= last)
478		goto fail;
479	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
480		goto fail;
481
482	table->state[elt] = GPT_STATE_OK;
483	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
484	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
485
486	/* save LBA for secondary header */
487	if (elt == GPT_ELT_PRIHDR)
488		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
489
490	g_free(buf);
491	return (hdr);
492
493 fail:
494	if (hdr != NULL)
495		g_free(hdr);
496	g_free(buf);
497	return (NULL);
498}
499
500static struct gpt_ent *
501gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
502    enum gpt_elt elt, struct gpt_hdr *hdr)
503{
504	struct g_provider *pp;
505	struct gpt_ent *ent, *tbl;
506	char *buf, *p;
507	unsigned int idx, sectors, tblsz, size;
508	int error;
509
510	if (hdr == NULL)
511		return (NULL);
512
513	pp = cp->provider;
514	table->lba[elt] = hdr->hdr_lba_table;
515
516	table->state[elt] = GPT_STATE_MISSING;
517	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
518	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
519	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
520	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
521		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
522		    (sectors - idx) * pp->sectorsize;
523		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
524		    size, &error);
525		if (p == NULL) {
526			g_free(buf);
527			return (NULL);
528		}
529		bcopy(p, buf + idx * pp->sectorsize, size);
530		g_free(p);
531	}
532	table->state[elt] = GPT_STATE_CORRUPT;
533	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
534		g_free(buf);
535		return (NULL);
536	}
537
538	table->state[elt] = GPT_STATE_OK;
539	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
540	    M_WAITOK | M_ZERO);
541
542	for (idx = 0, ent = tbl, p = buf;
543	     idx < hdr->hdr_entries;
544	     idx++, ent++, p += hdr->hdr_entsz) {
545		le_uuid_dec(p, &ent->ent_type);
546		le_uuid_dec(p + 16, &ent->ent_uuid);
547		ent->ent_lba_start = le64dec(p + 32);
548		ent->ent_lba_end = le64dec(p + 40);
549		ent->ent_attr = le64dec(p + 48);
550		/* Keep UTF-16 in little-endian. */
551		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
552	}
553
554	g_free(buf);
555	return (tbl);
556}
557
558static int
559gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
560{
561
562	if (pri == NULL || sec == NULL)
563		return (0);
564
565	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
566		return (0);
567	return ((pri->hdr_revision == sec->hdr_revision &&
568	    pri->hdr_size == sec->hdr_size &&
569	    pri->hdr_lba_start == sec->hdr_lba_start &&
570	    pri->hdr_lba_end == sec->hdr_lba_end &&
571	    pri->hdr_entries == sec->hdr_entries &&
572	    pri->hdr_entsz == sec->hdr_entsz &&
573	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
574}
575
576static int
577gpt_parse_type(const char *type, struct uuid *uuid)
578{
579	struct uuid tmp;
580	const char *alias;
581	int error;
582	struct g_part_uuid_alias *uap;
583
584	if (type[0] == '!') {
585		error = parse_uuid(type + 1, &tmp);
586		if (error)
587			return (error);
588		if (EQUUID(&tmp, &gpt_uuid_unused))
589			return (EINVAL);
590		*uuid = tmp;
591		return (0);
592	}
593	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
594		alias = g_part_alias_name(uap->alias);
595		if (!strcasecmp(type, alias)) {
596			*uuid = *uap->uuid;
597			return (0);
598		}
599	}
600	return (EINVAL);
601}
602
603static int
604g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
605    struct g_part_parms *gpp)
606{
607	struct g_part_gpt_entry *entry;
608	int error;
609
610	entry = (struct g_part_gpt_entry *)baseentry;
611	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
612	if (error)
613		return (error);
614	kern_uuidgen(&entry->ent.ent_uuid, 1);
615	entry->ent.ent_lba_start = baseentry->gpe_start;
616	entry->ent.ent_lba_end = baseentry->gpe_end;
617	if (baseentry->gpe_deleted) {
618		entry->ent.ent_attr = 0;
619		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
620	}
621	if (gpp->gpp_parms & G_PART_PARM_LABEL)
622		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
623		    sizeof(entry->ent.ent_name) /
624		    sizeof(entry->ent.ent_name[0]));
625	return (0);
626}
627
628static int
629g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
630{
631	struct g_part_gpt_table *table;
632	size_t codesz;
633
634	codesz = DOSPARTOFF;
635	table = (struct g_part_gpt_table *)basetable;
636	bzero(table->mbr, codesz);
637	codesz = MIN(codesz, gpp->gpp_codesize);
638	if (codesz > 0)
639		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
640	return (0);
641}
642
643static int
644g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
645{
646	struct g_provider *pp;
647	struct g_part_gpt_table *table;
648	size_t tblsz;
649
650	/* We don't nest, which means that our depth should be 0. */
651	if (basetable->gpt_depth != 0)
652		return (ENXIO);
653
654	table = (struct g_part_gpt_table *)basetable;
655	pp = gpp->gpp_provider;
656	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
657	    pp->sectorsize - 1) / pp->sectorsize;
658	if (pp->sectorsize < MBRSIZE ||
659	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
660	    pp->sectorsize)
661		return (ENOSPC);
662
663	gpt_create_pmbr(table, pp);
664
665	/* Allocate space for the header */
666	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
667
668	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
669	table->hdr->hdr_revision = GPT_HDR_REVISION;
670	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
671	kern_uuidgen(&table->hdr->hdr_uuid, 1);
672	table->hdr->hdr_entries = basetable->gpt_entries;
673	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
674
675	g_gpt_set_defaults(basetable, pp);
676	return (0);
677}
678
679static int
680g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
681{
682	struct g_part_gpt_table *table;
683	struct g_provider *pp;
684
685	table = (struct g_part_gpt_table *)basetable;
686	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
687	g_free(table->hdr);
688	table->hdr = NULL;
689
690	/*
691	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
692	 * sector only if it has valid secondary header.
693	 */
694	basetable->gpt_smhead |= 3;
695	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
696	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
697		basetable->gpt_smtail |= 1;
698	return (0);
699}
700
701static void
702g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
703    struct sbuf *sb, const char *indent)
704{
705	struct g_part_gpt_entry *entry;
706
707	entry = (struct g_part_gpt_entry *)baseentry;
708	if (indent == NULL) {
709		/* conftxt: libdisk compatibility */
710		sbuf_printf(sb, " xs GPT xt ");
711		sbuf_printf_uuid(sb, &entry->ent.ent_type);
712	} else if (entry != NULL) {
713		/* confxml: partition entry information */
714		sbuf_printf(sb, "%s<label>", indent);
715		g_gpt_printf_utf16(sb, entry->ent.ent_name,
716		    sizeof(entry->ent.ent_name) >> 1);
717		sbuf_printf(sb, "</label>\n");
718		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
719			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
720		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
721			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
722			    indent);
723		}
724		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
725			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
726			    indent);
727		}
728		sbuf_printf(sb, "%s<rawtype>", indent);
729		sbuf_printf_uuid(sb, &entry->ent.ent_type);
730		sbuf_printf(sb, "</rawtype>\n");
731		sbuf_printf(sb, "%s<rawuuid>", indent);
732		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
733		sbuf_printf(sb, "</rawuuid>\n");
734	} else {
735		/* confxml: scheme information */
736	}
737}
738
739static int
740g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
741{
742	struct g_part_gpt_entry *entry;
743
744	entry = (struct g_part_gpt_entry *)baseentry;
745	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
746	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
747	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
748}
749
750static int
751g_part_gpt_modify(struct g_part_table *basetable,
752    struct g_part_entry *baseentry, struct g_part_parms *gpp)
753{
754	struct g_part_gpt_entry *entry;
755	int error;
756
757	entry = (struct g_part_gpt_entry *)baseentry;
758	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
759		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
760		if (error)
761			return (error);
762	}
763	if (gpp->gpp_parms & G_PART_PARM_LABEL)
764		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
765		    sizeof(entry->ent.ent_name) /
766		    sizeof(entry->ent.ent_name[0]));
767	return (0);
768}
769
770static int
771g_part_gpt_resize(struct g_part_table *basetable,
772    struct g_part_entry *baseentry, struct g_part_parms *gpp)
773{
774	struct g_part_gpt_entry *entry;
775
776	if (baseentry == NULL)
777		return (g_part_gpt_recover(basetable));
778
779	entry = (struct g_part_gpt_entry *)baseentry;
780	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
781	entry->ent.ent_lba_end = baseentry->gpe_end;
782
783	return (0);
784}
785
786static const char *
787g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
788    char *buf, size_t bufsz)
789{
790	struct g_part_gpt_entry *entry;
791	char c;
792
793	entry = (struct g_part_gpt_entry *)baseentry;
794	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
795	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
796	return (buf);
797}
798
799static int
800g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
801{
802	struct g_provider *pp;
803	u_char *buf;
804	int error, index, pri, res;
805
806	/* We don't nest, which means that our depth should be 0. */
807	if (table->gpt_depth != 0)
808		return (ENXIO);
809
810	pp = cp->provider;
811
812	/*
813	 * Sanity-check the provider. Since the first sector on the provider
814	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
815	 * must be at least 512 bytes.  Also, since the theoretical minimum
816	 * number of sectors needed by GPT is 6, any medium that has less
817	 * than 6 sectors is never going to be able to hold a GPT. The
818	 * number 6 comes from:
819	 *	1 sector for the PMBR
820	 *	2 sectors for the GPT headers (each 1 sector)
821	 *	2 sectors for the GPT tables (each 1 sector)
822	 *	1 sector for an actual partition
823	 * It's better to catch this pathological case early than behaving
824	 * pathologically later on...
825	 */
826	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
827		return (ENOSPC);
828
829	/*
830	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
831	 * as the highest priority on a match, otherwise we assume some
832	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
833	 * we really want the MBR scheme to take precedence.
834	 */
835	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
836	if (buf == NULL)
837		return (error);
838	res = le16dec(buf + DOSMAGICOFFSET);
839	pri = G_PART_PROBE_PRI_LOW;
840	if (res == DOSMAGIC) {
841		for (index = 0; index < NDOSPART; index++) {
842			if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
843				pri = G_PART_PROBE_PRI_HIGH;
844		}
845		g_free(buf);
846
847		/* Check that there's a primary header. */
848		buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
849		if (buf == NULL)
850			return (error);
851		res = memcmp(buf, GPT_HDR_SIG, 8);
852		g_free(buf);
853		if (res == 0)
854			return (pri);
855	} else
856		g_free(buf);
857
858	/* No primary? Check that there's a secondary. */
859	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
860	    &error);
861	if (buf == NULL)
862		return (error);
863	res = memcmp(buf, GPT_HDR_SIG, 8);
864	g_free(buf);
865	return ((res == 0) ? pri : ENXIO);
866}
867
868static int
869g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
870{
871	struct gpt_hdr *prihdr, *sechdr;
872	struct gpt_ent *tbl, *pritbl, *sectbl;
873	struct g_provider *pp;
874	struct g_part_gpt_table *table;
875	struct g_part_gpt_entry *entry;
876	u_char *buf;
877	uint64_t last;
878	int error, index;
879
880	table = (struct g_part_gpt_table *)basetable;
881	pp = cp->provider;
882	last = (pp->mediasize / pp->sectorsize) - 1;
883
884	/* Read the PMBR */
885	buf = g_read_data(cp, 0, pp->sectorsize, &error);
886	if (buf == NULL)
887		return (error);
888	bcopy(buf, table->mbr, MBRSIZE);
889	g_free(buf);
890
891	/* Read the primary header and table. */
892	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
893	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
894		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
895	} else {
896		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
897		pritbl = NULL;
898	}
899
900	/* Read the secondary header and table. */
901	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
902	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
903		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
904	} else {
905		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
906		sectbl = NULL;
907	}
908
909	/* Fail if we haven't got any good tables at all. */
910	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
911	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
912		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
913		    pp->name);
914		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
915		    pp->name);
916		return (EINVAL);
917	}
918
919	/*
920	 * If both headers are good but they disagree with each other,
921	 * then invalidate one. We prefer to keep the primary header,
922	 * unless the primary table is corrupt.
923	 */
924	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
925	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
926	    !gpt_matched_hdrs(prihdr, sechdr)) {
927		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
928			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
929			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
930			g_free(sechdr);
931			sechdr = NULL;
932		} else {
933			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
934			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
935			g_free(prihdr);
936			prihdr = NULL;
937		}
938	}
939
940	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
941		printf("GEOM: %s: the primary GPT table is corrupt or "
942		    "invalid.\n", pp->name);
943		printf("GEOM: %s: using the secondary instead -- recovery "
944		    "strongly advised.\n", pp->name);
945		table->hdr = sechdr;
946		basetable->gpt_corrupt = 1;
947		if (prihdr != NULL)
948			g_free(prihdr);
949		tbl = sectbl;
950		if (pritbl != NULL)
951			g_free(pritbl);
952	} else {
953		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
954			printf("GEOM: %s: the secondary GPT table is corrupt "
955			    "or invalid.\n", pp->name);
956			printf("GEOM: %s: using the primary only -- recovery "
957			    "suggested.\n", pp->name);
958			basetable->gpt_corrupt = 1;
959		} else if (table->lba[GPT_ELT_SECHDR] != last) {
960			printf( "GEOM: %s: the secondary GPT header is not in "
961			    "the last LBA.\n", pp->name);
962			basetable->gpt_corrupt = 1;
963		}
964		table->hdr = prihdr;
965		if (sechdr != NULL)
966			g_free(sechdr);
967		tbl = pritbl;
968		if (sectbl != NULL)
969			g_free(sectbl);
970	}
971
972	basetable->gpt_first = table->hdr->hdr_lba_start;
973	basetable->gpt_last = table->hdr->hdr_lba_end;
974	basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) *
975	    pp->sectorsize / table->hdr->hdr_entsz;
976
977	for (index = table->hdr->hdr_entries - 1; index >= 0; index--) {
978		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
979			continue;
980		entry = (struct g_part_gpt_entry *)g_part_new_entry(
981		    basetable, index + 1, tbl[index].ent_lba_start,
982		    tbl[index].ent_lba_end);
983		entry->ent = tbl[index];
984	}
985
986	g_free(tbl);
987
988	/*
989	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
990	 * if (and only if) any FAT32 or FAT16 partitions have been
991	 * created. This happens irrespective of whether Boot Camp is
992	 * used/enabled, though it's generally understood to be done
993	 * to support legacy Windows under Boot Camp. We refer to this
994	 * mirroring simply as Boot Camp. We try to detect Boot Camp
995	 * so that we can update the MBR if and when GPT changes have
996	 * been made. Note that we do not enable Boot Camp if not
997	 * previously enabled because we can't assume that we're on a
998	 * Mac alongside Mac OS X.
999	 */
1000	table->bootcamp = gpt_is_bootcamp(table, pp->name);
1001
1002	return (0);
1003}
1004
1005static int
1006g_part_gpt_recover(struct g_part_table *basetable)
1007{
1008	struct g_part_gpt_table *table;
1009	struct g_provider *pp;
1010
1011	table = (struct g_part_gpt_table *)basetable;
1012	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1013	gpt_create_pmbr(table, pp);
1014	g_gpt_set_defaults(basetable, pp);
1015	basetable->gpt_corrupt = 0;
1016	return (0);
1017}
1018
1019static int
1020g_part_gpt_setunset(struct g_part_table *basetable,
1021    struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1022{
1023	struct g_part_gpt_entry *entry;
1024	struct g_part_gpt_table *table;
1025	struct g_provider *pp;
1026	uint8_t *p;
1027	uint64_t attr;
1028	int i;
1029
1030	table = (struct g_part_gpt_table *)basetable;
1031	entry = (struct g_part_gpt_entry *)baseentry;
1032
1033	if (strcasecmp(attrib, "active") == 0) {
1034		if (table->bootcamp) {
1035			/* The active flag must be set on a valid entry. */
1036			if (entry == NULL)
1037				return (ENXIO);
1038			if (baseentry->gpe_index > NDOSPART)
1039				return (EINVAL);
1040			for (i = 0; i < NDOSPART; i++) {
1041				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1042				p[0] = (i == baseentry->gpe_index - 1)
1043				    ? ((set) ? 0x80 : 0) : 0;
1044			}
1045		} else {
1046			/* The PMBR is marked as active without an entry. */
1047			if (entry != NULL)
1048				return (ENXIO);
1049			for (i = 0; i < NDOSPART; i++) {
1050				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1051				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1052			}
1053		}
1054		return (0);
1055	} else if (strcasecmp(attrib, "lenovofix") == 0) {
1056		/*
1057		 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1058		 * This workaround allows Lenovo X220, T420, T520, etc to boot
1059		 * from GPT Partitions in BIOS mode.
1060		 */
1061
1062		if (entry != NULL)
1063			return (ENXIO);
1064
1065		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1066		bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1067		gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1068		    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1069		return (0);
1070	}
1071
1072	if (entry == NULL)
1073		return (ENODEV);
1074
1075	attr = 0;
1076	if (strcasecmp(attrib, "bootme") == 0) {
1077		attr |= GPT_ENT_ATTR_BOOTME;
1078	} else if (strcasecmp(attrib, "bootonce") == 0) {
1079		attr |= GPT_ENT_ATTR_BOOTONCE;
1080		if (set)
1081			attr |= GPT_ENT_ATTR_BOOTME;
1082	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1083		/*
1084		 * It should only be possible to unset BOOTFAILED, but it might
1085		 * be useful for test purposes to also be able to set it.
1086		 */
1087		attr |= GPT_ENT_ATTR_BOOTFAILED;
1088	}
1089	if (attr == 0)
1090		return (EINVAL);
1091
1092	if (set)
1093		attr = entry->ent.ent_attr | attr;
1094	else
1095		attr = entry->ent.ent_attr & ~attr;
1096	if (attr != entry->ent.ent_attr) {
1097		entry->ent.ent_attr = attr;
1098		if (!baseentry->gpe_created)
1099			baseentry->gpe_modified = 1;
1100	}
1101	return (0);
1102}
1103
1104static const char *
1105g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1106    char *buf, size_t bufsz)
1107{
1108	struct g_part_gpt_entry *entry;
1109	struct uuid *type;
1110	struct g_part_uuid_alias *uap;
1111
1112	entry = (struct g_part_gpt_entry *)baseentry;
1113	type = &entry->ent.ent_type;
1114	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1115		if (EQUUID(type, uap->uuid))
1116			return (g_part_alias_name(uap->alias));
1117	buf[0] = '!';
1118	snprintf_uuid(buf + 1, bufsz - 1, type);
1119
1120	return (buf);
1121}
1122
1123static int
1124g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1125{
1126	unsigned char *buf, *bp;
1127	struct g_provider *pp;
1128	struct g_part_entry *baseentry;
1129	struct g_part_gpt_entry *entry;
1130	struct g_part_gpt_table *table;
1131	size_t tblsz;
1132	uint32_t crc;
1133	int error, index;
1134
1135	pp = cp->provider;
1136	table = (struct g_part_gpt_table *)basetable;
1137	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1138	    pp->sectorsize - 1) / pp->sectorsize;
1139
1140	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1141	if (table->bootcamp)
1142		gpt_update_bootcamp(basetable, pp);
1143
1144	/* Write the PMBR */
1145	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1146	bcopy(table->mbr, buf, MBRSIZE);
1147	error = g_write_data(cp, 0, buf, pp->sectorsize);
1148	g_free(buf);
1149	if (error)
1150		return (error);
1151
1152	/* Allocate space for the header and entries. */
1153	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1154
1155	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1156	le32enc(buf + 8, table->hdr->hdr_revision);
1157	le32enc(buf + 12, table->hdr->hdr_size);
1158	le64enc(buf + 40, table->hdr->hdr_lba_start);
1159	le64enc(buf + 48, table->hdr->hdr_lba_end);
1160	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1161	le32enc(buf + 80, table->hdr->hdr_entries);
1162	le32enc(buf + 84, table->hdr->hdr_entsz);
1163
1164	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1165		if (baseentry->gpe_deleted)
1166			continue;
1167		entry = (struct g_part_gpt_entry *)baseentry;
1168		index = baseentry->gpe_index - 1;
1169		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1170		le_uuid_enc(bp, &entry->ent.ent_type);
1171		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1172		le64enc(bp + 32, entry->ent.ent_lba_start);
1173		le64enc(bp + 40, entry->ent.ent_lba_end);
1174		le64enc(bp + 48, entry->ent.ent_attr);
1175		memcpy(bp + 56, entry->ent.ent_name,
1176		    sizeof(entry->ent.ent_name));
1177	}
1178
1179	crc = crc32(buf + pp->sectorsize,
1180	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1181	le32enc(buf + 88, crc);
1182
1183	/* Write primary meta-data. */
1184	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1185	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1186	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1187	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1188	crc = crc32(buf, table->hdr->hdr_size);
1189	le32enc(buf + 16, crc);
1190
1191	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1192		error = g_write_data(cp,
1193		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1194		    buf + (index + 1) * pp->sectorsize,
1195		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1196		    (tblsz - index) * pp->sectorsize);
1197		if (error)
1198			goto out;
1199	}
1200	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1201	    buf, pp->sectorsize);
1202	if (error)
1203		goto out;
1204
1205	/* Write secondary meta-data. */
1206	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1207	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1208	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1209	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1210	crc = crc32(buf, table->hdr->hdr_size);
1211	le32enc(buf + 16, crc);
1212
1213	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1214		error = g_write_data(cp,
1215		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1216		    buf + (index + 1) * pp->sectorsize,
1217		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1218		    (tblsz - index) * pp->sectorsize);
1219		if (error)
1220			goto out;
1221	}
1222	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1223	    buf, pp->sectorsize);
1224
1225 out:
1226	g_free(buf);
1227	return (error);
1228}
1229
1230static void
1231g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1232{
1233	struct g_part_entry *baseentry;
1234	struct g_part_gpt_entry *entry;
1235	struct g_part_gpt_table *table;
1236	quad_t start, end, min, max;
1237	quad_t lba, last;
1238	size_t spb, tblsz;
1239
1240	table = (struct g_part_gpt_table *)basetable;
1241	last = pp->mediasize / pp->sectorsize - 1;
1242	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1243	    pp->sectorsize - 1) / pp->sectorsize;
1244
1245	table->lba[GPT_ELT_PRIHDR] = 1;
1246	table->lba[GPT_ELT_PRITBL] = 2;
1247	table->lba[GPT_ELT_SECHDR] = last;
1248	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1249	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1250	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1251	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1252	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1253
1254	max = start = 2 + tblsz;
1255	min = end = last - tblsz - 1;
1256	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1257		if (baseentry->gpe_deleted)
1258			continue;
1259		entry = (struct g_part_gpt_entry *)baseentry;
1260		if (entry->ent.ent_lba_start < min)
1261			min = entry->ent.ent_lba_start;
1262		if (entry->ent.ent_lba_end > max)
1263			max = entry->ent.ent_lba_end;
1264	}
1265	spb = 4096 / pp->sectorsize;
1266	if (spb > 1) {
1267		lba = start + ((start % spb) ? spb - start % spb : 0);
1268		if (lba <= min)
1269			start = lba;
1270		lba = end - (end + 1) % spb;
1271		if (max <= lba)
1272			end = lba;
1273	}
1274	table->hdr->hdr_lba_start = start;
1275	table->hdr->hdr_lba_end = end;
1276
1277	basetable->gpt_first = start;
1278	basetable->gpt_last = end;
1279}
1280
1281static void
1282g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1283{
1284	u_int bo;
1285	uint32_t ch;
1286	uint16_t c;
1287
1288	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1289	while (len > 0 && *str != 0) {
1290		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1291		str++, len--;
1292		if ((ch & 0xf800) == 0xd800) {
1293			if (len > 0) {
1294				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1295				    : le16toh(*str);
1296				str++, len--;
1297			} else
1298				c = 0xfffd;
1299			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1300				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1301				ch += 0x10000;
1302			} else
1303				ch = 0xfffd;
1304		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1305			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1306			continue;
1307		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1308			continue;
1309
1310		/* Write the Unicode character in UTF-8 */
1311		if (ch < 0x80)
1312			g_conf_printf_escaped(sb, "%c", ch);
1313		else if (ch < 0x800)
1314			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1315			    0x80 | (ch & 0x3f));
1316		else if (ch < 0x10000)
1317			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1318			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1319		else if (ch < 0x200000)
1320			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1321			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1322			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1323	}
1324}
1325
1326static void
1327g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1328{
1329	size_t s16idx, s8idx;
1330	uint32_t utfchar;
1331	unsigned int c, utfbytes;
1332
1333	s8idx = s16idx = 0;
1334	utfchar = 0;
1335	utfbytes = 0;
1336	bzero(s16, s16len << 1);
1337	while (s8[s8idx] != 0 && s16idx < s16len) {
1338		c = s8[s8idx++];
1339		if ((c & 0xc0) != 0x80) {
1340			/* Initial characters. */
1341			if (utfbytes != 0) {
1342				/* Incomplete encoding of previous char. */
1343				s16[s16idx++] = htole16(0xfffd);
1344			}
1345			if ((c & 0xf8) == 0xf0) {
1346				utfchar = c & 0x07;
1347				utfbytes = 3;
1348			} else if ((c & 0xf0) == 0xe0) {
1349				utfchar = c & 0x0f;
1350				utfbytes = 2;
1351			} else if ((c & 0xe0) == 0xc0) {
1352				utfchar = c & 0x1f;
1353				utfbytes = 1;
1354			} else {
1355				utfchar = c & 0x7f;
1356				utfbytes = 0;
1357			}
1358		} else {
1359			/* Followup characters. */
1360			if (utfbytes > 0) {
1361				utfchar = (utfchar << 6) + (c & 0x3f);
1362				utfbytes--;
1363			} else if (utfbytes == 0)
1364				utfbytes = ~0;
1365		}
1366		/*
1367		 * Write the complete Unicode character as UTF-16 when we
1368		 * have all the UTF-8 charactars collected.
1369		 */
1370		if (utfbytes == 0) {
1371			/*
1372			 * If we need to write 2 UTF-16 characters, but
1373			 * we only have room for 1, then we truncate the
1374			 * string by writing a 0 instead.
1375			 */
1376			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1377				s16[s16idx++] =
1378				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1379				s16[s16idx++] =
1380				    htole16(0xdc00 | (utfchar & 0x3ff));
1381			} else
1382				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1383				    htole16(utfchar);
1384		}
1385	}
1386	/*
1387	 * If our input string was truncated, append an invalid encoding
1388	 * character to the output string.
1389	 */
1390	if (utfbytes != 0 && s16idx < s16len)
1391		s16[s16idx++] = htole16(0xfffd);
1392}
1393