g_part_gpt.c revision 234417
1/*-
2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/geom/part/g_part_gpt.c 234417 2012-04-18 11:59:03Z marck $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/diskmbr.h>
33#include <sys/endian.h>
34#include <sys/gpt.h>
35#include <sys/kernel.h>
36#include <sys/kobj.h>
37#include <sys/limits.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mutex.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/uuid.h>
46#include <geom/geom.h>
47#include <geom/part/g_part.h>
48
49#include "g_part_if.h"
50
51FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52
53CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54CTASSERT(sizeof(struct gpt_ent) == 128);
55
56#define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
57
58#define	MBRSIZE		512
59
60enum gpt_elt {
61	GPT_ELT_PRIHDR,
62	GPT_ELT_PRITBL,
63	GPT_ELT_SECHDR,
64	GPT_ELT_SECTBL,
65	GPT_ELT_COUNT
66};
67
68enum gpt_state {
69	GPT_STATE_UNKNOWN,	/* Not determined. */
70	GPT_STATE_MISSING,	/* No signature found. */
71	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
72	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
73	GPT_STATE_OK		/* Perfectly fine. */
74};
75
76struct g_part_gpt_table {
77	struct g_part_table	base;
78	u_char			mbr[MBRSIZE];
79	struct gpt_hdr		*hdr;
80	quad_t			lba[GPT_ELT_COUNT];
81	enum gpt_state		state[GPT_ELT_COUNT];
82	int			bootcamp;
83};
84
85struct g_part_gpt_entry {
86	struct g_part_entry	base;
87	struct gpt_ent		ent;
88};
89
90static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
91static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
92static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
93
94static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
95    struct g_part_parms *);
96static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
97static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
98static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
99static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
100    struct sbuf *, const char *);
101static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
102static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
103    struct g_part_parms *);
104static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
105    char *, size_t);
106static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
107static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
108static int g_part_gpt_setunset(struct g_part_table *table,
109    struct g_part_entry *baseentry, const char *attrib, unsigned int set);
110static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
111    char *, size_t);
112static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
113static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
114    struct g_part_parms *);
115static int g_part_gpt_recover(struct g_part_table *);
116
117static kobj_method_t g_part_gpt_methods[] = {
118	KOBJMETHOD(g_part_add,		g_part_gpt_add),
119	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
120	KOBJMETHOD(g_part_create,	g_part_gpt_create),
121	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
122	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
123	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
124	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
125	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
126	KOBJMETHOD(g_part_name,		g_part_gpt_name),
127	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
128	KOBJMETHOD(g_part_read,		g_part_gpt_read),
129	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
130	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
131	KOBJMETHOD(g_part_type,		g_part_gpt_type),
132	KOBJMETHOD(g_part_write,	g_part_gpt_write),
133	{ 0, 0 }
134};
135
136static struct g_part_scheme g_part_gpt_scheme = {
137	"GPT",
138	g_part_gpt_methods,
139	sizeof(struct g_part_gpt_table),
140	.gps_entrysz = sizeof(struct g_part_gpt_entry),
141	.gps_minent = 128,
142	.gps_maxent = 4096,
143	.gps_bootcodesz = MBRSIZE,
144};
145G_PART_SCHEME_DECLARE(g_part_gpt);
146
147static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
148static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
149static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
150static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
151static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
152static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
153static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
154static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
155static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
156static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
157static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
158static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
159static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
160static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
161static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
162static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
163static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
164static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
165static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
166static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
167static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
168static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
169static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
170static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
171static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
172static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
173static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
174static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
175static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
176static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
177static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
178static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
179static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
180static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
181
182static struct g_part_uuid_alias {
183	struct uuid *uuid;
184	int alias;
185	int mbrtype;
186} gpt_uuid_alias_match[] = {
187	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
188	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
189	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
190	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
191	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
192	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
193	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
194	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
195	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
196	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
197	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
198	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
199	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
200	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
201	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
202	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
203	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
204	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
205	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
206	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
207	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
208	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
209	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
210	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
211	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
212	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
213	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
214	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
215	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
216	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
217	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
218	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
219	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
220	{ NULL, 0, 0 }
221};
222
223static int
224gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
225    quad_t end)
226{
227
228	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
229		return (EINVAL);
230
231	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
232	mbr[0] = 0;
233	if (start == 1) {
234		/*
235		 * Treat the PMBR partition specially to maximize
236		 * interoperability with BIOSes.
237		 */
238		mbr[1] = mbr[3] = 0;
239		mbr[2] = 2;
240	} else
241		mbr[1] = mbr[2] = mbr[3] = 0xff;
242	mbr[4] = typ;
243	mbr[5] = mbr[6] = mbr[7] = 0xff;
244	le32enc(mbr + 8, (uint32_t)start);
245	le32enc(mbr + 12, (uint32_t)(end - start + 1));
246	return (0);
247}
248
249static int
250gpt_map_type(struct uuid *t)
251{
252	struct g_part_uuid_alias *uap;
253
254	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
255		if (EQUUID(t, uap->uuid))
256			return (uap->mbrtype);
257	}
258	return (0);
259}
260
261/*
262 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
263 * whole disk anymore. Rather, it covers the GPT table and the EFI
264 * system partition only. This way the HFS+ partition and any FAT
265 * partitions can be added to the MBR without creating an overlap.
266 */
267static int
268gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
269{
270	uint8_t *p;
271
272	p = table->mbr + DOSPARTOFF;
273	if (p[4] != 0xee || le32dec(p + 8) != 1)
274		return (0);
275
276	p += DOSPARTSIZE;
277	if (p[4] != 0xaf)
278		return (0);
279
280	printf("GEOM: %s: enabling Boot Camp\n", provname);
281	return (1);
282}
283
284static void
285gpt_update_bootcamp(struct g_part_table *basetable)
286{
287	struct g_part_entry *baseentry;
288	struct g_part_gpt_entry *entry;
289	struct g_part_gpt_table *table;
290	int bootable, error, index, slices, typ;
291
292	table = (struct g_part_gpt_table *)basetable;
293
294	bootable = -1;
295	for (index = 0; index < NDOSPART; index++) {
296		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
297			bootable = index;
298	}
299
300	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
301	slices = 0;
302	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
303		if (baseentry->gpe_deleted)
304			continue;
305		index = baseentry->gpe_index - 1;
306		if (index >= NDOSPART)
307			continue;
308
309		entry = (struct g_part_gpt_entry *)baseentry;
310
311		switch (index) {
312		case 0:	/* This must be the EFI system partition. */
313			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
314				goto disable;
315			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
316			    1ull, entry->ent.ent_lba_end);
317			break;
318		case 1:	/* This must be the HFS+ partition. */
319			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
320				goto disable;
321			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
322			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
323			break;
324		default:
325			typ = gpt_map_type(&entry->ent.ent_type);
326			error = gpt_write_mbr_entry(table->mbr, index, typ,
327			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
328			break;
329		}
330		if (error)
331			continue;
332
333		if (index == bootable)
334			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
335		slices |= 1 << index;
336	}
337	if ((slices & 3) == 3)
338		return;
339
340 disable:
341	table->bootcamp = 0;
342	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
343	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1ull,
344	    MIN(table->lba[GPT_ELT_SECHDR], UINT32_MAX));
345}
346
347static struct gpt_hdr *
348gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
349    enum gpt_elt elt)
350{
351	struct gpt_hdr *buf, *hdr;
352	struct g_provider *pp;
353	quad_t lba, last;
354	int error;
355	uint32_t crc, sz;
356
357	pp = cp->provider;
358	last = (pp->mediasize / pp->sectorsize) - 1;
359	table->state[elt] = GPT_STATE_MISSING;
360	/*
361	 * If the primary header is valid look for secondary
362	 * header in AlternateLBA, otherwise in the last medium's LBA.
363	 */
364	if (elt == GPT_ELT_SECHDR) {
365		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
366			table->lba[elt] = last;
367	} else
368		table->lba[elt] = 1;
369	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
370	    &error);
371	if (buf == NULL)
372		return (NULL);
373	hdr = NULL;
374	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
375		goto fail;
376
377	table->state[elt] = GPT_STATE_CORRUPT;
378	sz = le32toh(buf->hdr_size);
379	if (sz < 92 || sz > pp->sectorsize)
380		goto fail;
381
382	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
383	bcopy(buf, hdr, sz);
384	hdr->hdr_size = sz;
385
386	crc = le32toh(buf->hdr_crc_self);
387	buf->hdr_crc_self = 0;
388	if (crc32(buf, sz) != crc)
389		goto fail;
390	hdr->hdr_crc_self = crc;
391
392	table->state[elt] = GPT_STATE_INVALID;
393	hdr->hdr_revision = le32toh(buf->hdr_revision);
394	if (hdr->hdr_revision < GPT_HDR_REVISION)
395		goto fail;
396	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
397	if (hdr->hdr_lba_self != table->lba[elt])
398		goto fail;
399	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
400	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
401	    hdr->hdr_lba_alt > last)
402		goto fail;
403
404	/* Check the managed area. */
405	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
406	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
407		goto fail;
408	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
409	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
410		goto fail;
411
412	/* Check the table location and size of the table. */
413	hdr->hdr_entries = le32toh(buf->hdr_entries);
414	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
415	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
416	    (hdr->hdr_entsz & 7) != 0)
417		goto fail;
418	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
419	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
420		goto fail;
421	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
422	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
423		goto fail;
424	lba = hdr->hdr_lba_table +
425	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
426	    pp->sectorsize - 1;
427	if (lba >= last)
428		goto fail;
429	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
430		goto fail;
431
432	table->state[elt] = GPT_STATE_OK;
433	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
434	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
435
436	/* save LBA for secondary header */
437	if (elt == GPT_ELT_PRIHDR)
438		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
439
440	g_free(buf);
441	return (hdr);
442
443 fail:
444	if (hdr != NULL)
445		g_free(hdr);
446	g_free(buf);
447	return (NULL);
448}
449
450static struct gpt_ent *
451gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
452    enum gpt_elt elt, struct gpt_hdr *hdr)
453{
454	struct g_provider *pp;
455	struct gpt_ent *ent, *tbl;
456	char *buf, *p;
457	unsigned int idx, sectors, tblsz, size;
458	int error;
459
460	if (hdr == NULL)
461		return (NULL);
462
463	pp = cp->provider;
464	table->lba[elt] = hdr->hdr_lba_table;
465
466	table->state[elt] = GPT_STATE_MISSING;
467	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
468	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
469	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
470	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
471		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
472		    (sectors - idx) * pp->sectorsize;
473		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
474		    size, &error);
475		if (p == NULL) {
476			g_free(buf);
477			return (NULL);
478		}
479		bcopy(p, buf + idx * pp->sectorsize, size);
480		g_free(p);
481	}
482	table->state[elt] = GPT_STATE_CORRUPT;
483	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
484		g_free(buf);
485		return (NULL);
486	}
487
488	table->state[elt] = GPT_STATE_OK;
489	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
490	    M_WAITOK | M_ZERO);
491
492	for (idx = 0, ent = tbl, p = buf;
493	     idx < hdr->hdr_entries;
494	     idx++, ent++, p += hdr->hdr_entsz) {
495		le_uuid_dec(p, &ent->ent_type);
496		le_uuid_dec(p + 16, &ent->ent_uuid);
497		ent->ent_lba_start = le64dec(p + 32);
498		ent->ent_lba_end = le64dec(p + 40);
499		ent->ent_attr = le64dec(p + 48);
500		/* Keep UTF-16 in little-endian. */
501		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
502	}
503
504	g_free(buf);
505	return (tbl);
506}
507
508static int
509gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
510{
511
512	if (pri == NULL || sec == NULL)
513		return (0);
514
515	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
516		return (0);
517	return ((pri->hdr_revision == sec->hdr_revision &&
518	    pri->hdr_size == sec->hdr_size &&
519	    pri->hdr_lba_start == sec->hdr_lba_start &&
520	    pri->hdr_lba_end == sec->hdr_lba_end &&
521	    pri->hdr_entries == sec->hdr_entries &&
522	    pri->hdr_entsz == sec->hdr_entsz &&
523	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
524}
525
526static int
527gpt_parse_type(const char *type, struct uuid *uuid)
528{
529	struct uuid tmp;
530	const char *alias;
531	int error;
532	struct g_part_uuid_alias *uap;
533
534	if (type[0] == '!') {
535		error = parse_uuid(type + 1, &tmp);
536		if (error)
537			return (error);
538		if (EQUUID(&tmp, &gpt_uuid_unused))
539			return (EINVAL);
540		*uuid = tmp;
541		return (0);
542	}
543	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
544		alias = g_part_alias_name(uap->alias);
545		if (!strcasecmp(type, alias)) {
546			*uuid = *uap->uuid;
547			return (0);
548		}
549	}
550	return (EINVAL);
551}
552
553static int
554g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
555    struct g_part_parms *gpp)
556{
557	struct g_part_gpt_entry *entry;
558	int error;
559
560	entry = (struct g_part_gpt_entry *)baseentry;
561	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
562	if (error)
563		return (error);
564	kern_uuidgen(&entry->ent.ent_uuid, 1);
565	entry->ent.ent_lba_start = baseentry->gpe_start;
566	entry->ent.ent_lba_end = baseentry->gpe_end;
567	if (baseentry->gpe_deleted) {
568		entry->ent.ent_attr = 0;
569		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
570	}
571	if (gpp->gpp_parms & G_PART_PARM_LABEL)
572		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
573		    sizeof(entry->ent.ent_name) /
574		    sizeof(entry->ent.ent_name[0]));
575	return (0);
576}
577
578static int
579g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
580{
581	struct g_part_gpt_table *table;
582	size_t codesz;
583
584	codesz = DOSPARTOFF;
585	table = (struct g_part_gpt_table *)basetable;
586	bzero(table->mbr, codesz);
587	codesz = MIN(codesz, gpp->gpp_codesize);
588	if (codesz > 0)
589		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
590
591	/* Mark the PMBR active since some BIOS require it. */
592	if (!table->bootcamp)
593		table->mbr[DOSPARTOFF] = 0x80;		/* status */
594	return (0);
595}
596
597static int
598g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
599{
600	struct g_provider *pp;
601	struct g_part_gpt_table *table;
602	quad_t last;
603	size_t tblsz;
604
605	/* We don't nest, which means that our depth should be 0. */
606	if (basetable->gpt_depth != 0)
607		return (ENXIO);
608
609	table = (struct g_part_gpt_table *)basetable;
610	pp = gpp->gpp_provider;
611	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
612	    pp->sectorsize - 1) / pp->sectorsize;
613	if (pp->sectorsize < MBRSIZE ||
614	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
615	    pp->sectorsize)
616		return (ENOSPC);
617
618	last = (pp->mediasize / pp->sectorsize) - 1;
619
620	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
621	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, MIN(last, UINT32_MAX));
622
623	/* Allocate space for the header */
624	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
625
626	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
627	table->hdr->hdr_revision = GPT_HDR_REVISION;
628	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
629	kern_uuidgen(&table->hdr->hdr_uuid, 1);
630	table->hdr->hdr_entries = basetable->gpt_entries;
631	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
632
633	g_gpt_set_defaults(basetable, pp);
634	return (0);
635}
636
637static int
638g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
639{
640	struct g_part_gpt_table *table;
641	struct g_provider *pp;
642
643	table = (struct g_part_gpt_table *)basetable;
644	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
645	g_free(table->hdr);
646	table->hdr = NULL;
647
648	/*
649	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
650	 * sector only if it has valid secondary header.
651	 */
652	basetable->gpt_smhead |= 3;
653	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
654	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
655		basetable->gpt_smtail |= 1;
656	return (0);
657}
658
659static void
660g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
661    struct sbuf *sb, const char *indent)
662{
663	struct g_part_gpt_entry *entry;
664
665	entry = (struct g_part_gpt_entry *)baseentry;
666	if (indent == NULL) {
667		/* conftxt: libdisk compatibility */
668		sbuf_printf(sb, " xs GPT xt ");
669		sbuf_printf_uuid(sb, &entry->ent.ent_type);
670	} else if (entry != NULL) {
671		/* confxml: partition entry information */
672		sbuf_printf(sb, "%s<label>", indent);
673		g_gpt_printf_utf16(sb, entry->ent.ent_name,
674		    sizeof(entry->ent.ent_name) >> 1);
675		sbuf_printf(sb, "</label>\n");
676		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
677			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
678		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
679			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
680			    indent);
681		}
682		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
683			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
684			    indent);
685		}
686		sbuf_printf(sb, "%s<rawtype>", indent);
687		sbuf_printf_uuid(sb, &entry->ent.ent_type);
688		sbuf_printf(sb, "</rawtype>\n");
689		sbuf_printf(sb, "%s<rawuuid>", indent);
690		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
691		sbuf_printf(sb, "</rawuuid>\n");
692	} else {
693		/* confxml: scheme information */
694	}
695}
696
697static int
698g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
699{
700	struct g_part_gpt_entry *entry;
701
702	entry = (struct g_part_gpt_entry *)baseentry;
703	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
704	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
705}
706
707static int
708g_part_gpt_modify(struct g_part_table *basetable,
709    struct g_part_entry *baseentry, struct g_part_parms *gpp)
710{
711	struct g_part_gpt_entry *entry;
712	int error;
713
714	entry = (struct g_part_gpt_entry *)baseentry;
715	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
716		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
717		if (error)
718			return (error);
719	}
720	if (gpp->gpp_parms & G_PART_PARM_LABEL)
721		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
722		    sizeof(entry->ent.ent_name) /
723		    sizeof(entry->ent.ent_name[0]));
724	return (0);
725}
726
727static int
728g_part_gpt_resize(struct g_part_table *basetable,
729    struct g_part_entry *baseentry, struct g_part_parms *gpp)
730{
731	struct g_part_gpt_entry *entry;
732	entry = (struct g_part_gpt_entry *)baseentry;
733
734	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
735	entry->ent.ent_lba_end = baseentry->gpe_end;
736
737	return (0);
738}
739
740static const char *
741g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
742    char *buf, size_t bufsz)
743{
744	struct g_part_gpt_entry *entry;
745	char c;
746
747	entry = (struct g_part_gpt_entry *)baseentry;
748	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
749	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
750	return (buf);
751}
752
753static int
754g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
755{
756	struct g_provider *pp;
757	char *buf;
758	int error, res;
759
760	/* We don't nest, which means that our depth should be 0. */
761	if (table->gpt_depth != 0)
762		return (ENXIO);
763
764	pp = cp->provider;
765
766	/*
767	 * Sanity-check the provider. Since the first sector on the provider
768	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
769	 * must be at least 512 bytes.  Also, since the theoretical minimum
770	 * number of sectors needed by GPT is 6, any medium that has less
771	 * than 6 sectors is never going to be able to hold a GPT. The
772	 * number 6 comes from:
773	 *	1 sector for the PMBR
774	 *	2 sectors for the GPT headers (each 1 sector)
775	 *	2 sectors for the GPT tables (each 1 sector)
776	 *	1 sector for an actual partition
777	 * It's better to catch this pathological case early than behaving
778	 * pathologically later on...
779	 */
780	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
781		return (ENOSPC);
782
783	/* Check that there's a MBR. */
784	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
785	if (buf == NULL)
786		return (error);
787	res = le16dec(buf + DOSMAGICOFFSET);
788	g_free(buf);
789	if (res != DOSMAGIC)
790		return (ENXIO);
791
792	/* Check that there's a primary header. */
793	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
794	if (buf == NULL)
795		return (error);
796	res = memcmp(buf, GPT_HDR_SIG, 8);
797	g_free(buf);
798	if (res == 0)
799		return (G_PART_PROBE_PRI_HIGH);
800
801	/* No primary? Check that there's a secondary. */
802	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
803	    &error);
804	if (buf == NULL)
805		return (error);
806	res = memcmp(buf, GPT_HDR_SIG, 8);
807	g_free(buf);
808	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
809}
810
811static int
812g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
813{
814	struct gpt_hdr *prihdr, *sechdr;
815	struct gpt_ent *tbl, *pritbl, *sectbl;
816	struct g_provider *pp;
817	struct g_part_gpt_table *table;
818	struct g_part_gpt_entry *entry;
819	u_char *buf;
820	uint64_t last;
821	int error, index;
822
823	table = (struct g_part_gpt_table *)basetable;
824	pp = cp->provider;
825	last = (pp->mediasize / pp->sectorsize) - 1;
826
827	/* Read the PMBR */
828	buf = g_read_data(cp, 0, pp->sectorsize, &error);
829	if (buf == NULL)
830		return (error);
831	bcopy(buf, table->mbr, MBRSIZE);
832	g_free(buf);
833
834	/* Read the primary header and table. */
835	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
836	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
837		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
838	} else {
839		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
840		pritbl = NULL;
841	}
842
843	/* Read the secondary header and table. */
844	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
845	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
846		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
847	} else {
848		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
849		sectbl = NULL;
850	}
851
852	/* Fail if we haven't got any good tables at all. */
853	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
854	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
855		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
856		    pp->name);
857		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
858		    pp->name);
859		return (EINVAL);
860	}
861
862	/*
863	 * If both headers are good but they disagree with each other,
864	 * then invalidate one. We prefer to keep the primary header,
865	 * unless the primary table is corrupt.
866	 */
867	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
868	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
869	    !gpt_matched_hdrs(prihdr, sechdr)) {
870		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
871			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
872			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
873			g_free(sechdr);
874			sechdr = NULL;
875		} else {
876			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
877			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
878			g_free(prihdr);
879			prihdr = NULL;
880		}
881	}
882
883	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
884		printf("GEOM: %s: the primary GPT table is corrupt or "
885		    "invalid.\n", pp->name);
886		printf("GEOM: %s: using the secondary instead -- recovery "
887		    "strongly advised.\n", pp->name);
888		table->hdr = sechdr;
889		basetable->gpt_corrupt = 1;
890		if (prihdr != NULL)
891			g_free(prihdr);
892		tbl = sectbl;
893		if (pritbl != NULL)
894			g_free(pritbl);
895	} else {
896		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
897			printf("GEOM: %s: the secondary GPT table is corrupt "
898			    "or invalid.\n", pp->name);
899			printf("GEOM: %s: using the primary only -- recovery "
900			    "suggested.\n", pp->name);
901			basetable->gpt_corrupt = 1;
902		} else if (table->lba[GPT_ELT_SECHDR] != last) {
903			printf( "GEOM: %s: the secondary GPT header is not in "
904			    "the last LBA.\n", pp->name);
905			basetable->gpt_corrupt = 1;
906		}
907		table->hdr = prihdr;
908		if (sechdr != NULL)
909			g_free(sechdr);
910		tbl = pritbl;
911		if (sectbl != NULL)
912			g_free(sectbl);
913	}
914
915	basetable->gpt_first = table->hdr->hdr_lba_start;
916	basetable->gpt_last = table->hdr->hdr_lba_end;
917	basetable->gpt_entries = table->hdr->hdr_entries;
918
919	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
920		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
921			continue;
922		entry = (struct g_part_gpt_entry *)g_part_new_entry(
923		    basetable, index + 1, tbl[index].ent_lba_start,
924		    tbl[index].ent_lba_end);
925		entry->ent = tbl[index];
926	}
927
928	g_free(tbl);
929
930	/*
931	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
932	 * if (and only if) any FAT32 or FAT16 partitions have been
933	 * created. This happens irrespective of whether Boot Camp is
934	 * used/enabled, though it's generally understood to be done
935	 * to support legacy Windows under Boot Camp. We refer to this
936	 * mirroring simply as Boot Camp. We try to detect Boot Camp
937	 * so that we can update the MBR if and when GPT changes have
938	 * been made. Note that we do not enable Boot Camp if not
939	 * previously enabled because we can't assume that we're on a
940	 * Mac alongside Mac OS X.
941	 */
942	table->bootcamp = gpt_is_bootcamp(table, pp->name);
943
944	return (0);
945}
946
947static int
948g_part_gpt_recover(struct g_part_table *basetable)
949{
950
951	g_gpt_set_defaults(basetable,
952	    LIST_FIRST(&basetable->gpt_gp->consumer)->provider);
953	basetable->gpt_corrupt = 0;
954	return (0);
955}
956
957static int
958g_part_gpt_setunset(struct g_part_table *basetable,
959    struct g_part_entry *baseentry, const char *attrib, unsigned int set)
960{
961	struct g_part_gpt_entry *entry;
962	struct g_part_gpt_table *table;
963	uint64_t attr;
964	int i;
965
966	table = (struct g_part_gpt_table *)basetable;
967	entry = (struct g_part_gpt_entry *)baseentry;
968
969	if (strcasecmp(attrib, "active") == 0) {
970		if (!table->bootcamp || baseentry->gpe_index > NDOSPART)
971			return (EINVAL);
972		for (i = 0; i < NDOSPART; i++) {
973			table->mbr[DOSPARTOFF + i * DOSPARTSIZE] =
974			    (i == baseentry->gpe_index - 1) ? 0x80 : 0;
975		}
976		return (0);
977	}
978
979	attr = 0;
980	if (strcasecmp(attrib, "bootme") == 0) {
981		attr |= GPT_ENT_ATTR_BOOTME;
982	} else if (strcasecmp(attrib, "bootonce") == 0) {
983		attr |= GPT_ENT_ATTR_BOOTONCE;
984		if (set)
985			attr |= GPT_ENT_ATTR_BOOTME;
986	} else if (strcasecmp(attrib, "bootfailed") == 0) {
987		/*
988		 * It should only be possible to unset BOOTFAILED, but it might
989		 * be useful for test purposes to also be able to set it.
990		 */
991		attr |= GPT_ENT_ATTR_BOOTFAILED;
992	}
993	if (attr == 0)
994		return (EINVAL);
995
996	if (set)
997		attr = entry->ent.ent_attr | attr;
998	else
999		attr = entry->ent.ent_attr & ~attr;
1000	if (attr != entry->ent.ent_attr) {
1001		entry->ent.ent_attr = attr;
1002		if (!baseentry->gpe_created)
1003			baseentry->gpe_modified = 1;
1004	}
1005	return (0);
1006}
1007
1008static const char *
1009g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1010    char *buf, size_t bufsz)
1011{
1012	struct g_part_gpt_entry *entry;
1013	struct uuid *type;
1014	struct g_part_uuid_alias *uap;
1015
1016	entry = (struct g_part_gpt_entry *)baseentry;
1017	type = &entry->ent.ent_type;
1018	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1019		if (EQUUID(type, uap->uuid))
1020			return (g_part_alias_name(uap->alias));
1021	buf[0] = '!';
1022	snprintf_uuid(buf + 1, bufsz - 1, type);
1023
1024	return (buf);
1025}
1026
1027static int
1028g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1029{
1030	unsigned char *buf, *bp;
1031	struct g_provider *pp;
1032	struct g_part_entry *baseentry;
1033	struct g_part_gpt_entry *entry;
1034	struct g_part_gpt_table *table;
1035	size_t tblsz;
1036	uint32_t crc;
1037	int error, index;
1038
1039	pp = cp->provider;
1040	table = (struct g_part_gpt_table *)basetable;
1041	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1042	    pp->sectorsize - 1) / pp->sectorsize;
1043
1044	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1045	if (table->bootcamp)
1046		gpt_update_bootcamp(basetable);
1047
1048	/* Write the PMBR */
1049	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1050	bcopy(table->mbr, buf, MBRSIZE);
1051	error = g_write_data(cp, 0, buf, pp->sectorsize);
1052	g_free(buf);
1053	if (error)
1054		return (error);
1055
1056	/* Allocate space for the header and entries. */
1057	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1058
1059	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1060	le32enc(buf + 8, table->hdr->hdr_revision);
1061	le32enc(buf + 12, table->hdr->hdr_size);
1062	le64enc(buf + 40, table->hdr->hdr_lba_start);
1063	le64enc(buf + 48, table->hdr->hdr_lba_end);
1064	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1065	le32enc(buf + 80, table->hdr->hdr_entries);
1066	le32enc(buf + 84, table->hdr->hdr_entsz);
1067
1068	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1069		if (baseentry->gpe_deleted)
1070			continue;
1071		entry = (struct g_part_gpt_entry *)baseentry;
1072		index = baseentry->gpe_index - 1;
1073		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1074		le_uuid_enc(bp, &entry->ent.ent_type);
1075		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1076		le64enc(bp + 32, entry->ent.ent_lba_start);
1077		le64enc(bp + 40, entry->ent.ent_lba_end);
1078		le64enc(bp + 48, entry->ent.ent_attr);
1079		memcpy(bp + 56, entry->ent.ent_name,
1080		    sizeof(entry->ent.ent_name));
1081	}
1082
1083	crc = crc32(buf + pp->sectorsize,
1084	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1085	le32enc(buf + 88, crc);
1086
1087	/* Write primary meta-data. */
1088	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1089	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1090	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1091	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1092	crc = crc32(buf, table->hdr->hdr_size);
1093	le32enc(buf + 16, crc);
1094
1095	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1096		error = g_write_data(cp,
1097		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1098		    buf + (index + 1) * pp->sectorsize,
1099		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1100		    (tblsz - index) * pp->sectorsize);
1101		if (error)
1102			goto out;
1103	}
1104	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1105	    buf, pp->sectorsize);
1106	if (error)
1107		goto out;
1108
1109	/* Write secondary meta-data. */
1110	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1111	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1112	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1113	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1114	crc = crc32(buf, table->hdr->hdr_size);
1115	le32enc(buf + 16, crc);
1116
1117	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1118		error = g_write_data(cp,
1119		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1120		    buf + (index + 1) * pp->sectorsize,
1121		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1122		    (tblsz - index) * pp->sectorsize);
1123		if (error)
1124			goto out;
1125	}
1126	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1127	    buf, pp->sectorsize);
1128
1129 out:
1130	g_free(buf);
1131	return (error);
1132}
1133
1134static void
1135g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1136{
1137	struct g_part_gpt_table *table;
1138	quad_t last;
1139	size_t tblsz;
1140
1141	table = (struct g_part_gpt_table *)basetable;
1142	last = pp->mediasize / pp->sectorsize - 1;
1143	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1144	    pp->sectorsize - 1) / pp->sectorsize;
1145
1146	table->lba[GPT_ELT_PRIHDR] = 1;
1147	table->lba[GPT_ELT_PRITBL] = 2;
1148	table->lba[GPT_ELT_SECHDR] = last;
1149	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1150	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1151	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1152	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1153	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1154
1155	table->hdr->hdr_lba_start = 2 + tblsz;
1156	table->hdr->hdr_lba_end = last - tblsz - 1;
1157
1158	basetable->gpt_first = table->hdr->hdr_lba_start;
1159	basetable->gpt_last = table->hdr->hdr_lba_end;
1160}
1161
1162static void
1163g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1164{
1165	u_int bo;
1166	uint32_t ch;
1167	uint16_t c;
1168
1169	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1170	while (len > 0 && *str != 0) {
1171		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1172		str++, len--;
1173		if ((ch & 0xf800) == 0xd800) {
1174			if (len > 0) {
1175				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1176				    : le16toh(*str);
1177				str++, len--;
1178			} else
1179				c = 0xfffd;
1180			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1181				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1182				ch += 0x10000;
1183			} else
1184				ch = 0xfffd;
1185		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1186			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1187			continue;
1188		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1189			continue;
1190
1191		/* Write the Unicode character in UTF-8 */
1192		if (ch < 0x80)
1193			sbuf_printf(sb, "%c", ch);
1194		else if (ch < 0x800)
1195			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1196			    0x80 | (ch & 0x3f));
1197		else if (ch < 0x10000)
1198			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1199			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1200		else if (ch < 0x200000)
1201			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1202			    0x80 | ((ch >> 12) & 0x3f),
1203			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1204	}
1205}
1206
1207static void
1208g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1209{
1210	size_t s16idx, s8idx;
1211	uint32_t utfchar;
1212	unsigned int c, utfbytes;
1213
1214	s8idx = s16idx = 0;
1215	utfchar = 0;
1216	utfbytes = 0;
1217	bzero(s16, s16len << 1);
1218	while (s8[s8idx] != 0 && s16idx < s16len) {
1219		c = s8[s8idx++];
1220		if ((c & 0xc0) != 0x80) {
1221			/* Initial characters. */
1222			if (utfbytes != 0) {
1223				/* Incomplete encoding of previous char. */
1224				s16[s16idx++] = htole16(0xfffd);
1225			}
1226			if ((c & 0xf8) == 0xf0) {
1227				utfchar = c & 0x07;
1228				utfbytes = 3;
1229			} else if ((c & 0xf0) == 0xe0) {
1230				utfchar = c & 0x0f;
1231				utfbytes = 2;
1232			} else if ((c & 0xe0) == 0xc0) {
1233				utfchar = c & 0x1f;
1234				utfbytes = 1;
1235			} else {
1236				utfchar = c & 0x7f;
1237				utfbytes = 0;
1238			}
1239		} else {
1240			/* Followup characters. */
1241			if (utfbytes > 0) {
1242				utfchar = (utfchar << 6) + (c & 0x3f);
1243				utfbytes--;
1244			} else if (utfbytes == 0)
1245				utfbytes = ~0;
1246		}
1247		/*
1248		 * Write the complete Unicode character as UTF-16 when we
1249		 * have all the UTF-8 charactars collected.
1250		 */
1251		if (utfbytes == 0) {
1252			/*
1253			 * If we need to write 2 UTF-16 characters, but
1254			 * we only have room for 1, then we truncate the
1255			 * string by writing a 0 instead.
1256			 */
1257			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1258				s16[s16idx++] =
1259				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1260				s16[s16idx++] =
1261				    htole16(0xdc00 | (utfchar & 0x3ff));
1262			} else
1263				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1264				    htole16(utfchar);
1265		}
1266	}
1267	/*
1268	 * If our input string was truncated, append an invalid encoding
1269	 * character to the output string.
1270	 */
1271	if (utfbytes != 0 && s16idx < s16len)
1272		s16[s16idx++] = htole16(0xfffd);
1273}
1274