g_part_gpt.c revision 219029
1/*-
2 * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/geom/part/g_part_gpt.c 219029 2011-02-25 10:24:35Z netchild $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/diskmbr.h>
33#include <sys/endian.h>
34#include <sys/gpt.h>
35#include <sys/kernel.h>
36#include <sys/kobj.h>
37#include <sys/limits.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mutex.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/uuid.h>
46#include <geom/geom.h>
47#include <geom/part/g_part.h>
48
49#include "g_part_if.h"
50
51FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52
53CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54CTASSERT(sizeof(struct gpt_ent) == 128);
55
56#define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
57
58#define	MBRSIZE		512
59
60enum gpt_elt {
61	GPT_ELT_PRIHDR,
62	GPT_ELT_PRITBL,
63	GPT_ELT_SECHDR,
64	GPT_ELT_SECTBL,
65	GPT_ELT_COUNT
66};
67
68enum gpt_state {
69	GPT_STATE_UNKNOWN,	/* Not determined. */
70	GPT_STATE_MISSING,	/* No signature found. */
71	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
72	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
73	GPT_STATE_OK		/* Perfectly fine. */
74};
75
76struct g_part_gpt_table {
77	struct g_part_table	base;
78	u_char			mbr[MBRSIZE];
79	struct gpt_hdr		*hdr;
80	quad_t			lba[GPT_ELT_COUNT];
81	enum gpt_state		state[GPT_ELT_COUNT];
82};
83
84struct g_part_gpt_entry {
85	struct g_part_entry	base;
86	struct gpt_ent		ent;
87};
88
89static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
90static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
91
92static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
93    struct g_part_parms *);
94static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
95static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
96static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
97static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
98    struct sbuf *, const char *);
99static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
100static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
101    struct g_part_parms *);
102static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
103    char *, size_t);
104static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
105static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
106static int g_part_gpt_setunset(struct g_part_table *table,
107    struct g_part_entry *baseentry, const char *attrib, unsigned int set);
108static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
109    char *, size_t);
110static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
111static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
112    struct g_part_parms *);
113static int g_part_gpt_recover(struct g_part_table *);
114
115static kobj_method_t g_part_gpt_methods[] = {
116	KOBJMETHOD(g_part_add,		g_part_gpt_add),
117	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
118	KOBJMETHOD(g_part_create,	g_part_gpt_create),
119	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
120	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
121	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
122	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
123	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
124	KOBJMETHOD(g_part_name,		g_part_gpt_name),
125	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
126	KOBJMETHOD(g_part_read,		g_part_gpt_read),
127	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
128	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
129	KOBJMETHOD(g_part_type,		g_part_gpt_type),
130	KOBJMETHOD(g_part_write,	g_part_gpt_write),
131	{ 0, 0 }
132};
133
134static struct g_part_scheme g_part_gpt_scheme = {
135	"GPT",
136	g_part_gpt_methods,
137	sizeof(struct g_part_gpt_table),
138	.gps_entrysz = sizeof(struct g_part_gpt_entry),
139	.gps_minent = 128,
140	.gps_maxent = 4096,
141	.gps_bootcodesz = MBRSIZE,
142};
143G_PART_SCHEME_DECLARE(g_part_gpt);
144
145static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
146static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
147static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
148static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
149static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
150static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
151static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
152static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
153static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
154static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
155static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
156static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
157static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
158static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
159static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
160static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
161static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
162static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
163static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
164static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
165static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
166static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
167static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
168static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
169static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
170static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
171static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
172static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
173static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
174static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
175static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
176
177static struct g_part_uuid_alias {
178	struct uuid *uuid;
179	int alias;
180} gpt_uuid_alias_match[] = {
181	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT },
182	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS },
183	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL },
184	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID },
185	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE },
186	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY },
187	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS },
188	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT },
189	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI },
190	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD },
191	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT },
192	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP },
193	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS },
194	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM },
195	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS },
196	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA },
197	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM },
198	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID },
199	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP },
200	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR },
201	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA },
202	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA },
203	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA },
204	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED },
205	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD },
206	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD },
207	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS },
208	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS },
209	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID },
210	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP },
211
212	{ NULL, 0 }
213};
214
215static struct gpt_hdr *
216gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
217    enum gpt_elt elt)
218{
219	struct gpt_hdr *buf, *hdr;
220	struct g_provider *pp;
221	quad_t lba, last;
222	int error;
223	uint32_t crc, sz;
224
225	pp = cp->provider;
226	last = (pp->mediasize / pp->sectorsize) - 1;
227	table->state[elt] = GPT_STATE_MISSING;
228	/*
229	 * If the primary header is valid look for secondary
230	 * header in AlternateLBA, otherwise in the last medium's LBA.
231	 */
232	if (elt == GPT_ELT_SECHDR) {
233		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
234			table->lba[elt] = last;
235	} else
236		table->lba[elt] = 1;
237	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
238	    &error);
239	if (buf == NULL)
240		return (NULL);
241	hdr = NULL;
242	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
243		goto fail;
244
245	table->state[elt] = GPT_STATE_CORRUPT;
246	sz = le32toh(buf->hdr_size);
247	if (sz < 92 || sz > pp->sectorsize)
248		goto fail;
249
250	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
251	bcopy(buf, hdr, sz);
252	hdr->hdr_size = sz;
253
254	crc = le32toh(buf->hdr_crc_self);
255	buf->hdr_crc_self = 0;
256	if (crc32(buf, sz) != crc)
257		goto fail;
258	hdr->hdr_crc_self = crc;
259
260	table->state[elt] = GPT_STATE_INVALID;
261	hdr->hdr_revision = le32toh(buf->hdr_revision);
262	if (hdr->hdr_revision < GPT_HDR_REVISION)
263		goto fail;
264	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
265	if (hdr->hdr_lba_self != table->lba[elt])
266		goto fail;
267	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
268	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
269	    hdr->hdr_lba_alt > last)
270		goto fail;
271
272	/* Check the managed area. */
273	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
274	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
275		goto fail;
276	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
277	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
278		goto fail;
279
280	/* Check the table location and size of the table. */
281	hdr->hdr_entries = le32toh(buf->hdr_entries);
282	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
283	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
284	    (hdr->hdr_entsz & 7) != 0)
285		goto fail;
286	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
287	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
288		goto fail;
289	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
290	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
291		goto fail;
292	lba = hdr->hdr_lba_table +
293	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
294	    pp->sectorsize - 1;
295	if (lba >= last)
296		goto fail;
297	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
298		goto fail;
299
300	table->state[elt] = GPT_STATE_OK;
301	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
302	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
303
304	/* save LBA for secondary header */
305	if (elt == GPT_ELT_PRIHDR)
306		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
307
308	g_free(buf);
309	return (hdr);
310
311 fail:
312	if (hdr != NULL)
313		g_free(hdr);
314	g_free(buf);
315	return (NULL);
316}
317
318static struct gpt_ent *
319gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
320    enum gpt_elt elt, struct gpt_hdr *hdr)
321{
322	struct g_provider *pp;
323	struct gpt_ent *ent, *tbl;
324	char *buf, *p;
325	unsigned int idx, sectors, tblsz, size;
326	int error;
327
328	if (hdr == NULL)
329		return (NULL);
330
331	pp = cp->provider;
332	table->lba[elt] = hdr->hdr_lba_table;
333
334	table->state[elt] = GPT_STATE_MISSING;
335	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
336	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
337	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
338	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
339		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
340		    (sectors - idx) * pp->sectorsize;
341		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
342		    size, &error);
343		if (p == NULL) {
344			g_free(buf);
345			return (NULL);
346		}
347		bcopy(p, buf + idx * pp->sectorsize, size);
348		g_free(p);
349	}
350	table->state[elt] = GPT_STATE_CORRUPT;
351	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
352		g_free(buf);
353		return (NULL);
354	}
355
356	table->state[elt] = GPT_STATE_OK;
357	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
358	    M_WAITOK | M_ZERO);
359
360	for (idx = 0, ent = tbl, p = buf;
361	     idx < hdr->hdr_entries;
362	     idx++, ent++, p += hdr->hdr_entsz) {
363		le_uuid_dec(p, &ent->ent_type);
364		le_uuid_dec(p + 16, &ent->ent_uuid);
365		ent->ent_lba_start = le64dec(p + 32);
366		ent->ent_lba_end = le64dec(p + 40);
367		ent->ent_attr = le64dec(p + 48);
368		/* Keep UTF-16 in little-endian. */
369		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
370	}
371
372	g_free(buf);
373	return (tbl);
374}
375
376static int
377gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
378{
379
380	if (pri == NULL || sec == NULL)
381		return (0);
382
383	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
384		return (0);
385	return ((pri->hdr_revision == sec->hdr_revision &&
386	    pri->hdr_size == sec->hdr_size &&
387	    pri->hdr_lba_start == sec->hdr_lba_start &&
388	    pri->hdr_lba_end == sec->hdr_lba_end &&
389	    pri->hdr_entries == sec->hdr_entries &&
390	    pri->hdr_entsz == sec->hdr_entsz &&
391	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
392}
393
394static int
395gpt_parse_type(const char *type, struct uuid *uuid)
396{
397	struct uuid tmp;
398	const char *alias;
399	int error;
400	struct g_part_uuid_alias *uap;
401
402	if (type[0] == '!') {
403		error = parse_uuid(type + 1, &tmp);
404		if (error)
405			return (error);
406		if (EQUUID(&tmp, &gpt_uuid_unused))
407			return (EINVAL);
408		*uuid = tmp;
409		return (0);
410	}
411	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
412		alias = g_part_alias_name(uap->alias);
413		if (!strcasecmp(type, alias)) {
414			*uuid = *uap->uuid;
415			return (0);
416		}
417	}
418	return (EINVAL);
419}
420
421static int
422g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
423    struct g_part_parms *gpp)
424{
425	struct g_part_gpt_entry *entry;
426	int error;
427
428	entry = (struct g_part_gpt_entry *)baseentry;
429	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
430	if (error)
431		return (error);
432	kern_uuidgen(&entry->ent.ent_uuid, 1);
433	entry->ent.ent_lba_start = baseentry->gpe_start;
434	entry->ent.ent_lba_end = baseentry->gpe_end;
435	if (baseentry->gpe_deleted) {
436		entry->ent.ent_attr = 0;
437		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
438	}
439	if (gpp->gpp_parms & G_PART_PARM_LABEL)
440		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
441		    sizeof(entry->ent.ent_name) /
442		    sizeof(entry->ent.ent_name[0]));
443	return (0);
444}
445
446static int
447g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
448{
449	struct g_part_gpt_table *table;
450	size_t codesz;
451
452	codesz = DOSPARTOFF;
453	table = (struct g_part_gpt_table *)basetable;
454	bzero(table->mbr, codesz);
455	codesz = MIN(codesz, gpp->gpp_codesize);
456	if (codesz > 0)
457		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
458
459	/* Mark the PMBR active since some BIOS require it */
460	table->mbr[DOSPARTOFF] = 0x80;		/* status */
461	return (0);
462}
463
464static int
465g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
466{
467	struct g_provider *pp;
468	struct g_part_gpt_table *table;
469	quad_t last;
470	size_t tblsz;
471
472	/* We don't nest, which means that our depth should be 0. */
473	if (basetable->gpt_depth != 0)
474		return (ENXIO);
475
476	table = (struct g_part_gpt_table *)basetable;
477	pp = gpp->gpp_provider;
478	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
479	    pp->sectorsize - 1) / pp->sectorsize;
480	if (pp->sectorsize < MBRSIZE ||
481	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
482	    pp->sectorsize)
483		return (ENOSPC);
484
485	last = (pp->mediasize / pp->sectorsize) - 1;
486
487	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
488	table->mbr[DOSPARTOFF + 1] = 0x01;		/* shd */
489	table->mbr[DOSPARTOFF + 2] = 0x01;		/* ssect */
490	table->mbr[DOSPARTOFF + 3] = 0x00;		/* scyl */
491	table->mbr[DOSPARTOFF + 4] = 0xee;		/* typ */
492	table->mbr[DOSPARTOFF + 5] = 0xff;		/* ehd */
493	table->mbr[DOSPARTOFF + 6] = 0xff;		/* esect */
494	table->mbr[DOSPARTOFF + 7] = 0xff;		/* ecyl */
495	le32enc(table->mbr + DOSPARTOFF + 8, 1);	/* start */
496	le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, 0xffffffffLL));
497
498	table->lba[GPT_ELT_PRIHDR] = 1;
499	table->lba[GPT_ELT_PRITBL] = 2;
500	table->lba[GPT_ELT_SECHDR] = last;
501	table->lba[GPT_ELT_SECTBL] = last - tblsz;
502
503	/* Allocate space for the header */
504	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
505
506	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
507	table->hdr->hdr_revision = GPT_HDR_REVISION;
508	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
509	table->hdr->hdr_lba_start = 2 + tblsz;
510	table->hdr->hdr_lba_end = last - tblsz - 1;
511	kern_uuidgen(&table->hdr->hdr_uuid, 1);
512	table->hdr->hdr_entries = basetable->gpt_entries;
513	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
514
515	basetable->gpt_first = table->hdr->hdr_lba_start;
516	basetable->gpt_last = table->hdr->hdr_lba_end;
517	return (0);
518}
519
520static int
521g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
522{
523	struct g_part_gpt_table *table;
524	struct g_provider *pp;
525
526	table = (struct g_part_gpt_table *)basetable;
527	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
528	g_free(table->hdr);
529	table->hdr = NULL;
530
531	/*
532	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
533	 * sector only if it has valid secondary header.
534	 */
535	basetable->gpt_smhead |= 3;
536	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
537	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
538		basetable->gpt_smtail |= 1;
539	return (0);
540}
541
542static void
543g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
544    struct sbuf *sb, const char *indent)
545{
546	struct g_part_gpt_entry *entry;
547
548	entry = (struct g_part_gpt_entry *)baseentry;
549	if (indent == NULL) {
550		/* conftxt: libdisk compatibility */
551		sbuf_printf(sb, " xs GPT xt ");
552		sbuf_printf_uuid(sb, &entry->ent.ent_type);
553	} else if (entry != NULL) {
554		/* confxml: partition entry information */
555		sbuf_printf(sb, "%s<label>", indent);
556		g_gpt_printf_utf16(sb, entry->ent.ent_name,
557		    sizeof(entry->ent.ent_name) >> 1);
558		sbuf_printf(sb, "</label>\n");
559		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
560			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
561		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
562			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
563			    indent);
564		}
565		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
566			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
567			    indent);
568		}
569		sbuf_printf(sb, "%s<rawtype>", indent);
570		sbuf_printf_uuid(sb, &entry->ent.ent_type);
571		sbuf_printf(sb, "</rawtype>\n");
572		sbuf_printf(sb, "%s<rawuuid>", indent);
573		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
574		sbuf_printf(sb, "</rawuuid>\n");
575	} else {
576		/* confxml: scheme information */
577	}
578}
579
580static int
581g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
582{
583	struct g_part_gpt_entry *entry;
584
585	entry = (struct g_part_gpt_entry *)baseentry;
586	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
587	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
588}
589
590static int
591g_part_gpt_modify(struct g_part_table *basetable,
592    struct g_part_entry *baseentry, struct g_part_parms *gpp)
593{
594	struct g_part_gpt_entry *entry;
595	int error;
596
597	entry = (struct g_part_gpt_entry *)baseentry;
598	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
599		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
600		if (error)
601			return (error);
602	}
603	if (gpp->gpp_parms & G_PART_PARM_LABEL)
604		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
605		    sizeof(entry->ent.ent_name) /
606		    sizeof(entry->ent.ent_name[0]));
607	return (0);
608}
609
610static int
611g_part_gpt_resize(struct g_part_table *basetable,
612    struct g_part_entry *baseentry, struct g_part_parms *gpp)
613{
614	struct g_part_gpt_entry *entry;
615	entry = (struct g_part_gpt_entry *)baseentry;
616
617	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
618	entry->ent.ent_lba_end = baseentry->gpe_end;
619
620	return (0);
621}
622
623static const char *
624g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
625    char *buf, size_t bufsz)
626{
627	struct g_part_gpt_entry *entry;
628	char c;
629
630	entry = (struct g_part_gpt_entry *)baseentry;
631	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
632	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
633	return (buf);
634}
635
636static int
637g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
638{
639	struct g_provider *pp;
640	char *buf;
641	int error, res;
642
643	/* We don't nest, which means that our depth should be 0. */
644	if (table->gpt_depth != 0)
645		return (ENXIO);
646
647	pp = cp->provider;
648
649	/*
650	 * Sanity-check the provider. Since the first sector on the provider
651	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
652	 * must be at least 512 bytes.  Also, since the theoretical minimum
653	 * number of sectors needed by GPT is 6, any medium that has less
654	 * than 6 sectors is never going to be able to hold a GPT. The
655	 * number 6 comes from:
656	 *	1 sector for the PMBR
657	 *	2 sectors for the GPT headers (each 1 sector)
658	 *	2 sectors for the GPT tables (each 1 sector)
659	 *	1 sector for an actual partition
660	 * It's better to catch this pathological case early than behaving
661	 * pathologically later on...
662	 */
663	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
664		return (ENOSPC);
665
666	/* Check that there's a MBR. */
667	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
668	if (buf == NULL)
669		return (error);
670	res = le16dec(buf + DOSMAGICOFFSET);
671	g_free(buf);
672	if (res != DOSMAGIC)
673		return (ENXIO);
674
675	/* Check that there's a primary header. */
676	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
677	if (buf == NULL)
678		return (error);
679	res = memcmp(buf, GPT_HDR_SIG, 8);
680	g_free(buf);
681	if (res == 0)
682		return (G_PART_PROBE_PRI_HIGH);
683
684	/* No primary? Check that there's a secondary. */
685	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
686	    &error);
687	if (buf == NULL)
688		return (error);
689	res = memcmp(buf, GPT_HDR_SIG, 8);
690	g_free(buf);
691	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
692}
693
694static int
695g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
696{
697	struct gpt_hdr *prihdr, *sechdr;
698	struct gpt_ent *tbl, *pritbl, *sectbl;
699	struct g_provider *pp;
700	struct g_part_gpt_table *table;
701	struct g_part_gpt_entry *entry;
702	u_char *buf;
703	uint64_t last;
704	int error, index;
705
706	table = (struct g_part_gpt_table *)basetable;
707	pp = cp->provider;
708	last = (pp->mediasize / pp->sectorsize) - 1;
709
710	/* Read the PMBR */
711	buf = g_read_data(cp, 0, pp->sectorsize, &error);
712	if (buf == NULL)
713		return (error);
714	bcopy(buf, table->mbr, MBRSIZE);
715	g_free(buf);
716
717	/* Read the primary header and table. */
718	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
719	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
720		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
721	} else {
722		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
723		pritbl = NULL;
724	}
725
726	/* Read the secondary header and table. */
727	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
728	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
729		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
730	} else {
731		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
732		sectbl = NULL;
733	}
734
735	/* Fail if we haven't got any good tables at all. */
736	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
737	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
738		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
739		    pp->name);
740		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
741		    pp->name);
742		return (EINVAL);
743	}
744
745	/*
746	 * If both headers are good but they disagree with each other,
747	 * then invalidate one. We prefer to keep the primary header,
748	 * unless the primary table is corrupt.
749	 */
750	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
751	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
752	    !gpt_matched_hdrs(prihdr, sechdr)) {
753		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
754			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
755			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
756			g_free(sechdr);
757			sechdr = NULL;
758		} else {
759			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
760			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
761			g_free(prihdr);
762			prihdr = NULL;
763		}
764	}
765
766	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
767		printf("GEOM: %s: the primary GPT table is corrupt or "
768		    "invalid.\n", pp->name);
769		printf("GEOM: %s: using the secondary instead -- recovery "
770		    "strongly advised.\n", pp->name);
771		table->hdr = sechdr;
772		basetable->gpt_corrupt = 1;
773		if (prihdr != NULL)
774			g_free(prihdr);
775		tbl = sectbl;
776		if (pritbl != NULL)
777			g_free(pritbl);
778	} else {
779		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
780			printf("GEOM: %s: the secondary GPT table is corrupt "
781			    "or invalid.\n", pp->name);
782			printf("GEOM: %s: using the primary only -- recovery "
783			    "suggested.\n", pp->name);
784			basetable->gpt_corrupt = 1;
785		} else if (table->lba[GPT_ELT_SECHDR] != last) {
786			printf( "GEOM: %s: the secondary GPT header is not in "
787			    "the last LBA.\n", pp->name);
788			basetable->gpt_corrupt = 1;
789		}
790		table->hdr = prihdr;
791		if (sechdr != NULL)
792			g_free(sechdr);
793		tbl = pritbl;
794		if (sectbl != NULL)
795			g_free(sectbl);
796	}
797
798	basetable->gpt_first = table->hdr->hdr_lba_start;
799	basetable->gpt_last = table->hdr->hdr_lba_end;
800	basetable->gpt_entries = table->hdr->hdr_entries;
801
802	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
803		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
804			continue;
805		entry = (struct g_part_gpt_entry *)g_part_new_entry(
806		    basetable, index + 1, tbl[index].ent_lba_start,
807		    tbl[index].ent_lba_end);
808		entry->ent = tbl[index];
809	}
810
811	g_free(tbl);
812	return (0);
813}
814
815static int
816g_part_gpt_recover(struct g_part_table *basetable)
817{
818	struct g_part_gpt_table *table;
819	struct g_provider *pp;
820	uint64_t last;
821	size_t tblsz;
822
823	table = (struct g_part_gpt_table *)basetable;
824	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
825	last = pp->mediasize / pp->sectorsize - 1;
826	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
827	    pp->sectorsize - 1) / pp->sectorsize;
828
829	table->lba[GPT_ELT_PRIHDR] = 1;
830	table->lba[GPT_ELT_PRITBL] = 2;
831	table->lba[GPT_ELT_SECHDR] = last;
832	table->lba[GPT_ELT_SECTBL] = last - tblsz;
833	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
834	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
835	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
836	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
837	table->hdr->hdr_lba_start = 2 + tblsz;
838	table->hdr->hdr_lba_end = last - tblsz - 1;
839
840	basetable->gpt_first = table->hdr->hdr_lba_start;
841	basetable->gpt_last = table->hdr->hdr_lba_end;
842	basetable->gpt_corrupt = 0;
843
844	return (0);
845}
846
847static int
848g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry,
849    const char *attrib, unsigned int set)
850{
851	struct g_part_entry *iter;
852	struct g_part_gpt_entry *entry;
853	int changed, bootme, bootonce, bootfailed;
854
855	bootme = bootonce = bootfailed = 0;
856	if (strcasecmp(attrib, "bootme") == 0) {
857		bootme = 1;
858	} else if (strcasecmp(attrib, "bootonce") == 0) {
859		/* BOOTME is set automatically with BOOTONCE, but not unset. */
860		bootonce = 1;
861		if (set)
862			bootme = 1;
863	} else if (strcasecmp(attrib, "bootfailed") == 0) {
864		/*
865		 * It should only be possible to unset BOOTFAILED, but it might
866		 * be useful for test purposes to also be able to set it.
867		 */
868		bootfailed = 1;
869	}
870	if (!bootme && !bootonce && !bootfailed)
871		return (EINVAL);
872
873	LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) {
874		if (iter->gpe_deleted)
875			continue;
876		if (iter != baseentry)
877			continue;
878		changed = 0;
879		entry = (struct g_part_gpt_entry *)iter;
880		if (set) {
881			if (bootme &&
882			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
883				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTME;
884				changed = 1;
885			}
886			if (bootonce &&
887			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
888				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTONCE;
889				changed = 1;
890			}
891			if (bootfailed &&
892			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
893				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTFAILED;
894				changed = 1;
895			}
896		} else {
897			if (bootme &&
898			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
899				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTME;
900				changed = 1;
901			}
902			if (bootonce &&
903			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
904				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTONCE;
905				changed = 1;
906			}
907			if (bootfailed &&
908			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
909				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTFAILED;
910				changed = 1;
911			}
912		}
913		if (changed && !iter->gpe_created)
914			iter->gpe_modified = 1;
915	}
916	return (0);
917}
918
919static const char *
920g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
921    char *buf, size_t bufsz)
922{
923	struct g_part_gpt_entry *entry;
924	struct uuid *type;
925	struct g_part_uuid_alias *uap;
926
927	entry = (struct g_part_gpt_entry *)baseentry;
928	type = &entry->ent.ent_type;
929	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
930		if (EQUUID(type, uap->uuid))
931			return (g_part_alias_name(uap->alias));
932	buf[0] = '!';
933	snprintf_uuid(buf + 1, bufsz - 1, type);
934
935	return (buf);
936}
937
938static int
939g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
940{
941	unsigned char *buf, *bp;
942	struct g_provider *pp;
943	struct g_part_entry *baseentry;
944	struct g_part_gpt_entry *entry;
945	struct g_part_gpt_table *table;
946	size_t tblsz;
947	uint32_t crc;
948	int error, index;
949
950	pp = cp->provider;
951	table = (struct g_part_gpt_table *)basetable;
952	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
953	    pp->sectorsize - 1) / pp->sectorsize;
954
955	/* Write the PMBR */
956	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
957	bcopy(table->mbr, buf, MBRSIZE);
958	error = g_write_data(cp, 0, buf, pp->sectorsize);
959	g_free(buf);
960	if (error)
961		return (error);
962
963	/* Allocate space for the header and entries. */
964	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
965
966	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
967	le32enc(buf + 8, table->hdr->hdr_revision);
968	le32enc(buf + 12, table->hdr->hdr_size);
969	le64enc(buf + 40, table->hdr->hdr_lba_start);
970	le64enc(buf + 48, table->hdr->hdr_lba_end);
971	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
972	le32enc(buf + 80, table->hdr->hdr_entries);
973	le32enc(buf + 84, table->hdr->hdr_entsz);
974
975	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
976		if (baseentry->gpe_deleted)
977			continue;
978		entry = (struct g_part_gpt_entry *)baseentry;
979		index = baseentry->gpe_index - 1;
980		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
981		le_uuid_enc(bp, &entry->ent.ent_type);
982		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
983		le64enc(bp + 32, entry->ent.ent_lba_start);
984		le64enc(bp + 40, entry->ent.ent_lba_end);
985		le64enc(bp + 48, entry->ent.ent_attr);
986		memcpy(bp + 56, entry->ent.ent_name,
987		    sizeof(entry->ent.ent_name));
988	}
989
990	crc = crc32(buf + pp->sectorsize,
991	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
992	le32enc(buf + 88, crc);
993
994	/* Write primary meta-data. */
995	le32enc(buf + 16, 0);	/* hdr_crc_self. */
996	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
997	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
998	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
999	crc = crc32(buf, table->hdr->hdr_size);
1000	le32enc(buf + 16, crc);
1001
1002	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1003		error = g_write_data(cp,
1004		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1005		    buf + (index + 1) * pp->sectorsize,
1006		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1007		    (tblsz - index) * pp->sectorsize);
1008		if (error)
1009			goto out;
1010	}
1011	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1012	    buf, pp->sectorsize);
1013	if (error)
1014		goto out;
1015
1016	/* Write secondary meta-data. */
1017	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1018	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1019	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1020	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1021	crc = crc32(buf, table->hdr->hdr_size);
1022	le32enc(buf + 16, crc);
1023
1024	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1025		error = g_write_data(cp,
1026		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1027		    buf + (index + 1) * pp->sectorsize,
1028		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1029		    (tblsz - index) * pp->sectorsize);
1030		if (error)
1031			goto out;
1032	}
1033	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1034	    buf, pp->sectorsize);
1035
1036 out:
1037	g_free(buf);
1038	return (error);
1039}
1040
1041static void
1042g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1043{
1044	u_int bo;
1045	uint32_t ch;
1046	uint16_t c;
1047
1048	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1049	while (len > 0 && *str != 0) {
1050		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1051		str++, len--;
1052		if ((ch & 0xf800) == 0xd800) {
1053			if (len > 0) {
1054				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1055				    : le16toh(*str);
1056				str++, len--;
1057			} else
1058				c = 0xfffd;
1059			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1060				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1061				ch += 0x10000;
1062			} else
1063				ch = 0xfffd;
1064		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1065			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1066			continue;
1067		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1068			continue;
1069
1070		/* Write the Unicode character in UTF-8 */
1071		if (ch < 0x80)
1072			sbuf_printf(sb, "%c", ch);
1073		else if (ch < 0x800)
1074			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1075			    0x80 | (ch & 0x3f));
1076		else if (ch < 0x10000)
1077			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1078			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1079		else if (ch < 0x200000)
1080			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1081			    0x80 | ((ch >> 12) & 0x3f),
1082			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1083	}
1084}
1085
1086static void
1087g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1088{
1089	size_t s16idx, s8idx;
1090	uint32_t utfchar;
1091	unsigned int c, utfbytes;
1092
1093	s8idx = s16idx = 0;
1094	utfchar = 0;
1095	utfbytes = 0;
1096	bzero(s16, s16len << 1);
1097	while (s8[s8idx] != 0 && s16idx < s16len) {
1098		c = s8[s8idx++];
1099		if ((c & 0xc0) != 0x80) {
1100			/* Initial characters. */
1101			if (utfbytes != 0) {
1102				/* Incomplete encoding of previous char. */
1103				s16[s16idx++] = htole16(0xfffd);
1104			}
1105			if ((c & 0xf8) == 0xf0) {
1106				utfchar = c & 0x07;
1107				utfbytes = 3;
1108			} else if ((c & 0xf0) == 0xe0) {
1109				utfchar = c & 0x0f;
1110				utfbytes = 2;
1111			} else if ((c & 0xe0) == 0xc0) {
1112				utfchar = c & 0x1f;
1113				utfbytes = 1;
1114			} else {
1115				utfchar = c & 0x7f;
1116				utfbytes = 0;
1117			}
1118		} else {
1119			/* Followup characters. */
1120			if (utfbytes > 0) {
1121				utfchar = (utfchar << 6) + (c & 0x3f);
1122				utfbytes--;
1123			} else if (utfbytes == 0)
1124				utfbytes = ~0;
1125		}
1126		/*
1127		 * Write the complete Unicode character as UTF-16 when we
1128		 * have all the UTF-8 charactars collected.
1129		 */
1130		if (utfbytes == 0) {
1131			/*
1132			 * If we need to write 2 UTF-16 characters, but
1133			 * we only have room for 1, then we truncate the
1134			 * string by writing a 0 instead.
1135			 */
1136			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1137				s16[s16idx++] =
1138				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1139				s16[s16idx++] =
1140				    htole16(0xdc00 | (utfchar & 0x3ff));
1141			} else
1142				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1143				    htole16(utfchar);
1144		}
1145	}
1146	/*
1147	 * If our input string was truncated, append an invalid encoding
1148	 * character to the output string.
1149	 */
1150	if (utfbytes != 0 && s16idx < s16len)
1151		s16[s16idx++] = htole16(0xfffd);
1152}
1153