nfs_clvnops.c revision 299413
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 299413 2016-05-11 06:35:46Z kib $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_inet.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/systm.h>
47#include <sys/resourcevar.h>
48#include <sys/proc.h>
49#include <sys/mount.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/jail.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/namei.h>
56#include <sys/socket.h>
57#include <sys/vnode.h>
58#include <sys/dirent.h>
59#include <sys/fcntl.h>
60#include <sys/lockf.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/signalvar.h>
64
65#include <vm/vm.h>
66#include <vm/vm_extern.h>
67#include <vm/vm_object.h>
68
69#include <fs/nfs/nfsport.h>
70#include <fs/nfsclient/nfsnode.h>
71#include <fs/nfsclient/nfsmount.h>
72#include <fs/nfsclient/nfs.h>
73#include <fs/nfsclient/nfs_kdtrace.h>
74
75#include <net/if.h>
76#include <netinet/in.h>
77#include <netinet/in_var.h>
78
79#include <nfs/nfs_lock.h>
80
81#ifdef KDTRACE_HOOKS
82#include <sys/dtrace_bsd.h>
83
84dtrace_nfsclient_accesscache_flush_probe_func_t
85		dtrace_nfscl_accesscache_flush_done_probe;
86uint32_t	nfscl_accesscache_flush_done_id;
87
88dtrace_nfsclient_accesscache_get_probe_func_t
89		dtrace_nfscl_accesscache_get_hit_probe,
90		dtrace_nfscl_accesscache_get_miss_probe;
91uint32_t	nfscl_accesscache_get_hit_id;
92uint32_t	nfscl_accesscache_get_miss_id;
93
94dtrace_nfsclient_accesscache_load_probe_func_t
95		dtrace_nfscl_accesscache_load_done_probe;
96uint32_t	nfscl_accesscache_load_done_id;
97#endif /* !KDTRACE_HOOKS */
98
99/* Defs */
100#define	TRUE	1
101#define	FALSE	0
102
103extern struct nfsstats newnfsstats;
104extern int nfsrv_useacl;
105extern int nfscl_debuglevel;
106MALLOC_DECLARE(M_NEWNFSREQ);
107
108/*
109 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
110 * calls are not in getblk() and brelse() so that they would not be necessary
111 * here.
112 */
113#ifndef B_VMIO
114#define	vfs_busy_pages(bp, f)
115#endif
116
117static vop_read_t	nfsfifo_read;
118static vop_write_t	nfsfifo_write;
119static vop_close_t	nfsfifo_close;
120static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
121		    struct thread *);
122static vop_lookup_t	nfs_lookup;
123static vop_create_t	nfs_create;
124static vop_mknod_t	nfs_mknod;
125static vop_open_t	nfs_open;
126static vop_pathconf_t	nfs_pathconf;
127static vop_close_t	nfs_close;
128static vop_access_t	nfs_access;
129static vop_getattr_t	nfs_getattr;
130static vop_setattr_t	nfs_setattr;
131static vop_read_t	nfs_read;
132static vop_fsync_t	nfs_fsync;
133static vop_remove_t	nfs_remove;
134static vop_link_t	nfs_link;
135static vop_rename_t	nfs_rename;
136static vop_mkdir_t	nfs_mkdir;
137static vop_rmdir_t	nfs_rmdir;
138static vop_symlink_t	nfs_symlink;
139static vop_readdir_t	nfs_readdir;
140static vop_strategy_t	nfs_strategy;
141static	int	nfs_lookitup(struct vnode *, char *, int,
142		    struct ucred *, struct thread *, struct nfsnode **);
143static	int	nfs_sillyrename(struct vnode *, struct vnode *,
144		    struct componentname *);
145static vop_access_t	nfsspec_access;
146static vop_readlink_t	nfs_readlink;
147static vop_print_t	nfs_print;
148static vop_advlock_t	nfs_advlock;
149static vop_advlockasync_t nfs_advlockasync;
150static vop_getacl_t nfs_getacl;
151static vop_setacl_t nfs_setacl;
152
153/*
154 * Global vfs data structures for nfs
155 */
156struct vop_vector newnfs_vnodeops = {
157	.vop_default =		&default_vnodeops,
158	.vop_access =		nfs_access,
159	.vop_advlock =		nfs_advlock,
160	.vop_advlockasync =	nfs_advlockasync,
161	.vop_close =		nfs_close,
162	.vop_create =		nfs_create,
163	.vop_fsync =		nfs_fsync,
164	.vop_getattr =		nfs_getattr,
165	.vop_getpages =		ncl_getpages,
166	.vop_putpages =		ncl_putpages,
167	.vop_inactive =		ncl_inactive,
168	.vop_link =		nfs_link,
169	.vop_lookup =		nfs_lookup,
170	.vop_mkdir =		nfs_mkdir,
171	.vop_mknod =		nfs_mknod,
172	.vop_open =		nfs_open,
173	.vop_pathconf =		nfs_pathconf,
174	.vop_print =		nfs_print,
175	.vop_read =		nfs_read,
176	.vop_readdir =		nfs_readdir,
177	.vop_readlink =		nfs_readlink,
178	.vop_reclaim =		ncl_reclaim,
179	.vop_remove =		nfs_remove,
180	.vop_rename =		nfs_rename,
181	.vop_rmdir =		nfs_rmdir,
182	.vop_setattr =		nfs_setattr,
183	.vop_strategy =		nfs_strategy,
184	.vop_symlink =		nfs_symlink,
185	.vop_write =		ncl_write,
186	.vop_getacl =		nfs_getacl,
187	.vop_setacl =		nfs_setacl,
188};
189
190struct vop_vector newnfs_fifoops = {
191	.vop_default =		&fifo_specops,
192	.vop_access =		nfsspec_access,
193	.vop_close =		nfsfifo_close,
194	.vop_fsync =		nfs_fsync,
195	.vop_getattr =		nfs_getattr,
196	.vop_inactive =		ncl_inactive,
197	.vop_print =		nfs_print,
198	.vop_read =		nfsfifo_read,
199	.vop_reclaim =		ncl_reclaim,
200	.vop_setattr =		nfs_setattr,
201	.vop_write =		nfsfifo_write,
202};
203
204static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
205    struct componentname *cnp, struct vattr *vap);
206static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
207    int namelen, struct ucred *cred, struct thread *td);
208static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
209    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
210    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
211static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
212    struct componentname *scnp, struct sillyrename *sp);
213
214/*
215 * Global variables
216 */
217#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
218
219SYSCTL_DECL(_vfs_nfs);
220
221static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
222SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
223	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
224
225static int	nfs_prime_access_cache = 0;
226SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
227	   &nfs_prime_access_cache, 0,
228	   "Prime NFS ACCESS cache when fetching attributes");
229
230static int	newnfs_commit_on_close = 0;
231SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
232    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
233
234static int	nfs_clean_pages_on_close = 1;
235SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
236	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
237
238int newnfs_directio_enable = 0;
239SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
240	   &newnfs_directio_enable, 0, "Enable NFS directio");
241
242int nfs_keep_dirty_on_error;
243SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
244    &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
245
246/*
247 * This sysctl allows other processes to mmap a file that has been opened
248 * O_DIRECT by a process.  In general, having processes mmap the file while
249 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
250 * this by default to prevent DoS attacks - to prevent a malicious user from
251 * opening up files O_DIRECT preventing other users from mmap'ing these
252 * files.  "Protected" environments where stricter consistency guarantees are
253 * required can disable this knob.  The process that opened the file O_DIRECT
254 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
255 * meaningful.
256 */
257int newnfs_directio_allow_mmap = 1;
258SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
259	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
260
261#if 0
262SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
263	   &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
264
265SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
266	   &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
267#endif
268
269#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
270			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
271			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
272
273/*
274 * SMP Locking Note :
275 * The list of locks after the description of the lock is the ordering
276 * of other locks acquired with the lock held.
277 * np->n_mtx : Protects the fields in the nfsnode.
278       VM Object Lock
279       VI_MTX (acquired indirectly)
280 * nmp->nm_mtx : Protects the fields in the nfsmount.
281       rep->r_mtx
282 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
283 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
284       nmp->nm_mtx
285       rep->r_mtx
286 * rep->r_mtx : Protects the fields in an nfsreq.
287 */
288
289static int
290nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
291    struct ucred *cred, u_int32_t *retmode)
292{
293	int error = 0, attrflag, i, lrupos;
294	u_int32_t rmode;
295	struct nfsnode *np = VTONFS(vp);
296	struct nfsvattr nfsva;
297
298	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
299	    &rmode, NULL);
300	if (attrflag)
301		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
302	if (!error) {
303		lrupos = 0;
304		mtx_lock(&np->n_mtx);
305		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
306			if (np->n_accesscache[i].uid == cred->cr_uid) {
307				np->n_accesscache[i].mode = rmode;
308				np->n_accesscache[i].stamp = time_second;
309				break;
310			}
311			if (i > 0 && np->n_accesscache[i].stamp <
312			    np->n_accesscache[lrupos].stamp)
313				lrupos = i;
314		}
315		if (i == NFS_ACCESSCACHESIZE) {
316			np->n_accesscache[lrupos].uid = cred->cr_uid;
317			np->n_accesscache[lrupos].mode = rmode;
318			np->n_accesscache[lrupos].stamp = time_second;
319		}
320		mtx_unlock(&np->n_mtx);
321		if (retmode != NULL)
322			*retmode = rmode;
323		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
324	} else if (NFS_ISV4(vp)) {
325		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
326	}
327#ifdef KDTRACE_HOOKS
328	if (error != 0)
329		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
330		    error);
331#endif
332	return (error);
333}
334
335/*
336 * nfs access vnode op.
337 * For nfs version 2, just return ok. File accesses may fail later.
338 * For nfs version 3, use the access rpc to check accessibility. If file modes
339 * are changed on the server, accesses might still fail later.
340 */
341static int
342nfs_access(struct vop_access_args *ap)
343{
344	struct vnode *vp = ap->a_vp;
345	int error = 0, i, gotahit;
346	u_int32_t mode, wmode, rmode;
347	int v34 = NFS_ISV34(vp);
348	struct nfsnode *np = VTONFS(vp);
349
350	/*
351	 * Disallow write attempts on filesystems mounted read-only;
352	 * unless the file is a socket, fifo, or a block or character
353	 * device resident on the filesystem.
354	 */
355	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
356	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
357	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
358		switch (vp->v_type) {
359		case VREG:
360		case VDIR:
361		case VLNK:
362			return (EROFS);
363		default:
364			break;
365		}
366	}
367	/*
368	 * For nfs v3 or v4, check to see if we have done this recently, and if
369	 * so return our cached result instead of making an ACCESS call.
370	 * If not, do an access rpc, otherwise you are stuck emulating
371	 * ufs_access() locally using the vattr. This may not be correct,
372	 * since the server may apply other access criteria such as
373	 * client uid-->server uid mapping that we do not know about.
374	 */
375	if (v34) {
376		if (ap->a_accmode & VREAD)
377			mode = NFSACCESS_READ;
378		else
379			mode = 0;
380		if (vp->v_type != VDIR) {
381			if (ap->a_accmode & VWRITE)
382				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
383			if (ap->a_accmode & VAPPEND)
384				mode |= NFSACCESS_EXTEND;
385			if (ap->a_accmode & VEXEC)
386				mode |= NFSACCESS_EXECUTE;
387			if (ap->a_accmode & VDELETE)
388				mode |= NFSACCESS_DELETE;
389		} else {
390			if (ap->a_accmode & VWRITE)
391				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
392			if (ap->a_accmode & VAPPEND)
393				mode |= NFSACCESS_EXTEND;
394			if (ap->a_accmode & VEXEC)
395				mode |= NFSACCESS_LOOKUP;
396			if (ap->a_accmode & VDELETE)
397				mode |= NFSACCESS_DELETE;
398			if (ap->a_accmode & VDELETE_CHILD)
399				mode |= NFSACCESS_MODIFY;
400		}
401		/* XXX safety belt, only make blanket request if caching */
402		if (nfsaccess_cache_timeout > 0) {
403			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
404				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
405				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
406		} else {
407			wmode = mode;
408		}
409
410		/*
411		 * Does our cached result allow us to give a definite yes to
412		 * this request?
413		 */
414		gotahit = 0;
415		mtx_lock(&np->n_mtx);
416		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
417			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
418			    if (time_second < (np->n_accesscache[i].stamp
419				+ nfsaccess_cache_timeout) &&
420				(np->n_accesscache[i].mode & mode) == mode) {
421				NFSINCRGLOBAL(newnfsstats.accesscache_hits);
422				gotahit = 1;
423			    }
424			    break;
425			}
426		}
427		mtx_unlock(&np->n_mtx);
428#ifdef KDTRACE_HOOKS
429		if (gotahit != 0)
430			KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
431			    ap->a_cred->cr_uid, mode);
432		else
433			KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
434			    ap->a_cred->cr_uid, mode);
435#endif
436		if (gotahit == 0) {
437			/*
438			 * Either a no, or a don't know.  Go to the wire.
439			 */
440			NFSINCRGLOBAL(newnfsstats.accesscache_misses);
441		        error = nfs34_access_otw(vp, wmode, ap->a_td,
442			    ap->a_cred, &rmode);
443			if (!error &&
444			    (rmode & mode) != mode)
445				error = EACCES;
446		}
447		return (error);
448	} else {
449		if ((error = nfsspec_access(ap)) != 0) {
450			return (error);
451		}
452		/*
453		 * Attempt to prevent a mapped root from accessing a file
454		 * which it shouldn't.  We try to read a byte from the file
455		 * if the user is root and the file is not zero length.
456		 * After calling nfsspec_access, we should have the correct
457		 * file size cached.
458		 */
459		mtx_lock(&np->n_mtx);
460		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
461		    && VTONFS(vp)->n_size > 0) {
462			struct iovec aiov;
463			struct uio auio;
464			char buf[1];
465
466			mtx_unlock(&np->n_mtx);
467			aiov.iov_base = buf;
468			aiov.iov_len = 1;
469			auio.uio_iov = &aiov;
470			auio.uio_iovcnt = 1;
471			auio.uio_offset = 0;
472			auio.uio_resid = 1;
473			auio.uio_segflg = UIO_SYSSPACE;
474			auio.uio_rw = UIO_READ;
475			auio.uio_td = ap->a_td;
476
477			if (vp->v_type == VREG)
478				error = ncl_readrpc(vp, &auio, ap->a_cred);
479			else if (vp->v_type == VDIR) {
480				char* bp;
481				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
482				aiov.iov_base = bp;
483				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
484				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
485				    ap->a_td);
486				free(bp, M_TEMP);
487			} else if (vp->v_type == VLNK)
488				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
489			else
490				error = EACCES;
491		} else
492			mtx_unlock(&np->n_mtx);
493		return (error);
494	}
495}
496
497
498/*
499 * nfs open vnode op
500 * Check to see if the type is ok
501 * and that deletion is not in progress.
502 * For paged in text files, you will need to flush the page cache
503 * if consistency is lost.
504 */
505/* ARGSUSED */
506static int
507nfs_open(struct vop_open_args *ap)
508{
509	struct vnode *vp = ap->a_vp;
510	struct nfsnode *np = VTONFS(vp);
511	struct vattr vattr;
512	int error;
513	int fmode = ap->a_mode;
514	struct ucred *cred;
515
516	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
517		return (EOPNOTSUPP);
518
519	/*
520	 * For NFSv4, we need to do the Open Op before cache validation,
521	 * so that we conform to RFC3530 Sec. 9.3.1.
522	 */
523	if (NFS_ISV4(vp)) {
524		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
525		if (error) {
526			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
527			    (gid_t)0);
528			return (error);
529		}
530	}
531
532	/*
533	 * Now, if this Open will be doing reading, re-validate/flush the
534	 * cache, so that Close/Open coherency is maintained.
535	 */
536	mtx_lock(&np->n_mtx);
537	if (np->n_flag & NMODIFIED) {
538		mtx_unlock(&np->n_mtx);
539		error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
540		if (error == EINTR || error == EIO) {
541			if (NFS_ISV4(vp))
542				(void) nfsrpc_close(vp, 0, ap->a_td);
543			return (error);
544		}
545		mtx_lock(&np->n_mtx);
546		np->n_attrstamp = 0;
547		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
548		if (vp->v_type == VDIR)
549			np->n_direofoffset = 0;
550		mtx_unlock(&np->n_mtx);
551		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
552		if (error) {
553			if (NFS_ISV4(vp))
554				(void) nfsrpc_close(vp, 0, ap->a_td);
555			return (error);
556		}
557		mtx_lock(&np->n_mtx);
558		np->n_mtime = vattr.va_mtime;
559		if (NFS_ISV4(vp))
560			np->n_change = vattr.va_filerev;
561	} else {
562		mtx_unlock(&np->n_mtx);
563		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
564		if (error) {
565			if (NFS_ISV4(vp))
566				(void) nfsrpc_close(vp, 0, ap->a_td);
567			return (error);
568		}
569		mtx_lock(&np->n_mtx);
570		if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
571		    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
572			if (vp->v_type == VDIR)
573				np->n_direofoffset = 0;
574			mtx_unlock(&np->n_mtx);
575			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
576			if (error == EINTR || error == EIO) {
577				if (NFS_ISV4(vp))
578					(void) nfsrpc_close(vp, 0, ap->a_td);
579				return (error);
580			}
581			mtx_lock(&np->n_mtx);
582			np->n_mtime = vattr.va_mtime;
583			if (NFS_ISV4(vp))
584				np->n_change = vattr.va_filerev;
585		}
586	}
587
588	/*
589	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
590	 */
591	if (newnfs_directio_enable && (fmode & O_DIRECT) &&
592	    (vp->v_type == VREG)) {
593		if (np->n_directio_opens == 0) {
594			mtx_unlock(&np->n_mtx);
595			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
596			if (error) {
597				if (NFS_ISV4(vp))
598					(void) nfsrpc_close(vp, 0, ap->a_td);
599				return (error);
600			}
601			mtx_lock(&np->n_mtx);
602			np->n_flag |= NNONCACHE;
603		}
604		np->n_directio_opens++;
605	}
606
607	/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
608	if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
609		np->n_flag |= NWRITEOPENED;
610
611	/*
612	 * If this is an open for writing, capture a reference to the
613	 * credentials, so they can be used by ncl_putpages(). Using
614	 * these write credentials is preferable to the credentials of
615	 * whatever thread happens to be doing the VOP_PUTPAGES() since
616	 * the write RPCs are less likely to fail with EACCES.
617	 */
618	if ((fmode & FWRITE) != 0) {
619		cred = np->n_writecred;
620		np->n_writecred = crhold(ap->a_cred);
621	} else
622		cred = NULL;
623	mtx_unlock(&np->n_mtx);
624
625	if (cred != NULL)
626		crfree(cred);
627	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
628	return (0);
629}
630
631/*
632 * nfs close vnode op
633 * What an NFS client should do upon close after writing is a debatable issue.
634 * Most NFS clients push delayed writes to the server upon close, basically for
635 * two reasons:
636 * 1 - So that any write errors may be reported back to the client process
637 *     doing the close system call. By far the two most likely errors are
638 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
639 * 2 - To put a worst case upper bound on cache inconsistency between
640 *     multiple clients for the file.
641 * There is also a consistency problem for Version 2 of the protocol w.r.t.
642 * not being able to tell if other clients are writing a file concurrently,
643 * since there is no way of knowing if the changed modify time in the reply
644 * is only due to the write for this client.
645 * (NFS Version 3 provides weak cache consistency data in the reply that
646 *  should be sufficient to detect and handle this case.)
647 *
648 * The current code does the following:
649 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
650 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
651 *                     or commit them (this satisfies 1 and 2 except for the
652 *                     case where the server crashes after this close but
653 *                     before the commit RPC, which is felt to be "good
654 *                     enough". Changing the last argument to ncl_flush() to
655 *                     a 1 would force a commit operation, if it is felt a
656 *                     commit is necessary now.
657 * for NFS Version 4 - flush the dirty buffers and commit them, if
658 *		       nfscl_mustflush() says this is necessary.
659 *                     It is necessary if there is no write delegation held,
660 *                     in order to satisfy open/close coherency.
661 *                     If the file isn't cached on local stable storage,
662 *                     it may be necessary in order to detect "out of space"
663 *                     errors from the server, if the write delegation
664 *                     issued by the server doesn't allow the file to grow.
665 */
666/* ARGSUSED */
667static int
668nfs_close(struct vop_close_args *ap)
669{
670	struct vnode *vp = ap->a_vp;
671	struct nfsnode *np = VTONFS(vp);
672	struct nfsvattr nfsva;
673	struct ucred *cred;
674	int error = 0, ret, localcred = 0;
675	int fmode = ap->a_fflag;
676
677	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
678		return (0);
679	/*
680	 * During shutdown, a_cred isn't valid, so just use root.
681	 */
682	if (ap->a_cred == NOCRED) {
683		cred = newnfs_getcred();
684		localcred = 1;
685	} else {
686		cred = ap->a_cred;
687	}
688	if (vp->v_type == VREG) {
689	    /*
690	     * Examine and clean dirty pages, regardless of NMODIFIED.
691	     * This closes a major hole in close-to-open consistency.
692	     * We want to push out all dirty pages (and buffers) on
693	     * close, regardless of whether they were dirtied by
694	     * mmap'ed writes or via write().
695	     */
696	    if (nfs_clean_pages_on_close && vp->v_object) {
697		VM_OBJECT_WLOCK(vp->v_object);
698		vm_object_page_clean(vp->v_object, 0, 0, 0);
699		VM_OBJECT_WUNLOCK(vp->v_object);
700	    }
701	    mtx_lock(&np->n_mtx);
702	    if (np->n_flag & NMODIFIED) {
703		mtx_unlock(&np->n_mtx);
704		if (NFS_ISV3(vp)) {
705		    /*
706		     * Under NFSv3 we have dirty buffers to dispose of.  We
707		     * must flush them to the NFS server.  We have the option
708		     * of waiting all the way through the commit rpc or just
709		     * waiting for the initial write.  The default is to only
710		     * wait through the initial write so the data is in the
711		     * server's cache, which is roughly similar to the state
712		     * a standard disk subsystem leaves the file in on close().
713		     *
714		     * We cannot clear the NMODIFIED bit in np->n_flag due to
715		     * potential races with other processes, and certainly
716		     * cannot clear it if we don't commit.
717		     * These races occur when there is no longer the old
718		     * traditional vnode locking implemented for Vnode Ops.
719		     */
720		    int cm = newnfs_commit_on_close ? 1 : 0;
721		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
722		    /* np->n_flag &= ~NMODIFIED; */
723		} else if (NFS_ISV4(vp)) {
724			if (nfscl_mustflush(vp) != 0) {
725				int cm = newnfs_commit_on_close ? 1 : 0;
726				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
727				    cm, 0);
728				/*
729				 * as above w.r.t races when clearing
730				 * NMODIFIED.
731				 * np->n_flag &= ~NMODIFIED;
732				 */
733			}
734		} else
735		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
736		mtx_lock(&np->n_mtx);
737	    }
738 	    /*
739 	     * Invalidate the attribute cache in all cases.
740 	     * An open is going to fetch fresh attrs any way, other procs
741 	     * on this node that have file open will be forced to do an
742 	     * otw attr fetch, but this is safe.
743	     * --> A user found that their RPC count dropped by 20% when
744	     *     this was commented out and I can't see any requirement
745	     *     for it, so I've disabled it when negative lookups are
746	     *     enabled. (What does this have to do with negative lookup
747	     *     caching? Well nothing, except it was reported by the
748	     *     same user that needed negative lookup caching and I wanted
749	     *     there to be a way to disable it to see if it
750	     *     is the cause of some caching/coherency issue that might
751	     *     crop up.)
752 	     */
753	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
754		    np->n_attrstamp = 0;
755		    KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
756	    }
757	    if (np->n_flag & NWRITEERR) {
758		np->n_flag &= ~NWRITEERR;
759		error = np->n_error;
760	    }
761	    mtx_unlock(&np->n_mtx);
762	}
763
764	if (NFS_ISV4(vp)) {
765		/*
766		 * Get attributes so "change" is up to date.
767		 */
768		if (error == 0 && nfscl_mustflush(vp) != 0 &&
769		    vp->v_type == VREG &&
770		    (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
771			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
772			    NULL);
773			if (!ret) {
774				np->n_change = nfsva.na_filerev;
775				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
776				    NULL, 0, 0);
777			}
778		}
779
780		/*
781		 * and do the close.
782		 */
783		ret = nfsrpc_close(vp, 0, ap->a_td);
784		if (!error && ret)
785			error = ret;
786		if (error)
787			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
788			    (gid_t)0);
789	}
790	if (newnfs_directio_enable)
791		KASSERT((np->n_directio_asyncwr == 0),
792			("nfs_close: dirty unflushed (%d) directio buffers\n",
793			 np->n_directio_asyncwr));
794	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
795		mtx_lock(&np->n_mtx);
796		KASSERT((np->n_directio_opens > 0),
797			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
798		np->n_directio_opens--;
799		if (np->n_directio_opens == 0)
800			np->n_flag &= ~NNONCACHE;
801		mtx_unlock(&np->n_mtx);
802	}
803	if (localcred)
804		NFSFREECRED(cred);
805	return (error);
806}
807
808/*
809 * nfs getattr call from vfs.
810 */
811static int
812nfs_getattr(struct vop_getattr_args *ap)
813{
814	struct vnode *vp = ap->a_vp;
815	struct thread *td = curthread;	/* XXX */
816	struct nfsnode *np = VTONFS(vp);
817	int error = 0;
818	struct nfsvattr nfsva;
819	struct vattr *vap = ap->a_vap;
820	struct vattr vattr;
821
822	/*
823	 * Update local times for special files.
824	 */
825	mtx_lock(&np->n_mtx);
826	if (np->n_flag & (NACC | NUPD))
827		np->n_flag |= NCHG;
828	mtx_unlock(&np->n_mtx);
829	/*
830	 * First look in the cache.
831	 */
832	if (ncl_getattrcache(vp, &vattr) == 0) {
833		vap->va_type = vattr.va_type;
834		vap->va_mode = vattr.va_mode;
835		vap->va_nlink = vattr.va_nlink;
836		vap->va_uid = vattr.va_uid;
837		vap->va_gid = vattr.va_gid;
838		vap->va_fsid = vattr.va_fsid;
839		vap->va_fileid = vattr.va_fileid;
840		vap->va_size = vattr.va_size;
841		vap->va_blocksize = vattr.va_blocksize;
842		vap->va_atime = vattr.va_atime;
843		vap->va_mtime = vattr.va_mtime;
844		vap->va_ctime = vattr.va_ctime;
845		vap->va_gen = vattr.va_gen;
846		vap->va_flags = vattr.va_flags;
847		vap->va_rdev = vattr.va_rdev;
848		vap->va_bytes = vattr.va_bytes;
849		vap->va_filerev = vattr.va_filerev;
850		/*
851		 * Get the local modify time for the case of a write
852		 * delegation.
853		 */
854		nfscl_deleggetmodtime(vp, &vap->va_mtime);
855		return (0);
856	}
857
858	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
859	    nfsaccess_cache_timeout > 0) {
860		NFSINCRGLOBAL(newnfsstats.accesscache_misses);
861		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
862		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
863			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
864			return (0);
865		}
866	}
867	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
868	if (!error)
869		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
870	if (!error) {
871		/*
872		 * Get the local modify time for the case of a write
873		 * delegation.
874		 */
875		nfscl_deleggetmodtime(vp, &vap->va_mtime);
876	} else if (NFS_ISV4(vp)) {
877		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
878	}
879	return (error);
880}
881
882/*
883 * nfs setattr call.
884 */
885static int
886nfs_setattr(struct vop_setattr_args *ap)
887{
888	struct vnode *vp = ap->a_vp;
889	struct nfsnode *np = VTONFS(vp);
890	struct thread *td = curthread;	/* XXX */
891	struct vattr *vap = ap->a_vap;
892	int error = 0;
893	u_quad_t tsize;
894
895#ifndef nolint
896	tsize = (u_quad_t)0;
897#endif
898
899	/*
900	 * Setting of flags and marking of atimes are not supported.
901	 */
902	if (vap->va_flags != VNOVAL)
903		return (EOPNOTSUPP);
904
905	/*
906	 * Disallow write attempts if the filesystem is mounted read-only.
907	 */
908  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
909	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
910	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
911	    (vp->v_mount->mnt_flag & MNT_RDONLY))
912		return (EROFS);
913	if (vap->va_size != VNOVAL) {
914 		switch (vp->v_type) {
915 		case VDIR:
916 			return (EISDIR);
917 		case VCHR:
918 		case VBLK:
919 		case VSOCK:
920 		case VFIFO:
921			if (vap->va_mtime.tv_sec == VNOVAL &&
922			    vap->va_atime.tv_sec == VNOVAL &&
923			    vap->va_mode == (mode_t)VNOVAL &&
924			    vap->va_uid == (uid_t)VNOVAL &&
925			    vap->va_gid == (gid_t)VNOVAL)
926				return (0);
927 			vap->va_size = VNOVAL;
928 			break;
929 		default:
930			/*
931			 * Disallow write attempts if the filesystem is
932			 * mounted read-only.
933			 */
934			if (vp->v_mount->mnt_flag & MNT_RDONLY)
935				return (EROFS);
936			/*
937			 *  We run vnode_pager_setsize() early (why?),
938			 * we must set np->n_size now to avoid vinvalbuf
939			 * V_SAVE races that might setsize a lower
940			 * value.
941			 */
942			mtx_lock(&np->n_mtx);
943			tsize = np->n_size;
944			mtx_unlock(&np->n_mtx);
945			error = ncl_meta_setsize(vp, ap->a_cred, td,
946			    vap->va_size);
947			mtx_lock(&np->n_mtx);
948 			if (np->n_flag & NMODIFIED) {
949			    tsize = np->n_size;
950			    mtx_unlock(&np->n_mtx);
951 			    if (vap->va_size == 0)
952 				error = ncl_vinvalbuf(vp, 0, td, 1);
953 			    else
954 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
955 			    if (error) {
956				vnode_pager_setsize(vp, tsize);
957				return (error);
958			    }
959			    /*
960			     * Call nfscl_delegmodtime() to set the modify time
961			     * locally, as required.
962			     */
963			    nfscl_delegmodtime(vp);
964 			} else
965			    mtx_unlock(&np->n_mtx);
966			/*
967			 * np->n_size has already been set to vap->va_size
968			 * in ncl_meta_setsize(). We must set it again since
969			 * nfs_loadattrcache() could be called through
970			 * ncl_meta_setsize() and could modify np->n_size.
971			 */
972			mtx_lock(&np->n_mtx);
973 			np->n_vattr.na_size = np->n_size = vap->va_size;
974			mtx_unlock(&np->n_mtx);
975  		}
976  	} else {
977		mtx_lock(&np->n_mtx);
978		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
979		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
980			mtx_unlock(&np->n_mtx);
981			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
982			    (error == EINTR || error == EIO))
983				return (error);
984		} else
985			mtx_unlock(&np->n_mtx);
986	}
987	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
988	if (error && vap->va_size != VNOVAL) {
989		mtx_lock(&np->n_mtx);
990		np->n_size = np->n_vattr.na_size = tsize;
991		vnode_pager_setsize(vp, tsize);
992		mtx_unlock(&np->n_mtx);
993	}
994	return (error);
995}
996
997/*
998 * Do an nfs setattr rpc.
999 */
1000static int
1001nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
1002    struct thread *td)
1003{
1004	struct nfsnode *np = VTONFS(vp);
1005	int error, ret, attrflag, i;
1006	struct nfsvattr nfsva;
1007
1008	if (NFS_ISV34(vp)) {
1009		mtx_lock(&np->n_mtx);
1010		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
1011			np->n_accesscache[i].stamp = 0;
1012		np->n_flag |= NDELEGMOD;
1013		mtx_unlock(&np->n_mtx);
1014		KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
1015	}
1016	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1017	    NULL);
1018	if (attrflag) {
1019		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1020		if (ret && !error)
1021			error = ret;
1022	}
1023	if (error && NFS_ISV4(vp))
1024		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1025	return (error);
1026}
1027
1028/*
1029 * nfs lookup call, one step at a time...
1030 * First look in cache
1031 * If not found, unlock the directory nfsnode and do the rpc
1032 */
1033static int
1034nfs_lookup(struct vop_lookup_args *ap)
1035{
1036	struct componentname *cnp = ap->a_cnp;
1037	struct vnode *dvp = ap->a_dvp;
1038	struct vnode **vpp = ap->a_vpp;
1039	struct mount *mp = dvp->v_mount;
1040	int flags = cnp->cn_flags;
1041	struct vnode *newvp;
1042	struct nfsmount *nmp;
1043	struct nfsnode *np, *newnp;
1044	int error = 0, attrflag, dattrflag, ltype, ncticks;
1045	struct thread *td = cnp->cn_thread;
1046	struct nfsfh *nfhp;
1047	struct nfsvattr dnfsva, nfsva;
1048	struct vattr vattr;
1049	struct timespec nctime;
1050
1051	*vpp = NULLVP;
1052	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1053	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1054		return (EROFS);
1055	if (dvp->v_type != VDIR)
1056		return (ENOTDIR);
1057	nmp = VFSTONFS(mp);
1058	np = VTONFS(dvp);
1059
1060	/* For NFSv4, wait until any remove is done. */
1061	mtx_lock(&np->n_mtx);
1062	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1063		np->n_flag |= NREMOVEWANT;
1064		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1065	}
1066	mtx_unlock(&np->n_mtx);
1067
1068	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1069		return (error);
1070	error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1071	if (error > 0 && error != ENOENT)
1072		return (error);
1073	if (error == -1) {
1074		/*
1075		 * Lookups of "." are special and always return the
1076		 * current directory.  cache_lookup() already handles
1077		 * associated locking bookkeeping, etc.
1078		 */
1079		if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1080			/* XXX: Is this really correct? */
1081			if (cnp->cn_nameiop != LOOKUP &&
1082			    (flags & ISLASTCN))
1083				cnp->cn_flags |= SAVENAME;
1084			return (0);
1085		}
1086
1087		/*
1088		 * We only accept a positive hit in the cache if the
1089		 * change time of the file matches our cached copy.
1090		 * Otherwise, we discard the cache entry and fallback
1091		 * to doing a lookup RPC.  We also only trust cache
1092		 * entries for less than nm_nametimeo seconds.
1093		 *
1094		 * To better handle stale file handles and attributes,
1095		 * clear the attribute cache of this node if it is a
1096		 * leaf component, part of an open() call, and not
1097		 * locally modified before fetching the attributes.
1098		 * This should allow stale file handles to be detected
1099		 * here where we can fall back to a LOOKUP RPC to
1100		 * recover rather than having nfs_open() detect the
1101		 * stale file handle and failing open(2) with ESTALE.
1102		 */
1103		newvp = *vpp;
1104		newnp = VTONFS(newvp);
1105		if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1106		    (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1107		    !(newnp->n_flag & NMODIFIED)) {
1108			mtx_lock(&newnp->n_mtx);
1109			newnp->n_attrstamp = 0;
1110			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1111			mtx_unlock(&newnp->n_mtx);
1112		}
1113		if (nfscl_nodeleg(newvp, 0) == 0 ||
1114		    ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1115		    VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1116		    timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1117			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1118			if (cnp->cn_nameiop != LOOKUP &&
1119			    (flags & ISLASTCN))
1120				cnp->cn_flags |= SAVENAME;
1121			return (0);
1122		}
1123		cache_purge(newvp);
1124		if (dvp != newvp)
1125			vput(newvp);
1126		else
1127			vrele(newvp);
1128		*vpp = NULLVP;
1129	} else if (error == ENOENT) {
1130		if (dvp->v_iflag & VI_DOOMED)
1131			return (ENOENT);
1132		/*
1133		 * We only accept a negative hit in the cache if the
1134		 * modification time of the parent directory matches
1135		 * the cached copy in the name cache entry.
1136		 * Otherwise, we discard all of the negative cache
1137		 * entries for this directory.  We also only trust
1138		 * negative cache entries for up to nm_negnametimeo
1139		 * seconds.
1140		 */
1141		if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1142		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1143		    timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1144			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1145			return (ENOENT);
1146		}
1147		cache_purge_negative(dvp);
1148	}
1149
1150	error = 0;
1151	newvp = NULLVP;
1152	NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
1153	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1154	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1155	    NULL);
1156	if (dattrflag)
1157		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1158	if (error) {
1159		if (newvp != NULLVP) {
1160			vput(newvp);
1161			*vpp = NULLVP;
1162		}
1163
1164		if (error != ENOENT) {
1165			if (NFS_ISV4(dvp))
1166				error = nfscl_maperr(td, error, (uid_t)0,
1167				    (gid_t)0);
1168			return (error);
1169		}
1170
1171		/* The requested file was not found. */
1172		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1173		    (flags & ISLASTCN)) {
1174			/*
1175			 * XXX: UFS does a full VOP_ACCESS(dvp,
1176			 * VWRITE) here instead of just checking
1177			 * MNT_RDONLY.
1178			 */
1179			if (mp->mnt_flag & MNT_RDONLY)
1180				return (EROFS);
1181			cnp->cn_flags |= SAVENAME;
1182			return (EJUSTRETURN);
1183		}
1184
1185		if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
1186			/*
1187			 * Cache the modification time of the parent
1188			 * directory from the post-op attributes in
1189			 * the name cache entry.  The negative cache
1190			 * entry will be ignored once the directory
1191			 * has changed.  Don't bother adding the entry
1192			 * if the directory has already changed.
1193			 */
1194			mtx_lock(&np->n_mtx);
1195			if (timespeccmp(&np->n_vattr.na_mtime,
1196			    &dnfsva.na_mtime, ==)) {
1197				mtx_unlock(&np->n_mtx);
1198				cache_enter_time(dvp, NULL, cnp,
1199				    &dnfsva.na_mtime, NULL);
1200			} else
1201				mtx_unlock(&np->n_mtx);
1202		}
1203		return (ENOENT);
1204	}
1205
1206	/*
1207	 * Handle RENAME case...
1208	 */
1209	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1210		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1211			FREE((caddr_t)nfhp, M_NFSFH);
1212			return (EISDIR);
1213		}
1214		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1215		    LK_EXCLUSIVE);
1216		if (error)
1217			return (error);
1218		newvp = NFSTOV(np);
1219		if (attrflag)
1220			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1221			    0, 1);
1222		*vpp = newvp;
1223		cnp->cn_flags |= SAVENAME;
1224		return (0);
1225	}
1226
1227	if (flags & ISDOTDOT) {
1228		ltype = NFSVOPISLOCKED(dvp);
1229		error = vfs_busy(mp, MBF_NOWAIT);
1230		if (error != 0) {
1231			vfs_ref(mp);
1232			NFSVOPUNLOCK(dvp, 0);
1233			error = vfs_busy(mp, 0);
1234			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1235			vfs_rel(mp);
1236			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1237				vfs_unbusy(mp);
1238				error = ENOENT;
1239			}
1240			if (error != 0)
1241				return (error);
1242		}
1243		NFSVOPUNLOCK(dvp, 0);
1244		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1245		    cnp->cn_lkflags);
1246		if (error == 0)
1247			newvp = NFSTOV(np);
1248		vfs_unbusy(mp);
1249		if (newvp != dvp)
1250			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1251		if (dvp->v_iflag & VI_DOOMED) {
1252			if (error == 0) {
1253				if (newvp == dvp)
1254					vrele(newvp);
1255				else
1256					vput(newvp);
1257			}
1258			error = ENOENT;
1259		}
1260		if (error != 0)
1261			return (error);
1262		if (attrflag)
1263			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1264			    0, 1);
1265	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1266		FREE((caddr_t)nfhp, M_NFSFH);
1267		VREF(dvp);
1268		newvp = dvp;
1269		if (attrflag)
1270			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1271			    0, 1);
1272	} else {
1273		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1274		    cnp->cn_lkflags);
1275		if (error)
1276			return (error);
1277		newvp = NFSTOV(np);
1278		if (attrflag)
1279			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1280			    0, 1);
1281		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1282		    !(np->n_flag & NMODIFIED)) {
1283			/*
1284			 * Flush the attribute cache when opening a
1285			 * leaf node to ensure that fresh attributes
1286			 * are fetched in nfs_open() since we did not
1287			 * fetch attributes from the LOOKUP reply.
1288			 */
1289			mtx_lock(&np->n_mtx);
1290			np->n_attrstamp = 0;
1291			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1292			mtx_unlock(&np->n_mtx);
1293		}
1294	}
1295	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1296		cnp->cn_flags |= SAVENAME;
1297	if ((cnp->cn_flags & MAKEENTRY) &&
1298	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1299	    attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1300		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1301		    newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1302	*vpp = newvp;
1303	return (0);
1304}
1305
1306/*
1307 * nfs read call.
1308 * Just call ncl_bioread() to do the work.
1309 */
1310static int
1311nfs_read(struct vop_read_args *ap)
1312{
1313	struct vnode *vp = ap->a_vp;
1314
1315	switch (vp->v_type) {
1316	case VREG:
1317		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1318	case VDIR:
1319		return (EISDIR);
1320	default:
1321		return (EOPNOTSUPP);
1322	}
1323}
1324
1325/*
1326 * nfs readlink call
1327 */
1328static int
1329nfs_readlink(struct vop_readlink_args *ap)
1330{
1331	struct vnode *vp = ap->a_vp;
1332
1333	if (vp->v_type != VLNK)
1334		return (EINVAL);
1335	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1336}
1337
1338/*
1339 * Do a readlink rpc.
1340 * Called by ncl_doio() from below the buffer cache.
1341 */
1342int
1343ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1344{
1345	int error, ret, attrflag;
1346	struct nfsvattr nfsva;
1347
1348	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1349	    &attrflag, NULL);
1350	if (attrflag) {
1351		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1352		if (ret && !error)
1353			error = ret;
1354	}
1355	if (error && NFS_ISV4(vp))
1356		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1357	return (error);
1358}
1359
1360/*
1361 * nfs read rpc call
1362 * Ditto above
1363 */
1364int
1365ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1366{
1367	int error, ret, attrflag;
1368	struct nfsvattr nfsva;
1369	struct nfsmount *nmp;
1370
1371	nmp = VFSTONFS(vnode_mount(vp));
1372	error = EIO;
1373	attrflag = 0;
1374	if (NFSHASPNFS(nmp))
1375		error = nfscl_doiods(vp, uiop, NULL, NULL,
1376		    NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td);
1377	NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1378	if (error != 0)
1379		error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1380		    &attrflag, NULL);
1381	if (attrflag) {
1382		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1383		if (ret && !error)
1384			error = ret;
1385	}
1386	if (error && NFS_ISV4(vp))
1387		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1388	return (error);
1389}
1390
1391/*
1392 * nfs write call
1393 */
1394int
1395ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1396    int *iomode, int *must_commit, int called_from_strategy)
1397{
1398	struct nfsvattr nfsva;
1399	int error, attrflag, ret;
1400	struct nfsmount *nmp;
1401
1402	nmp = VFSTONFS(vnode_mount(vp));
1403	error = EIO;
1404	attrflag = 0;
1405	if (NFSHASPNFS(nmp))
1406		error = nfscl_doiods(vp, uiop, iomode, must_commit,
1407		    NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td);
1408	NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1409	if (error != 0)
1410		error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1411		    uiop->uio_td, &nfsva, &attrflag, NULL,
1412		    called_from_strategy);
1413	if (attrflag) {
1414		if (VTONFS(vp)->n_flag & ND_NFSV4)
1415			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1416			    1);
1417		else
1418			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1419			    1);
1420		if (ret && !error)
1421			error = ret;
1422	}
1423	if (DOINGASYNC(vp))
1424		*iomode = NFSWRITE_FILESYNC;
1425	if (error && NFS_ISV4(vp))
1426		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1427	return (error);
1428}
1429
1430/*
1431 * nfs mknod rpc
1432 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1433 * mode set to specify the file type and the size field for rdev.
1434 */
1435static int
1436nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1437    struct vattr *vap)
1438{
1439	struct nfsvattr nfsva, dnfsva;
1440	struct vnode *newvp = NULL;
1441	struct nfsnode *np = NULL, *dnp;
1442	struct nfsfh *nfhp;
1443	struct vattr vattr;
1444	int error = 0, attrflag, dattrflag;
1445	u_int32_t rdev;
1446
1447	if (vap->va_type == VCHR || vap->va_type == VBLK)
1448		rdev = vap->va_rdev;
1449	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1450		rdev = 0xffffffff;
1451	else
1452		return (EOPNOTSUPP);
1453	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1454		return (error);
1455	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1456	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1457	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1458	if (!error) {
1459		if (!nfhp)
1460			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1461			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1462			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1463			    NULL);
1464		if (nfhp)
1465			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1466			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1467	}
1468	if (dattrflag)
1469		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1470	if (!error) {
1471		newvp = NFSTOV(np);
1472		if (attrflag != 0) {
1473			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1474			    0, 1);
1475			if (error != 0)
1476				vput(newvp);
1477		}
1478	}
1479	if (!error) {
1480		*vpp = newvp;
1481	} else if (NFS_ISV4(dvp)) {
1482		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1483		    vap->va_gid);
1484	}
1485	dnp = VTONFS(dvp);
1486	mtx_lock(&dnp->n_mtx);
1487	dnp->n_flag |= NMODIFIED;
1488	if (!dattrflag) {
1489		dnp->n_attrstamp = 0;
1490		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1491	}
1492	mtx_unlock(&dnp->n_mtx);
1493	return (error);
1494}
1495
1496/*
1497 * nfs mknod vop
1498 * just call nfs_mknodrpc() to do the work.
1499 */
1500/* ARGSUSED */
1501static int
1502nfs_mknod(struct vop_mknod_args *ap)
1503{
1504	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1505}
1506
1507static struct mtx nfs_cverf_mtx;
1508MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1509    MTX_DEF);
1510
1511static nfsquad_t
1512nfs_get_cverf(void)
1513{
1514	static nfsquad_t cverf;
1515	nfsquad_t ret;
1516	static int cverf_initialized = 0;
1517
1518	mtx_lock(&nfs_cverf_mtx);
1519	if (cverf_initialized == 0) {
1520		cverf.lval[0] = arc4random();
1521		cverf.lval[1] = arc4random();
1522		cverf_initialized = 1;
1523	} else
1524		cverf.qval++;
1525	ret = cverf;
1526	mtx_unlock(&nfs_cverf_mtx);
1527
1528	return (ret);
1529}
1530
1531/*
1532 * nfs file create call
1533 */
1534static int
1535nfs_create(struct vop_create_args *ap)
1536{
1537	struct vnode *dvp = ap->a_dvp;
1538	struct vattr *vap = ap->a_vap;
1539	struct componentname *cnp = ap->a_cnp;
1540	struct nfsnode *np = NULL, *dnp;
1541	struct vnode *newvp = NULL;
1542	struct nfsmount *nmp;
1543	struct nfsvattr dnfsva, nfsva;
1544	struct nfsfh *nfhp;
1545	nfsquad_t cverf;
1546	int error = 0, attrflag, dattrflag, fmode = 0;
1547	struct vattr vattr;
1548
1549	/*
1550	 * Oops, not for me..
1551	 */
1552	if (vap->va_type == VSOCK)
1553		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1554
1555	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1556		return (error);
1557	if (vap->va_vaflags & VA_EXCLUSIVE)
1558		fmode |= O_EXCL;
1559	dnp = VTONFS(dvp);
1560	nmp = VFSTONFS(vnode_mount(dvp));
1561again:
1562	/* For NFSv4, wait until any remove is done. */
1563	mtx_lock(&dnp->n_mtx);
1564	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1565		dnp->n_flag |= NREMOVEWANT;
1566		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1567	}
1568	mtx_unlock(&dnp->n_mtx);
1569
1570	cverf = nfs_get_cverf();
1571	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1572	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1573	    &nfhp, &attrflag, &dattrflag, NULL);
1574	if (!error) {
1575		if (nfhp == NULL)
1576			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1577			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1578			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1579			    NULL);
1580		if (nfhp != NULL)
1581			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1582			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1583	}
1584	if (dattrflag)
1585		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1586	if (!error) {
1587		newvp = NFSTOV(np);
1588		if (attrflag == 0)
1589			error = nfsrpc_getattr(newvp, cnp->cn_cred,
1590			    cnp->cn_thread, &nfsva, NULL);
1591		if (error == 0)
1592			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1593			    0, 1);
1594	}
1595	if (error) {
1596		if (newvp != NULL) {
1597			vput(newvp);
1598			newvp = NULL;
1599		}
1600		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1601		    error == NFSERR_NOTSUPP) {
1602			fmode &= ~O_EXCL;
1603			goto again;
1604		}
1605	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1606		if (nfscl_checksattr(vap, &nfsva)) {
1607			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1608			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1609			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1610			    vap->va_gid != (gid_t)VNOVAL)) {
1611				/* try again without setting uid/gid */
1612				vap->va_uid = (uid_t)VNOVAL;
1613				vap->va_gid = (uid_t)VNOVAL;
1614				error = nfsrpc_setattr(newvp, vap, NULL,
1615				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1616				    &attrflag, NULL);
1617			}
1618			if (attrflag)
1619				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1620				    NULL, 0, 1);
1621			if (error != 0)
1622				vput(newvp);
1623		}
1624	}
1625	if (!error) {
1626		if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1627			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1628			    NULL);
1629		*ap->a_vpp = newvp;
1630	} else if (NFS_ISV4(dvp)) {
1631		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1632		    vap->va_gid);
1633	}
1634	mtx_lock(&dnp->n_mtx);
1635	dnp->n_flag |= NMODIFIED;
1636	if (!dattrflag) {
1637		dnp->n_attrstamp = 0;
1638		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1639	}
1640	mtx_unlock(&dnp->n_mtx);
1641	return (error);
1642}
1643
1644/*
1645 * nfs file remove call
1646 * To try and make nfs semantics closer to ufs semantics, a file that has
1647 * other processes using the vnode is renamed instead of removed and then
1648 * removed later on the last close.
1649 * - If v_usecount > 1
1650 *	  If a rename is not already in the works
1651 *	     call nfs_sillyrename() to set it up
1652 *     else
1653 *	  do the remove rpc
1654 */
1655static int
1656nfs_remove(struct vop_remove_args *ap)
1657{
1658	struct vnode *vp = ap->a_vp;
1659	struct vnode *dvp = ap->a_dvp;
1660	struct componentname *cnp = ap->a_cnp;
1661	struct nfsnode *np = VTONFS(vp);
1662	int error = 0;
1663	struct vattr vattr;
1664
1665	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1666	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1667	if (vp->v_type == VDIR)
1668		error = EPERM;
1669	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1670	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1671	    vattr.va_nlink > 1)) {
1672		/*
1673		 * Purge the name cache so that the chance of a lookup for
1674		 * the name succeeding while the remove is in progress is
1675		 * minimized. Without node locking it can still happen, such
1676		 * that an I/O op returns ESTALE, but since you get this if
1677		 * another host removes the file..
1678		 */
1679		cache_purge(vp);
1680		/*
1681		 * throw away biocache buffers, mainly to avoid
1682		 * unnecessary delayed writes later.
1683		 */
1684		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1685		/* Do the rpc */
1686		if (error != EINTR && error != EIO)
1687			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1688			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1689		/*
1690		 * Kludge City: If the first reply to the remove rpc is lost..
1691		 *   the reply to the retransmitted request will be ENOENT
1692		 *   since the file was in fact removed
1693		 *   Therefore, we cheat and return success.
1694		 */
1695		if (error == ENOENT)
1696			error = 0;
1697	} else if (!np->n_sillyrename)
1698		error = nfs_sillyrename(dvp, vp, cnp);
1699	mtx_lock(&np->n_mtx);
1700	np->n_attrstamp = 0;
1701	mtx_unlock(&np->n_mtx);
1702	KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1703	return (error);
1704}
1705
1706/*
1707 * nfs file remove rpc called from nfs_inactive
1708 */
1709int
1710ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1711{
1712	/*
1713	 * Make sure that the directory vnode is still valid.
1714	 * XXX we should lock sp->s_dvp here.
1715	 */
1716	if (sp->s_dvp->v_type == VBAD)
1717		return (0);
1718	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1719	    sp->s_cred, NULL));
1720}
1721
1722/*
1723 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1724 */
1725static int
1726nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1727    int namelen, struct ucred *cred, struct thread *td)
1728{
1729	struct nfsvattr dnfsva;
1730	struct nfsnode *dnp = VTONFS(dvp);
1731	int error = 0, dattrflag;
1732
1733	mtx_lock(&dnp->n_mtx);
1734	dnp->n_flag |= NREMOVEINPROG;
1735	mtx_unlock(&dnp->n_mtx);
1736	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1737	    &dattrflag, NULL);
1738	mtx_lock(&dnp->n_mtx);
1739	if ((dnp->n_flag & NREMOVEWANT)) {
1740		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1741		mtx_unlock(&dnp->n_mtx);
1742		wakeup((caddr_t)dnp);
1743	} else {
1744		dnp->n_flag &= ~NREMOVEINPROG;
1745		mtx_unlock(&dnp->n_mtx);
1746	}
1747	if (dattrflag)
1748		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1749	mtx_lock(&dnp->n_mtx);
1750	dnp->n_flag |= NMODIFIED;
1751	if (!dattrflag) {
1752		dnp->n_attrstamp = 0;
1753		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1754	}
1755	mtx_unlock(&dnp->n_mtx);
1756	if (error && NFS_ISV4(dvp))
1757		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1758	return (error);
1759}
1760
1761/*
1762 * nfs file rename call
1763 */
1764static int
1765nfs_rename(struct vop_rename_args *ap)
1766{
1767	struct vnode *fvp = ap->a_fvp;
1768	struct vnode *tvp = ap->a_tvp;
1769	struct vnode *fdvp = ap->a_fdvp;
1770	struct vnode *tdvp = ap->a_tdvp;
1771	struct componentname *tcnp = ap->a_tcnp;
1772	struct componentname *fcnp = ap->a_fcnp;
1773	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1774	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1775	struct nfsv4node *newv4 = NULL;
1776	int error;
1777
1778	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1779	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1780	/* Check for cross-device rename */
1781	if ((fvp->v_mount != tdvp->v_mount) ||
1782	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1783		error = EXDEV;
1784		goto out;
1785	}
1786
1787	if (fvp == tvp) {
1788		ncl_printf("nfs_rename: fvp == tvp (can't happen)\n");
1789		error = 0;
1790		goto out;
1791	}
1792	if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1793		goto out;
1794
1795	/*
1796	 * We have to flush B_DELWRI data prior to renaming
1797	 * the file.  If we don't, the delayed-write buffers
1798	 * can be flushed out later after the file has gone stale
1799	 * under NFSV3.  NFSV2 does not have this problem because
1800	 * ( as far as I can tell ) it flushes dirty buffers more
1801	 * often.
1802	 *
1803	 * Skip the rename operation if the fsync fails, this can happen
1804	 * due to the server's volume being full, when we pushed out data
1805	 * that was written back to our cache earlier. Not checking for
1806	 * this condition can result in potential (silent) data loss.
1807	 */
1808	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1809	NFSVOPUNLOCK(fvp, 0);
1810	if (!error && tvp)
1811		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1812	if (error)
1813		goto out;
1814
1815	/*
1816	 * If the tvp exists and is in use, sillyrename it before doing the
1817	 * rename of the new file over it.
1818	 * XXX Can't sillyrename a directory.
1819	 */
1820	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1821		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1822		vput(tvp);
1823		tvp = NULL;
1824	}
1825
1826	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1827	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1828	    tcnp->cn_thread);
1829
1830	if (error == 0 && NFS_ISV4(tdvp)) {
1831		/*
1832		 * For NFSv4, check to see if it is the same name and
1833		 * replace the name, if it is different.
1834		 */
1835		MALLOC(newv4, struct nfsv4node *,
1836		    sizeof (struct nfsv4node) +
1837		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1838		    M_NFSV4NODE, M_WAITOK);
1839		mtx_lock(&tdnp->n_mtx);
1840		mtx_lock(&fnp->n_mtx);
1841		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1842		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1843		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1844		      tcnp->cn_namelen) ||
1845		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1846		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1847			tdnp->n_fhp->nfh_len))) {
1848#ifdef notdef
1849{ char nnn[100]; int nnnl;
1850nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1851bcopy(tcnp->cn_nameptr, nnn, nnnl);
1852nnn[nnnl] = '\0';
1853printf("ren replace=%s\n",nnn);
1854}
1855#endif
1856			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1857			fnp->n_v4 = newv4;
1858			newv4 = NULL;
1859			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1860			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1861			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1862			    tdnp->n_fhp->nfh_len);
1863			NFSBCOPY(tcnp->cn_nameptr,
1864			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1865		}
1866		mtx_unlock(&tdnp->n_mtx);
1867		mtx_unlock(&fnp->n_mtx);
1868		if (newv4 != NULL)
1869			FREE((caddr_t)newv4, M_NFSV4NODE);
1870	}
1871
1872	if (fvp->v_type == VDIR) {
1873		if (tvp != NULL && tvp->v_type == VDIR)
1874			cache_purge(tdvp);
1875		cache_purge(fdvp);
1876	}
1877
1878out:
1879	if (tdvp == tvp)
1880		vrele(tdvp);
1881	else
1882		vput(tdvp);
1883	if (tvp)
1884		vput(tvp);
1885	vrele(fdvp);
1886	vrele(fvp);
1887	/*
1888	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1889	 */
1890	if (error == ENOENT)
1891		error = 0;
1892	return (error);
1893}
1894
1895/*
1896 * nfs file rename rpc called from nfs_remove() above
1897 */
1898static int
1899nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1900    struct sillyrename *sp)
1901{
1902
1903	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1904	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1905	    scnp->cn_thread));
1906}
1907
1908/*
1909 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1910 */
1911static int
1912nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1913    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1914    int tnamelen, struct ucred *cred, struct thread *td)
1915{
1916	struct nfsvattr fnfsva, tnfsva;
1917	struct nfsnode *fdnp = VTONFS(fdvp);
1918	struct nfsnode *tdnp = VTONFS(tdvp);
1919	int error = 0, fattrflag, tattrflag;
1920
1921	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1922	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1923	    &tattrflag, NULL, NULL);
1924	mtx_lock(&fdnp->n_mtx);
1925	fdnp->n_flag |= NMODIFIED;
1926	if (fattrflag != 0) {
1927		mtx_unlock(&fdnp->n_mtx);
1928		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1929	} else {
1930		fdnp->n_attrstamp = 0;
1931		mtx_unlock(&fdnp->n_mtx);
1932		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1933	}
1934	mtx_lock(&tdnp->n_mtx);
1935	tdnp->n_flag |= NMODIFIED;
1936	if (tattrflag != 0) {
1937		mtx_unlock(&tdnp->n_mtx);
1938		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1939	} else {
1940		tdnp->n_attrstamp = 0;
1941		mtx_unlock(&tdnp->n_mtx);
1942		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1943	}
1944	if (error && NFS_ISV4(fdvp))
1945		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1946	return (error);
1947}
1948
1949/*
1950 * nfs hard link create call
1951 */
1952static int
1953nfs_link(struct vop_link_args *ap)
1954{
1955	struct vnode *vp = ap->a_vp;
1956	struct vnode *tdvp = ap->a_tdvp;
1957	struct componentname *cnp = ap->a_cnp;
1958	struct nfsnode *np, *tdnp;
1959	struct nfsvattr nfsva, dnfsva;
1960	int error = 0, attrflag, dattrflag;
1961
1962	/*
1963	 * Push all writes to the server, so that the attribute cache
1964	 * doesn't get "out of sync" with the server.
1965	 * XXX There should be a better way!
1966	 */
1967	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1968
1969	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1970	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1971	    &dattrflag, NULL);
1972	tdnp = VTONFS(tdvp);
1973	mtx_lock(&tdnp->n_mtx);
1974	tdnp->n_flag |= NMODIFIED;
1975	if (dattrflag != 0) {
1976		mtx_unlock(&tdnp->n_mtx);
1977		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1978	} else {
1979		tdnp->n_attrstamp = 0;
1980		mtx_unlock(&tdnp->n_mtx);
1981		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1982	}
1983	if (attrflag)
1984		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1985	else {
1986		np = VTONFS(vp);
1987		mtx_lock(&np->n_mtx);
1988		np->n_attrstamp = 0;
1989		mtx_unlock(&np->n_mtx);
1990		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1991	}
1992	/*
1993	 * If negative lookup caching is enabled, I might as well
1994	 * add an entry for this node. Not necessary for correctness,
1995	 * but if negative caching is enabled, then the system
1996	 * must care about lookup caching hit rate, so...
1997	 */
1998	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1999	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2000		cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
2001	}
2002	if (error && NFS_ISV4(vp))
2003		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2004		    (gid_t)0);
2005	return (error);
2006}
2007
2008/*
2009 * nfs symbolic link create call
2010 */
2011static int
2012nfs_symlink(struct vop_symlink_args *ap)
2013{
2014	struct vnode *dvp = ap->a_dvp;
2015	struct vattr *vap = ap->a_vap;
2016	struct componentname *cnp = ap->a_cnp;
2017	struct nfsvattr nfsva, dnfsva;
2018	struct nfsfh *nfhp;
2019	struct nfsnode *np = NULL, *dnp;
2020	struct vnode *newvp = NULL;
2021	int error = 0, attrflag, dattrflag, ret;
2022
2023	vap->va_type = VLNK;
2024	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2025	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2026	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2027	if (nfhp) {
2028		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2029		    &np, NULL, LK_EXCLUSIVE);
2030		if (!ret)
2031			newvp = NFSTOV(np);
2032		else if (!error)
2033			error = ret;
2034	}
2035	if (newvp != NULL) {
2036		if (attrflag)
2037			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2038			    0, 1);
2039	} else if (!error) {
2040		/*
2041		 * If we do not have an error and we could not extract the
2042		 * newvp from the response due to the request being NFSv2, we
2043		 * have to do a lookup in order to obtain a newvp to return.
2044		 */
2045		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2046		    cnp->cn_cred, cnp->cn_thread, &np);
2047		if (!error)
2048			newvp = NFSTOV(np);
2049	}
2050	if (error) {
2051		if (newvp)
2052			vput(newvp);
2053		if (NFS_ISV4(dvp))
2054			error = nfscl_maperr(cnp->cn_thread, error,
2055			    vap->va_uid, vap->va_gid);
2056	} else {
2057		*ap->a_vpp = newvp;
2058	}
2059
2060	dnp = VTONFS(dvp);
2061	mtx_lock(&dnp->n_mtx);
2062	dnp->n_flag |= NMODIFIED;
2063	if (dattrflag != 0) {
2064		mtx_unlock(&dnp->n_mtx);
2065		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2066	} else {
2067		dnp->n_attrstamp = 0;
2068		mtx_unlock(&dnp->n_mtx);
2069		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2070	}
2071	/*
2072	 * If negative lookup caching is enabled, I might as well
2073	 * add an entry for this node. Not necessary for correctness,
2074	 * but if negative caching is enabled, then the system
2075	 * must care about lookup caching hit rate, so...
2076	 */
2077	if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2078	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2079		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2080	}
2081	return (error);
2082}
2083
2084/*
2085 * nfs make dir call
2086 */
2087static int
2088nfs_mkdir(struct vop_mkdir_args *ap)
2089{
2090	struct vnode *dvp = ap->a_dvp;
2091	struct vattr *vap = ap->a_vap;
2092	struct componentname *cnp = ap->a_cnp;
2093	struct nfsnode *np = NULL, *dnp;
2094	struct vnode *newvp = NULL;
2095	struct vattr vattr;
2096	struct nfsfh *nfhp;
2097	struct nfsvattr nfsva, dnfsva;
2098	int error = 0, attrflag, dattrflag, ret;
2099
2100	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2101		return (error);
2102	vap->va_type = VDIR;
2103	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2104	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2105	    &attrflag, &dattrflag, NULL);
2106	dnp = VTONFS(dvp);
2107	mtx_lock(&dnp->n_mtx);
2108	dnp->n_flag |= NMODIFIED;
2109	if (dattrflag != 0) {
2110		mtx_unlock(&dnp->n_mtx);
2111		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2112	} else {
2113		dnp->n_attrstamp = 0;
2114		mtx_unlock(&dnp->n_mtx);
2115		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2116	}
2117	if (nfhp) {
2118		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2119		    &np, NULL, LK_EXCLUSIVE);
2120		if (!ret) {
2121			newvp = NFSTOV(np);
2122			if (attrflag)
2123			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2124				NULL, 0, 1);
2125		} else if (!error)
2126			error = ret;
2127	}
2128	if (!error && newvp == NULL) {
2129		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2130		    cnp->cn_cred, cnp->cn_thread, &np);
2131		if (!error) {
2132			newvp = NFSTOV(np);
2133			if (newvp->v_type != VDIR)
2134				error = EEXIST;
2135		}
2136	}
2137	if (error) {
2138		if (newvp)
2139			vput(newvp);
2140		if (NFS_ISV4(dvp))
2141			error = nfscl_maperr(cnp->cn_thread, error,
2142			    vap->va_uid, vap->va_gid);
2143	} else {
2144		/*
2145		 * If negative lookup caching is enabled, I might as well
2146		 * add an entry for this node. Not necessary for correctness,
2147		 * but if negative caching is enabled, then the system
2148		 * must care about lookup caching hit rate, so...
2149		 */
2150		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2151		    (cnp->cn_flags & MAKEENTRY) &&
2152		    attrflag != 0 && dattrflag != 0)
2153			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2154			    &dnfsva.na_ctime);
2155		*ap->a_vpp = newvp;
2156	}
2157	return (error);
2158}
2159
2160/*
2161 * nfs remove directory call
2162 */
2163static int
2164nfs_rmdir(struct vop_rmdir_args *ap)
2165{
2166	struct vnode *vp = ap->a_vp;
2167	struct vnode *dvp = ap->a_dvp;
2168	struct componentname *cnp = ap->a_cnp;
2169	struct nfsnode *dnp;
2170	struct nfsvattr dnfsva;
2171	int error, dattrflag;
2172
2173	if (dvp == vp)
2174		return (EINVAL);
2175	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2176	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2177	dnp = VTONFS(dvp);
2178	mtx_lock(&dnp->n_mtx);
2179	dnp->n_flag |= NMODIFIED;
2180	if (dattrflag != 0) {
2181		mtx_unlock(&dnp->n_mtx);
2182		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2183	} else {
2184		dnp->n_attrstamp = 0;
2185		mtx_unlock(&dnp->n_mtx);
2186		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2187	}
2188
2189	cache_purge(dvp);
2190	cache_purge(vp);
2191	if (error && NFS_ISV4(dvp))
2192		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2193		    (gid_t)0);
2194	/*
2195	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2196	 */
2197	if (error == ENOENT)
2198		error = 0;
2199	return (error);
2200}
2201
2202/*
2203 * nfs readdir call
2204 */
2205static int
2206nfs_readdir(struct vop_readdir_args *ap)
2207{
2208	struct vnode *vp = ap->a_vp;
2209	struct nfsnode *np = VTONFS(vp);
2210	struct uio *uio = ap->a_uio;
2211	ssize_t tresid, left;
2212	int error = 0;
2213	struct vattr vattr;
2214
2215	if (ap->a_eofflag != NULL)
2216		*ap->a_eofflag = 0;
2217	if (vp->v_type != VDIR)
2218		return(EPERM);
2219
2220	/*
2221	 * First, check for hit on the EOF offset cache
2222	 */
2223	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2224	    (np->n_flag & NMODIFIED) == 0) {
2225		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2226			mtx_lock(&np->n_mtx);
2227			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2228			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2229				mtx_unlock(&np->n_mtx);
2230				NFSINCRGLOBAL(newnfsstats.direofcache_hits);
2231				if (ap->a_eofflag != NULL)
2232					*ap->a_eofflag = 1;
2233				return (0);
2234			} else
2235				mtx_unlock(&np->n_mtx);
2236		}
2237	}
2238
2239	/*
2240	 * NFS always guarantees that directory entries don't straddle
2241	 * DIRBLKSIZ boundaries.  As such, we need to limit the size
2242	 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial
2243	 * directory entry.
2244	 */
2245	left = uio->uio_resid % DIRBLKSIZ;
2246	if (left == uio->uio_resid)
2247		return (EINVAL);
2248	uio->uio_resid -= left;
2249
2250	/*
2251	 * Call ncl_bioread() to do the real work.
2252	 */
2253	tresid = uio->uio_resid;
2254	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2255
2256	if (!error && uio->uio_resid == tresid) {
2257		NFSINCRGLOBAL(newnfsstats.direofcache_misses);
2258		if (ap->a_eofflag != NULL)
2259			*ap->a_eofflag = 1;
2260	}
2261
2262	/* Add the partial DIRBLKSIZ (left) back in. */
2263	uio->uio_resid += left;
2264	return (error);
2265}
2266
2267/*
2268 * Readdir rpc call.
2269 * Called from below the buffer cache by ncl_doio().
2270 */
2271int
2272ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2273    struct thread *td)
2274{
2275	struct nfsvattr nfsva;
2276	nfsuint64 *cookiep, cookie;
2277	struct nfsnode *dnp = VTONFS(vp);
2278	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2279	int error = 0, eof, attrflag;
2280
2281	KASSERT(uiop->uio_iovcnt == 1 &&
2282	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2283	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2284	    ("nfs readdirrpc bad uio"));
2285
2286	/*
2287	 * If there is no cookie, assume directory was stale.
2288	 */
2289	ncl_dircookie_lock(dnp);
2290	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2291	if (cookiep) {
2292		cookie = *cookiep;
2293		ncl_dircookie_unlock(dnp);
2294	} else {
2295		ncl_dircookie_unlock(dnp);
2296		return (NFSERR_BAD_COOKIE);
2297	}
2298
2299	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2300		(void)ncl_fsinfo(nmp, vp, cred, td);
2301
2302	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2303	    &attrflag, &eof, NULL);
2304	if (attrflag)
2305		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2306
2307	if (!error) {
2308		/*
2309		 * We are now either at the end of the directory or have filled
2310		 * the block.
2311		 */
2312		if (eof)
2313			dnp->n_direofoffset = uiop->uio_offset;
2314		else {
2315			if (uiop->uio_resid > 0)
2316				ncl_printf("EEK! readdirrpc resid > 0\n");
2317			ncl_dircookie_lock(dnp);
2318			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2319			*cookiep = cookie;
2320			ncl_dircookie_unlock(dnp);
2321		}
2322	} else if (NFS_ISV4(vp)) {
2323		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2324	}
2325	return (error);
2326}
2327
2328/*
2329 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2330 */
2331int
2332ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2333    struct thread *td)
2334{
2335	struct nfsvattr nfsva;
2336	nfsuint64 *cookiep, cookie;
2337	struct nfsnode *dnp = VTONFS(vp);
2338	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2339	int error = 0, attrflag, eof;
2340
2341	KASSERT(uiop->uio_iovcnt == 1 &&
2342	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2343	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2344	    ("nfs readdirplusrpc bad uio"));
2345
2346	/*
2347	 * If there is no cookie, assume directory was stale.
2348	 */
2349	ncl_dircookie_lock(dnp);
2350	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2351	if (cookiep) {
2352		cookie = *cookiep;
2353		ncl_dircookie_unlock(dnp);
2354	} else {
2355		ncl_dircookie_unlock(dnp);
2356		return (NFSERR_BAD_COOKIE);
2357	}
2358
2359	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2360		(void)ncl_fsinfo(nmp, vp, cred, td);
2361	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2362	    &attrflag, &eof, NULL);
2363	if (attrflag)
2364		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2365
2366	if (!error) {
2367		/*
2368		 * We are now either at end of the directory or have filled the
2369		 * the block.
2370		 */
2371		if (eof)
2372			dnp->n_direofoffset = uiop->uio_offset;
2373		else {
2374			if (uiop->uio_resid > 0)
2375				ncl_printf("EEK! readdirplusrpc resid > 0\n");
2376			ncl_dircookie_lock(dnp);
2377			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2378			*cookiep = cookie;
2379			ncl_dircookie_unlock(dnp);
2380		}
2381	} else if (NFS_ISV4(vp)) {
2382		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2383	}
2384	return (error);
2385}
2386
2387/*
2388 * Silly rename. To make the NFS filesystem that is stateless look a little
2389 * more like the "ufs" a remove of an active vnode is translated to a rename
2390 * to a funny looking filename that is removed by nfs_inactive on the
2391 * nfsnode. There is the potential for another process on a different client
2392 * to create the same funny name between the nfs_lookitup() fails and the
2393 * nfs_rename() completes, but...
2394 */
2395static int
2396nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2397{
2398	struct sillyrename *sp;
2399	struct nfsnode *np;
2400	int error;
2401	short pid;
2402	unsigned int lticks;
2403
2404	cache_purge(dvp);
2405	np = VTONFS(vp);
2406	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2407	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2408	    M_NEWNFSREQ, M_WAITOK);
2409	sp->s_cred = crhold(cnp->cn_cred);
2410	sp->s_dvp = dvp;
2411	VREF(dvp);
2412
2413	/*
2414	 * Fudge together a funny name.
2415	 * Changing the format of the funny name to accommodate more
2416	 * sillynames per directory.
2417	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2418	 * CPU ticks since boot.
2419	 */
2420	pid = cnp->cn_thread->td_proc->p_pid;
2421	lticks = (unsigned int)ticks;
2422	for ( ; ; ) {
2423		sp->s_namlen = sprintf(sp->s_name,
2424				       ".nfs.%08x.%04x4.4", lticks,
2425				       pid);
2426		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2427				 cnp->cn_thread, NULL))
2428			break;
2429		lticks++;
2430	}
2431	error = nfs_renameit(dvp, vp, cnp, sp);
2432	if (error)
2433		goto bad;
2434	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2435		cnp->cn_thread, &np);
2436	np->n_sillyrename = sp;
2437	return (0);
2438bad:
2439	vrele(sp->s_dvp);
2440	crfree(sp->s_cred);
2441	free((caddr_t)sp, M_NEWNFSREQ);
2442	return (error);
2443}
2444
2445/*
2446 * Look up a file name and optionally either update the file handle or
2447 * allocate an nfsnode, depending on the value of npp.
2448 * npp == NULL	--> just do the lookup
2449 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2450 *			handled too
2451 * *npp != NULL --> update the file handle in the vnode
2452 */
2453static int
2454nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2455    struct thread *td, struct nfsnode **npp)
2456{
2457	struct vnode *newvp = NULL, *vp;
2458	struct nfsnode *np, *dnp = VTONFS(dvp);
2459	struct nfsfh *nfhp, *onfhp;
2460	struct nfsvattr nfsva, dnfsva;
2461	struct componentname cn;
2462	int error = 0, attrflag, dattrflag;
2463	u_int hash;
2464
2465	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2466	    &nfhp, &attrflag, &dattrflag, NULL);
2467	if (dattrflag)
2468		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2469	if (npp && !error) {
2470		if (*npp != NULL) {
2471		    np = *npp;
2472		    vp = NFSTOV(np);
2473		    /*
2474		     * For NFSv4, check to see if it is the same name and
2475		     * replace the name, if it is different.
2476		     */
2477		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2478			(np->n_v4->n4_namelen != len ||
2479			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2480			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2481			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2482			 dnp->n_fhp->nfh_len))) {
2483#ifdef notdef
2484{ char nnn[100]; int nnnl;
2485nnnl = (len < 100) ? len : 99;
2486bcopy(name, nnn, nnnl);
2487nnn[nnnl] = '\0';
2488printf("replace=%s\n",nnn);
2489}
2490#endif
2491			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2492			    MALLOC(np->n_v4, struct nfsv4node *,
2493				sizeof (struct nfsv4node) +
2494				dnp->n_fhp->nfh_len + len - 1,
2495				M_NFSV4NODE, M_WAITOK);
2496			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2497			    np->n_v4->n4_namelen = len;
2498			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2499				dnp->n_fhp->nfh_len);
2500			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2501		    }
2502		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2503			FNV1_32_INIT);
2504		    onfhp = np->n_fhp;
2505		    /*
2506		     * Rehash node for new file handle.
2507		     */
2508		    vfs_hash_rehash(vp, hash);
2509		    np->n_fhp = nfhp;
2510		    if (onfhp != NULL)
2511			FREE((caddr_t)onfhp, M_NFSFH);
2512		    newvp = NFSTOV(np);
2513		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2514		    FREE((caddr_t)nfhp, M_NFSFH);
2515		    VREF(dvp);
2516		    newvp = dvp;
2517		} else {
2518		    cn.cn_nameptr = name;
2519		    cn.cn_namelen = len;
2520		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2521			&np, NULL, LK_EXCLUSIVE);
2522		    if (error)
2523			return (error);
2524		    newvp = NFSTOV(np);
2525		}
2526		if (!attrflag && *npp == NULL) {
2527			if (newvp == dvp)
2528				vrele(newvp);
2529			else
2530				vput(newvp);
2531			return (ENOENT);
2532		}
2533		if (attrflag)
2534			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2535			    0, 1);
2536	}
2537	if (npp && *npp == NULL) {
2538		if (error) {
2539			if (newvp) {
2540				if (newvp == dvp)
2541					vrele(newvp);
2542				else
2543					vput(newvp);
2544			}
2545		} else
2546			*npp = np;
2547	}
2548	if (error && NFS_ISV4(dvp))
2549		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2550	return (error);
2551}
2552
2553/*
2554 * Nfs Version 3 and 4 commit rpc
2555 */
2556int
2557ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2558   struct thread *td)
2559{
2560	struct nfsvattr nfsva;
2561	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2562	int error, attrflag;
2563
2564	mtx_lock(&nmp->nm_mtx);
2565	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2566		mtx_unlock(&nmp->nm_mtx);
2567		return (0);
2568	}
2569	mtx_unlock(&nmp->nm_mtx);
2570	error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2571	    &attrflag, NULL);
2572	if (attrflag != 0)
2573		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2574		    0, 1);
2575	if (error != 0 && NFS_ISV4(vp))
2576		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2577	return (error);
2578}
2579
2580/*
2581 * Strategy routine.
2582 * For async requests when nfsiod(s) are running, queue the request by
2583 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2584 * request.
2585 */
2586static int
2587nfs_strategy(struct vop_strategy_args *ap)
2588{
2589	struct buf *bp = ap->a_bp;
2590	struct ucred *cr;
2591
2592	KASSERT(!(bp->b_flags & B_DONE),
2593	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2594	BUF_ASSERT_HELD(bp);
2595
2596	if (bp->b_iocmd == BIO_READ)
2597		cr = bp->b_rcred;
2598	else
2599		cr = bp->b_wcred;
2600
2601	/*
2602	 * If the op is asynchronous and an i/o daemon is waiting
2603	 * queue the request, wake it up and wait for completion
2604	 * otherwise just do it ourselves.
2605	 */
2606	if ((bp->b_flags & B_ASYNC) == 0 ||
2607	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2608		(void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2609	return (0);
2610}
2611
2612/*
2613 * fsync vnode op. Just call ncl_flush() with commit == 1.
2614 */
2615/* ARGSUSED */
2616static int
2617nfs_fsync(struct vop_fsync_args *ap)
2618{
2619
2620	if (ap->a_vp->v_type != VREG) {
2621		/*
2622		 * For NFS, metadata is changed synchronously on the server,
2623		 * so there is nothing to flush. Also, ncl_flush() clears
2624		 * the NMODIFIED flag and that shouldn't be done here for
2625		 * directories.
2626		 */
2627		return (0);
2628	}
2629	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2630}
2631
2632/*
2633 * Flush all the blocks associated with a vnode.
2634 * 	Walk through the buffer pool and push any dirty pages
2635 *	associated with the vnode.
2636 * If the called_from_renewthread argument is TRUE, it has been called
2637 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2638 * waiting for a buffer write to complete.
2639 */
2640int
2641ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2642    int commit, int called_from_renewthread)
2643{
2644	struct nfsnode *np = VTONFS(vp);
2645	struct buf *bp;
2646	int i;
2647	struct buf *nbp;
2648	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2649	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2650	int passone = 1, trycnt = 0;
2651	u_quad_t off, endoff, toff;
2652	struct ucred* wcred = NULL;
2653	struct buf **bvec = NULL;
2654	struct bufobj *bo;
2655#ifndef NFS_COMMITBVECSIZ
2656#define	NFS_COMMITBVECSIZ	20
2657#endif
2658	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2659	int bvecsize = 0, bveccount;
2660
2661	if (called_from_renewthread != 0)
2662		slptimeo = hz;
2663	if (nmp->nm_flag & NFSMNT_INT)
2664		slpflag = PCATCH;
2665	if (!commit)
2666		passone = 0;
2667	bo = &vp->v_bufobj;
2668	/*
2669	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2670	 * server, but has not been committed to stable storage on the server
2671	 * yet. On the first pass, the byte range is worked out and the commit
2672	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2673	 * job.
2674	 */
2675again:
2676	off = (u_quad_t)-1;
2677	endoff = 0;
2678	bvecpos = 0;
2679	if (NFS_ISV34(vp) && commit) {
2680		if (bvec != NULL && bvec != bvec_on_stack)
2681			free(bvec, M_TEMP);
2682		/*
2683		 * Count up how many buffers waiting for a commit.
2684		 */
2685		bveccount = 0;
2686		BO_LOCK(bo);
2687		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2688			if (!BUF_ISLOCKED(bp) &&
2689			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2690				== (B_DELWRI | B_NEEDCOMMIT))
2691				bveccount++;
2692		}
2693		/*
2694		 * Allocate space to remember the list of bufs to commit.  It is
2695		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2696		 * If we can't get memory (for whatever reason), we will end up
2697		 * committing the buffers one-by-one in the loop below.
2698		 */
2699		if (bveccount > NFS_COMMITBVECSIZ) {
2700			/*
2701			 * Release the vnode interlock to avoid a lock
2702			 * order reversal.
2703			 */
2704			BO_UNLOCK(bo);
2705			bvec = (struct buf **)
2706				malloc(bveccount * sizeof(struct buf *),
2707				       M_TEMP, M_NOWAIT);
2708			BO_LOCK(bo);
2709			if (bvec == NULL) {
2710				bvec = bvec_on_stack;
2711				bvecsize = NFS_COMMITBVECSIZ;
2712			} else
2713				bvecsize = bveccount;
2714		} else {
2715			bvec = bvec_on_stack;
2716			bvecsize = NFS_COMMITBVECSIZ;
2717		}
2718		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2719			if (bvecpos >= bvecsize)
2720				break;
2721			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2722				nbp = TAILQ_NEXT(bp, b_bobufs);
2723				continue;
2724			}
2725			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2726			    (B_DELWRI | B_NEEDCOMMIT)) {
2727				BUF_UNLOCK(bp);
2728				nbp = TAILQ_NEXT(bp, b_bobufs);
2729				continue;
2730			}
2731			BO_UNLOCK(bo);
2732			bremfree(bp);
2733			/*
2734			 * Work out if all buffers are using the same cred
2735			 * so we can deal with them all with one commit.
2736			 *
2737			 * NOTE: we are not clearing B_DONE here, so we have
2738			 * to do it later on in this routine if we intend to
2739			 * initiate I/O on the bp.
2740			 *
2741			 * Note: to avoid loopback deadlocks, we do not
2742			 * assign b_runningbufspace.
2743			 */
2744			if (wcred == NULL)
2745				wcred = bp->b_wcred;
2746			else if (wcred != bp->b_wcred)
2747				wcred = NOCRED;
2748			vfs_busy_pages(bp, 1);
2749
2750			BO_LOCK(bo);
2751			/*
2752			 * bp is protected by being locked, but nbp is not
2753			 * and vfs_busy_pages() may sleep.  We have to
2754			 * recalculate nbp.
2755			 */
2756			nbp = TAILQ_NEXT(bp, b_bobufs);
2757
2758			/*
2759			 * A list of these buffers is kept so that the
2760			 * second loop knows which buffers have actually
2761			 * been committed. This is necessary, since there
2762			 * may be a race between the commit rpc and new
2763			 * uncommitted writes on the file.
2764			 */
2765			bvec[bvecpos++] = bp;
2766			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2767				bp->b_dirtyoff;
2768			if (toff < off)
2769				off = toff;
2770			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2771			if (toff > endoff)
2772				endoff = toff;
2773		}
2774		BO_UNLOCK(bo);
2775	}
2776	if (bvecpos > 0) {
2777		/*
2778		 * Commit data on the server, as required.
2779		 * If all bufs are using the same wcred, then use that with
2780		 * one call for all of them, otherwise commit each one
2781		 * separately.
2782		 */
2783		if (wcred != NOCRED)
2784			retv = ncl_commit(vp, off, (int)(endoff - off),
2785					  wcred, td);
2786		else {
2787			retv = 0;
2788			for (i = 0; i < bvecpos; i++) {
2789				off_t off, size;
2790				bp = bvec[i];
2791				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2792					bp->b_dirtyoff;
2793				size = (u_quad_t)(bp->b_dirtyend
2794						  - bp->b_dirtyoff);
2795				retv = ncl_commit(vp, off, (int)size,
2796						  bp->b_wcred, td);
2797				if (retv) break;
2798			}
2799		}
2800
2801		if (retv == NFSERR_STALEWRITEVERF)
2802			ncl_clearcommit(vp->v_mount);
2803
2804		/*
2805		 * Now, either mark the blocks I/O done or mark the
2806		 * blocks dirty, depending on whether the commit
2807		 * succeeded.
2808		 */
2809		for (i = 0; i < bvecpos; i++) {
2810			bp = bvec[i];
2811			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2812			if (retv) {
2813				/*
2814				 * Error, leave B_DELWRI intact
2815				 */
2816				vfs_unbusy_pages(bp);
2817				brelse(bp);
2818			} else {
2819				/*
2820				 * Success, remove B_DELWRI ( bundirty() ).
2821				 *
2822				 * b_dirtyoff/b_dirtyend seem to be NFS
2823				 * specific.  We should probably move that
2824				 * into bundirty(). XXX
2825				 */
2826				bufobj_wref(bo);
2827				bp->b_flags |= B_ASYNC;
2828				bundirty(bp);
2829				bp->b_flags &= ~B_DONE;
2830				bp->b_ioflags &= ~BIO_ERROR;
2831				bp->b_dirtyoff = bp->b_dirtyend = 0;
2832				bufdone(bp);
2833			}
2834		}
2835	}
2836
2837	/*
2838	 * Start/do any write(s) that are required.
2839	 */
2840loop:
2841	BO_LOCK(bo);
2842	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2843		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2844			if (waitfor != MNT_WAIT || passone)
2845				continue;
2846
2847			error = BUF_TIMELOCK(bp,
2848			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2849			    BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2850			if (error == 0) {
2851				BUF_UNLOCK(bp);
2852				goto loop;
2853			}
2854			if (error == ENOLCK) {
2855				error = 0;
2856				goto loop;
2857			}
2858			if (called_from_renewthread != 0) {
2859				/*
2860				 * Return EIO so the flush will be retried
2861				 * later.
2862				 */
2863				error = EIO;
2864				goto done;
2865			}
2866			if (newnfs_sigintr(nmp, td)) {
2867				error = EINTR;
2868				goto done;
2869			}
2870			if (slpflag == PCATCH) {
2871				slpflag = 0;
2872				slptimeo = 2 * hz;
2873			}
2874			goto loop;
2875		}
2876		if ((bp->b_flags & B_DELWRI) == 0)
2877			panic("nfs_fsync: not dirty");
2878		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2879			BUF_UNLOCK(bp);
2880			continue;
2881		}
2882		BO_UNLOCK(bo);
2883		bremfree(bp);
2884		if (passone || !commit)
2885		    bp->b_flags |= B_ASYNC;
2886		else
2887		    bp->b_flags |= B_ASYNC;
2888		bwrite(bp);
2889		if (newnfs_sigintr(nmp, td)) {
2890			error = EINTR;
2891			goto done;
2892		}
2893		goto loop;
2894	}
2895	if (passone) {
2896		passone = 0;
2897		BO_UNLOCK(bo);
2898		goto again;
2899	}
2900	if (waitfor == MNT_WAIT) {
2901		while (bo->bo_numoutput) {
2902			error = bufobj_wwait(bo, slpflag, slptimeo);
2903			if (error) {
2904			    BO_UNLOCK(bo);
2905			    if (called_from_renewthread != 0) {
2906				/*
2907				 * Return EIO so that the flush will be
2908				 * retried later.
2909				 */
2910				error = EIO;
2911				goto done;
2912			    }
2913			    error = newnfs_sigintr(nmp, td);
2914			    if (error)
2915				goto done;
2916			    if (slpflag == PCATCH) {
2917				slpflag = 0;
2918				slptimeo = 2 * hz;
2919			    }
2920			    BO_LOCK(bo);
2921			}
2922		}
2923		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2924			BO_UNLOCK(bo);
2925			goto loop;
2926		}
2927		/*
2928		 * Wait for all the async IO requests to drain
2929		 */
2930		BO_UNLOCK(bo);
2931		mtx_lock(&np->n_mtx);
2932		while (np->n_directio_asyncwr > 0) {
2933			np->n_flag |= NFSYNCWAIT;
2934			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2935			    &np->n_mtx, slpflag | (PRIBIO + 1),
2936			    "nfsfsync", 0);
2937			if (error) {
2938				if (newnfs_sigintr(nmp, td)) {
2939					mtx_unlock(&np->n_mtx);
2940					error = EINTR;
2941					goto done;
2942				}
2943			}
2944		}
2945		mtx_unlock(&np->n_mtx);
2946	} else
2947		BO_UNLOCK(bo);
2948	if (NFSHASPNFS(nmp)) {
2949		nfscl_layoutcommit(vp, td);
2950		/*
2951		 * Invalidate the attribute cache, since writes to a DS
2952		 * won't update the size attribute.
2953		 */
2954		mtx_lock(&np->n_mtx);
2955		np->n_attrstamp = 0;
2956	} else
2957		mtx_lock(&np->n_mtx);
2958	if (np->n_flag & NWRITEERR) {
2959		error = np->n_error;
2960		np->n_flag &= ~NWRITEERR;
2961	}
2962  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2963	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2964  		np->n_flag &= ~NMODIFIED;
2965	mtx_unlock(&np->n_mtx);
2966done:
2967	if (bvec != NULL && bvec != bvec_on_stack)
2968		free(bvec, M_TEMP);
2969	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2970	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2971	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2972		/* try, try again... */
2973		passone = 1;
2974		wcred = NULL;
2975		bvec = NULL;
2976		bvecsize = 0;
2977printf("try%d\n", trycnt);
2978		goto again;
2979	}
2980	return (error);
2981}
2982
2983/*
2984 * NFS advisory byte-level locks.
2985 */
2986static int
2987nfs_advlock(struct vop_advlock_args *ap)
2988{
2989	struct vnode *vp = ap->a_vp;
2990	struct ucred *cred;
2991	struct nfsnode *np = VTONFS(ap->a_vp);
2992	struct proc *p = (struct proc *)ap->a_id;
2993	struct thread *td = curthread;	/* XXX */
2994	struct vattr va;
2995	int ret, error = EOPNOTSUPP;
2996	u_quad_t size;
2997
2998	if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
2999		if (vp->v_type != VREG)
3000			return (EINVAL);
3001		if ((ap->a_flags & F_POSIX) != 0)
3002			cred = p->p_ucred;
3003		else
3004			cred = td->td_ucred;
3005		NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3006		if (vp->v_iflag & VI_DOOMED) {
3007			NFSVOPUNLOCK(vp, 0);
3008			return (EBADF);
3009		}
3010
3011		/*
3012		 * If this is unlocking a write locked region, flush and
3013		 * commit them before unlocking. This is required by
3014		 * RFC3530 Sec. 9.3.2.
3015		 */
3016		if (ap->a_op == F_UNLCK &&
3017		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3018		    ap->a_flags))
3019			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
3020
3021		/*
3022		 * Loop around doing the lock op, while a blocking lock
3023		 * must wait for the lock op to succeed.
3024		 */
3025		do {
3026			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3027			    ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3028			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3029			    ap->a_op == F_SETLK) {
3030				NFSVOPUNLOCK(vp, 0);
3031				error = nfs_catnap(PZERO | PCATCH, ret,
3032				    "ncladvl");
3033				if (error)
3034					return (EINTR);
3035				NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3036				if (vp->v_iflag & VI_DOOMED) {
3037					NFSVOPUNLOCK(vp, 0);
3038					return (EBADF);
3039				}
3040			}
3041		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3042		     ap->a_op == F_SETLK);
3043		if (ret == NFSERR_DENIED) {
3044			NFSVOPUNLOCK(vp, 0);
3045			return (EAGAIN);
3046		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3047			NFSVOPUNLOCK(vp, 0);
3048			return (ret);
3049		} else if (ret != 0) {
3050			NFSVOPUNLOCK(vp, 0);
3051			return (EACCES);
3052		}
3053
3054		/*
3055		 * Now, if we just got a lock, invalidate data in the buffer
3056		 * cache, as required, so that the coherency conforms with
3057		 * RFC3530 Sec. 9.3.2.
3058		 */
3059		if (ap->a_op == F_SETLK) {
3060			if ((np->n_flag & NMODIFIED) == 0) {
3061				np->n_attrstamp = 0;
3062				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3063				ret = VOP_GETATTR(vp, &va, cred);
3064			}
3065			if ((np->n_flag & NMODIFIED) || ret ||
3066			    np->n_change != va.va_filerev) {
3067				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3068				np->n_attrstamp = 0;
3069				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3070				ret = VOP_GETATTR(vp, &va, cred);
3071				if (!ret) {
3072					np->n_mtime = va.va_mtime;
3073					np->n_change = va.va_filerev;
3074				}
3075			}
3076			/* Mark that a file lock has been acquired. */
3077			mtx_lock(&np->n_mtx);
3078			np->n_flag |= NHASBEENLOCKED;
3079			mtx_unlock(&np->n_mtx);
3080		}
3081		NFSVOPUNLOCK(vp, 0);
3082		return (0);
3083	} else if (!NFS_ISV4(vp)) {
3084		error = NFSVOPLOCK(vp, LK_SHARED);
3085		if (error)
3086			return (error);
3087		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3088			size = VTONFS(vp)->n_size;
3089			NFSVOPUNLOCK(vp, 0);
3090			error = lf_advlock(ap, &(vp->v_lockf), size);
3091		} else {
3092			if (nfs_advlock_p != NULL)
3093				error = nfs_advlock_p(ap);
3094			else {
3095				NFSVOPUNLOCK(vp, 0);
3096				error = ENOLCK;
3097			}
3098		}
3099		if (error == 0 && ap->a_op == F_SETLK) {
3100			/* Mark that a file lock has been acquired. */
3101			mtx_lock(&np->n_mtx);
3102			np->n_flag |= NHASBEENLOCKED;
3103			mtx_unlock(&np->n_mtx);
3104		}
3105	}
3106	return (error);
3107}
3108
3109/*
3110 * NFS advisory byte-level locks.
3111 */
3112static int
3113nfs_advlockasync(struct vop_advlockasync_args *ap)
3114{
3115	struct vnode *vp = ap->a_vp;
3116	u_quad_t size;
3117	int error;
3118
3119	if (NFS_ISV4(vp))
3120		return (EOPNOTSUPP);
3121	error = NFSVOPLOCK(vp, LK_SHARED);
3122	if (error)
3123		return (error);
3124	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3125		size = VTONFS(vp)->n_size;
3126		NFSVOPUNLOCK(vp, 0);
3127		error = lf_advlockasync(ap, &(vp->v_lockf), size);
3128	} else {
3129		NFSVOPUNLOCK(vp, 0);
3130		error = EOPNOTSUPP;
3131	}
3132	return (error);
3133}
3134
3135/*
3136 * Print out the contents of an nfsnode.
3137 */
3138static int
3139nfs_print(struct vop_print_args *ap)
3140{
3141	struct vnode *vp = ap->a_vp;
3142	struct nfsnode *np = VTONFS(vp);
3143
3144	ncl_printf("\tfileid %ld fsid 0x%x",
3145	   np->n_vattr.na_fileid, np->n_vattr.na_fsid);
3146	if (vp->v_type == VFIFO)
3147		fifo_printinfo(vp);
3148	printf("\n");
3149	return (0);
3150}
3151
3152/*
3153 * This is the "real" nfs::bwrite(struct buf*).
3154 * We set B_CACHE if this is a VMIO buffer.
3155 */
3156int
3157ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3158{
3159	int s;
3160	int oldflags = bp->b_flags;
3161#if 0
3162	int retv = 1;
3163	off_t off;
3164#endif
3165
3166	BUF_ASSERT_HELD(bp);
3167
3168	if (bp->b_flags & B_INVAL) {
3169		brelse(bp);
3170		return(0);
3171	}
3172
3173	bp->b_flags |= B_CACHE;
3174
3175	/*
3176	 * Undirty the bp.  We will redirty it later if the I/O fails.
3177	 */
3178
3179	s = splbio();
3180	bundirty(bp);
3181	bp->b_flags &= ~B_DONE;
3182	bp->b_ioflags &= ~BIO_ERROR;
3183	bp->b_iocmd = BIO_WRITE;
3184
3185	bufobj_wref(bp->b_bufobj);
3186	curthread->td_ru.ru_oublock++;
3187	splx(s);
3188
3189	/*
3190	 * Note: to avoid loopback deadlocks, we do not
3191	 * assign b_runningbufspace.
3192	 */
3193	vfs_busy_pages(bp, 1);
3194
3195	BUF_KERNPROC(bp);
3196	bp->b_iooffset = dbtob(bp->b_blkno);
3197	bstrategy(bp);
3198
3199	if( (oldflags & B_ASYNC) == 0) {
3200		int rtval = bufwait(bp);
3201
3202		if (oldflags & B_DELWRI) {
3203			s = splbio();
3204			reassignbuf(bp);
3205			splx(s);
3206		}
3207		brelse(bp);
3208		return (rtval);
3209	}
3210
3211	return (0);
3212}
3213
3214/*
3215 * nfs special file access vnode op.
3216 * Essentially just get vattr and then imitate iaccess() since the device is
3217 * local to the client.
3218 */
3219static int
3220nfsspec_access(struct vop_access_args *ap)
3221{
3222	struct vattr *vap;
3223	struct ucred *cred = ap->a_cred;
3224	struct vnode *vp = ap->a_vp;
3225	accmode_t accmode = ap->a_accmode;
3226	struct vattr vattr;
3227	int error;
3228
3229	/*
3230	 * Disallow write attempts on filesystems mounted read-only;
3231	 * unless the file is a socket, fifo, or a block or character
3232	 * device resident on the filesystem.
3233	 */
3234	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3235		switch (vp->v_type) {
3236		case VREG:
3237		case VDIR:
3238		case VLNK:
3239			return (EROFS);
3240		default:
3241			break;
3242		}
3243	}
3244	vap = &vattr;
3245	error = VOP_GETATTR(vp, vap, cred);
3246	if (error)
3247		goto out;
3248	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3249	    accmode, cred, NULL);
3250out:
3251	return error;
3252}
3253
3254/*
3255 * Read wrapper for fifos.
3256 */
3257static int
3258nfsfifo_read(struct vop_read_args *ap)
3259{
3260	struct nfsnode *np = VTONFS(ap->a_vp);
3261	int error;
3262
3263	/*
3264	 * Set access flag.
3265	 */
3266	mtx_lock(&np->n_mtx);
3267	np->n_flag |= NACC;
3268	vfs_timestamp(&np->n_atim);
3269	mtx_unlock(&np->n_mtx);
3270	error = fifo_specops.vop_read(ap);
3271	return error;
3272}
3273
3274/*
3275 * Write wrapper for fifos.
3276 */
3277static int
3278nfsfifo_write(struct vop_write_args *ap)
3279{
3280	struct nfsnode *np = VTONFS(ap->a_vp);
3281
3282	/*
3283	 * Set update flag.
3284	 */
3285	mtx_lock(&np->n_mtx);
3286	np->n_flag |= NUPD;
3287	vfs_timestamp(&np->n_mtim);
3288	mtx_unlock(&np->n_mtx);
3289	return(fifo_specops.vop_write(ap));
3290}
3291
3292/*
3293 * Close wrapper for fifos.
3294 *
3295 * Update the times on the nfsnode then do fifo close.
3296 */
3297static int
3298nfsfifo_close(struct vop_close_args *ap)
3299{
3300	struct vnode *vp = ap->a_vp;
3301	struct nfsnode *np = VTONFS(vp);
3302	struct vattr vattr;
3303	struct timespec ts;
3304
3305	mtx_lock(&np->n_mtx);
3306	if (np->n_flag & (NACC | NUPD)) {
3307		vfs_timestamp(&ts);
3308		if (np->n_flag & NACC)
3309			np->n_atim = ts;
3310		if (np->n_flag & NUPD)
3311			np->n_mtim = ts;
3312		np->n_flag |= NCHG;
3313		if (vrefcnt(vp) == 1 &&
3314		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3315			VATTR_NULL(&vattr);
3316			if (np->n_flag & NACC)
3317				vattr.va_atime = np->n_atim;
3318			if (np->n_flag & NUPD)
3319				vattr.va_mtime = np->n_mtim;
3320			mtx_unlock(&np->n_mtx);
3321			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3322			goto out;
3323		}
3324	}
3325	mtx_unlock(&np->n_mtx);
3326out:
3327	return (fifo_specops.vop_close(ap));
3328}
3329
3330/*
3331 * Just call ncl_writebp() with the force argument set to 1.
3332 *
3333 * NOTE: B_DONE may or may not be set in a_bp on call.
3334 */
3335static int
3336nfs_bwrite(struct buf *bp)
3337{
3338
3339	return (ncl_writebp(bp, 1, curthread));
3340}
3341
3342struct buf_ops buf_ops_newnfs = {
3343	.bop_name	=	"buf_ops_nfs",
3344	.bop_write	=	nfs_bwrite,
3345	.bop_strategy	=	bufstrategy,
3346	.bop_sync	=	bufsync,
3347	.bop_bdflush	=	bufbdflush,
3348};
3349
3350static int
3351nfs_getacl(struct vop_getacl_args *ap)
3352{
3353	int error;
3354
3355	if (ap->a_type != ACL_TYPE_NFS4)
3356		return (EOPNOTSUPP);
3357	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3358	    NULL);
3359	if (error > NFSERR_STALE) {
3360		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3361		error = EPERM;
3362	}
3363	return (error);
3364}
3365
3366static int
3367nfs_setacl(struct vop_setacl_args *ap)
3368{
3369	int error;
3370
3371	if (ap->a_type != ACL_TYPE_NFS4)
3372		return (EOPNOTSUPP);
3373	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3374	    NULL);
3375	if (error > NFSERR_STALE) {
3376		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3377		error = EPERM;
3378	}
3379	return (error);
3380}
3381
3382/*
3383 * Return POSIX pathconf information applicable to nfs filesystems.
3384 */
3385static int
3386nfs_pathconf(struct vop_pathconf_args *ap)
3387{
3388	struct nfsv3_pathconf pc;
3389	struct nfsvattr nfsva;
3390	struct vnode *vp = ap->a_vp;
3391	struct thread *td = curthread;
3392	int attrflag, error;
3393
3394	if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
3395	    ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3396	    ap->a_name == _PC_NO_TRUNC)) ||
3397	    (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
3398		/*
3399		 * Since only the above 4 a_names are returned by the NFSv3
3400		 * Pathconf RPC, there is no point in doing it for others.
3401		 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
3402		 * be used for _PC_NFS4_ACL as well.
3403		 */
3404		error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3405		    &attrflag, NULL);
3406		if (attrflag != 0)
3407			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3408			    1);
3409		if (error != 0)
3410			return (error);
3411	} else {
3412		/*
3413		 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3414		 * just fake them.
3415		 */
3416		pc.pc_linkmax = LINK_MAX;
3417		pc.pc_namemax = NFS_MAXNAMLEN;
3418		pc.pc_notrunc = 1;
3419		pc.pc_chownrestricted = 1;
3420		pc.pc_caseinsensitive = 0;
3421		pc.pc_casepreserving = 1;
3422		error = 0;
3423	}
3424	switch (ap->a_name) {
3425	case _PC_LINK_MAX:
3426		*ap->a_retval = pc.pc_linkmax;
3427		break;
3428	case _PC_NAME_MAX:
3429		*ap->a_retval = pc.pc_namemax;
3430		break;
3431	case _PC_PATH_MAX:
3432		*ap->a_retval = PATH_MAX;
3433		break;
3434	case _PC_PIPE_BUF:
3435		*ap->a_retval = PIPE_BUF;
3436		break;
3437	case _PC_CHOWN_RESTRICTED:
3438		*ap->a_retval = pc.pc_chownrestricted;
3439		break;
3440	case _PC_NO_TRUNC:
3441		*ap->a_retval = pc.pc_notrunc;
3442		break;
3443	case _PC_ACL_EXTENDED:
3444		*ap->a_retval = 0;
3445		break;
3446	case _PC_ACL_NFS4:
3447		if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3448		    NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3449			*ap->a_retval = 1;
3450		else
3451			*ap->a_retval = 0;
3452		break;
3453	case _PC_ACL_PATH_MAX:
3454		if (NFS_ISV4(vp))
3455			*ap->a_retval = ACL_MAX_ENTRIES;
3456		else
3457			*ap->a_retval = 3;
3458		break;
3459	case _PC_MAC_PRESENT:
3460		*ap->a_retval = 0;
3461		break;
3462	case _PC_ASYNC_IO:
3463		/* _PC_ASYNC_IO should have been handled by upper layers. */
3464		KASSERT(0, ("_PC_ASYNC_IO should not get here"));
3465		error = EINVAL;
3466		break;
3467	case _PC_PRIO_IO:
3468		*ap->a_retval = 0;
3469		break;
3470	case _PC_SYNC_IO:
3471		*ap->a_retval = 0;
3472		break;
3473	case _PC_ALLOC_SIZE_MIN:
3474		*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3475		break;
3476	case _PC_FILESIZEBITS:
3477		if (NFS_ISV34(vp))
3478			*ap->a_retval = 64;
3479		else
3480			*ap->a_retval = 32;
3481		break;
3482	case _PC_REC_INCR_XFER_SIZE:
3483		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3484		break;
3485	case _PC_REC_MAX_XFER_SIZE:
3486		*ap->a_retval = -1; /* means ``unlimited'' */
3487		break;
3488	case _PC_REC_MIN_XFER_SIZE:
3489		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3490		break;
3491	case _PC_REC_XFER_ALIGN:
3492		*ap->a_retval = PAGE_SIZE;
3493		break;
3494	case _PC_SYMLINK_MAX:
3495		*ap->a_retval = NFS_MAXPATHLEN;
3496		break;
3497
3498	default:
3499		error = EINVAL;
3500		break;
3501	}
3502	return (error);
3503}
3504
3505