nfs_clvnops.c revision 212293
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 212293 2010-09-07 14:29:45Z jhb $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_inet.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/systm.h>
47#include <sys/resourcevar.h>
48#include <sys/proc.h>
49#include <sys/mount.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/jail.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/namei.h>
56#include <sys/socket.h>
57#include <sys/vnode.h>
58#include <sys/dirent.h>
59#include <sys/fcntl.h>
60#include <sys/lockf.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/signalvar.h>
64
65#include <vm/vm.h>
66#include <vm/vm_object.h>
67#include <vm/vm_extern.h>
68#include <vm/vm_object.h>
69
70#include <fs/nfs/nfsport.h>
71#include <fs/nfsclient/nfsnode.h>
72#include <fs/nfsclient/nfsmount.h>
73#include <fs/nfsclient/nfs.h>
74
75#include <net/if.h>
76#include <netinet/in.h>
77#include <netinet/in_var.h>
78
79#include <nfs/nfs_lock.h>
80
81/* Defs */
82#define	TRUE	1
83#define	FALSE	0
84
85extern struct nfsstats newnfsstats;
86MALLOC_DECLARE(M_NEWNFSREQ);
87vop_advlock_t	*ncl_advlock_p = NULL;
88
89/*
90 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
91 * calls are not in getblk() and brelse() so that they would not be necessary
92 * here.
93 */
94#ifndef B_VMIO
95#define	vfs_busy_pages(bp, f)
96#endif
97
98static vop_read_t	nfsfifo_read;
99static vop_write_t	nfsfifo_write;
100static vop_close_t	nfsfifo_close;
101static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
102		    struct thread *);
103static vop_lookup_t	nfs_lookup;
104static vop_create_t	nfs_create;
105static vop_mknod_t	nfs_mknod;
106static vop_open_t	nfs_open;
107static vop_close_t	nfs_close;
108static vop_access_t	nfs_access;
109static vop_getattr_t	nfs_getattr;
110static vop_setattr_t	nfs_setattr;
111static vop_read_t	nfs_read;
112static vop_fsync_t	nfs_fsync;
113static vop_remove_t	nfs_remove;
114static vop_link_t	nfs_link;
115static vop_rename_t	nfs_rename;
116static vop_mkdir_t	nfs_mkdir;
117static vop_rmdir_t	nfs_rmdir;
118static vop_symlink_t	nfs_symlink;
119static vop_readdir_t	nfs_readdir;
120static vop_strategy_t	nfs_strategy;
121static vop_lock1_t	nfs_lock1;
122static	int	nfs_lookitup(struct vnode *, char *, int,
123		    struct ucred *, struct thread *, struct nfsnode **);
124static	int	nfs_sillyrename(struct vnode *, struct vnode *,
125		    struct componentname *);
126static vop_access_t	nfsspec_access;
127static vop_readlink_t	nfs_readlink;
128static vop_print_t	nfs_print;
129static vop_advlock_t	nfs_advlock;
130static vop_advlockasync_t nfs_advlockasync;
131static vop_getacl_t nfs_getacl;
132static vop_setacl_t nfs_setacl;
133
134/*
135 * Global vfs data structures for nfs
136 */
137struct vop_vector newnfs_vnodeops = {
138	.vop_default =		&default_vnodeops,
139	.vop_access =		nfs_access,
140	.vop_advlock =		nfs_advlock,
141	.vop_advlockasync =	nfs_advlockasync,
142	.vop_close =		nfs_close,
143	.vop_create =		nfs_create,
144	.vop_fsync =		nfs_fsync,
145	.vop_getattr =		nfs_getattr,
146	.vop_getpages =		ncl_getpages,
147	.vop_putpages =		ncl_putpages,
148	.vop_inactive =		ncl_inactive,
149	.vop_link =		nfs_link,
150	.vop_lock1 = 		nfs_lock1,
151	.vop_lookup =		nfs_lookup,
152	.vop_mkdir =		nfs_mkdir,
153	.vop_mknod =		nfs_mknod,
154	.vop_open =		nfs_open,
155	.vop_print =		nfs_print,
156	.vop_read =		nfs_read,
157	.vop_readdir =		nfs_readdir,
158	.vop_readlink =		nfs_readlink,
159	.vop_reclaim =		ncl_reclaim,
160	.vop_remove =		nfs_remove,
161	.vop_rename =		nfs_rename,
162	.vop_rmdir =		nfs_rmdir,
163	.vop_setattr =		nfs_setattr,
164	.vop_strategy =		nfs_strategy,
165	.vop_symlink =		nfs_symlink,
166	.vop_write =		ncl_write,
167	.vop_getacl =		nfs_getacl,
168	.vop_setacl =		nfs_setacl,
169};
170
171struct vop_vector newnfs_fifoops = {
172	.vop_default =		&fifo_specops,
173	.vop_access =		nfsspec_access,
174	.vop_close =		nfsfifo_close,
175	.vop_fsync =		nfs_fsync,
176	.vop_getattr =		nfs_getattr,
177	.vop_inactive =		ncl_inactive,
178	.vop_print =		nfs_print,
179	.vop_read =		nfsfifo_read,
180	.vop_reclaim =		ncl_reclaim,
181	.vop_setattr =		nfs_setattr,
182	.vop_write =		nfsfifo_write,
183};
184
185static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
186    struct componentname *cnp, struct vattr *vap);
187static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
188    int namelen, struct ucred *cred, struct thread *td);
189static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
190    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
191    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
192static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
193    struct componentname *scnp, struct sillyrename *sp);
194
195/*
196 * Global variables
197 */
198#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
199
200SYSCTL_DECL(_vfs_newnfs);
201
202static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
203SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
204	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
205
206static int	nfs_prime_access_cache = 0;
207SYSCTL_INT(_vfs_newnfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
208	   &nfs_prime_access_cache, 0,
209	   "Prime NFS ACCESS cache when fetching attributes");
210
211static int	newnfs_commit_on_close = 0;
212SYSCTL_INT(_vfs_newnfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
213    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
214
215static int	nfs_clean_pages_on_close = 1;
216SYSCTL_INT(_vfs_newnfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
217	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
218
219int newnfs_directio_enable = 0;
220SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_enable, CTLFLAG_RW,
221	   &newnfs_directio_enable, 0, "Enable NFS directio");
222
223/*
224 * This sysctl allows other processes to mmap a file that has been opened
225 * O_DIRECT by a process.  In general, having processes mmap the file while
226 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
227 * this by default to prevent DoS attacks - to prevent a malicious user from
228 * opening up files O_DIRECT preventing other users from mmap'ing these
229 * files.  "Protected" environments where stricter consistency guarantees are
230 * required can disable this knob.  The process that opened the file O_DIRECT
231 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
232 * meaningful.
233 */
234int newnfs_directio_allow_mmap = 1;
235SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_allow_mmap, CTLFLAG_RW,
236	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
237
238#if 0
239SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
240	   &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
241
242SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
243	   &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
244#endif
245
246#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
247			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
248			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
249
250/*
251 * SMP Locking Note :
252 * The list of locks after the description of the lock is the ordering
253 * of other locks acquired with the lock held.
254 * np->n_mtx : Protects the fields in the nfsnode.
255       VM Object Lock
256       VI_MTX (acquired indirectly)
257 * nmp->nm_mtx : Protects the fields in the nfsmount.
258       rep->r_mtx
259 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
260 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
261       nmp->nm_mtx
262       rep->r_mtx
263 * rep->r_mtx : Protects the fields in an nfsreq.
264 */
265
266static int
267nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
268    struct ucred *cred, u_int32_t *retmode)
269{
270	int error = 0, attrflag, i, lrupos;
271	u_int32_t rmode;
272	struct nfsnode *np = VTONFS(vp);
273	struct nfsvattr nfsva;
274
275	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
276	    &rmode, NULL);
277	if (attrflag)
278		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
279	if (!error) {
280		lrupos = 0;
281		mtx_lock(&np->n_mtx);
282		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
283			if (np->n_accesscache[i].uid == cred->cr_uid) {
284				np->n_accesscache[i].mode = rmode;
285				np->n_accesscache[i].stamp = time_second;
286				break;
287			}
288			if (i > 0 && np->n_accesscache[i].stamp <
289			    np->n_accesscache[lrupos].stamp)
290				lrupos = i;
291		}
292		if (i == NFS_ACCESSCACHESIZE) {
293			np->n_accesscache[lrupos].uid = cred->cr_uid;
294			np->n_accesscache[lrupos].mode = rmode;
295			np->n_accesscache[lrupos].stamp = time_second;
296		}
297		mtx_unlock(&np->n_mtx);
298		if (retmode != NULL)
299			*retmode = rmode;
300	} else if (NFS_ISV4(vp)) {
301		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
302	}
303	return (error);
304}
305
306/*
307 * nfs access vnode op.
308 * For nfs version 2, just return ok. File accesses may fail later.
309 * For nfs version 3, use the access rpc to check accessibility. If file modes
310 * are changed on the server, accesses might still fail later.
311 */
312static int
313nfs_access(struct vop_access_args *ap)
314{
315	struct vnode *vp = ap->a_vp;
316	int error = 0, i, gotahit;
317	u_int32_t mode, wmode, rmode;
318	int v34 = NFS_ISV34(vp);
319	struct nfsnode *np = VTONFS(vp);
320
321	/*
322	 * Disallow write attempts on filesystems mounted read-only;
323	 * unless the file is a socket, fifo, or a block or character
324	 * device resident on the filesystem.
325	 */
326	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
327	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
328	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
329		switch (vp->v_type) {
330		case VREG:
331		case VDIR:
332		case VLNK:
333			return (EROFS);
334		default:
335			break;
336		}
337	}
338	/*
339	 * For nfs v3 or v4, check to see if we have done this recently, and if
340	 * so return our cached result instead of making an ACCESS call.
341	 * If not, do an access rpc, otherwise you are stuck emulating
342	 * ufs_access() locally using the vattr. This may not be correct,
343	 * since the server may apply other access criteria such as
344	 * client uid-->server uid mapping that we do not know about.
345	 */
346	if (v34) {
347		if (ap->a_accmode & VREAD)
348			mode = NFSACCESS_READ;
349		else
350			mode = 0;
351		if (vp->v_type != VDIR) {
352			if (ap->a_accmode & VWRITE)
353				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
354			if (ap->a_accmode & VAPPEND)
355				mode |= NFSACCESS_EXTEND;
356			if (ap->a_accmode & VEXEC)
357				mode |= NFSACCESS_EXECUTE;
358			if (ap->a_accmode & VDELETE)
359				mode |= NFSACCESS_DELETE;
360		} else {
361			if (ap->a_accmode & VWRITE)
362				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
363			if (ap->a_accmode & VAPPEND)
364				mode |= NFSACCESS_EXTEND;
365			if (ap->a_accmode & VEXEC)
366				mode |= NFSACCESS_LOOKUP;
367			if (ap->a_accmode & VDELETE)
368				mode |= NFSACCESS_DELETE;
369			if (ap->a_accmode & VDELETE_CHILD)
370				mode |= NFSACCESS_MODIFY;
371		}
372		/* XXX safety belt, only make blanket request if caching */
373		if (nfsaccess_cache_timeout > 0) {
374			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
375				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
376				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
377		} else {
378			wmode = mode;
379		}
380
381		/*
382		 * Does our cached result allow us to give a definite yes to
383		 * this request?
384		 */
385		gotahit = 0;
386		mtx_lock(&np->n_mtx);
387		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
388			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
389			    if (time_second < (np->n_accesscache[i].stamp
390				+ nfsaccess_cache_timeout) &&
391				(np->n_accesscache[i].mode & mode) == mode) {
392				NFSINCRGLOBAL(newnfsstats.accesscache_hits);
393				gotahit = 1;
394			    }
395			    break;
396			}
397		}
398		mtx_unlock(&np->n_mtx);
399		if (gotahit == 0) {
400			/*
401			 * Either a no, or a don't know.  Go to the wire.
402			 */
403			NFSINCRGLOBAL(newnfsstats.accesscache_misses);
404		        error = nfs34_access_otw(vp, wmode, ap->a_td,
405			    ap->a_cred, &rmode);
406			if (!error &&
407			    (rmode & mode) != mode)
408				error = EACCES;
409		}
410		return (error);
411	} else {
412		if ((error = nfsspec_access(ap)) != 0) {
413			return (error);
414		}
415		/*
416		 * Attempt to prevent a mapped root from accessing a file
417		 * which it shouldn't.  We try to read a byte from the file
418		 * if the user is root and the file is not zero length.
419		 * After calling nfsspec_access, we should have the correct
420		 * file size cached.
421		 */
422		mtx_lock(&np->n_mtx);
423		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
424		    && VTONFS(vp)->n_size > 0) {
425			struct iovec aiov;
426			struct uio auio;
427			char buf[1];
428
429			mtx_unlock(&np->n_mtx);
430			aiov.iov_base = buf;
431			aiov.iov_len = 1;
432			auio.uio_iov = &aiov;
433			auio.uio_iovcnt = 1;
434			auio.uio_offset = 0;
435			auio.uio_resid = 1;
436			auio.uio_segflg = UIO_SYSSPACE;
437			auio.uio_rw = UIO_READ;
438			auio.uio_td = ap->a_td;
439
440			if (vp->v_type == VREG)
441				error = ncl_readrpc(vp, &auio, ap->a_cred);
442			else if (vp->v_type == VDIR) {
443				char* bp;
444				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
445				aiov.iov_base = bp;
446				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
447				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
448				    ap->a_td);
449				free(bp, M_TEMP);
450			} else if (vp->v_type == VLNK)
451				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
452			else
453				error = EACCES;
454		} else
455			mtx_unlock(&np->n_mtx);
456		return (error);
457	}
458}
459
460
461/*
462 * nfs open vnode op
463 * Check to see if the type is ok
464 * and that deletion is not in progress.
465 * For paged in text files, you will need to flush the page cache
466 * if consistency is lost.
467 */
468/* ARGSUSED */
469static int
470nfs_open(struct vop_open_args *ap)
471{
472	struct vnode *vp = ap->a_vp;
473	struct nfsnode *np = VTONFS(vp);
474	struct vattr vattr;
475	int error;
476	int fmode = ap->a_mode;
477
478	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
479		return (EOPNOTSUPP);
480
481	/*
482	 * For NFSv4, we need to do the Open Op before cache validation,
483	 * so that we conform to RFC3530 Sec. 9.3.1.
484	 */
485	if (NFS_ISV4(vp)) {
486		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
487		if (error) {
488			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
489			    (gid_t)0);
490			return (error);
491		}
492	}
493
494	/*
495	 * Now, if this Open will be doing reading, re-validate/flush the
496	 * cache, so that Close/Open coherency is maintained.
497	 */
498	if ((fmode & FREAD) != 0 &&
499	    (!NFS_ISV4(vp) || nfscl_mustflush(vp) != 0)) {
500		mtx_lock(&np->n_mtx);
501		if (np->n_flag & NMODIFIED) {
502			mtx_unlock(&np->n_mtx);
503			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
504			if (error == EINTR || error == EIO) {
505				if (NFS_ISV4(vp))
506					(void) nfsrpc_close(vp, 0, ap->a_td);
507				return (error);
508			}
509			mtx_lock(&np->n_mtx);
510			np->n_attrstamp = 0;
511			if (vp->v_type == VDIR)
512				np->n_direofoffset = 0;
513			mtx_unlock(&np->n_mtx);
514			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
515			if (error) {
516				if (NFS_ISV4(vp))
517					(void) nfsrpc_close(vp, 0, ap->a_td);
518				return (error);
519			}
520			mtx_lock(&np->n_mtx);
521			np->n_mtime = vattr.va_mtime;
522			if (NFS_ISV4(vp))
523				np->n_change = vattr.va_filerev;
524			mtx_unlock(&np->n_mtx);
525		} else {
526			mtx_unlock(&np->n_mtx);
527			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
528			if (error) {
529				if (NFS_ISV4(vp))
530					(void) nfsrpc_close(vp, 0, ap->a_td);
531				return (error);
532			}
533			mtx_lock(&np->n_mtx);
534			if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
535			    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
536				if (vp->v_type == VDIR)
537					np->n_direofoffset = 0;
538				mtx_unlock(&np->n_mtx);
539				error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
540				if (error == EINTR || error == EIO) {
541					if (NFS_ISV4(vp))
542						(void) nfsrpc_close(vp, 0,
543						    ap->a_td);
544					return (error);
545				}
546				mtx_lock(&np->n_mtx);
547				np->n_mtime = vattr.va_mtime;
548				if (NFS_ISV4(vp))
549					np->n_change = vattr.va_filerev;
550			}
551			mtx_unlock(&np->n_mtx);
552		}
553	}
554
555	/*
556	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
557	 */
558	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
559		if (np->n_directio_opens == 0) {
560			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
561			if (error) {
562				if (NFS_ISV4(vp))
563					(void) nfsrpc_close(vp, 0, ap->a_td);
564				return (error);
565			}
566			mtx_lock(&np->n_mtx);
567			np->n_flag |= NNONCACHE;
568		} else {
569			mtx_lock(&np->n_mtx);
570		}
571		np->n_directio_opens++;
572		mtx_unlock(&np->n_mtx);
573	}
574	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
575	return (0);
576}
577
578/*
579 * nfs close vnode op
580 * What an NFS client should do upon close after writing is a debatable issue.
581 * Most NFS clients push delayed writes to the server upon close, basically for
582 * two reasons:
583 * 1 - So that any write errors may be reported back to the client process
584 *     doing the close system call. By far the two most likely errors are
585 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
586 * 2 - To put a worst case upper bound on cache inconsistency between
587 *     multiple clients for the file.
588 * There is also a consistency problem for Version 2 of the protocol w.r.t.
589 * not being able to tell if other clients are writing a file concurrently,
590 * since there is no way of knowing if the changed modify time in the reply
591 * is only due to the write for this client.
592 * (NFS Version 3 provides weak cache consistency data in the reply that
593 *  should be sufficient to detect and handle this case.)
594 *
595 * The current code does the following:
596 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
597 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
598 *                     or commit them (this satisfies 1 and 2 except for the
599 *                     case where the server crashes after this close but
600 *                     before the commit RPC, which is felt to be "good
601 *                     enough". Changing the last argument to ncl_flush() to
602 *                     a 1 would force a commit operation, if it is felt a
603 *                     commit is necessary now.
604 * for NFS Version 4 - flush the dirty buffers and commit them, if
605 *		       nfscl_mustflush() says this is necessary.
606 *                     It is necessary if there is no write delegation held,
607 *                     in order to satisfy open/close coherency.
608 *                     If the file isn't cached on local stable storage,
609 *                     it may be necessary in order to detect "out of space"
610 *                     errors from the server, if the write delegation
611 *                     issued by the server doesn't allow the file to grow.
612 */
613/* ARGSUSED */
614static int
615nfs_close(struct vop_close_args *ap)
616{
617	struct vnode *vp = ap->a_vp;
618	struct nfsnode *np = VTONFS(vp);
619	struct nfsvattr nfsva;
620	struct ucred *cred;
621	int error = 0, ret, localcred = 0;
622	int fmode = ap->a_fflag;
623
624	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
625		return (0);
626	/*
627	 * During shutdown, a_cred isn't valid, so just use root.
628	 */
629	if (ap->a_cred == NOCRED) {
630		cred = newnfs_getcred();
631		localcred = 1;
632	} else {
633		cred = ap->a_cred;
634	}
635	if (vp->v_type == VREG) {
636	    /*
637	     * Examine and clean dirty pages, regardless of NMODIFIED.
638	     * This closes a major hole in close-to-open consistency.
639	     * We want to push out all dirty pages (and buffers) on
640	     * close, regardless of whether they were dirtied by
641	     * mmap'ed writes or via write().
642	     */
643	    if (nfs_clean_pages_on_close && vp->v_object) {
644		VM_OBJECT_LOCK(vp->v_object);
645		vm_object_page_clean(vp->v_object, 0, 0, 0);
646		VM_OBJECT_UNLOCK(vp->v_object);
647	    }
648	    mtx_lock(&np->n_mtx);
649	    if (np->n_flag & NMODIFIED) {
650		mtx_unlock(&np->n_mtx);
651		if (NFS_ISV3(vp)) {
652		    /*
653		     * Under NFSv3 we have dirty buffers to dispose of.  We
654		     * must flush them to the NFS server.  We have the option
655		     * of waiting all the way through the commit rpc or just
656		     * waiting for the initial write.  The default is to only
657		     * wait through the initial write so the data is in the
658		     * server's cache, which is roughly similar to the state
659		     * a standard disk subsystem leaves the file in on close().
660		     *
661		     * We cannot clear the NMODIFIED bit in np->n_flag due to
662		     * potential races with other processes, and certainly
663		     * cannot clear it if we don't commit.
664		     * These races occur when there is no longer the old
665		     * traditional vnode locking implemented for Vnode Ops.
666		     */
667		    int cm = newnfs_commit_on_close ? 1 : 0;
668		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
669		    /* np->n_flag &= ~NMODIFIED; */
670		} else if (NFS_ISV4(vp)) {
671			if (nfscl_mustflush(vp) != 0) {
672				int cm = newnfs_commit_on_close ? 1 : 0;
673				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
674				    cm, 0);
675				/*
676				 * as above w.r.t races when clearing
677				 * NMODIFIED.
678				 * np->n_flag &= ~NMODIFIED;
679				 */
680			}
681		} else
682		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
683		mtx_lock(&np->n_mtx);
684	    }
685 	    /*
686 	     * Invalidate the attribute cache in all cases.
687 	     * An open is going to fetch fresh attrs any way, other procs
688 	     * on this node that have file open will be forced to do an
689 	     * otw attr fetch, but this is safe.
690	     * --> A user found that their RPC count dropped by 20% when
691	     *     this was commented out and I can't see any requirement
692	     *     for it, so I've disabled it when negative lookups are
693	     *     enabled. (What does this have to do with negative lookup
694	     *     caching? Well nothing, except it was reported by the
695	     *     same user that needed negative lookup caching and I wanted
696	     *     there to be a way to disable it to see if it
697	     *     is the cause of some caching/coherency issue that might
698	     *     crop up.)
699 	     */
700	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0)
701		    np->n_attrstamp = 0;
702	    if (np->n_flag & NWRITEERR) {
703		np->n_flag &= ~NWRITEERR;
704		error = np->n_error;
705	    }
706	    mtx_unlock(&np->n_mtx);
707	}
708
709	if (NFS_ISV4(vp)) {
710		/*
711		 * Get attributes so "change" is up to date.
712		 */
713		if (error == 0 && nfscl_mustflush(vp) != 0) {
714			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
715			    NULL);
716			if (!ret) {
717				np->n_change = nfsva.na_filerev;
718				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
719				    NULL, 0, 0);
720			}
721		}
722
723		/*
724		 * and do the close.
725		 */
726		ret = nfsrpc_close(vp, 0, ap->a_td);
727		if (!error && ret)
728			error = ret;
729		if (error)
730			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
731			    (gid_t)0);
732	}
733	if (newnfs_directio_enable)
734		KASSERT((np->n_directio_asyncwr == 0),
735			("nfs_close: dirty unflushed (%d) directio buffers\n",
736			 np->n_directio_asyncwr));
737	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
738		mtx_lock(&np->n_mtx);
739		KASSERT((np->n_directio_opens > 0),
740			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
741		np->n_directio_opens--;
742		if (np->n_directio_opens == 0)
743			np->n_flag &= ~NNONCACHE;
744		mtx_unlock(&np->n_mtx);
745	}
746	if (localcred)
747		NFSFREECRED(cred);
748	return (error);
749}
750
751/*
752 * nfs getattr call from vfs.
753 */
754static int
755nfs_getattr(struct vop_getattr_args *ap)
756{
757	struct vnode *vp = ap->a_vp;
758	struct thread *td = curthread;	/* XXX */
759	struct nfsnode *np = VTONFS(vp);
760	int error = 0;
761	struct nfsvattr nfsva;
762	struct vattr *vap = ap->a_vap;
763	struct vattr vattr;
764
765	/*
766	 * Update local times for special files.
767	 */
768	mtx_lock(&np->n_mtx);
769	if (np->n_flag & (NACC | NUPD))
770		np->n_flag |= NCHG;
771	mtx_unlock(&np->n_mtx);
772	/*
773	 * First look in the cache.
774	 */
775	if (ncl_getattrcache(vp, &vattr) == 0) {
776		vap->va_type = vattr.va_type;
777		vap->va_mode = vattr.va_mode;
778		vap->va_nlink = vattr.va_nlink;
779		vap->va_uid = vattr.va_uid;
780		vap->va_gid = vattr.va_gid;
781		vap->va_fsid = vattr.va_fsid;
782		vap->va_fileid = vattr.va_fileid;
783		vap->va_size = vattr.va_size;
784		vap->va_blocksize = vattr.va_blocksize;
785		vap->va_atime = vattr.va_atime;
786		vap->va_mtime = vattr.va_mtime;
787		vap->va_ctime = vattr.va_ctime;
788		vap->va_gen = vattr.va_gen;
789		vap->va_flags = vattr.va_flags;
790		vap->va_rdev = vattr.va_rdev;
791		vap->va_bytes = vattr.va_bytes;
792		vap->va_filerev = vattr.va_filerev;
793		/*
794		 * Get the local modify time for the case of a write
795		 * delegation.
796		 */
797		nfscl_deleggetmodtime(vp, &vap->va_mtime);
798		return (0);
799	}
800
801	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
802	    nfsaccess_cache_timeout > 0) {
803		NFSINCRGLOBAL(newnfsstats.accesscache_misses);
804		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
805		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
806			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
807			return (0);
808		}
809	}
810	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
811	if (!error)
812		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
813	if (!error) {
814		/*
815		 * Get the local modify time for the case of a write
816		 * delegation.
817		 */
818		nfscl_deleggetmodtime(vp, &vap->va_mtime);
819	} else if (NFS_ISV4(vp)) {
820		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
821	}
822	return (error);
823}
824
825/*
826 * nfs setattr call.
827 */
828static int
829nfs_setattr(struct vop_setattr_args *ap)
830{
831	struct vnode *vp = ap->a_vp;
832	struct nfsnode *np = VTONFS(vp);
833	struct thread *td = curthread;	/* XXX */
834	struct vattr *vap = ap->a_vap;
835	int error = 0;
836	u_quad_t tsize;
837
838#ifndef nolint
839	tsize = (u_quad_t)0;
840#endif
841
842	/*
843	 * Setting of flags and marking of atimes are not supported.
844	 */
845	if (vap->va_flags != VNOVAL)
846		return (EOPNOTSUPP);
847
848	/*
849	 * Disallow write attempts if the filesystem is mounted read-only.
850	 */
851  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
852	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
853	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
854	    (vp->v_mount->mnt_flag & MNT_RDONLY))
855		return (EROFS);
856	if (vap->va_size != VNOVAL) {
857 		switch (vp->v_type) {
858 		case VDIR:
859 			return (EISDIR);
860 		case VCHR:
861 		case VBLK:
862 		case VSOCK:
863 		case VFIFO:
864			if (vap->va_mtime.tv_sec == VNOVAL &&
865			    vap->va_atime.tv_sec == VNOVAL &&
866			    vap->va_mode == (mode_t)VNOVAL &&
867			    vap->va_uid == (uid_t)VNOVAL &&
868			    vap->va_gid == (gid_t)VNOVAL)
869				return (0);
870 			vap->va_size = VNOVAL;
871 			break;
872 		default:
873			/*
874			 * Disallow write attempts if the filesystem is
875			 * mounted read-only.
876			 */
877			if (vp->v_mount->mnt_flag & MNT_RDONLY)
878				return (EROFS);
879			/*
880			 *  We run vnode_pager_setsize() early (why?),
881			 * we must set np->n_size now to avoid vinvalbuf
882			 * V_SAVE races that might setsize a lower
883			 * value.
884			 */
885			mtx_lock(&np->n_mtx);
886			tsize = np->n_size;
887			mtx_unlock(&np->n_mtx);
888			error = ncl_meta_setsize(vp, ap->a_cred, td,
889			    vap->va_size);
890			mtx_lock(&np->n_mtx);
891 			if (np->n_flag & NMODIFIED) {
892			    tsize = np->n_size;
893			    mtx_unlock(&np->n_mtx);
894 			    if (vap->va_size == 0)
895 				error = ncl_vinvalbuf(vp, 0, td, 1);
896 			    else
897 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
898 			    if (error) {
899				vnode_pager_setsize(vp, tsize);
900				return (error);
901			    }
902			    /*
903			     * Call nfscl_delegmodtime() to set the modify time
904			     * locally, as required.
905			     */
906			    nfscl_delegmodtime(vp);
907 			} else
908			    mtx_unlock(&np->n_mtx);
909			/*
910			 * np->n_size has already been set to vap->va_size
911			 * in ncl_meta_setsize(). We must set it again since
912			 * nfs_loadattrcache() could be called through
913			 * ncl_meta_setsize() and could modify np->n_size.
914			 */
915			mtx_lock(&np->n_mtx);
916 			np->n_vattr.na_size = np->n_size = vap->va_size;
917			mtx_unlock(&np->n_mtx);
918  		};
919  	} else {
920		mtx_lock(&np->n_mtx);
921		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
922		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
923			mtx_unlock(&np->n_mtx);
924			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
925			    (error == EINTR || error == EIO))
926				return (error);
927		} else
928			mtx_unlock(&np->n_mtx);
929	}
930	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
931	if (error && vap->va_size != VNOVAL) {
932		mtx_lock(&np->n_mtx);
933		np->n_size = np->n_vattr.na_size = tsize;
934		vnode_pager_setsize(vp, tsize);
935		mtx_unlock(&np->n_mtx);
936	}
937	return (error);
938}
939
940/*
941 * Do an nfs setattr rpc.
942 */
943static int
944nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
945    struct thread *td)
946{
947	struct nfsnode *np = VTONFS(vp);
948	int error, ret, attrflag, i;
949	struct nfsvattr nfsva;
950
951	if (NFS_ISV34(vp)) {
952		mtx_lock(&np->n_mtx);
953		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
954			np->n_accesscache[i].stamp = 0;
955		np->n_flag |= NDELEGMOD;
956		mtx_unlock(&np->n_mtx);
957	}
958	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
959	    NULL);
960	if (attrflag) {
961		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
962		if (ret && !error)
963			error = ret;
964	}
965	if (error && NFS_ISV4(vp))
966		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
967	return (error);
968}
969
970/*
971 * nfs lookup call, one step at a time...
972 * First look in cache
973 * If not found, unlock the directory nfsnode and do the rpc
974 */
975static int
976nfs_lookup(struct vop_lookup_args *ap)
977{
978	struct componentname *cnp = ap->a_cnp;
979	struct vnode *dvp = ap->a_dvp;
980	struct vnode **vpp = ap->a_vpp;
981	struct mount *mp = dvp->v_mount;
982	int flags = cnp->cn_flags;
983	struct vnode *newvp;
984	struct nfsmount *nmp;
985	struct nfsnode *np, *newnp;
986	int error = 0, attrflag, dattrflag, ltype;
987	struct thread *td = cnp->cn_thread;
988	struct nfsfh *nfhp;
989	struct nfsvattr dnfsva, nfsva;
990	struct vattr vattr;
991	struct timespec dmtime;
992
993	*vpp = NULLVP;
994	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
995	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
996		return (EROFS);
997	if (dvp->v_type != VDIR)
998		return (ENOTDIR);
999	nmp = VFSTONFS(mp);
1000	np = VTONFS(dvp);
1001
1002	/* For NFSv4, wait until any remove is done. */
1003	mtx_lock(&np->n_mtx);
1004	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1005		np->n_flag |= NREMOVEWANT;
1006		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1007	}
1008	mtx_unlock(&np->n_mtx);
1009
1010	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1011		return (error);
1012	error = cache_lookup(dvp, vpp, cnp);
1013	if (error > 0 && error != ENOENT)
1014		return (error);
1015	if (error == -1) {
1016		/*
1017		 * We only accept a positive hit in the cache if the
1018		 * change time of the file matches our cached copy.
1019		 * Otherwise, we discard the cache entry and fallback
1020		 * to doing a lookup RPC.
1021		 *
1022		 * To better handle stale file handles and attributes,
1023		 * clear the attribute cache of this node if it is a
1024		 * leaf component, part of an open() call, and not
1025		 * locally modified before fetching the attributes.
1026		 * This should allow stale file handles to be detected
1027		 * here where we can fall back to a LOOKUP RPC to
1028		 * recover rather than having nfs_open() detect the
1029		 * stale file handle and failing open(2) with ESTALE.
1030		 */
1031		newvp = *vpp;
1032		newnp = VTONFS(newvp);
1033		if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1034		    !(newnp->n_flag & NMODIFIED)) {
1035			mtx_lock(&newnp->n_mtx);
1036			newnp->n_attrstamp = 0;
1037			mtx_unlock(&newnp->n_mtx);
1038		}
1039		if (nfscl_nodeleg(newvp, 0) == 0 ||
1040		    (VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1041		    timespeccmp(&vattr.va_ctime, &newnp->n_ctime, ==))) {
1042			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1043			if (cnp->cn_nameiop != LOOKUP &&
1044			    (flags & ISLASTCN))
1045				cnp->cn_flags |= SAVENAME;
1046			return (0);
1047		}
1048		cache_purge(newvp);
1049		if (dvp != newvp)
1050			vput(newvp);
1051		else
1052			vrele(newvp);
1053		*vpp = NULLVP;
1054	} else if (error == ENOENT) {
1055		if (dvp->v_iflag & VI_DOOMED)
1056			return (ENOENT);
1057		/*
1058		 * We only accept a negative hit in the cache if the
1059		 * modification time of the parent directory matches
1060		 * our cached copy.  Otherwise, we discard all of the
1061		 * negative cache entries for this directory. We also
1062		 * only trust -ve cache entries for less than
1063		 * nm_negative_namecache_timeout seconds.
1064		 */
1065		if ((u_int)(ticks - np->n_dmtime_ticks) <
1066		    (nmp->nm_negnametimeo * hz) &&
1067		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1068		    timespeccmp(&vattr.va_mtime, &np->n_dmtime, ==)) {
1069			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1070			return (ENOENT);
1071		}
1072		cache_purge_negative(dvp);
1073		mtx_lock(&np->n_mtx);
1074		timespecclear(&np->n_dmtime);
1075		mtx_unlock(&np->n_mtx);
1076	}
1077
1078	/*
1079	 * Cache the modification time of the parent directory in case
1080	 * the lookup fails and results in adding the first negative
1081	 * name cache entry for the directory.  Since this is reading
1082	 * a single time_t, don't bother with locking.  The
1083	 * modification time may be a bit stale, but it must be read
1084	 * before performing the lookup RPC to prevent a race where
1085	 * another lookup updates the timestamp on the directory after
1086	 * the lookup RPC has been performed on the server but before
1087	 * n_dmtime is set at the end of this function.
1088	 */
1089	dmtime = np->n_vattr.na_mtime;
1090	error = 0;
1091	newvp = NULLVP;
1092	NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
1093	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1094	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1095	    NULL);
1096	if (dattrflag)
1097		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1098	if (error) {
1099		if (newvp != NULLVP) {
1100			vput(newvp);
1101			*vpp = NULLVP;
1102		}
1103
1104		if (error != ENOENT) {
1105			if (NFS_ISV4(dvp))
1106				error = nfscl_maperr(td, error, (uid_t)0,
1107				    (gid_t)0);
1108			return (error);
1109		}
1110
1111		/* The requested file was not found. */
1112		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1113		    (flags & ISLASTCN)) {
1114			/*
1115			 * XXX: UFS does a full VOP_ACCESS(dvp,
1116			 * VWRITE) here instead of just checking
1117			 * MNT_RDONLY.
1118			 */
1119			if (mp->mnt_flag & MNT_RDONLY)
1120				return (EROFS);
1121			cnp->cn_flags |= SAVENAME;
1122			return (EJUSTRETURN);
1123		}
1124
1125		if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE) {
1126			/*
1127			 * Maintain n_dmtime as the modification time
1128			 * of the parent directory when the oldest -ve
1129			 * name cache entry for this directory was
1130			 * added.  If a -ve cache entry has already
1131			 * been added with a newer modification time
1132			 * by a concurrent lookup, then don't bother
1133			 * adding a cache entry.  The modification
1134			 * time of the directory might have changed
1135			 * due to the file this lookup failed to find
1136			 * being created.  In that case a subsequent
1137			 * lookup would incorrectly use the entry
1138			 * added here instead of doing an extra
1139			 * lookup.
1140			 */
1141			mtx_lock(&np->n_mtx);
1142			if (timespeccmp(&np->n_dmtime, &dmtime, <=)) {
1143				if (!timespecisset(&np->n_dmtime)) {
1144					np->n_dmtime = dmtime;
1145					np->n_dmtime_ticks = ticks;
1146				}
1147				mtx_unlock(&np->n_mtx);
1148				cache_enter(dvp, NULL, cnp);
1149			} else
1150				mtx_unlock(&np->n_mtx);
1151		}
1152		return (ENOENT);
1153	}
1154
1155	/*
1156	 * Handle RENAME case...
1157	 */
1158	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1159		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1160			FREE((caddr_t)nfhp, M_NFSFH);
1161			return (EISDIR);
1162		}
1163		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1164		if (error)
1165			return (error);
1166		newvp = NFSTOV(np);
1167		if (attrflag)
1168			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1169			    0, 1);
1170		*vpp = newvp;
1171		cnp->cn_flags |= SAVENAME;
1172		return (0);
1173	}
1174
1175	if (flags & ISDOTDOT) {
1176		ltype = VOP_ISLOCKED(dvp);
1177		error = vfs_busy(mp, MBF_NOWAIT);
1178		if (error != 0) {
1179			vfs_ref(mp);
1180			VOP_UNLOCK(dvp, 0);
1181			error = vfs_busy(mp, 0);
1182			vn_lock(dvp, ltype | LK_RETRY);
1183			vfs_rel(mp);
1184			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1185				vfs_unbusy(mp);
1186				error = ENOENT;
1187			}
1188			if (error != 0)
1189				return (error);
1190		}
1191		VOP_UNLOCK(dvp, 0);
1192		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1193		if (error == 0)
1194			newvp = NFSTOV(np);
1195		vfs_unbusy(mp);
1196		if (newvp != dvp)
1197			vn_lock(dvp, ltype | LK_RETRY);
1198		if (dvp->v_iflag & VI_DOOMED) {
1199			if (error == 0) {
1200				if (newvp == dvp)
1201					vrele(newvp);
1202				else
1203					vput(newvp);
1204			}
1205			error = ENOENT;
1206		}
1207		if (error != 0)
1208			return (error);
1209		if (attrflag)
1210			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1211			    0, 1);
1212	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1213		FREE((caddr_t)nfhp, M_NFSFH);
1214		VREF(dvp);
1215		newvp = dvp;
1216		if (attrflag)
1217			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1218			    0, 1);
1219	} else {
1220		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1221		if (error)
1222			return (error);
1223		newvp = NFSTOV(np);
1224		if (attrflag)
1225			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1226			    0, 1);
1227		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1228		    !(np->n_flag & NMODIFIED)) {
1229			/*
1230			 * Flush the attribute cache when opening a
1231			 * leaf node to ensure that fresh attributes
1232			 * are fetched in nfs_open() since we did not
1233			 * fetch attributes from the LOOKUP reply.
1234			 */
1235			mtx_lock(&np->n_mtx);
1236			np->n_attrstamp = 0;
1237			mtx_unlock(&np->n_mtx);
1238		}
1239	}
1240	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1241		cnp->cn_flags |= SAVENAME;
1242	if ((cnp->cn_flags & MAKEENTRY) &&
1243	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) {
1244		np->n_ctime = np->n_vattr.na_vattr.va_ctime;
1245		cache_enter(dvp, newvp, cnp);
1246	}
1247	*vpp = newvp;
1248	return (0);
1249}
1250
1251/*
1252 * nfs read call.
1253 * Just call ncl_bioread() to do the work.
1254 */
1255static int
1256nfs_read(struct vop_read_args *ap)
1257{
1258	struct vnode *vp = ap->a_vp;
1259
1260	switch (vp->v_type) {
1261	case VREG:
1262		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1263	case VDIR:
1264		return (EISDIR);
1265	default:
1266		return (EOPNOTSUPP);
1267	}
1268}
1269
1270/*
1271 * nfs readlink call
1272 */
1273static int
1274nfs_readlink(struct vop_readlink_args *ap)
1275{
1276	struct vnode *vp = ap->a_vp;
1277
1278	if (vp->v_type != VLNK)
1279		return (EINVAL);
1280	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1281}
1282
1283/*
1284 * Do a readlink rpc.
1285 * Called by ncl_doio() from below the buffer cache.
1286 */
1287int
1288ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1289{
1290	int error, ret, attrflag;
1291	struct nfsvattr nfsva;
1292
1293	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1294	    &attrflag, NULL);
1295	if (attrflag) {
1296		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1297		if (ret && !error)
1298			error = ret;
1299	}
1300	if (error && NFS_ISV4(vp))
1301		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1302	return (error);
1303}
1304
1305/*
1306 * nfs read rpc call
1307 * Ditto above
1308 */
1309int
1310ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1311{
1312	int error, ret, attrflag;
1313	struct nfsvattr nfsva;
1314
1315	error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag,
1316	    NULL);
1317	if (attrflag) {
1318		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1319		if (ret && !error)
1320			error = ret;
1321	}
1322	if (error && NFS_ISV4(vp))
1323		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1324	return (error);
1325}
1326
1327/*
1328 * nfs write call
1329 */
1330int
1331ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1332    int *iomode, int *must_commit, int called_from_strategy)
1333{
1334	struct nfsvattr nfsva;
1335	int error = 0, attrflag, ret;
1336	u_char verf[NFSX_VERF];
1337	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1338
1339	*must_commit = 0;
1340	error = nfsrpc_write(vp, uiop, iomode, verf, cred,
1341	    uiop->uio_td, &nfsva, &attrflag, NULL, called_from_strategy);
1342	NFSLOCKMNT(nmp);
1343	if (!error && NFSHASWRITEVERF(nmp) &&
1344	    NFSBCMP(verf, nmp->nm_verf, NFSX_VERF)) {
1345		*must_commit = 1;
1346		NFSBCOPY(verf, nmp->nm_verf, NFSX_VERF);
1347	}
1348	NFSUNLOCKMNT(nmp);
1349	if (attrflag) {
1350		if (VTONFS(vp)->n_flag & ND_NFSV4)
1351			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1352			    1);
1353		else
1354			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1355			    1);
1356		if (ret && !error)
1357			error = ret;
1358	}
1359	if (vp->v_mount->mnt_kern_flag & MNTK_ASYNC)
1360		*iomode = NFSWRITE_FILESYNC;
1361	if (error && NFS_ISV4(vp))
1362		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1363	return (error);
1364}
1365
1366/*
1367 * nfs mknod rpc
1368 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1369 * mode set to specify the file type and the size field for rdev.
1370 */
1371static int
1372nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1373    struct vattr *vap)
1374{
1375	struct nfsvattr nfsva, dnfsva;
1376	struct vnode *newvp = NULL;
1377	struct nfsnode *np = NULL, *dnp;
1378	struct nfsfh *nfhp;
1379	struct vattr vattr;
1380	int error = 0, attrflag, dattrflag;
1381	u_int32_t rdev;
1382
1383	if (vap->va_type == VCHR || vap->va_type == VBLK)
1384		rdev = vap->va_rdev;
1385	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1386		rdev = 0xffffffff;
1387	else
1388		return (EOPNOTSUPP);
1389	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1390		return (error);
1391	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1392	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1393	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1394	if (!error) {
1395		if (!nfhp)
1396			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1397			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1398			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1399			    NULL);
1400		if (nfhp)
1401			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1402			    cnp->cn_thread, &np, NULL);
1403	}
1404	if (dattrflag)
1405		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1406	if (!error) {
1407		newvp = NFSTOV(np);
1408		if (attrflag)
1409			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1410			    0, 1);
1411	}
1412	if (!error) {
1413		if ((cnp->cn_flags & MAKEENTRY))
1414			cache_enter(dvp, newvp, cnp);
1415		*vpp = newvp;
1416	} else if (NFS_ISV4(dvp)) {
1417		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1418		    vap->va_gid);
1419	}
1420	dnp = VTONFS(dvp);
1421	mtx_lock(&dnp->n_mtx);
1422	dnp->n_flag |= NMODIFIED;
1423	if (!dattrflag)
1424		dnp->n_attrstamp = 0;
1425	mtx_unlock(&dnp->n_mtx);
1426	return (error);
1427}
1428
1429/*
1430 * nfs mknod vop
1431 * just call nfs_mknodrpc() to do the work.
1432 */
1433/* ARGSUSED */
1434static int
1435nfs_mknod(struct vop_mknod_args *ap)
1436{
1437	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1438}
1439
1440static struct mtx nfs_cverf_mtx;
1441MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1442    MTX_DEF);
1443
1444static nfsquad_t
1445nfs_get_cverf(void)
1446{
1447	static nfsquad_t cverf;
1448	nfsquad_t ret;
1449	static int cverf_initialized = 0;
1450
1451	mtx_lock(&nfs_cverf_mtx);
1452	if (cverf_initialized == 0) {
1453		cverf.lval[0] = arc4random();
1454		cverf.lval[1] = arc4random();
1455		cverf_initialized = 1;
1456	} else
1457		cverf.qval++;
1458	ret = cverf;
1459	mtx_unlock(&nfs_cverf_mtx);
1460
1461	return (ret);
1462}
1463
1464/*
1465 * nfs file create call
1466 */
1467static int
1468nfs_create(struct vop_create_args *ap)
1469{
1470	struct vnode *dvp = ap->a_dvp;
1471	struct vattr *vap = ap->a_vap;
1472	struct componentname *cnp = ap->a_cnp;
1473	struct nfsnode *np = NULL, *dnp;
1474	struct vnode *newvp = NULL;
1475	struct nfsmount *nmp;
1476	struct nfsvattr dnfsva, nfsva;
1477	struct nfsfh *nfhp;
1478	nfsquad_t cverf;
1479	int error = 0, attrflag, dattrflag, fmode = 0;
1480	struct vattr vattr;
1481
1482	/*
1483	 * Oops, not for me..
1484	 */
1485	if (vap->va_type == VSOCK)
1486		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1487
1488	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1489		return (error);
1490	if (vap->va_vaflags & VA_EXCLUSIVE)
1491		fmode |= O_EXCL;
1492	dnp = VTONFS(dvp);
1493	nmp = VFSTONFS(vnode_mount(dvp));
1494again:
1495	/* For NFSv4, wait until any remove is done. */
1496	mtx_lock(&dnp->n_mtx);
1497	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1498		dnp->n_flag |= NREMOVEWANT;
1499		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1500	}
1501	mtx_unlock(&dnp->n_mtx);
1502
1503	cverf = nfs_get_cverf();
1504	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1505	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1506	    &nfhp, &attrflag, &dattrflag, NULL);
1507	if (!error) {
1508		if (nfhp == NULL)
1509			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1510			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1511			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1512			    NULL);
1513		if (nfhp != NULL)
1514			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1515			    cnp->cn_thread, &np, NULL);
1516	}
1517	if (dattrflag)
1518		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1519	if (!error) {
1520		newvp = NFSTOV(np);
1521		if (attrflag)
1522			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1523			    0, 1);
1524	}
1525	if (error) {
1526		if (newvp != NULL) {
1527			vrele(newvp);
1528			newvp = NULL;
1529		}
1530		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1531		    error == NFSERR_NOTSUPP) {
1532			fmode &= ~O_EXCL;
1533			goto again;
1534		}
1535	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1536		if (nfscl_checksattr(vap, &nfsva)) {
1537			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1538			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1539			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1540			    vap->va_gid != (gid_t)VNOVAL)) {
1541				/* try again without setting uid/gid */
1542				vap->va_uid = (uid_t)VNOVAL;
1543				vap->va_gid = (uid_t)VNOVAL;
1544				error = nfsrpc_setattr(newvp, vap, NULL,
1545				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1546				    &attrflag, NULL);
1547			}
1548			if (attrflag)
1549				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1550				    NULL, 0, 1);
1551		}
1552	}
1553	if (!error) {
1554		if (cnp->cn_flags & MAKEENTRY)
1555			cache_enter(dvp, newvp, cnp);
1556		*ap->a_vpp = newvp;
1557	} else if (NFS_ISV4(dvp)) {
1558		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1559		    vap->va_gid);
1560	}
1561	mtx_lock(&dnp->n_mtx);
1562	dnp->n_flag |= NMODIFIED;
1563	if (!dattrflag)
1564		dnp->n_attrstamp = 0;
1565	mtx_unlock(&dnp->n_mtx);
1566	return (error);
1567}
1568
1569/*
1570 * nfs file remove call
1571 * To try and make nfs semantics closer to ufs semantics, a file that has
1572 * other processes using the vnode is renamed instead of removed and then
1573 * removed later on the last close.
1574 * - If v_usecount > 1
1575 *	  If a rename is not already in the works
1576 *	     call nfs_sillyrename() to set it up
1577 *     else
1578 *	  do the remove rpc
1579 */
1580static int
1581nfs_remove(struct vop_remove_args *ap)
1582{
1583	struct vnode *vp = ap->a_vp;
1584	struct vnode *dvp = ap->a_dvp;
1585	struct componentname *cnp = ap->a_cnp;
1586	struct nfsnode *np = VTONFS(vp);
1587	int error = 0;
1588	struct vattr vattr;
1589
1590	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1591	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1592	if (vp->v_type == VDIR)
1593		error = EPERM;
1594	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1595	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1596	    vattr.va_nlink > 1)) {
1597		/*
1598		 * Purge the name cache so that the chance of a lookup for
1599		 * the name succeeding while the remove is in progress is
1600		 * minimized. Without node locking it can still happen, such
1601		 * that an I/O op returns ESTALE, but since you get this if
1602		 * another host removes the file..
1603		 */
1604		cache_purge(vp);
1605		/*
1606		 * throw away biocache buffers, mainly to avoid
1607		 * unnecessary delayed writes later.
1608		 */
1609		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1610		/* Do the rpc */
1611		if (error != EINTR && error != EIO)
1612			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1613			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1614		/*
1615		 * Kludge City: If the first reply to the remove rpc is lost..
1616		 *   the reply to the retransmitted request will be ENOENT
1617		 *   since the file was in fact removed
1618		 *   Therefore, we cheat and return success.
1619		 */
1620		if (error == ENOENT)
1621			error = 0;
1622	} else if (!np->n_sillyrename)
1623		error = nfs_sillyrename(dvp, vp, cnp);
1624	np->n_attrstamp = 0;
1625	return (error);
1626}
1627
1628/*
1629 * nfs file remove rpc called from nfs_inactive
1630 */
1631int
1632ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1633{
1634	/*
1635	 * Make sure that the directory vnode is still valid.
1636	 * XXX we should lock sp->s_dvp here.
1637	 */
1638	if (sp->s_dvp->v_type == VBAD)
1639		return (0);
1640	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1641	    sp->s_cred, NULL));
1642}
1643
1644/*
1645 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1646 */
1647static int
1648nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1649    int namelen, struct ucred *cred, struct thread *td)
1650{
1651	struct nfsvattr dnfsva;
1652	struct nfsnode *dnp = VTONFS(dvp);
1653	int error = 0, dattrflag;
1654
1655	mtx_lock(&dnp->n_mtx);
1656	dnp->n_flag |= NREMOVEINPROG;
1657	mtx_unlock(&dnp->n_mtx);
1658	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1659	    &dattrflag, NULL);
1660	mtx_lock(&dnp->n_mtx);
1661	if ((dnp->n_flag & NREMOVEWANT)) {
1662		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1663		mtx_unlock(&dnp->n_mtx);
1664		wakeup((caddr_t)dnp);
1665	} else {
1666		dnp->n_flag &= ~NREMOVEINPROG;
1667		mtx_unlock(&dnp->n_mtx);
1668	}
1669	if (dattrflag)
1670		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1671	mtx_lock(&dnp->n_mtx);
1672	dnp->n_flag |= NMODIFIED;
1673	if (!dattrflag)
1674		dnp->n_attrstamp = 0;
1675	mtx_unlock(&dnp->n_mtx);
1676	if (error && NFS_ISV4(dvp))
1677		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1678	return (error);
1679}
1680
1681/*
1682 * nfs file rename call
1683 */
1684static int
1685nfs_rename(struct vop_rename_args *ap)
1686{
1687	struct vnode *fvp = ap->a_fvp;
1688	struct vnode *tvp = ap->a_tvp;
1689	struct vnode *fdvp = ap->a_fdvp;
1690	struct vnode *tdvp = ap->a_tdvp;
1691	struct componentname *tcnp = ap->a_tcnp;
1692	struct componentname *fcnp = ap->a_fcnp;
1693	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1694	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1695	struct nfsv4node *newv4 = NULL;
1696	int error;
1697
1698	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1699	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1700	/* Check for cross-device rename */
1701	if ((fvp->v_mount != tdvp->v_mount) ||
1702	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1703		error = EXDEV;
1704		goto out;
1705	}
1706
1707	if (fvp == tvp) {
1708		ncl_printf("nfs_rename: fvp == tvp (can't happen)\n");
1709		error = 0;
1710		goto out;
1711	}
1712	if ((error = vn_lock(fvp, LK_EXCLUSIVE)))
1713		goto out;
1714
1715	/*
1716	 * We have to flush B_DELWRI data prior to renaming
1717	 * the file.  If we don't, the delayed-write buffers
1718	 * can be flushed out later after the file has gone stale
1719	 * under NFSV3.  NFSV2 does not have this problem because
1720	 * ( as far as I can tell ) it flushes dirty buffers more
1721	 * often.
1722	 *
1723	 * Skip the rename operation if the fsync fails, this can happen
1724	 * due to the server's volume being full, when we pushed out data
1725	 * that was written back to our cache earlier. Not checking for
1726	 * this condition can result in potential (silent) data loss.
1727	 */
1728	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1729	VOP_UNLOCK(fvp, 0);
1730	if (!error && tvp)
1731		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1732	if (error)
1733		goto out;
1734
1735	/*
1736	 * If the tvp exists and is in use, sillyrename it before doing the
1737	 * rename of the new file over it.
1738	 * XXX Can't sillyrename a directory.
1739	 */
1740	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1741		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1742		vput(tvp);
1743		tvp = NULL;
1744	}
1745
1746	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1747	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1748	    tcnp->cn_thread);
1749
1750	if (!error) {
1751		/*
1752		 * For NFSv4, check to see if it is the same name and
1753		 * replace the name, if it is different.
1754		 */
1755		MALLOC(newv4, struct nfsv4node *,
1756		    sizeof (struct nfsv4node) +
1757		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1758		    M_NFSV4NODE, M_WAITOK);
1759		mtx_lock(&tdnp->n_mtx);
1760		mtx_lock(&fnp->n_mtx);
1761		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1762		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1763		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1764		      tcnp->cn_namelen) ||
1765		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1766		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1767			tdnp->n_fhp->nfh_len))) {
1768#ifdef notdef
1769{ char nnn[100]; int nnnl;
1770nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1771bcopy(tcnp->cn_nameptr, nnn, nnnl);
1772nnn[nnnl] = '\0';
1773printf("ren replace=%s\n",nnn);
1774}
1775#endif
1776			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1777			fnp->n_v4 = newv4;
1778			newv4 = NULL;
1779			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1780			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1781			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1782			    tdnp->n_fhp->nfh_len);
1783			NFSBCOPY(tcnp->cn_nameptr,
1784			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1785		}
1786		mtx_unlock(&tdnp->n_mtx);
1787		mtx_unlock(&fnp->n_mtx);
1788		if (newv4 != NULL)
1789			FREE((caddr_t)newv4, M_NFSV4NODE);
1790	}
1791
1792	if (fvp->v_type == VDIR) {
1793		if (tvp != NULL && tvp->v_type == VDIR)
1794			cache_purge(tdvp);
1795		cache_purge(fdvp);
1796	}
1797
1798out:
1799	if (tdvp == tvp)
1800		vrele(tdvp);
1801	else
1802		vput(tdvp);
1803	if (tvp)
1804		vput(tvp);
1805	vrele(fdvp);
1806	vrele(fvp);
1807	/*
1808	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1809	 */
1810	if (error == ENOENT)
1811		error = 0;
1812	return (error);
1813}
1814
1815/*
1816 * nfs file rename rpc called from nfs_remove() above
1817 */
1818static int
1819nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1820    struct sillyrename *sp)
1821{
1822
1823	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1824	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1825	    scnp->cn_thread));
1826}
1827
1828/*
1829 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1830 */
1831static int
1832nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1833    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1834    int tnamelen, struct ucred *cred, struct thread *td)
1835{
1836	struct nfsvattr fnfsva, tnfsva;
1837	struct nfsnode *fdnp = VTONFS(fdvp);
1838	struct nfsnode *tdnp = VTONFS(tdvp);
1839	int error = 0, fattrflag, tattrflag;
1840
1841	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1842	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1843	    &tattrflag, NULL, NULL);
1844	mtx_lock(&fdnp->n_mtx);
1845	fdnp->n_flag |= NMODIFIED;
1846	mtx_unlock(&fdnp->n_mtx);
1847	mtx_lock(&tdnp->n_mtx);
1848	tdnp->n_flag |= NMODIFIED;
1849	mtx_unlock(&tdnp->n_mtx);
1850	if (fattrflag)
1851		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1852	else
1853		fdnp->n_attrstamp = 0;
1854	if (tattrflag)
1855		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1856	else
1857		tdnp->n_attrstamp = 0;
1858	if (error && NFS_ISV4(fdvp))
1859		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1860	return (error);
1861}
1862
1863/*
1864 * nfs hard link create call
1865 */
1866static int
1867nfs_link(struct vop_link_args *ap)
1868{
1869	struct vnode *vp = ap->a_vp;
1870	struct vnode *tdvp = ap->a_tdvp;
1871	struct componentname *cnp = ap->a_cnp;
1872	struct nfsnode *tdnp;
1873	struct nfsvattr nfsva, dnfsva;
1874	int error = 0, attrflag, dattrflag;
1875
1876	if (vp->v_mount != tdvp->v_mount) {
1877		return (EXDEV);
1878	}
1879
1880	/*
1881	 * Push all writes to the server, so that the attribute cache
1882	 * doesn't get "out of sync" with the server.
1883	 * XXX There should be a better way!
1884	 */
1885	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1886
1887	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1888	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1889	    &dattrflag, NULL);
1890	tdnp = VTONFS(tdvp);
1891	mtx_lock(&tdnp->n_mtx);
1892	tdnp->n_flag |= NMODIFIED;
1893	mtx_unlock(&tdnp->n_mtx);
1894	if (attrflag)
1895		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1896	else
1897		VTONFS(vp)->n_attrstamp = 0;
1898	if (dattrflag)
1899		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1900	else
1901		tdnp->n_attrstamp = 0;
1902	/*
1903	 * If negative lookup caching is enabled, I might as well
1904	 * add an entry for this node. Not necessary for correctness,
1905	 * but if negative caching is enabled, then the system
1906	 * must care about lookup caching hit rate, so...
1907	 */
1908	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1909	    (cnp->cn_flags & MAKEENTRY))
1910		cache_enter(tdvp, vp, cnp);
1911	if (error && NFS_ISV4(vp))
1912		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1913		    (gid_t)0);
1914	return (error);
1915}
1916
1917/*
1918 * nfs symbolic link create call
1919 */
1920static int
1921nfs_symlink(struct vop_symlink_args *ap)
1922{
1923	struct vnode *dvp = ap->a_dvp;
1924	struct vattr *vap = ap->a_vap;
1925	struct componentname *cnp = ap->a_cnp;
1926	struct nfsvattr nfsva, dnfsva;
1927	struct nfsfh *nfhp;
1928	struct nfsnode *np = NULL, *dnp;
1929	struct vnode *newvp = NULL;
1930	int error = 0, attrflag, dattrflag, ret;
1931
1932	vap->va_type = VLNK;
1933	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1934	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1935	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1936	if (nfhp) {
1937		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
1938		    &np, NULL);
1939		if (!ret)
1940			newvp = NFSTOV(np);
1941		else if (!error)
1942			error = ret;
1943	}
1944	if (newvp != NULL) {
1945		if (attrflag)
1946			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1947			    0, 1);
1948	} else if (!error) {
1949		/*
1950		 * If we do not have an error and we could not extract the
1951		 * newvp from the response due to the request being NFSv2, we
1952		 * have to do a lookup in order to obtain a newvp to return.
1953		 */
1954		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1955		    cnp->cn_cred, cnp->cn_thread, &np);
1956		if (!error)
1957			newvp = NFSTOV(np);
1958	}
1959	if (error) {
1960		if (newvp)
1961			vput(newvp);
1962		if (NFS_ISV4(dvp))
1963			error = nfscl_maperr(cnp->cn_thread, error,
1964			    vap->va_uid, vap->va_gid);
1965	} else {
1966		/*
1967		 * If negative lookup caching is enabled, I might as well
1968		 * add an entry for this node. Not necessary for correctness,
1969		 * but if negative caching is enabled, then the system
1970		 * must care about lookup caching hit rate, so...
1971		 */
1972		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
1973		    (cnp->cn_flags & MAKEENTRY))
1974			cache_enter(dvp, newvp, cnp);
1975		*ap->a_vpp = newvp;
1976	}
1977
1978	dnp = VTONFS(dvp);
1979	mtx_lock(&dnp->n_mtx);
1980	dnp->n_flag |= NMODIFIED;
1981	mtx_unlock(&dnp->n_mtx);
1982	if (dattrflag)
1983		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1984	else
1985		dnp->n_attrstamp = 0;
1986	return (error);
1987}
1988
1989/*
1990 * nfs make dir call
1991 */
1992static int
1993nfs_mkdir(struct vop_mkdir_args *ap)
1994{
1995	struct vnode *dvp = ap->a_dvp;
1996	struct vattr *vap = ap->a_vap;
1997	struct componentname *cnp = ap->a_cnp;
1998	struct nfsnode *np = NULL, *dnp;
1999	struct vnode *newvp = NULL;
2000	struct vattr vattr;
2001	struct nfsfh *nfhp;
2002	struct nfsvattr nfsva, dnfsva;
2003	int error = 0, attrflag, dattrflag, ret;
2004
2005	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
2006		return (error);
2007	vap->va_type = VDIR;
2008	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2009	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2010	    &attrflag, &dattrflag, NULL);
2011	dnp = VTONFS(dvp);
2012	mtx_lock(&dnp->n_mtx);
2013	dnp->n_flag |= NMODIFIED;
2014	mtx_unlock(&dnp->n_mtx);
2015	if (dattrflag)
2016		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2017	else
2018		dnp->n_attrstamp = 0;
2019	if (nfhp) {
2020		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2021		    &np, NULL);
2022		if (!ret) {
2023			newvp = NFSTOV(np);
2024			if (attrflag)
2025			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2026				NULL, 0, 1);
2027		} else if (!error)
2028			error = ret;
2029	}
2030	if (!error && newvp == NULL) {
2031		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2032		    cnp->cn_cred, cnp->cn_thread, &np);
2033		if (!error) {
2034			newvp = NFSTOV(np);
2035			if (newvp->v_type != VDIR)
2036				error = EEXIST;
2037		}
2038	}
2039	if (error) {
2040		if (newvp)
2041			vput(newvp);
2042		if (NFS_ISV4(dvp))
2043			error = nfscl_maperr(cnp->cn_thread, error,
2044			    vap->va_uid, vap->va_gid);
2045	} else {
2046		/*
2047		 * If negative lookup caching is enabled, I might as well
2048		 * add an entry for this node. Not necessary for correctness,
2049		 * but if negative caching is enabled, then the system
2050		 * must care about lookup caching hit rate, so...
2051		 */
2052		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2053		    (cnp->cn_flags & MAKEENTRY))
2054			cache_enter(dvp, newvp, cnp);
2055		*ap->a_vpp = newvp;
2056	}
2057	return (error);
2058}
2059
2060/*
2061 * nfs remove directory call
2062 */
2063static int
2064nfs_rmdir(struct vop_rmdir_args *ap)
2065{
2066	struct vnode *vp = ap->a_vp;
2067	struct vnode *dvp = ap->a_dvp;
2068	struct componentname *cnp = ap->a_cnp;
2069	struct nfsnode *dnp;
2070	struct nfsvattr dnfsva;
2071	int error, dattrflag;
2072
2073	if (dvp == vp)
2074		return (EINVAL);
2075	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2076	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2077	dnp = VTONFS(dvp);
2078	mtx_lock(&dnp->n_mtx);
2079	dnp->n_flag |= NMODIFIED;
2080	mtx_unlock(&dnp->n_mtx);
2081	if (dattrflag)
2082		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2083	else
2084		dnp->n_attrstamp = 0;
2085
2086	cache_purge(dvp);
2087	cache_purge(vp);
2088	if (error && NFS_ISV4(dvp))
2089		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2090		    (gid_t)0);
2091	/*
2092	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2093	 */
2094	if (error == ENOENT)
2095		error = 0;
2096	return (error);
2097}
2098
2099/*
2100 * nfs readdir call
2101 */
2102static int
2103nfs_readdir(struct vop_readdir_args *ap)
2104{
2105	struct vnode *vp = ap->a_vp;
2106	struct nfsnode *np = VTONFS(vp);
2107	struct uio *uio = ap->a_uio;
2108	int tresid, error = 0;
2109	struct vattr vattr;
2110
2111	if (vp->v_type != VDIR)
2112		return(EPERM);
2113
2114	/*
2115	 * First, check for hit on the EOF offset cache
2116	 */
2117	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2118	    (np->n_flag & NMODIFIED) == 0) {
2119		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2120			mtx_lock(&np->n_mtx);
2121			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2122			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2123				mtx_unlock(&np->n_mtx);
2124				NFSINCRGLOBAL(newnfsstats.direofcache_hits);
2125				return (0);
2126			} else
2127				mtx_unlock(&np->n_mtx);
2128		}
2129	}
2130
2131	/*
2132	 * Call ncl_bioread() to do the real work.
2133	 */
2134	tresid = uio->uio_resid;
2135	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2136
2137	if (!error && uio->uio_resid == tresid)
2138		NFSINCRGLOBAL(newnfsstats.direofcache_misses);
2139	return (error);
2140}
2141
2142/*
2143 * Readdir rpc call.
2144 * Called from below the buffer cache by ncl_doio().
2145 */
2146int
2147ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2148    struct thread *td)
2149{
2150	struct nfsvattr nfsva;
2151	nfsuint64 *cookiep, cookie;
2152	struct nfsnode *dnp = VTONFS(vp);
2153	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2154	int error = 0, eof, attrflag;
2155
2156	KASSERT(uiop->uio_iovcnt == 1 &&
2157	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2158	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2159	    ("nfs readdirrpc bad uio"));
2160
2161	/*
2162	 * If there is no cookie, assume directory was stale.
2163	 */
2164	ncl_dircookie_lock(dnp);
2165	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2166	if (cookiep) {
2167		cookie = *cookiep;
2168		ncl_dircookie_unlock(dnp);
2169	} else {
2170		ncl_dircookie_unlock(dnp);
2171		return (NFSERR_BAD_COOKIE);
2172	}
2173
2174	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2175		(void)ncl_fsinfo(nmp, vp, cred, td);
2176
2177	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2178	    &attrflag, &eof, NULL);
2179	if (attrflag)
2180		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2181
2182	if (!error) {
2183		/*
2184		 * We are now either at the end of the directory or have filled
2185		 * the block.
2186		 */
2187		if (eof)
2188			dnp->n_direofoffset = uiop->uio_offset;
2189		else {
2190			if (uiop->uio_resid > 0)
2191				ncl_printf("EEK! readdirrpc resid > 0\n");
2192			ncl_dircookie_lock(dnp);
2193			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2194			*cookiep = cookie;
2195			ncl_dircookie_unlock(dnp);
2196		}
2197	} else if (NFS_ISV4(vp)) {
2198		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2199	}
2200	return (error);
2201}
2202
2203/*
2204 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2205 */
2206int
2207ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2208    struct thread *td)
2209{
2210	struct nfsvattr nfsva;
2211	nfsuint64 *cookiep, cookie;
2212	struct nfsnode *dnp = VTONFS(vp);
2213	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2214	int error = 0, attrflag, eof;
2215
2216	KASSERT(uiop->uio_iovcnt == 1 &&
2217	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2218	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2219	    ("nfs readdirplusrpc bad uio"));
2220
2221	/*
2222	 * If there is no cookie, assume directory was stale.
2223	 */
2224	ncl_dircookie_lock(dnp);
2225	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2226	if (cookiep) {
2227		cookie = *cookiep;
2228		ncl_dircookie_unlock(dnp);
2229	} else {
2230		ncl_dircookie_unlock(dnp);
2231		return (NFSERR_BAD_COOKIE);
2232	}
2233
2234	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2235		(void)ncl_fsinfo(nmp, vp, cred, td);
2236	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2237	    &attrflag, &eof, NULL);
2238	if (attrflag)
2239		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2240
2241	if (!error) {
2242		/*
2243		 * We are now either at end of the directory or have filled the
2244		 * the block.
2245		 */
2246		if (eof)
2247			dnp->n_direofoffset = uiop->uio_offset;
2248		else {
2249			if (uiop->uio_resid > 0)
2250				ncl_printf("EEK! readdirplusrpc resid > 0\n");
2251			ncl_dircookie_lock(dnp);
2252			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2253			*cookiep = cookie;
2254			ncl_dircookie_unlock(dnp);
2255		}
2256	} else if (NFS_ISV4(vp)) {
2257		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2258	}
2259	return (error);
2260}
2261
2262/*
2263 * Silly rename. To make the NFS filesystem that is stateless look a little
2264 * more like the "ufs" a remove of an active vnode is translated to a rename
2265 * to a funny looking filename that is removed by nfs_inactive on the
2266 * nfsnode. There is the potential for another process on a different client
2267 * to create the same funny name between the nfs_lookitup() fails and the
2268 * nfs_rename() completes, but...
2269 */
2270static int
2271nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2272{
2273	struct sillyrename *sp;
2274	struct nfsnode *np;
2275	int error;
2276	short pid;
2277	unsigned int lticks;
2278
2279	cache_purge(dvp);
2280	np = VTONFS(vp);
2281	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2282	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2283	    M_NEWNFSREQ, M_WAITOK);
2284	sp->s_cred = crhold(cnp->cn_cred);
2285	sp->s_dvp = dvp;
2286	VREF(dvp);
2287
2288	/*
2289	 * Fudge together a funny name.
2290	 * Changing the format of the funny name to accomodate more
2291	 * sillynames per directory.
2292	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2293	 * CPU ticks since boot.
2294	 */
2295	pid = cnp->cn_thread->td_proc->p_pid;
2296	lticks = (unsigned int)ticks;
2297	for ( ; ; ) {
2298		sp->s_namlen = sprintf(sp->s_name,
2299				       ".nfs.%08x.%04x4.4", lticks,
2300				       pid);
2301		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2302				 cnp->cn_thread, NULL))
2303			break;
2304		lticks++;
2305	}
2306	error = nfs_renameit(dvp, vp, cnp, sp);
2307	if (error)
2308		goto bad;
2309	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2310		cnp->cn_thread, &np);
2311	np->n_sillyrename = sp;
2312	return (0);
2313bad:
2314	vrele(sp->s_dvp);
2315	crfree(sp->s_cred);
2316	free((caddr_t)sp, M_NEWNFSREQ);
2317	return (error);
2318}
2319
2320/*
2321 * Look up a file name and optionally either update the file handle or
2322 * allocate an nfsnode, depending on the value of npp.
2323 * npp == NULL	--> just do the lookup
2324 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2325 *			handled too
2326 * *npp != NULL --> update the file handle in the vnode
2327 */
2328static int
2329nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2330    struct thread *td, struct nfsnode **npp)
2331{
2332	struct vnode *newvp = NULL, *vp;
2333	struct nfsnode *np, *dnp = VTONFS(dvp);
2334	struct nfsfh *nfhp, *onfhp;
2335	struct nfsvattr nfsva, dnfsva;
2336	struct componentname cn;
2337	int error = 0, attrflag, dattrflag;
2338	u_int hash;
2339
2340	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2341	    &nfhp, &attrflag, &dattrflag, NULL);
2342	if (dattrflag)
2343		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2344	if (npp && !error) {
2345		if (*npp != NULL) {
2346		    np = *npp;
2347		    vp = NFSTOV(np);
2348		    /*
2349		     * For NFSv4, check to see if it is the same name and
2350		     * replace the name, if it is different.
2351		     */
2352		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2353			(np->n_v4->n4_namelen != len ||
2354			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2355			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2356			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2357			 dnp->n_fhp->nfh_len))) {
2358#ifdef notdef
2359{ char nnn[100]; int nnnl;
2360nnnl = (len < 100) ? len : 99;
2361bcopy(name, nnn, nnnl);
2362nnn[nnnl] = '\0';
2363printf("replace=%s\n",nnn);
2364}
2365#endif
2366			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2367			    MALLOC(np->n_v4, struct nfsv4node *,
2368				sizeof (struct nfsv4node) +
2369				dnp->n_fhp->nfh_len + len - 1,
2370				M_NFSV4NODE, M_WAITOK);
2371			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2372			    np->n_v4->n4_namelen = len;
2373			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2374				dnp->n_fhp->nfh_len);
2375			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2376		    }
2377		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2378			FNV1_32_INIT);
2379		    onfhp = np->n_fhp;
2380		    /*
2381		     * Rehash node for new file handle.
2382		     */
2383		    vfs_hash_rehash(vp, hash);
2384		    np->n_fhp = nfhp;
2385		    if (onfhp != NULL)
2386			FREE((caddr_t)onfhp, M_NFSFH);
2387		    newvp = NFSTOV(np);
2388		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2389		    FREE((caddr_t)nfhp, M_NFSFH);
2390		    VREF(dvp);
2391		    newvp = dvp;
2392		} else {
2393		    cn.cn_nameptr = name;
2394		    cn.cn_namelen = len;
2395		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2396			&np, NULL);
2397		    if (error)
2398			return (error);
2399		    newvp = NFSTOV(np);
2400		}
2401		if (!attrflag && *npp == NULL) {
2402			vrele(newvp);
2403			return (ENOENT);
2404		}
2405		if (attrflag)
2406			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2407			    0, 1);
2408	}
2409	if (npp && *npp == NULL) {
2410		if (error) {
2411			if (newvp) {
2412				if (newvp == dvp)
2413					vrele(newvp);
2414				else
2415					vput(newvp);
2416			}
2417		} else
2418			*npp = np;
2419	}
2420	if (error && NFS_ISV4(dvp))
2421		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2422	return (error);
2423}
2424
2425/*
2426 * Nfs Version 3 and 4 commit rpc
2427 */
2428int
2429ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2430   struct thread *td)
2431{
2432	struct nfsvattr nfsva;
2433	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2434	int error, attrflag;
2435	u_char verf[NFSX_VERF];
2436
2437	mtx_lock(&nmp->nm_mtx);
2438	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2439		mtx_unlock(&nmp->nm_mtx);
2440		return (0);
2441	}
2442	mtx_unlock(&nmp->nm_mtx);
2443	error = nfsrpc_commit(vp, offset, cnt, cred, td, verf, &nfsva,
2444	    &attrflag, NULL);
2445	if (!error) {
2446		if (NFSBCMP((caddr_t)nmp->nm_verf, verf, NFSX_VERF)) {
2447			NFSBCOPY(verf, (caddr_t)nmp->nm_verf, NFSX_VERF);
2448			error = NFSERR_STALEWRITEVERF;
2449		}
2450		if (!error && attrflag)
2451			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2452			    0, 1);
2453	} else if (NFS_ISV4(vp)) {
2454		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2455	}
2456	return (error);
2457}
2458
2459/*
2460 * Strategy routine.
2461 * For async requests when nfsiod(s) are running, queue the request by
2462 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2463 * request.
2464 */
2465static int
2466nfs_strategy(struct vop_strategy_args *ap)
2467{
2468	struct buf *bp = ap->a_bp;
2469	struct ucred *cr;
2470
2471	KASSERT(!(bp->b_flags & B_DONE),
2472	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2473	BUF_ASSERT_HELD(bp);
2474
2475	if (bp->b_iocmd == BIO_READ)
2476		cr = bp->b_rcred;
2477	else
2478		cr = bp->b_wcred;
2479
2480	/*
2481	 * If the op is asynchronous and an i/o daemon is waiting
2482	 * queue the request, wake it up and wait for completion
2483	 * otherwise just do it ourselves.
2484	 */
2485	if ((bp->b_flags & B_ASYNC) == 0 ||
2486	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2487		(void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2488	return (0);
2489}
2490
2491/*
2492 * fsync vnode op. Just call ncl_flush() with commit == 1.
2493 */
2494/* ARGSUSED */
2495static int
2496nfs_fsync(struct vop_fsync_args *ap)
2497{
2498	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2499}
2500
2501/*
2502 * Flush all the blocks associated with a vnode.
2503 * 	Walk through the buffer pool and push any dirty pages
2504 *	associated with the vnode.
2505 * If the called_from_renewthread argument is TRUE, it has been called
2506 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2507 * waiting for a buffer write to complete.
2508 */
2509int
2510ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2511    int commit, int called_from_renewthread)
2512{
2513	struct nfsnode *np = VTONFS(vp);
2514	struct buf *bp;
2515	int i;
2516	struct buf *nbp;
2517	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2518	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2519	int passone = 1, trycnt = 0;
2520	u_quad_t off, endoff, toff;
2521	struct ucred* wcred = NULL;
2522	struct buf **bvec = NULL;
2523	struct bufobj *bo;
2524#ifndef NFS_COMMITBVECSIZ
2525#define	NFS_COMMITBVECSIZ	20
2526#endif
2527	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2528	int bvecsize = 0, bveccount;
2529
2530	if (called_from_renewthread != 0)
2531		slptimeo = hz;
2532	if (nmp->nm_flag & NFSMNT_INT)
2533		slpflag = NFS_PCATCH;
2534	if (!commit)
2535		passone = 0;
2536	bo = &vp->v_bufobj;
2537	/*
2538	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2539	 * server, but has not been committed to stable storage on the server
2540	 * yet. On the first pass, the byte range is worked out and the commit
2541	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2542	 * job.
2543	 */
2544again:
2545	off = (u_quad_t)-1;
2546	endoff = 0;
2547	bvecpos = 0;
2548	if (NFS_ISV34(vp) && commit) {
2549		if (bvec != NULL && bvec != bvec_on_stack)
2550			free(bvec, M_TEMP);
2551		/*
2552		 * Count up how many buffers waiting for a commit.
2553		 */
2554		bveccount = 0;
2555		BO_LOCK(bo);
2556		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2557			if (!BUF_ISLOCKED(bp) &&
2558			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2559				== (B_DELWRI | B_NEEDCOMMIT))
2560				bveccount++;
2561		}
2562		/*
2563		 * Allocate space to remember the list of bufs to commit.  It is
2564		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2565		 * If we can't get memory (for whatever reason), we will end up
2566		 * committing the buffers one-by-one in the loop below.
2567		 */
2568		if (bveccount > NFS_COMMITBVECSIZ) {
2569			/*
2570			 * Release the vnode interlock to avoid a lock
2571			 * order reversal.
2572			 */
2573			BO_UNLOCK(bo);
2574			bvec = (struct buf **)
2575				malloc(bveccount * sizeof(struct buf *),
2576				       M_TEMP, M_NOWAIT);
2577			BO_LOCK(bo);
2578			if (bvec == NULL) {
2579				bvec = bvec_on_stack;
2580				bvecsize = NFS_COMMITBVECSIZ;
2581			} else
2582				bvecsize = bveccount;
2583		} else {
2584			bvec = bvec_on_stack;
2585			bvecsize = NFS_COMMITBVECSIZ;
2586		}
2587		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2588			if (bvecpos >= bvecsize)
2589				break;
2590			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2591				nbp = TAILQ_NEXT(bp, b_bobufs);
2592				continue;
2593			}
2594			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2595			    (B_DELWRI | B_NEEDCOMMIT)) {
2596				BUF_UNLOCK(bp);
2597				nbp = TAILQ_NEXT(bp, b_bobufs);
2598				continue;
2599			}
2600			BO_UNLOCK(bo);
2601			bremfree(bp);
2602			/*
2603			 * Work out if all buffers are using the same cred
2604			 * so we can deal with them all with one commit.
2605			 *
2606			 * NOTE: we are not clearing B_DONE here, so we have
2607			 * to do it later on in this routine if we intend to
2608			 * initiate I/O on the bp.
2609			 *
2610			 * Note: to avoid loopback deadlocks, we do not
2611			 * assign b_runningbufspace.
2612			 */
2613			if (wcred == NULL)
2614				wcred = bp->b_wcred;
2615			else if (wcred != bp->b_wcred)
2616				wcred = NOCRED;
2617			vfs_busy_pages(bp, 1);
2618
2619			BO_LOCK(bo);
2620			/*
2621			 * bp is protected by being locked, but nbp is not
2622			 * and vfs_busy_pages() may sleep.  We have to
2623			 * recalculate nbp.
2624			 */
2625			nbp = TAILQ_NEXT(bp, b_bobufs);
2626
2627			/*
2628			 * A list of these buffers is kept so that the
2629			 * second loop knows which buffers have actually
2630			 * been committed. This is necessary, since there
2631			 * may be a race between the commit rpc and new
2632			 * uncommitted writes on the file.
2633			 */
2634			bvec[bvecpos++] = bp;
2635			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2636				bp->b_dirtyoff;
2637			if (toff < off)
2638				off = toff;
2639			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2640			if (toff > endoff)
2641				endoff = toff;
2642		}
2643		BO_UNLOCK(bo);
2644	}
2645	if (bvecpos > 0) {
2646		/*
2647		 * Commit data on the server, as required.
2648		 * If all bufs are using the same wcred, then use that with
2649		 * one call for all of them, otherwise commit each one
2650		 * separately.
2651		 */
2652		if (wcred != NOCRED)
2653			retv = ncl_commit(vp, off, (int)(endoff - off),
2654					  wcred, td);
2655		else {
2656			retv = 0;
2657			for (i = 0; i < bvecpos; i++) {
2658				off_t off, size;
2659				bp = bvec[i];
2660				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2661					bp->b_dirtyoff;
2662				size = (u_quad_t)(bp->b_dirtyend
2663						  - bp->b_dirtyoff);
2664				retv = ncl_commit(vp, off, (int)size,
2665						  bp->b_wcred, td);
2666				if (retv) break;
2667			}
2668		}
2669
2670		if (retv == NFSERR_STALEWRITEVERF)
2671			ncl_clearcommit(vp->v_mount);
2672
2673		/*
2674		 * Now, either mark the blocks I/O done or mark the
2675		 * blocks dirty, depending on whether the commit
2676		 * succeeded.
2677		 */
2678		for (i = 0; i < bvecpos; i++) {
2679			bp = bvec[i];
2680			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2681			if (retv) {
2682				/*
2683				 * Error, leave B_DELWRI intact
2684				 */
2685				vfs_unbusy_pages(bp);
2686				brelse(bp);
2687			} else {
2688				/*
2689				 * Success, remove B_DELWRI ( bundirty() ).
2690				 *
2691				 * b_dirtyoff/b_dirtyend seem to be NFS
2692				 * specific.  We should probably move that
2693				 * into bundirty(). XXX
2694				 */
2695				bufobj_wref(bo);
2696				bp->b_flags |= B_ASYNC;
2697				bundirty(bp);
2698				bp->b_flags &= ~B_DONE;
2699				bp->b_ioflags &= ~BIO_ERROR;
2700				bp->b_dirtyoff = bp->b_dirtyend = 0;
2701				bufdone(bp);
2702			}
2703		}
2704	}
2705
2706	/*
2707	 * Start/do any write(s) that are required.
2708	 */
2709loop:
2710	BO_LOCK(bo);
2711	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2712		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2713			if (waitfor != MNT_WAIT || passone)
2714				continue;
2715
2716			error = BUF_TIMELOCK(bp,
2717			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2718			    BO_MTX(bo), "nfsfsync", slpflag, slptimeo);
2719			if (error == 0) {
2720				BUF_UNLOCK(bp);
2721				goto loop;
2722			}
2723			if (error == ENOLCK) {
2724				error = 0;
2725				goto loop;
2726			}
2727			if (called_from_renewthread != 0) {
2728				/*
2729				 * Return EIO so the flush will be retried
2730				 * later.
2731				 */
2732				error = EIO;
2733				goto done;
2734			}
2735			if (newnfs_sigintr(nmp, td)) {
2736				error = EINTR;
2737				goto done;
2738			}
2739			if (slpflag & PCATCH) {
2740				slpflag = 0;
2741				slptimeo = 2 * hz;
2742			}
2743			goto loop;
2744		}
2745		if ((bp->b_flags & B_DELWRI) == 0)
2746			panic("nfs_fsync: not dirty");
2747		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2748			BUF_UNLOCK(bp);
2749			continue;
2750		}
2751		BO_UNLOCK(bo);
2752		bremfree(bp);
2753		if (passone || !commit)
2754		    bp->b_flags |= B_ASYNC;
2755		else
2756		    bp->b_flags |= B_ASYNC;
2757		bwrite(bp);
2758		if (newnfs_sigintr(nmp, td)) {
2759			error = EINTR;
2760			goto done;
2761		}
2762		goto loop;
2763	}
2764	if (passone) {
2765		passone = 0;
2766		BO_UNLOCK(bo);
2767		goto again;
2768	}
2769	if (waitfor == MNT_WAIT) {
2770		while (bo->bo_numoutput) {
2771			error = bufobj_wwait(bo, slpflag, slptimeo);
2772			if (error) {
2773			    BO_UNLOCK(bo);
2774			    if (called_from_renewthread != 0) {
2775				/*
2776				 * Return EIO so that the flush will be
2777				 * retried later.
2778				 */
2779				error = EIO;
2780				goto done;
2781			    }
2782			    error = newnfs_sigintr(nmp, td);
2783			    if (error)
2784				goto done;
2785			    if (slpflag & PCATCH) {
2786				slpflag = 0;
2787				slptimeo = 2 * hz;
2788			    }
2789			    BO_LOCK(bo);
2790			}
2791		}
2792		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2793			BO_UNLOCK(bo);
2794			goto loop;
2795		}
2796		/*
2797		 * Wait for all the async IO requests to drain
2798		 */
2799		BO_UNLOCK(bo);
2800		mtx_lock(&np->n_mtx);
2801		while (np->n_directio_asyncwr > 0) {
2802			np->n_flag |= NFSYNCWAIT;
2803			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2804			    &np->n_mtx, slpflag | (PRIBIO + 1),
2805			    "nfsfsync", 0);
2806			if (error) {
2807				if (newnfs_sigintr(nmp, td)) {
2808					mtx_unlock(&np->n_mtx);
2809					error = EINTR;
2810					goto done;
2811				}
2812			}
2813		}
2814		mtx_unlock(&np->n_mtx);
2815	} else
2816		BO_UNLOCK(bo);
2817	mtx_lock(&np->n_mtx);
2818	if (np->n_flag & NWRITEERR) {
2819		error = np->n_error;
2820		np->n_flag &= ~NWRITEERR;
2821	}
2822  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2823	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2824  		np->n_flag &= ~NMODIFIED;
2825	mtx_unlock(&np->n_mtx);
2826done:
2827	if (bvec != NULL && bvec != bvec_on_stack)
2828		free(bvec, M_TEMP);
2829	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2830	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2831	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2832		/* try, try again... */
2833		passone = 1;
2834		wcred = NULL;
2835		bvec = NULL;
2836		bvecsize = 0;
2837printf("try%d\n", trycnt);
2838		goto again;
2839	}
2840	return (error);
2841}
2842
2843/*
2844 * NFS advisory byte-level locks.
2845 */
2846static int
2847nfs_advlock(struct vop_advlock_args *ap)
2848{
2849	struct vnode *vp = ap->a_vp;
2850	struct ucred *cred;
2851	struct nfsnode *np = VTONFS(ap->a_vp);
2852	struct proc *p = (struct proc *)ap->a_id;
2853	struct thread *td = curthread;	/* XXX */
2854	struct vattr va;
2855	int ret, error = EOPNOTSUPP;
2856	u_quad_t size;
2857
2858	if (NFS_ISV4(vp) && (ap->a_flags & F_POSIX)) {
2859		cred = p->p_ucred;
2860		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2861		if (vp->v_iflag & VI_DOOMED) {
2862			VOP_UNLOCK(vp, 0);
2863			return (EBADF);
2864		}
2865
2866		/*
2867		 * If this is unlocking a write locked region, flush and
2868		 * commit them before unlocking. This is required by
2869		 * RFC3530 Sec. 9.3.2.
2870		 */
2871		if (ap->a_op == F_UNLCK &&
2872		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td))
2873			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
2874
2875		/*
2876		 * Loop around doing the lock op, while a blocking lock
2877		 * must wait for the lock op to succeed.
2878		 */
2879		do {
2880			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
2881			    ap->a_fl, 0, cred, td);
2882			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2883			    ap->a_op == F_SETLK) {
2884				VOP_UNLOCK(vp, 0);
2885				error = nfs_catnap(PZERO | PCATCH, ret,
2886				    "ncladvl");
2887				if (error)
2888					return (EINTR);
2889				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2890				if (vp->v_iflag & VI_DOOMED) {
2891					VOP_UNLOCK(vp, 0);
2892					return (EBADF);
2893				}
2894			}
2895		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2896		     ap->a_op == F_SETLK);
2897		if (ret == NFSERR_DENIED) {
2898			VOP_UNLOCK(vp, 0);
2899			return (EAGAIN);
2900		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
2901			VOP_UNLOCK(vp, 0);
2902			return (ret);
2903		} else if (ret != 0) {
2904			VOP_UNLOCK(vp, 0);
2905			return (EACCES);
2906		}
2907
2908		/*
2909		 * Now, if we just got a lock, invalidate data in the buffer
2910		 * cache, as required, so that the coherency conforms with
2911		 * RFC3530 Sec. 9.3.2.
2912		 */
2913		if (ap->a_op == F_SETLK) {
2914			if ((np->n_flag & NMODIFIED) == 0) {
2915				np->n_attrstamp = 0;
2916				ret = VOP_GETATTR(vp, &va, cred);
2917			}
2918			if ((np->n_flag & NMODIFIED) || ret ||
2919			    np->n_change != va.va_filerev) {
2920				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
2921				np->n_attrstamp = 0;
2922				ret = VOP_GETATTR(vp, &va, cred);
2923				if (!ret) {
2924					np->n_mtime = va.va_mtime;
2925					np->n_change = va.va_filerev;
2926				}
2927			}
2928		}
2929		VOP_UNLOCK(vp, 0);
2930		return (0);
2931	} else if (!NFS_ISV4(vp)) {
2932		error = vn_lock(vp, LK_SHARED);
2933		if (error)
2934			return (error);
2935		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2936			size = VTONFS(vp)->n_size;
2937			VOP_UNLOCK(vp, 0);
2938			error = lf_advlock(ap, &(vp->v_lockf), size);
2939		} else {
2940			if (ncl_advlock_p)
2941				error = ncl_advlock_p(ap);
2942			else
2943				error = ENOLCK;
2944		}
2945	}
2946	return (error);
2947}
2948
2949/*
2950 * NFS advisory byte-level locks.
2951 */
2952static int
2953nfs_advlockasync(struct vop_advlockasync_args *ap)
2954{
2955	struct vnode *vp = ap->a_vp;
2956	u_quad_t size;
2957	int error;
2958
2959	if (NFS_ISV4(vp))
2960		return (EOPNOTSUPP);
2961	error = vn_lock(vp, LK_SHARED);
2962	if (error)
2963		return (error);
2964	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2965		size = VTONFS(vp)->n_size;
2966		VOP_UNLOCK(vp, 0);
2967		error = lf_advlockasync(ap, &(vp->v_lockf), size);
2968	} else {
2969		VOP_UNLOCK(vp, 0);
2970		error = EOPNOTSUPP;
2971	}
2972	return (error);
2973}
2974
2975/*
2976 * Print out the contents of an nfsnode.
2977 */
2978static int
2979nfs_print(struct vop_print_args *ap)
2980{
2981	struct vnode *vp = ap->a_vp;
2982	struct nfsnode *np = VTONFS(vp);
2983
2984	ncl_printf("\tfileid %ld fsid 0x%x",
2985	   np->n_vattr.na_fileid, np->n_vattr.na_fsid);
2986	if (vp->v_type == VFIFO)
2987		fifo_printinfo(vp);
2988	printf("\n");
2989	return (0);
2990}
2991
2992/*
2993 * This is the "real" nfs::bwrite(struct buf*).
2994 * We set B_CACHE if this is a VMIO buffer.
2995 */
2996int
2997ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
2998{
2999	int s;
3000	int oldflags = bp->b_flags;
3001#if 0
3002	int retv = 1;
3003	off_t off;
3004#endif
3005
3006	BUF_ASSERT_HELD(bp);
3007
3008	if (bp->b_flags & B_INVAL) {
3009		brelse(bp);
3010		return(0);
3011	}
3012
3013	bp->b_flags |= B_CACHE;
3014
3015	/*
3016	 * Undirty the bp.  We will redirty it later if the I/O fails.
3017	 */
3018
3019	s = splbio();
3020	bundirty(bp);
3021	bp->b_flags &= ~B_DONE;
3022	bp->b_ioflags &= ~BIO_ERROR;
3023	bp->b_iocmd = BIO_WRITE;
3024
3025	bufobj_wref(bp->b_bufobj);
3026	curthread->td_ru.ru_oublock++;
3027	splx(s);
3028
3029	/*
3030	 * Note: to avoid loopback deadlocks, we do not
3031	 * assign b_runningbufspace.
3032	 */
3033	vfs_busy_pages(bp, 1);
3034
3035	BUF_KERNPROC(bp);
3036	bp->b_iooffset = dbtob(bp->b_blkno);
3037	bstrategy(bp);
3038
3039	if( (oldflags & B_ASYNC) == 0) {
3040		int rtval = bufwait(bp);
3041
3042		if (oldflags & B_DELWRI) {
3043			s = splbio();
3044			reassignbuf(bp);
3045			splx(s);
3046		}
3047		brelse(bp);
3048		return (rtval);
3049	}
3050
3051	return (0);
3052}
3053
3054/*
3055 * nfs special file access vnode op.
3056 * Essentially just get vattr and then imitate iaccess() since the device is
3057 * local to the client.
3058 */
3059static int
3060nfsspec_access(struct vop_access_args *ap)
3061{
3062	struct vattr *vap;
3063	struct ucred *cred = ap->a_cred;
3064	struct vnode *vp = ap->a_vp;
3065	accmode_t accmode = ap->a_accmode;
3066	struct vattr vattr;
3067	int error;
3068
3069	/*
3070	 * Disallow write attempts on filesystems mounted read-only;
3071	 * unless the file is a socket, fifo, or a block or character
3072	 * device resident on the filesystem.
3073	 */
3074	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3075		switch (vp->v_type) {
3076		case VREG:
3077		case VDIR:
3078		case VLNK:
3079			return (EROFS);
3080		default:
3081			break;
3082		}
3083	}
3084	vap = &vattr;
3085	error = VOP_GETATTR(vp, vap, cred);
3086	if (error)
3087		goto out;
3088	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3089	    accmode, cred, NULL);
3090out:
3091	return error;
3092}
3093
3094/*
3095 * Read wrapper for fifos.
3096 */
3097static int
3098nfsfifo_read(struct vop_read_args *ap)
3099{
3100	struct nfsnode *np = VTONFS(ap->a_vp);
3101	int error;
3102
3103	/*
3104	 * Set access flag.
3105	 */
3106	mtx_lock(&np->n_mtx);
3107	np->n_flag |= NACC;
3108	getnanotime(&np->n_atim);
3109	mtx_unlock(&np->n_mtx);
3110	error = fifo_specops.vop_read(ap);
3111	return error;
3112}
3113
3114/*
3115 * Write wrapper for fifos.
3116 */
3117static int
3118nfsfifo_write(struct vop_write_args *ap)
3119{
3120	struct nfsnode *np = VTONFS(ap->a_vp);
3121
3122	/*
3123	 * Set update flag.
3124	 */
3125	mtx_lock(&np->n_mtx);
3126	np->n_flag |= NUPD;
3127	getnanotime(&np->n_mtim);
3128	mtx_unlock(&np->n_mtx);
3129	return(fifo_specops.vop_write(ap));
3130}
3131
3132/*
3133 * Close wrapper for fifos.
3134 *
3135 * Update the times on the nfsnode then do fifo close.
3136 */
3137static int
3138nfsfifo_close(struct vop_close_args *ap)
3139{
3140	struct vnode *vp = ap->a_vp;
3141	struct nfsnode *np = VTONFS(vp);
3142	struct vattr vattr;
3143	struct timespec ts;
3144
3145	mtx_lock(&np->n_mtx);
3146	if (np->n_flag & (NACC | NUPD)) {
3147		getnanotime(&ts);
3148		if (np->n_flag & NACC)
3149			np->n_atim = ts;
3150		if (np->n_flag & NUPD)
3151			np->n_mtim = ts;
3152		np->n_flag |= NCHG;
3153		if (vrefcnt(vp) == 1 &&
3154		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3155			VATTR_NULL(&vattr);
3156			if (np->n_flag & NACC)
3157				vattr.va_atime = np->n_atim;
3158			if (np->n_flag & NUPD)
3159				vattr.va_mtime = np->n_mtim;
3160			mtx_unlock(&np->n_mtx);
3161			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3162			goto out;
3163		}
3164	}
3165	mtx_unlock(&np->n_mtx);
3166out:
3167	return (fifo_specops.vop_close(ap));
3168}
3169
3170/*
3171 * Just call ncl_writebp() with the force argument set to 1.
3172 *
3173 * NOTE: B_DONE may or may not be set in a_bp on call.
3174 */
3175static int
3176nfs_bwrite(struct buf *bp)
3177{
3178
3179	return (ncl_writebp(bp, 1, curthread));
3180}
3181
3182struct buf_ops buf_ops_newnfs = {
3183	.bop_name	=	"buf_ops_nfs",
3184	.bop_write	=	nfs_bwrite,
3185	.bop_strategy	=	bufstrategy,
3186	.bop_sync	=	bufsync,
3187	.bop_bdflush	=	bufbdflush,
3188};
3189
3190/*
3191 * Cloned from vop_stdlock(), and then the ugly hack added.
3192 */
3193static int
3194nfs_lock1(struct vop_lock1_args *ap)
3195{
3196	struct vnode *vp = ap->a_vp;
3197	int error = 0;
3198
3199	/*
3200	 * Since vfs_hash_get() calls vget() and it will no longer work
3201	 * for FreeBSD8 with flags == 0, I can only think of this horrible
3202	 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER
3203	 * and then handle it here. All I want for this case is a v_usecount
3204	 * on the vnode to use for recovery, while another thread might
3205	 * hold a lock on the vnode. I have the other threads blocked, so
3206	 * there isn't any race problem.
3207	 */
3208	if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) {
3209		if ((ap->a_flags & LK_INTERLOCK) == 0)
3210			panic("ncllock1");
3211		if ((vp->v_iflag & VI_DOOMED))
3212			error = ENOENT;
3213		VI_UNLOCK(vp);
3214		return (error);
3215	}
3216	return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp),
3217	    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file,
3218	    ap->a_line));
3219}
3220
3221static int
3222nfs_getacl(struct vop_getacl_args *ap)
3223{
3224	int error;
3225
3226	if (ap->a_type != ACL_TYPE_NFS4)
3227		return (EOPNOTSUPP);
3228	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3229	    NULL);
3230	if (error > NFSERR_STALE) {
3231		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3232		error = EPERM;
3233	}
3234	return (error);
3235}
3236
3237static int
3238nfs_setacl(struct vop_setacl_args *ap)
3239{
3240	int error;
3241
3242	if (ap->a_type != ACL_TYPE_NFS4)
3243		return (EOPNOTSUPP);
3244	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3245	    NULL);
3246	if (error > NFSERR_STALE) {
3247		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3248		error = EPERM;
3249	}
3250	return (error);
3251}
3252