nfs_clvnops.c revision 210455
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 210455 2010-07-24 22:11:11Z rmacklem $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_inet.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/systm.h>
47#include <sys/resourcevar.h>
48#include <sys/proc.h>
49#include <sys/mount.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/jail.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/namei.h>
56#include <sys/socket.h>
57#include <sys/vnode.h>
58#include <sys/dirent.h>
59#include <sys/fcntl.h>
60#include <sys/lockf.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/signalvar.h>
64
65#include <vm/vm.h>
66#include <vm/vm_object.h>
67#include <vm/vm_extern.h>
68#include <vm/vm_object.h>
69
70#include <fs/nfs/nfsport.h>
71#include <fs/nfsclient/nfsnode.h>
72#include <fs/nfsclient/nfsmount.h>
73#include <fs/nfsclient/nfs.h>
74
75#include <net/if.h>
76#include <netinet/in.h>
77#include <netinet/in_var.h>
78
79#include <nfs/nfs_lock.h>
80
81/* Defs */
82#define	TRUE	1
83#define	FALSE	0
84
85extern struct nfsstats newnfsstats;
86MALLOC_DECLARE(M_NEWNFSREQ);
87vop_advlock_t	*ncl_advlock_p = nfs_dolock;
88
89/*
90 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
91 * calls are not in getblk() and brelse() so that they would not be necessary
92 * here.
93 */
94#ifndef B_VMIO
95#define	vfs_busy_pages(bp, f)
96#endif
97
98static vop_read_t	nfsfifo_read;
99static vop_write_t	nfsfifo_write;
100static vop_close_t	nfsfifo_close;
101static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
102		    struct thread *);
103static vop_lookup_t	nfs_lookup;
104static vop_create_t	nfs_create;
105static vop_mknod_t	nfs_mknod;
106static vop_open_t	nfs_open;
107static vop_close_t	nfs_close;
108static vop_access_t	nfs_access;
109static vop_getattr_t	nfs_getattr;
110static vop_setattr_t	nfs_setattr;
111static vop_read_t	nfs_read;
112static vop_fsync_t	nfs_fsync;
113static vop_remove_t	nfs_remove;
114static vop_link_t	nfs_link;
115static vop_rename_t	nfs_rename;
116static vop_mkdir_t	nfs_mkdir;
117static vop_rmdir_t	nfs_rmdir;
118static vop_symlink_t	nfs_symlink;
119static vop_readdir_t	nfs_readdir;
120static vop_strategy_t	nfs_strategy;
121static vop_lock1_t	nfs_lock1;
122static	int	nfs_lookitup(struct vnode *, char *, int,
123		    struct ucred *, struct thread *, struct nfsnode **);
124static	int	nfs_sillyrename(struct vnode *, struct vnode *,
125		    struct componentname *);
126static vop_access_t	nfsspec_access;
127static vop_readlink_t	nfs_readlink;
128static vop_print_t	nfs_print;
129static vop_advlock_t	nfs_advlock;
130static vop_advlockasync_t nfs_advlockasync;
131static vop_getacl_t nfs_getacl;
132static vop_setacl_t nfs_setacl;
133
134/*
135 * Global vfs data structures for nfs
136 */
137struct vop_vector newnfs_vnodeops = {
138	.vop_default =		&default_vnodeops,
139	.vop_access =		nfs_access,
140	.vop_advlock =		nfs_advlock,
141	.vop_advlockasync =	nfs_advlockasync,
142	.vop_close =		nfs_close,
143	.vop_create =		nfs_create,
144	.vop_fsync =		nfs_fsync,
145	.vop_getattr =		nfs_getattr,
146	.vop_getpages =		ncl_getpages,
147	.vop_putpages =		ncl_putpages,
148	.vop_inactive =		ncl_inactive,
149	.vop_link =		nfs_link,
150	.vop_lock1 = 		nfs_lock1,
151	.vop_lookup =		nfs_lookup,
152	.vop_mkdir =		nfs_mkdir,
153	.vop_mknod =		nfs_mknod,
154	.vop_open =		nfs_open,
155	.vop_print =		nfs_print,
156	.vop_read =		nfs_read,
157	.vop_readdir =		nfs_readdir,
158	.vop_readlink =		nfs_readlink,
159	.vop_reclaim =		ncl_reclaim,
160	.vop_remove =		nfs_remove,
161	.vop_rename =		nfs_rename,
162	.vop_rmdir =		nfs_rmdir,
163	.vop_setattr =		nfs_setattr,
164	.vop_strategy =		nfs_strategy,
165	.vop_symlink =		nfs_symlink,
166	.vop_write =		ncl_write,
167	.vop_getacl =		nfs_getacl,
168	.vop_setacl =		nfs_setacl,
169};
170
171struct vop_vector newnfs_fifoops = {
172	.vop_default =		&fifo_specops,
173	.vop_access =		nfsspec_access,
174	.vop_close =		nfsfifo_close,
175	.vop_fsync =		nfs_fsync,
176	.vop_getattr =		nfs_getattr,
177	.vop_inactive =		ncl_inactive,
178	.vop_print =		nfs_print,
179	.vop_read =		nfsfifo_read,
180	.vop_reclaim =		ncl_reclaim,
181	.vop_setattr =		nfs_setattr,
182	.vop_write =		nfsfifo_write,
183};
184
185static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
186    struct componentname *cnp, struct vattr *vap);
187static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
188    int namelen, struct ucred *cred, struct thread *td);
189static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
190    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
191    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
192static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
193    struct componentname *scnp, struct sillyrename *sp);
194
195/*
196 * Global variables
197 */
198#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
199
200SYSCTL_DECL(_vfs_newnfs);
201
202static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
203SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
204	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
205
206static int	nfs_prime_access_cache = 0;
207SYSCTL_INT(_vfs_newnfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
208	   &nfs_prime_access_cache, 0,
209	   "Prime NFS ACCESS cache when fetching attributes");
210
211static int	newnfs_commit_on_close = 0;
212SYSCTL_INT(_vfs_newnfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
213    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
214
215static int	nfs_clean_pages_on_close = 1;
216SYSCTL_INT(_vfs_newnfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
217	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
218
219int newnfs_directio_enable = 0;
220SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_enable, CTLFLAG_RW,
221	   &newnfs_directio_enable, 0, "Enable NFS directio");
222
223/*
224 * This sysctl allows other processes to mmap a file that has been opened
225 * O_DIRECT by a process.  In general, having processes mmap the file while
226 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
227 * this by default to prevent DoS attacks - to prevent a malicious user from
228 * opening up files O_DIRECT preventing other users from mmap'ing these
229 * files.  "Protected" environments where stricter consistency guarantees are
230 * required can disable this knob.  The process that opened the file O_DIRECT
231 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
232 * meaningful.
233 */
234int newnfs_directio_allow_mmap = 1;
235SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_allow_mmap, CTLFLAG_RW,
236	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
237
238#if 0
239SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
240	   &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
241
242SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
243	   &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
244#endif
245
246#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
247			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
248			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
249
250/*
251 * SMP Locking Note :
252 * The list of locks after the description of the lock is the ordering
253 * of other locks acquired with the lock held.
254 * np->n_mtx : Protects the fields in the nfsnode.
255       VM Object Lock
256       VI_MTX (acquired indirectly)
257 * nmp->nm_mtx : Protects the fields in the nfsmount.
258       rep->r_mtx
259 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
260 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
261       nmp->nm_mtx
262       rep->r_mtx
263 * rep->r_mtx : Protects the fields in an nfsreq.
264 */
265
266static int
267nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
268    struct ucred *cred, u_int32_t *retmode)
269{
270	int error = 0, attrflag, i, lrupos;
271	u_int32_t rmode;
272	struct nfsnode *np = VTONFS(vp);
273	struct nfsvattr nfsva;
274
275	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
276	    &rmode, NULL);
277	if (attrflag)
278		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
279	if (!error) {
280		lrupos = 0;
281		mtx_lock(&np->n_mtx);
282		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
283			if (np->n_accesscache[i].uid == cred->cr_uid) {
284				np->n_accesscache[i].mode = rmode;
285				np->n_accesscache[i].stamp = time_second;
286				break;
287			}
288			if (i > 0 && np->n_accesscache[i].stamp <
289			    np->n_accesscache[lrupos].stamp)
290				lrupos = i;
291		}
292		if (i == NFS_ACCESSCACHESIZE) {
293			np->n_accesscache[lrupos].uid = cred->cr_uid;
294			np->n_accesscache[lrupos].mode = rmode;
295			np->n_accesscache[lrupos].stamp = time_second;
296		}
297		mtx_unlock(&np->n_mtx);
298		if (retmode != NULL)
299			*retmode = rmode;
300	} else if (NFS_ISV4(vp)) {
301		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
302	}
303	return (error);
304}
305
306/*
307 * nfs access vnode op.
308 * For nfs version 2, just return ok. File accesses may fail later.
309 * For nfs version 3, use the access rpc to check accessibility. If file modes
310 * are changed on the server, accesses might still fail later.
311 */
312static int
313nfs_access(struct vop_access_args *ap)
314{
315	struct vnode *vp = ap->a_vp;
316	int error = 0, i, gotahit;
317	u_int32_t mode, wmode, rmode;
318	int v34 = NFS_ISV34(vp);
319	struct nfsnode *np = VTONFS(vp);
320
321	/*
322	 * Disallow write attempts on filesystems mounted read-only;
323	 * unless the file is a socket, fifo, or a block or character
324	 * device resident on the filesystem.
325	 */
326	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
327	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
328	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
329		switch (vp->v_type) {
330		case VREG:
331		case VDIR:
332		case VLNK:
333			return (EROFS);
334		default:
335			break;
336		}
337	}
338	/*
339	 * For nfs v3 or v4, check to see if we have done this recently, and if
340	 * so return our cached result instead of making an ACCESS call.
341	 * If not, do an access rpc, otherwise you are stuck emulating
342	 * ufs_access() locally using the vattr. This may not be correct,
343	 * since the server may apply other access criteria such as
344	 * client uid-->server uid mapping that we do not know about.
345	 */
346	if (v34) {
347		if (ap->a_accmode & VREAD)
348			mode = NFSACCESS_READ;
349		else
350			mode = 0;
351		if (vp->v_type != VDIR) {
352			if (ap->a_accmode & VWRITE)
353				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
354			if (ap->a_accmode & VAPPEND)
355				mode |= NFSACCESS_EXTEND;
356			if (ap->a_accmode & VEXEC)
357				mode |= NFSACCESS_EXECUTE;
358			if (ap->a_accmode & VDELETE)
359				mode |= NFSACCESS_DELETE;
360		} else {
361			if (ap->a_accmode & VWRITE)
362				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
363			if (ap->a_accmode & VAPPEND)
364				mode |= NFSACCESS_EXTEND;
365			if (ap->a_accmode & VEXEC)
366				mode |= NFSACCESS_LOOKUP;
367			if (ap->a_accmode & VDELETE)
368				mode |= NFSACCESS_DELETE;
369			if (ap->a_accmode & VDELETE_CHILD)
370				mode |= NFSACCESS_MODIFY;
371		}
372		/* XXX safety belt, only make blanket request if caching */
373		if (nfsaccess_cache_timeout > 0) {
374			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
375				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
376				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
377		} else {
378			wmode = mode;
379		}
380
381		/*
382		 * Does our cached result allow us to give a definite yes to
383		 * this request?
384		 */
385		gotahit = 0;
386		mtx_lock(&np->n_mtx);
387		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
388			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
389			    if (time_second < (np->n_accesscache[i].stamp
390				+ nfsaccess_cache_timeout) &&
391				(np->n_accesscache[i].mode & mode) == mode) {
392				NFSINCRGLOBAL(newnfsstats.accesscache_hits);
393				gotahit = 1;
394			    }
395			    break;
396			}
397		}
398		mtx_unlock(&np->n_mtx);
399		if (gotahit == 0) {
400			/*
401			 * Either a no, or a don't know.  Go to the wire.
402			 */
403			NFSINCRGLOBAL(newnfsstats.accesscache_misses);
404		        error = nfs34_access_otw(vp, wmode, ap->a_td,
405			    ap->a_cred, &rmode);
406			if (!error &&
407			    (rmode & mode) != mode)
408				error = EACCES;
409		}
410		return (error);
411	} else {
412		if ((error = nfsspec_access(ap)) != 0) {
413			return (error);
414		}
415		/*
416		 * Attempt to prevent a mapped root from accessing a file
417		 * which it shouldn't.  We try to read a byte from the file
418		 * if the user is root and the file is not zero length.
419		 * After calling nfsspec_access, we should have the correct
420		 * file size cached.
421		 */
422		mtx_lock(&np->n_mtx);
423		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
424		    && VTONFS(vp)->n_size > 0) {
425			struct iovec aiov;
426			struct uio auio;
427			char buf[1];
428
429			mtx_unlock(&np->n_mtx);
430			aiov.iov_base = buf;
431			aiov.iov_len = 1;
432			auio.uio_iov = &aiov;
433			auio.uio_iovcnt = 1;
434			auio.uio_offset = 0;
435			auio.uio_resid = 1;
436			auio.uio_segflg = UIO_SYSSPACE;
437			auio.uio_rw = UIO_READ;
438			auio.uio_td = ap->a_td;
439
440			if (vp->v_type == VREG)
441				error = ncl_readrpc(vp, &auio, ap->a_cred);
442			else if (vp->v_type == VDIR) {
443				char* bp;
444				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
445				aiov.iov_base = bp;
446				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
447				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
448				    ap->a_td);
449				free(bp, M_TEMP);
450			} else if (vp->v_type == VLNK)
451				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
452			else
453				error = EACCES;
454		} else
455			mtx_unlock(&np->n_mtx);
456		return (error);
457	}
458}
459
460
461/*
462 * nfs open vnode op
463 * Check to see if the type is ok
464 * and that deletion is not in progress.
465 * For paged in text files, you will need to flush the page cache
466 * if consistency is lost.
467 */
468/* ARGSUSED */
469static int
470nfs_open(struct vop_open_args *ap)
471{
472	struct vnode *vp = ap->a_vp;
473	struct nfsnode *np = VTONFS(vp);
474	struct vattr vattr;
475	int error;
476	int fmode = ap->a_mode;
477
478	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
479		return (EOPNOTSUPP);
480
481	/*
482	 * For NFSv4, we need to do the Open Op before cache validation,
483	 * so that we conform to RFC3530 Sec. 9.3.1.
484	 */
485	if (NFS_ISV4(vp)) {
486		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
487		if (error) {
488			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
489			    (gid_t)0);
490			return (error);
491		}
492	}
493
494	/*
495	 * Now, if this Open will be doing reading, re-validate/flush the
496	 * cache, so that Close/Open coherency is maintained.
497	 */
498	if ((fmode & FREAD) && (!NFS_ISV4(vp) || nfscl_mustflush(vp))) {
499		mtx_lock(&np->n_mtx);
500		if (np->n_flag & NMODIFIED) {
501			mtx_unlock(&np->n_mtx);
502			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
503			if (error == EINTR || error == EIO) {
504				if (NFS_ISV4(vp))
505					(void) nfsrpc_close(vp, 0, ap->a_td);
506				return (error);
507			}
508			mtx_lock(&np->n_mtx);
509			np->n_attrstamp = 0;
510			if (vp->v_type == VDIR)
511				np->n_direofoffset = 0;
512			mtx_unlock(&np->n_mtx);
513			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
514			if (error) {
515				if (NFS_ISV4(vp))
516					(void) nfsrpc_close(vp, 0, ap->a_td);
517				return (error);
518			}
519			mtx_lock(&np->n_mtx);
520			np->n_mtime = vattr.va_mtime;
521			if (NFS_ISV4(vp))
522				np->n_change = vattr.va_filerev;
523			mtx_unlock(&np->n_mtx);
524		} else {
525			mtx_unlock(&np->n_mtx);
526			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
527			if (error) {
528				if (NFS_ISV4(vp))
529					(void) nfsrpc_close(vp, 0, ap->a_td);
530				return (error);
531			}
532			mtx_lock(&np->n_mtx);
533			if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
534			    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
535				if (vp->v_type == VDIR)
536					np->n_direofoffset = 0;
537				mtx_unlock(&np->n_mtx);
538				error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
539				if (error == EINTR || error == EIO) {
540					if (NFS_ISV4(vp))
541						(void) nfsrpc_close(vp, 0,
542						    ap->a_td);
543					return (error);
544				}
545				mtx_lock(&np->n_mtx);
546				np->n_mtime = vattr.va_mtime;
547				if (NFS_ISV4(vp))
548					np->n_change = vattr.va_filerev;
549			}
550			mtx_unlock(&np->n_mtx);
551		}
552	}
553
554	/*
555	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
556	 */
557	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
558		if (np->n_directio_opens == 0) {
559			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
560			if (error) {
561				if (NFS_ISV4(vp))
562					(void) nfsrpc_close(vp, 0, ap->a_td);
563				return (error);
564			}
565			mtx_lock(&np->n_mtx);
566			np->n_flag |= NNONCACHE;
567		} else {
568			mtx_lock(&np->n_mtx);
569		}
570		np->n_directio_opens++;
571		mtx_unlock(&np->n_mtx);
572	}
573	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
574	return (0);
575}
576
577/*
578 * nfs close vnode op
579 * What an NFS client should do upon close after writing is a debatable issue.
580 * Most NFS clients push delayed writes to the server upon close, basically for
581 * two reasons:
582 * 1 - So that any write errors may be reported back to the client process
583 *     doing the close system call. By far the two most likely errors are
584 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
585 * 2 - To put a worst case upper bound on cache inconsistency between
586 *     multiple clients for the file.
587 * There is also a consistency problem for Version 2 of the protocol w.r.t.
588 * not being able to tell if other clients are writing a file concurrently,
589 * since there is no way of knowing if the changed modify time in the reply
590 * is only due to the write for this client.
591 * (NFS Version 3 provides weak cache consistency data in the reply that
592 *  should be sufficient to detect and handle this case.)
593 *
594 * The current code does the following:
595 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
596 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
597 *                     or commit them (this satisfies 1 and 2 except for the
598 *                     case where the server crashes after this close but
599 *                     before the commit RPC, which is felt to be "good
600 *                     enough". Changing the last argument to ncl_flush() to
601 *                     a 1 would force a commit operation, if it is felt a
602 *                     commit is necessary now.
603 * for NFS Version 4 - flush the dirty buffers and commit them, if
604 *		       nfscl_mustflush() says this is necessary.
605 *                     It is necessary if there is no write delegation held,
606 *                     in order to satisfy open/close coherency.
607 *                     If the file isn't cached on local stable storage,
608 *                     it may be necessary in order to detect "out of space"
609 *                     errors from the server, if the write delegation
610 *                     issued by the server doesn't allow the file to grow.
611 */
612/* ARGSUSED */
613static int
614nfs_close(struct vop_close_args *ap)
615{
616	struct vnode *vp = ap->a_vp;
617	struct nfsnode *np = VTONFS(vp);
618	struct nfsvattr nfsva;
619	struct ucred *cred;
620	int error = 0, ret, localcred = 0;
621	int fmode = ap->a_fflag;
622
623	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
624		return (0);
625	/*
626	 * During shutdown, a_cred isn't valid, so just use root.
627	 */
628	if (ap->a_cred == NOCRED) {
629		cred = newnfs_getcred();
630		localcred = 1;
631	} else {
632		cred = ap->a_cred;
633	}
634	if (vp->v_type == VREG) {
635	    /*
636	     * Examine and clean dirty pages, regardless of NMODIFIED.
637	     * This closes a major hole in close-to-open consistency.
638	     * We want to push out all dirty pages (and buffers) on
639	     * close, regardless of whether they were dirtied by
640	     * mmap'ed writes or via write().
641	     */
642	    if (nfs_clean_pages_on_close && vp->v_object) {
643		VM_OBJECT_LOCK(vp->v_object);
644		vm_object_page_clean(vp->v_object, 0, 0, 0);
645		VM_OBJECT_UNLOCK(vp->v_object);
646	    }
647	    mtx_lock(&np->n_mtx);
648	    if (np->n_flag & NMODIFIED) {
649		mtx_unlock(&np->n_mtx);
650		if (NFS_ISV3(vp)) {
651		    /*
652		     * Under NFSv3 we have dirty buffers to dispose of.  We
653		     * must flush them to the NFS server.  We have the option
654		     * of waiting all the way through the commit rpc or just
655		     * waiting for the initial write.  The default is to only
656		     * wait through the initial write so the data is in the
657		     * server's cache, which is roughly similar to the state
658		     * a standard disk subsystem leaves the file in on close().
659		     *
660		     * We cannot clear the NMODIFIED bit in np->n_flag due to
661		     * potential races with other processes, and certainly
662		     * cannot clear it if we don't commit.
663		     * These races occur when there is no longer the old
664		     * traditional vnode locking implemented for Vnode Ops.
665		     */
666		    int cm = newnfs_commit_on_close ? 1 : 0;
667		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
668		    /* np->n_flag &= ~NMODIFIED; */
669		} else if (NFS_ISV4(vp)) {
670			if (nfscl_mustflush(vp)) {
671				int cm = newnfs_commit_on_close ? 1 : 0;
672				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
673				    cm, 0);
674				/*
675				 * as above w.r.t races when clearing
676				 * NMODIFIED.
677				 * np->n_flag &= ~NMODIFIED;
678				 */
679			}
680		} else
681		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
682		mtx_lock(&np->n_mtx);
683	    }
684 	    /*
685 	     * Invalidate the attribute cache in all cases.
686 	     * An open is going to fetch fresh attrs any way, other procs
687 	     * on this node that have file open will be forced to do an
688 	     * otw attr fetch, but this is safe.
689	     * --> A user found that their RPC count dropped by 20% when
690	     *     this was commented out and I can't see any requirement
691	     *     for it, so I've disabled it when negative lookups are
692	     *     enabled. (What does this have to do with negative lookup
693	     *     caching? Well nothing, except it was reported by the
694	     *     same user that needed negative lookup caching and I wanted
695	     *     there to be a way to disable it to see if it
696	     *     is the cause of some caching/coherency issue that might
697	     *     crop up.)
698 	     */
699	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0)
700		    np->n_attrstamp = 0;
701	    if (np->n_flag & NWRITEERR) {
702		np->n_flag &= ~NWRITEERR;
703		error = np->n_error;
704	    }
705	    mtx_unlock(&np->n_mtx);
706	}
707
708	if (NFS_ISV4(vp)) {
709		/*
710		 * Get attributes so "change" is up to date.
711		 */
712		if (error == 0 && nfscl_mustflush(vp)) {
713			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
714			    NULL);
715			if (!ret) {
716				np->n_change = nfsva.na_filerev;
717				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
718				    NULL, 0, 0);
719			}
720		}
721
722		/*
723		 * and do the close.
724		 */
725		ret = nfsrpc_close(vp, 0, ap->a_td);
726		if (!error && ret)
727			error = ret;
728		if (error)
729			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
730			    (gid_t)0);
731	}
732	if (newnfs_directio_enable)
733		KASSERT((np->n_directio_asyncwr == 0),
734			("nfs_close: dirty unflushed (%d) directio buffers\n",
735			 np->n_directio_asyncwr));
736	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
737		mtx_lock(&np->n_mtx);
738		KASSERT((np->n_directio_opens > 0),
739			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
740		np->n_directio_opens--;
741		if (np->n_directio_opens == 0)
742			np->n_flag &= ~NNONCACHE;
743		mtx_unlock(&np->n_mtx);
744	}
745	if (localcred)
746		NFSFREECRED(cred);
747	return (error);
748}
749
750/*
751 * nfs getattr call from vfs.
752 */
753static int
754nfs_getattr(struct vop_getattr_args *ap)
755{
756	struct vnode *vp = ap->a_vp;
757	struct thread *td = curthread;	/* XXX */
758	struct nfsnode *np = VTONFS(vp);
759	int error = 0;
760	struct nfsvattr nfsva;
761	struct vattr *vap = ap->a_vap;
762	struct vattr vattr;
763
764	/*
765	 * Update local times for special files.
766	 */
767	mtx_lock(&np->n_mtx);
768	if (np->n_flag & (NACC | NUPD))
769		np->n_flag |= NCHG;
770	mtx_unlock(&np->n_mtx);
771	/*
772	 * First look in the cache.
773	 */
774	if (ncl_getattrcache(vp, &vattr) == 0) {
775		vap->va_type = vattr.va_type;
776		vap->va_mode = vattr.va_mode;
777		vap->va_nlink = vattr.va_nlink;
778		vap->va_uid = vattr.va_uid;
779		vap->va_gid = vattr.va_gid;
780		vap->va_fsid = vattr.va_fsid;
781		vap->va_fileid = vattr.va_fileid;
782		vap->va_size = vattr.va_size;
783		vap->va_blocksize = vattr.va_blocksize;
784		vap->va_atime = vattr.va_atime;
785		vap->va_mtime = vattr.va_mtime;
786		vap->va_ctime = vattr.va_ctime;
787		vap->va_gen = vattr.va_gen;
788		vap->va_flags = vattr.va_flags;
789		vap->va_rdev = vattr.va_rdev;
790		vap->va_bytes = vattr.va_bytes;
791		vap->va_filerev = vattr.va_filerev;
792		/*
793		 * Get the local modify time for the case of a write
794		 * delegation.
795		 */
796		nfscl_deleggetmodtime(vp, &vap->va_mtime);
797		return (0);
798	}
799
800	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
801	    nfsaccess_cache_timeout > 0) {
802		NFSINCRGLOBAL(newnfsstats.accesscache_misses);
803		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
804		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
805			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
806			return (0);
807		}
808	}
809	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
810	if (!error)
811		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
812	if (!error) {
813		/*
814		 * Get the local modify time for the case of a write
815		 * delegation.
816		 */
817		nfscl_deleggetmodtime(vp, &vap->va_mtime);
818	} else if (NFS_ISV4(vp)) {
819		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
820	}
821	return (error);
822}
823
824/*
825 * nfs setattr call.
826 */
827static int
828nfs_setattr(struct vop_setattr_args *ap)
829{
830	struct vnode *vp = ap->a_vp;
831	struct nfsnode *np = VTONFS(vp);
832	struct thread *td = curthread;	/* XXX */
833	struct vattr *vap = ap->a_vap;
834	int error = 0;
835	u_quad_t tsize;
836
837#ifndef nolint
838	tsize = (u_quad_t)0;
839#endif
840
841	/*
842	 * Setting of flags and marking of atimes are not supported.
843	 */
844	if (vap->va_flags != VNOVAL)
845		return (EOPNOTSUPP);
846
847	/*
848	 * Disallow write attempts if the filesystem is mounted read-only.
849	 */
850  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
851	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
852	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
853	    (vp->v_mount->mnt_flag & MNT_RDONLY))
854		return (EROFS);
855	if (vap->va_size != VNOVAL) {
856 		switch (vp->v_type) {
857 		case VDIR:
858 			return (EISDIR);
859 		case VCHR:
860 		case VBLK:
861 		case VSOCK:
862 		case VFIFO:
863			if (vap->va_mtime.tv_sec == VNOVAL &&
864			    vap->va_atime.tv_sec == VNOVAL &&
865			    vap->va_mode == (mode_t)VNOVAL &&
866			    vap->va_uid == (uid_t)VNOVAL &&
867			    vap->va_gid == (gid_t)VNOVAL)
868				return (0);
869 			vap->va_size = VNOVAL;
870 			break;
871 		default:
872			/*
873			 * Disallow write attempts if the filesystem is
874			 * mounted read-only.
875			 */
876			if (vp->v_mount->mnt_flag & MNT_RDONLY)
877				return (EROFS);
878			/*
879			 *  We run vnode_pager_setsize() early (why?),
880			 * we must set np->n_size now to avoid vinvalbuf
881			 * V_SAVE races that might setsize a lower
882			 * value.
883			 */
884			mtx_lock(&np->n_mtx);
885			tsize = np->n_size;
886			mtx_unlock(&np->n_mtx);
887			error = ncl_meta_setsize(vp, ap->a_cred, td,
888			    vap->va_size);
889			mtx_lock(&np->n_mtx);
890 			if (np->n_flag & NMODIFIED) {
891			    tsize = np->n_size;
892			    mtx_unlock(&np->n_mtx);
893 			    if (vap->va_size == 0)
894 				error = ncl_vinvalbuf(vp, 0, td, 1);
895 			    else
896 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
897 			    if (error) {
898				vnode_pager_setsize(vp, tsize);
899				return (error);
900			    }
901			    /*
902			     * Call nfscl_delegmodtime() to set the modify time
903			     * locally, as required.
904			     */
905			    nfscl_delegmodtime(vp);
906 			} else
907			    mtx_unlock(&np->n_mtx);
908			/*
909			 * np->n_size has already been set to vap->va_size
910			 * in ncl_meta_setsize(). We must set it again since
911			 * nfs_loadattrcache() could be called through
912			 * ncl_meta_setsize() and could modify np->n_size.
913			 */
914			mtx_lock(&np->n_mtx);
915 			np->n_vattr.na_size = np->n_size = vap->va_size;
916			mtx_unlock(&np->n_mtx);
917  		};
918  	} else {
919		mtx_lock(&np->n_mtx);
920		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
921		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
922			mtx_unlock(&np->n_mtx);
923			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
924			    (error == EINTR || error == EIO))
925				return (error);
926		} else
927			mtx_unlock(&np->n_mtx);
928	}
929	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
930	if (error && vap->va_size != VNOVAL) {
931		mtx_lock(&np->n_mtx);
932		np->n_size = np->n_vattr.na_size = tsize;
933		vnode_pager_setsize(vp, tsize);
934		mtx_unlock(&np->n_mtx);
935	}
936	return (error);
937}
938
939/*
940 * Do an nfs setattr rpc.
941 */
942static int
943nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
944    struct thread *td)
945{
946	struct nfsnode *np = VTONFS(vp);
947	int error, ret, attrflag, i;
948	struct nfsvattr nfsva;
949
950	if (NFS_ISV34(vp)) {
951		mtx_lock(&np->n_mtx);
952		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
953			np->n_accesscache[i].stamp = 0;
954		np->n_flag |= NDELEGMOD;
955		mtx_unlock(&np->n_mtx);
956	}
957	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
958	    NULL);
959	if (attrflag) {
960		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
961		if (ret && !error)
962			error = ret;
963	}
964	if (error && NFS_ISV4(vp))
965		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
966	return (error);
967}
968
969/*
970 * nfs lookup call, one step at a time...
971 * First look in cache
972 * If not found, unlock the directory nfsnode and do the rpc
973 */
974static int
975nfs_lookup(struct vop_lookup_args *ap)
976{
977	struct componentname *cnp = ap->a_cnp;
978	struct vnode *dvp = ap->a_dvp;
979	struct vnode **vpp = ap->a_vpp;
980	struct mount *mp = dvp->v_mount;
981	int flags = cnp->cn_flags;
982	struct vnode *newvp;
983	struct nfsmount *nmp;
984	struct nfsnode *np, *newnp;
985	int error = 0, attrflag, dattrflag, ltype;
986	struct thread *td = cnp->cn_thread;
987	struct nfsfh *nfhp;
988	struct nfsvattr dnfsva, nfsva;
989	struct vattr vattr;
990	time_t dmtime;
991
992	*vpp = NULLVP;
993	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
994	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
995		return (EROFS);
996	if (dvp->v_type != VDIR)
997		return (ENOTDIR);
998	nmp = VFSTONFS(mp);
999	np = VTONFS(dvp);
1000
1001	/* For NFSv4, wait until any remove is done. */
1002	mtx_lock(&np->n_mtx);
1003	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1004		np->n_flag |= NREMOVEWANT;
1005		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1006	}
1007	mtx_unlock(&np->n_mtx);
1008
1009	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1010		return (error);
1011	error = cache_lookup(dvp, vpp, cnp);
1012	if (error > 0 && error != ENOENT)
1013		return (error);
1014	if (error == -1) {
1015		/*
1016		 * We only accept a positive hit in the cache if the
1017		 * change time of the file matches our cached copy.
1018		 * Otherwise, we discard the cache entry and fallback
1019		 * to doing a lookup RPC.
1020		 *
1021		 * To better handle stale file handles and attributes,
1022		 * clear the attribute cache of this node if it is a
1023		 * leaf component, part of an open() call, and not
1024		 * locally modified before fetching the attributes.
1025		 * This should allow stale file handles to be detected
1026		 * here where we can fall back to a LOOKUP RPC to
1027		 * recover rather than having nfs_open() detect the
1028		 * stale file handle and failing open(2) with ESTALE.
1029		 */
1030		newvp = *vpp;
1031		newnp = VTONFS(newvp);
1032		if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1033		    !(newnp->n_flag & NMODIFIED)) {
1034			mtx_lock(&newnp->n_mtx);
1035			newnp->n_attrstamp = 0;
1036			mtx_unlock(&newnp->n_mtx);
1037		}
1038		if (nfscl_nodeleg(newvp, 0) == 0 ||
1039		    (VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1040		    vattr.va_ctime.tv_sec == newnp->n_ctime)) {
1041			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1042			if (cnp->cn_nameiop != LOOKUP &&
1043			    (flags & ISLASTCN))
1044				cnp->cn_flags |= SAVENAME;
1045			return (0);
1046		}
1047		cache_purge(newvp);
1048		if (dvp != newvp)
1049			vput(newvp);
1050		else
1051			vrele(newvp);
1052		*vpp = NULLVP;
1053	} else if (error == ENOENT) {
1054		if (dvp->v_iflag & VI_DOOMED)
1055			return (ENOENT);
1056		/*
1057		 * We only accept a negative hit in the cache if the
1058		 * modification time of the parent directory matches
1059		 * our cached copy.  Otherwise, we discard all of the
1060		 * negative cache entries for this directory. We also
1061		 * only trust -ve cache entries for less than
1062		 * nm_negative_namecache_timeout seconds.
1063		 */
1064		if ((u_int)(ticks - np->n_dmtime_ticks) <
1065		    (nmp->nm_negnametimeo * hz) &&
1066		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1067		    vattr.va_mtime.tv_sec == np->n_dmtime) {
1068			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1069			return (ENOENT);
1070		}
1071		cache_purge_negative(dvp);
1072		mtx_lock(&np->n_mtx);
1073		np->n_dmtime = 0;
1074		mtx_unlock(&np->n_mtx);
1075	}
1076
1077	/*
1078	 * Cache the modification time of the parent directory in case
1079	 * the lookup fails and results in adding the first negative
1080	 * name cache entry for the directory.  Since this is reading
1081	 * a single time_t, don't bother with locking.  The
1082	 * modification time may be a bit stale, but it must be read
1083	 * before performing the lookup RPC to prevent a race where
1084	 * another lookup updates the timestamp on the directory after
1085	 * the lookup RPC has been performed on the server but before
1086	 * n_dmtime is set at the end of this function.
1087	 */
1088	dmtime = np->n_vattr.na_mtime.tv_sec;
1089	error = 0;
1090	newvp = NULLVP;
1091	NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
1092	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1093	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1094	    NULL);
1095	if (dattrflag)
1096		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1097	if (error) {
1098		if (newvp != NULLVP) {
1099			vput(newvp);
1100			*vpp = NULLVP;
1101		}
1102
1103		if (error != ENOENT) {
1104			if (NFS_ISV4(dvp))
1105				error = nfscl_maperr(td, error, (uid_t)0,
1106				    (gid_t)0);
1107			return (error);
1108		}
1109
1110		/* The requested file was not found. */
1111		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1112		    (flags & ISLASTCN)) {
1113			/*
1114			 * XXX: UFS does a full VOP_ACCESS(dvp,
1115			 * VWRITE) here instead of just checking
1116			 * MNT_RDONLY.
1117			 */
1118			if (mp->mnt_flag & MNT_RDONLY)
1119				return (EROFS);
1120			cnp->cn_flags |= SAVENAME;
1121			return (EJUSTRETURN);
1122		}
1123
1124		if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE) {
1125			/*
1126			 * Maintain n_dmtime as the modification time
1127			 * of the parent directory when the oldest -ve
1128			 * name cache entry for this directory was
1129			 * added.  If a -ve cache entry has already
1130			 * been added with a newer modification time
1131			 * by a concurrent lookup, then don't bother
1132			 * adding a cache entry.  The modification
1133			 * time of the directory might have changed
1134			 * due to the file this lookup failed to find
1135			 * being created.  In that case a subsequent
1136			 * lookup would incorrectly use the entry
1137			 * added here instead of doing an extra
1138			 * lookup.
1139			 */
1140			mtx_lock(&np->n_mtx);
1141			if (np->n_dmtime <= dmtime) {
1142				if (np->n_dmtime == 0) {
1143					np->n_dmtime = dmtime;
1144					np->n_dmtime_ticks = ticks;
1145				}
1146				mtx_unlock(&np->n_mtx);
1147				cache_enter(dvp, NULL, cnp);
1148			} else
1149				mtx_unlock(&np->n_mtx);
1150		}
1151		return (ENOENT);
1152	}
1153
1154	/*
1155	 * Handle RENAME case...
1156	 */
1157	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1158		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1159			FREE((caddr_t)nfhp, M_NFSFH);
1160			return (EISDIR);
1161		}
1162		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1163		if (error)
1164			return (error);
1165		newvp = NFSTOV(np);
1166		if (attrflag)
1167			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1168			    0, 1);
1169		*vpp = newvp;
1170		cnp->cn_flags |= SAVENAME;
1171		return (0);
1172	}
1173
1174	if (flags & ISDOTDOT) {
1175		ltype = VOP_ISLOCKED(dvp);
1176		error = vfs_busy(mp, MBF_NOWAIT);
1177		if (error != 0) {
1178			vfs_ref(mp);
1179			VOP_UNLOCK(dvp, 0);
1180			error = vfs_busy(mp, 0);
1181			vn_lock(dvp, ltype | LK_RETRY);
1182			vfs_rel(mp);
1183			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1184				vfs_unbusy(mp);
1185				error = ENOENT;
1186			}
1187			if (error != 0)
1188				return (error);
1189		}
1190		VOP_UNLOCK(dvp, 0);
1191		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1192		if (error == 0)
1193			newvp = NFSTOV(np);
1194		vfs_unbusy(mp);
1195		if (newvp != dvp)
1196			vn_lock(dvp, ltype | LK_RETRY);
1197		if (dvp->v_iflag & VI_DOOMED) {
1198			if (error == 0) {
1199				if (newvp == dvp)
1200					vrele(newvp);
1201				else
1202					vput(newvp);
1203			}
1204			error = ENOENT;
1205		}
1206		if (error != 0)
1207			return (error);
1208		if (attrflag)
1209			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1210			    0, 1);
1211	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1212		FREE((caddr_t)nfhp, M_NFSFH);
1213		VREF(dvp);
1214		newvp = dvp;
1215		if (attrflag)
1216			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1217			    0, 1);
1218	} else {
1219		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1220		if (error)
1221			return (error);
1222		newvp = NFSTOV(np);
1223		if (attrflag)
1224			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1225			    0, 1);
1226		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1227		    !(np->n_flag & NMODIFIED)) {
1228			/*
1229			 * Flush the attribute cache when opening a
1230			 * leaf node to ensure that fresh attributes
1231			 * are fetched in nfs_open() since we did not
1232			 * fetch attributes from the LOOKUP reply.
1233			 */
1234			mtx_lock(&np->n_mtx);
1235			np->n_attrstamp = 0;
1236			mtx_unlock(&np->n_mtx);
1237		}
1238	}
1239	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1240		cnp->cn_flags |= SAVENAME;
1241	if ((cnp->cn_flags & MAKEENTRY) &&
1242	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) {
1243		np->n_ctime = np->n_vattr.na_vattr.va_ctime.tv_sec;
1244		cache_enter(dvp, newvp, cnp);
1245	}
1246	*vpp = newvp;
1247	return (0);
1248}
1249
1250/*
1251 * nfs read call.
1252 * Just call ncl_bioread() to do the work.
1253 */
1254static int
1255nfs_read(struct vop_read_args *ap)
1256{
1257	struct vnode *vp = ap->a_vp;
1258
1259	switch (vp->v_type) {
1260	case VREG:
1261		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1262	case VDIR:
1263		return (EISDIR);
1264	default:
1265		return (EOPNOTSUPP);
1266	}
1267}
1268
1269/*
1270 * nfs readlink call
1271 */
1272static int
1273nfs_readlink(struct vop_readlink_args *ap)
1274{
1275	struct vnode *vp = ap->a_vp;
1276
1277	if (vp->v_type != VLNK)
1278		return (EINVAL);
1279	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1280}
1281
1282/*
1283 * Do a readlink rpc.
1284 * Called by ncl_doio() from below the buffer cache.
1285 */
1286int
1287ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1288{
1289	int error, ret, attrflag;
1290	struct nfsvattr nfsva;
1291
1292	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1293	    &attrflag, NULL);
1294	if (attrflag) {
1295		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1296		if (ret && !error)
1297			error = ret;
1298	}
1299	if (error && NFS_ISV4(vp))
1300		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1301	return (error);
1302}
1303
1304/*
1305 * nfs read rpc call
1306 * Ditto above
1307 */
1308int
1309ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1310{
1311	int error, ret, attrflag;
1312	struct nfsvattr nfsva;
1313
1314	error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag,
1315	    NULL);
1316	if (attrflag) {
1317		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1318		if (ret && !error)
1319			error = ret;
1320	}
1321	if (error && NFS_ISV4(vp))
1322		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1323	return (error);
1324}
1325
1326/*
1327 * nfs write call
1328 */
1329int
1330ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1331    int *iomode, int *must_commit, int called_from_strategy)
1332{
1333	struct nfsvattr nfsva;
1334	int error = 0, attrflag, ret;
1335	u_char verf[NFSX_VERF];
1336	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1337
1338	*must_commit = 0;
1339	error = nfsrpc_write(vp, uiop, iomode, verf, cred,
1340	    uiop->uio_td, &nfsva, &attrflag, NULL, called_from_strategy);
1341	NFSLOCKMNT(nmp);
1342	if (!error && NFSHASWRITEVERF(nmp) &&
1343	    NFSBCMP(verf, nmp->nm_verf, NFSX_VERF)) {
1344		*must_commit = 1;
1345		NFSBCOPY(verf, nmp->nm_verf, NFSX_VERF);
1346	}
1347	NFSUNLOCKMNT(nmp);
1348	if (attrflag) {
1349		if (VTONFS(vp)->n_flag & ND_NFSV4)
1350			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1351			    1);
1352		else
1353			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1354			    1);
1355		if (ret && !error)
1356			error = ret;
1357	}
1358	if (vp->v_mount->mnt_kern_flag & MNTK_ASYNC)
1359		*iomode = NFSWRITE_FILESYNC;
1360	if (error && NFS_ISV4(vp))
1361		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1362	return (error);
1363}
1364
1365/*
1366 * nfs mknod rpc
1367 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1368 * mode set to specify the file type and the size field for rdev.
1369 */
1370static int
1371nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1372    struct vattr *vap)
1373{
1374	struct nfsvattr nfsva, dnfsva;
1375	struct vnode *newvp = NULL;
1376	struct nfsnode *np = NULL, *dnp;
1377	struct nfsfh *nfhp;
1378	struct vattr vattr;
1379	int error = 0, attrflag, dattrflag;
1380	u_int32_t rdev;
1381
1382	if (vap->va_type == VCHR || vap->va_type == VBLK)
1383		rdev = vap->va_rdev;
1384	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1385		rdev = 0xffffffff;
1386	else
1387		return (EOPNOTSUPP);
1388	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1389		return (error);
1390	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1391	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1392	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1393	if (!error) {
1394		if (!nfhp)
1395			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1396			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1397			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1398			    NULL);
1399		if (nfhp)
1400			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1401			    cnp->cn_thread, &np, NULL);
1402	}
1403	if (dattrflag)
1404		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1405	if (!error) {
1406		newvp = NFSTOV(np);
1407		if (attrflag)
1408			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1409			    0, 1);
1410	}
1411	if (!error) {
1412		if ((cnp->cn_flags & MAKEENTRY))
1413			cache_enter(dvp, newvp, cnp);
1414		*vpp = newvp;
1415	} else if (NFS_ISV4(dvp)) {
1416		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1417		    vap->va_gid);
1418	}
1419	dnp = VTONFS(dvp);
1420	mtx_lock(&dnp->n_mtx);
1421	dnp->n_flag |= NMODIFIED;
1422	if (!dattrflag)
1423		dnp->n_attrstamp = 0;
1424	mtx_unlock(&dnp->n_mtx);
1425	return (error);
1426}
1427
1428/*
1429 * nfs mknod vop
1430 * just call nfs_mknodrpc() to do the work.
1431 */
1432/* ARGSUSED */
1433static int
1434nfs_mknod(struct vop_mknod_args *ap)
1435{
1436	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1437}
1438
1439static struct mtx nfs_cverf_mtx;
1440MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1441    MTX_DEF);
1442
1443static nfsquad_t
1444nfs_get_cverf(void)
1445{
1446	static nfsquad_t cverf;
1447	nfsquad_t ret;
1448	static int cverf_initialized = 0;
1449
1450	mtx_lock(&nfs_cverf_mtx);
1451	if (cverf_initialized == 0) {
1452		cverf.lval[0] = arc4random();
1453		cverf.lval[1] = arc4random();
1454		cverf_initialized = 1;
1455	} else
1456		cverf.qval++;
1457	ret = cverf;
1458	mtx_unlock(&nfs_cverf_mtx);
1459
1460	return (ret);
1461}
1462
1463/*
1464 * nfs file create call
1465 */
1466static int
1467nfs_create(struct vop_create_args *ap)
1468{
1469	struct vnode *dvp = ap->a_dvp;
1470	struct vattr *vap = ap->a_vap;
1471	struct componentname *cnp = ap->a_cnp;
1472	struct nfsnode *np = NULL, *dnp;
1473	struct vnode *newvp = NULL;
1474	struct nfsmount *nmp;
1475	struct nfsvattr dnfsva, nfsva;
1476	struct nfsfh *nfhp;
1477	nfsquad_t cverf;
1478	int error = 0, attrflag, dattrflag, fmode = 0;
1479	struct vattr vattr;
1480
1481	/*
1482	 * Oops, not for me..
1483	 */
1484	if (vap->va_type == VSOCK)
1485		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1486
1487	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1488		return (error);
1489	if (vap->va_vaflags & VA_EXCLUSIVE)
1490		fmode |= O_EXCL;
1491	dnp = VTONFS(dvp);
1492	nmp = VFSTONFS(vnode_mount(dvp));
1493again:
1494	/* For NFSv4, wait until any remove is done. */
1495	mtx_lock(&dnp->n_mtx);
1496	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1497		dnp->n_flag |= NREMOVEWANT;
1498		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1499	}
1500	mtx_unlock(&dnp->n_mtx);
1501
1502	cverf = nfs_get_cverf();
1503	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1504	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1505	    &nfhp, &attrflag, &dattrflag, NULL);
1506	if (!error) {
1507		if (nfhp == NULL)
1508			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1509			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1510			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1511			    NULL);
1512		if (nfhp != NULL)
1513			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1514			    cnp->cn_thread, &np, NULL);
1515	}
1516	if (dattrflag)
1517		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1518	if (!error) {
1519		newvp = NFSTOV(np);
1520		if (attrflag)
1521			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1522			    0, 1);
1523	}
1524	if (error) {
1525		if (newvp != NULL) {
1526			vrele(newvp);
1527			newvp = NULL;
1528		}
1529		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1530		    error == NFSERR_NOTSUPP) {
1531			fmode &= ~O_EXCL;
1532			goto again;
1533		}
1534	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1535		if (nfscl_checksattr(vap, &nfsva)) {
1536			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1537			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1538			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1539			    vap->va_gid != (gid_t)VNOVAL)) {
1540				/* try again without setting uid/gid */
1541				vap->va_uid = (uid_t)VNOVAL;
1542				vap->va_gid = (uid_t)VNOVAL;
1543				error = nfsrpc_setattr(newvp, vap, NULL,
1544				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1545				    &attrflag, NULL);
1546			}
1547			if (attrflag)
1548				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1549				    NULL, 0, 1);
1550		}
1551	}
1552	if (!error) {
1553		if (cnp->cn_flags & MAKEENTRY)
1554			cache_enter(dvp, newvp, cnp);
1555		*ap->a_vpp = newvp;
1556	} else if (NFS_ISV4(dvp)) {
1557		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1558		    vap->va_gid);
1559	}
1560	mtx_lock(&dnp->n_mtx);
1561	dnp->n_flag |= NMODIFIED;
1562	if (!dattrflag)
1563		dnp->n_attrstamp = 0;
1564	mtx_unlock(&dnp->n_mtx);
1565	return (error);
1566}
1567
1568/*
1569 * nfs file remove call
1570 * To try and make nfs semantics closer to ufs semantics, a file that has
1571 * other processes using the vnode is renamed instead of removed and then
1572 * removed later on the last close.
1573 * - If v_usecount > 1
1574 *	  If a rename is not already in the works
1575 *	     call nfs_sillyrename() to set it up
1576 *     else
1577 *	  do the remove rpc
1578 */
1579static int
1580nfs_remove(struct vop_remove_args *ap)
1581{
1582	struct vnode *vp = ap->a_vp;
1583	struct vnode *dvp = ap->a_dvp;
1584	struct componentname *cnp = ap->a_cnp;
1585	struct nfsnode *np = VTONFS(vp);
1586	int error = 0;
1587	struct vattr vattr;
1588
1589	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1590	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1591	if (vp->v_type == VDIR)
1592		error = EPERM;
1593	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1594	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1595	    vattr.va_nlink > 1)) {
1596		/*
1597		 * Purge the name cache so that the chance of a lookup for
1598		 * the name succeeding while the remove is in progress is
1599		 * minimized. Without node locking it can still happen, such
1600		 * that an I/O op returns ESTALE, but since you get this if
1601		 * another host removes the file..
1602		 */
1603		cache_purge(vp);
1604		/*
1605		 * throw away biocache buffers, mainly to avoid
1606		 * unnecessary delayed writes later.
1607		 */
1608		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1609		/* Do the rpc */
1610		if (error != EINTR && error != EIO)
1611			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1612			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1613		/*
1614		 * Kludge City: If the first reply to the remove rpc is lost..
1615		 *   the reply to the retransmitted request will be ENOENT
1616		 *   since the file was in fact removed
1617		 *   Therefore, we cheat and return success.
1618		 */
1619		if (error == ENOENT)
1620			error = 0;
1621	} else if (!np->n_sillyrename)
1622		error = nfs_sillyrename(dvp, vp, cnp);
1623	np->n_attrstamp = 0;
1624	return (error);
1625}
1626
1627/*
1628 * nfs file remove rpc called from nfs_inactive
1629 */
1630int
1631ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1632{
1633	/*
1634	 * Make sure that the directory vnode is still valid.
1635	 * XXX we should lock sp->s_dvp here.
1636	 */
1637	if (sp->s_dvp->v_type == VBAD)
1638		return (0);
1639	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1640	    sp->s_cred, NULL));
1641}
1642
1643/*
1644 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1645 */
1646static int
1647nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1648    int namelen, struct ucred *cred, struct thread *td)
1649{
1650	struct nfsvattr dnfsva;
1651	struct nfsnode *dnp = VTONFS(dvp);
1652	int error = 0, dattrflag;
1653
1654	mtx_lock(&dnp->n_mtx);
1655	dnp->n_flag |= NREMOVEINPROG;
1656	mtx_unlock(&dnp->n_mtx);
1657	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1658	    &dattrflag, NULL);
1659	mtx_lock(&dnp->n_mtx);
1660	if ((dnp->n_flag & NREMOVEWANT)) {
1661		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1662		mtx_unlock(&dnp->n_mtx);
1663		wakeup((caddr_t)dnp);
1664	} else {
1665		dnp->n_flag &= ~NREMOVEINPROG;
1666		mtx_unlock(&dnp->n_mtx);
1667	}
1668	if (dattrflag)
1669		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1670	mtx_lock(&dnp->n_mtx);
1671	dnp->n_flag |= NMODIFIED;
1672	if (!dattrflag)
1673		dnp->n_attrstamp = 0;
1674	mtx_unlock(&dnp->n_mtx);
1675	if (error && NFS_ISV4(dvp))
1676		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1677	return (error);
1678}
1679
1680/*
1681 * nfs file rename call
1682 */
1683static int
1684nfs_rename(struct vop_rename_args *ap)
1685{
1686	struct vnode *fvp = ap->a_fvp;
1687	struct vnode *tvp = ap->a_tvp;
1688	struct vnode *fdvp = ap->a_fdvp;
1689	struct vnode *tdvp = ap->a_tdvp;
1690	struct componentname *tcnp = ap->a_tcnp;
1691	struct componentname *fcnp = ap->a_fcnp;
1692	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1693	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1694	struct nfsv4node *newv4 = NULL;
1695	int error;
1696
1697	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1698	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1699	/* Check for cross-device rename */
1700	if ((fvp->v_mount != tdvp->v_mount) ||
1701	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1702		error = EXDEV;
1703		goto out;
1704	}
1705
1706	if (fvp == tvp) {
1707		ncl_printf("nfs_rename: fvp == tvp (can't happen)\n");
1708		error = 0;
1709		goto out;
1710	}
1711	if ((error = vn_lock(fvp, LK_EXCLUSIVE)))
1712		goto out;
1713
1714	/*
1715	 * We have to flush B_DELWRI data prior to renaming
1716	 * the file.  If we don't, the delayed-write buffers
1717	 * can be flushed out later after the file has gone stale
1718	 * under NFSV3.  NFSV2 does not have this problem because
1719	 * ( as far as I can tell ) it flushes dirty buffers more
1720	 * often.
1721	 *
1722	 * Skip the rename operation if the fsync fails, this can happen
1723	 * due to the server's volume being full, when we pushed out data
1724	 * that was written back to our cache earlier. Not checking for
1725	 * this condition can result in potential (silent) data loss.
1726	 */
1727	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1728	VOP_UNLOCK(fvp, 0);
1729	if (!error && tvp)
1730		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1731	if (error)
1732		goto out;
1733
1734	/*
1735	 * If the tvp exists and is in use, sillyrename it before doing the
1736	 * rename of the new file over it.
1737	 * XXX Can't sillyrename a directory.
1738	 */
1739	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1740		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1741		vput(tvp);
1742		tvp = NULL;
1743	}
1744
1745	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1746	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1747	    tcnp->cn_thread);
1748
1749	if (!error) {
1750		/*
1751		 * For NFSv4, check to see if it is the same name and
1752		 * replace the name, if it is different.
1753		 */
1754		MALLOC(newv4, struct nfsv4node *,
1755		    sizeof (struct nfsv4node) +
1756		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1757		    M_NFSV4NODE, M_WAITOK);
1758		mtx_lock(&tdnp->n_mtx);
1759		mtx_lock(&fnp->n_mtx);
1760		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1761		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1762		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1763		      tcnp->cn_namelen) ||
1764		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1765		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1766			tdnp->n_fhp->nfh_len))) {
1767#ifdef notdef
1768{ char nnn[100]; int nnnl;
1769nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1770bcopy(tcnp->cn_nameptr, nnn, nnnl);
1771nnn[nnnl] = '\0';
1772printf("ren replace=%s\n",nnn);
1773}
1774#endif
1775			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1776			fnp->n_v4 = newv4;
1777			newv4 = NULL;
1778			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1779			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1780			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1781			    tdnp->n_fhp->nfh_len);
1782			NFSBCOPY(tcnp->cn_nameptr,
1783			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1784		}
1785		mtx_unlock(&tdnp->n_mtx);
1786		mtx_unlock(&fnp->n_mtx);
1787		if (newv4 != NULL)
1788			FREE((caddr_t)newv4, M_NFSV4NODE);
1789	}
1790
1791	if (fvp->v_type == VDIR) {
1792		if (tvp != NULL && tvp->v_type == VDIR)
1793			cache_purge(tdvp);
1794		cache_purge(fdvp);
1795	}
1796
1797out:
1798	if (tdvp == tvp)
1799		vrele(tdvp);
1800	else
1801		vput(tdvp);
1802	if (tvp)
1803		vput(tvp);
1804	vrele(fdvp);
1805	vrele(fvp);
1806	/*
1807	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1808	 */
1809	if (error == ENOENT)
1810		error = 0;
1811	return (error);
1812}
1813
1814/*
1815 * nfs file rename rpc called from nfs_remove() above
1816 */
1817static int
1818nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1819    struct sillyrename *sp)
1820{
1821
1822	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1823	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1824	    scnp->cn_thread));
1825}
1826
1827/*
1828 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1829 */
1830static int
1831nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1832    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1833    int tnamelen, struct ucred *cred, struct thread *td)
1834{
1835	struct nfsvattr fnfsva, tnfsva;
1836	struct nfsnode *fdnp = VTONFS(fdvp);
1837	struct nfsnode *tdnp = VTONFS(tdvp);
1838	int error = 0, fattrflag, tattrflag;
1839
1840	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1841	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1842	    &tattrflag, NULL, NULL);
1843	mtx_lock(&fdnp->n_mtx);
1844	fdnp->n_flag |= NMODIFIED;
1845	mtx_unlock(&fdnp->n_mtx);
1846	mtx_lock(&tdnp->n_mtx);
1847	tdnp->n_flag |= NMODIFIED;
1848	mtx_unlock(&tdnp->n_mtx);
1849	if (fattrflag)
1850		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1851	else
1852		fdnp->n_attrstamp = 0;
1853	if (tattrflag)
1854		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1855	else
1856		tdnp->n_attrstamp = 0;
1857	if (error && NFS_ISV4(fdvp))
1858		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1859	return (error);
1860}
1861
1862/*
1863 * nfs hard link create call
1864 */
1865static int
1866nfs_link(struct vop_link_args *ap)
1867{
1868	struct vnode *vp = ap->a_vp;
1869	struct vnode *tdvp = ap->a_tdvp;
1870	struct componentname *cnp = ap->a_cnp;
1871	struct nfsnode *tdnp;
1872	struct nfsvattr nfsva, dnfsva;
1873	int error = 0, attrflag, dattrflag;
1874
1875	if (vp->v_mount != tdvp->v_mount) {
1876		return (EXDEV);
1877	}
1878
1879	/*
1880	 * Push all writes to the server, so that the attribute cache
1881	 * doesn't get "out of sync" with the server.
1882	 * XXX There should be a better way!
1883	 */
1884	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1885
1886	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1887	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1888	    &dattrflag, NULL);
1889	tdnp = VTONFS(tdvp);
1890	mtx_lock(&tdnp->n_mtx);
1891	tdnp->n_flag |= NMODIFIED;
1892	mtx_unlock(&tdnp->n_mtx);
1893	if (attrflag)
1894		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1895	else
1896		VTONFS(vp)->n_attrstamp = 0;
1897	if (dattrflag)
1898		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1899	else
1900		tdnp->n_attrstamp = 0;
1901	/*
1902	 * If negative lookup caching is enabled, I might as well
1903	 * add an entry for this node. Not necessary for correctness,
1904	 * but if negative caching is enabled, then the system
1905	 * must care about lookup caching hit rate, so...
1906	 */
1907	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1908	    (cnp->cn_flags & MAKEENTRY))
1909		cache_enter(tdvp, vp, cnp);
1910	if (error && NFS_ISV4(vp))
1911		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1912		    (gid_t)0);
1913	return (error);
1914}
1915
1916/*
1917 * nfs symbolic link create call
1918 */
1919static int
1920nfs_symlink(struct vop_symlink_args *ap)
1921{
1922	struct vnode *dvp = ap->a_dvp;
1923	struct vattr *vap = ap->a_vap;
1924	struct componentname *cnp = ap->a_cnp;
1925	struct nfsvattr nfsva, dnfsva;
1926	struct nfsfh *nfhp;
1927	struct nfsnode *np = NULL, *dnp;
1928	struct vnode *newvp = NULL;
1929	int error = 0, attrflag, dattrflag, ret;
1930
1931	vap->va_type = VLNK;
1932	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1933	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1934	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1935	if (nfhp) {
1936		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
1937		    &np, NULL);
1938		if (!ret)
1939			newvp = NFSTOV(np);
1940		else if (!error)
1941			error = ret;
1942	}
1943	if (newvp != NULL) {
1944		if (attrflag)
1945			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1946			    0, 1);
1947	} else if (!error) {
1948		/*
1949		 * If we do not have an error and we could not extract the
1950		 * newvp from the response due to the request being NFSv2, we
1951		 * have to do a lookup in order to obtain a newvp to return.
1952		 */
1953		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1954		    cnp->cn_cred, cnp->cn_thread, &np);
1955		if (!error)
1956			newvp = NFSTOV(np);
1957	}
1958	if (error) {
1959		if (newvp)
1960			vput(newvp);
1961		if (NFS_ISV4(dvp))
1962			error = nfscl_maperr(cnp->cn_thread, error,
1963			    vap->va_uid, vap->va_gid);
1964	} else {
1965		/*
1966		 * If negative lookup caching is enabled, I might as well
1967		 * add an entry for this node. Not necessary for correctness,
1968		 * but if negative caching is enabled, then the system
1969		 * must care about lookup caching hit rate, so...
1970		 */
1971		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
1972		    (cnp->cn_flags & MAKEENTRY))
1973			cache_enter(dvp, newvp, cnp);
1974		*ap->a_vpp = newvp;
1975	}
1976
1977	dnp = VTONFS(dvp);
1978	mtx_lock(&dnp->n_mtx);
1979	dnp->n_flag |= NMODIFIED;
1980	mtx_unlock(&dnp->n_mtx);
1981	if (dattrflag)
1982		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1983	else
1984		dnp->n_attrstamp = 0;
1985	return (error);
1986}
1987
1988/*
1989 * nfs make dir call
1990 */
1991static int
1992nfs_mkdir(struct vop_mkdir_args *ap)
1993{
1994	struct vnode *dvp = ap->a_dvp;
1995	struct vattr *vap = ap->a_vap;
1996	struct componentname *cnp = ap->a_cnp;
1997	struct nfsnode *np = NULL, *dnp;
1998	struct vnode *newvp = NULL;
1999	struct vattr vattr;
2000	struct nfsfh *nfhp;
2001	struct nfsvattr nfsva, dnfsva;
2002	int error = 0, attrflag, dattrflag, ret;
2003
2004	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
2005		return (error);
2006	vap->va_type = VDIR;
2007	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2008	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2009	    &attrflag, &dattrflag, NULL);
2010	dnp = VTONFS(dvp);
2011	mtx_lock(&dnp->n_mtx);
2012	dnp->n_flag |= NMODIFIED;
2013	mtx_unlock(&dnp->n_mtx);
2014	if (dattrflag)
2015		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2016	else
2017		dnp->n_attrstamp = 0;
2018	if (nfhp) {
2019		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2020		    &np, NULL);
2021		if (!ret) {
2022			newvp = NFSTOV(np);
2023			if (attrflag)
2024			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2025				NULL, 0, 1);
2026		} else if (!error)
2027			error = ret;
2028	}
2029	if (!error && newvp == NULL) {
2030		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2031		    cnp->cn_cred, cnp->cn_thread, &np);
2032		if (!error) {
2033			newvp = NFSTOV(np);
2034			if (newvp->v_type != VDIR)
2035				error = EEXIST;
2036		}
2037	}
2038	if (error) {
2039		if (newvp)
2040			vput(newvp);
2041		if (NFS_ISV4(dvp))
2042			error = nfscl_maperr(cnp->cn_thread, error,
2043			    vap->va_uid, vap->va_gid);
2044	} else {
2045		/*
2046		 * If negative lookup caching is enabled, I might as well
2047		 * add an entry for this node. Not necessary for correctness,
2048		 * but if negative caching is enabled, then the system
2049		 * must care about lookup caching hit rate, so...
2050		 */
2051		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2052		    (cnp->cn_flags & MAKEENTRY))
2053			cache_enter(dvp, newvp, cnp);
2054		*ap->a_vpp = newvp;
2055	}
2056	return (error);
2057}
2058
2059/*
2060 * nfs remove directory call
2061 */
2062static int
2063nfs_rmdir(struct vop_rmdir_args *ap)
2064{
2065	struct vnode *vp = ap->a_vp;
2066	struct vnode *dvp = ap->a_dvp;
2067	struct componentname *cnp = ap->a_cnp;
2068	struct nfsnode *dnp;
2069	struct nfsvattr dnfsva;
2070	int error, dattrflag;
2071
2072	if (dvp == vp)
2073		return (EINVAL);
2074	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2075	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2076	dnp = VTONFS(dvp);
2077	mtx_lock(&dnp->n_mtx);
2078	dnp->n_flag |= NMODIFIED;
2079	mtx_unlock(&dnp->n_mtx);
2080	if (dattrflag)
2081		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2082	else
2083		dnp->n_attrstamp = 0;
2084
2085	cache_purge(dvp);
2086	cache_purge(vp);
2087	if (error && NFS_ISV4(dvp))
2088		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2089		    (gid_t)0);
2090	/*
2091	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2092	 */
2093	if (error == ENOENT)
2094		error = 0;
2095	return (error);
2096}
2097
2098/*
2099 * nfs readdir call
2100 */
2101static int
2102nfs_readdir(struct vop_readdir_args *ap)
2103{
2104	struct vnode *vp = ap->a_vp;
2105	struct nfsnode *np = VTONFS(vp);
2106	struct uio *uio = ap->a_uio;
2107	int tresid, error = 0;
2108	struct vattr vattr;
2109
2110	if (vp->v_type != VDIR)
2111		return(EPERM);
2112
2113	/*
2114	 * First, check for hit on the EOF offset cache
2115	 */
2116	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2117	    (np->n_flag & NMODIFIED) == 0) {
2118		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2119			mtx_lock(&np->n_mtx);
2120			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2121			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2122				mtx_unlock(&np->n_mtx);
2123				NFSINCRGLOBAL(newnfsstats.direofcache_hits);
2124				return (0);
2125			} else
2126				mtx_unlock(&np->n_mtx);
2127		}
2128	}
2129
2130	/*
2131	 * Call ncl_bioread() to do the real work.
2132	 */
2133	tresid = uio->uio_resid;
2134	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2135
2136	if (!error && uio->uio_resid == tresid)
2137		NFSINCRGLOBAL(newnfsstats.direofcache_misses);
2138	return (error);
2139}
2140
2141/*
2142 * Readdir rpc call.
2143 * Called from below the buffer cache by ncl_doio().
2144 */
2145int
2146ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2147    struct thread *td)
2148{
2149	struct nfsvattr nfsva;
2150	nfsuint64 *cookiep, cookie;
2151	struct nfsnode *dnp = VTONFS(vp);
2152	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2153	int error = 0, eof, attrflag;
2154
2155	KASSERT(uiop->uio_iovcnt == 1 &&
2156	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2157	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2158	    ("nfs readdirrpc bad uio"));
2159
2160	/*
2161	 * If there is no cookie, assume directory was stale.
2162	 */
2163	ncl_dircookie_lock(dnp);
2164	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2165	if (cookiep) {
2166		cookie = *cookiep;
2167		ncl_dircookie_unlock(dnp);
2168	} else {
2169		ncl_dircookie_unlock(dnp);
2170		return (NFSERR_BAD_COOKIE);
2171	}
2172
2173	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2174		(void)ncl_fsinfo(nmp, vp, cred, td);
2175
2176	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2177	    &attrflag, &eof, NULL);
2178	if (attrflag)
2179		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2180
2181	if (!error) {
2182		/*
2183		 * We are now either at the end of the directory or have filled
2184		 * the block.
2185		 */
2186		if (eof)
2187			dnp->n_direofoffset = uiop->uio_offset;
2188		else {
2189			if (uiop->uio_resid > 0)
2190				ncl_printf("EEK! readdirrpc resid > 0\n");
2191			ncl_dircookie_lock(dnp);
2192			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2193			*cookiep = cookie;
2194			ncl_dircookie_unlock(dnp);
2195		}
2196	} else if (NFS_ISV4(vp)) {
2197		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2198	}
2199	return (error);
2200}
2201
2202/*
2203 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2204 */
2205int
2206ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2207    struct thread *td)
2208{
2209	struct nfsvattr nfsva;
2210	nfsuint64 *cookiep, cookie;
2211	struct nfsnode *dnp = VTONFS(vp);
2212	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2213	int error = 0, attrflag, eof;
2214
2215	KASSERT(uiop->uio_iovcnt == 1 &&
2216	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2217	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2218	    ("nfs readdirplusrpc bad uio"));
2219
2220	/*
2221	 * If there is no cookie, assume directory was stale.
2222	 */
2223	ncl_dircookie_lock(dnp);
2224	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2225	if (cookiep) {
2226		cookie = *cookiep;
2227		ncl_dircookie_unlock(dnp);
2228	} else {
2229		ncl_dircookie_unlock(dnp);
2230		return (NFSERR_BAD_COOKIE);
2231	}
2232
2233	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2234		(void)ncl_fsinfo(nmp, vp, cred, td);
2235	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2236	    &attrflag, &eof, NULL);
2237	if (attrflag)
2238		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2239
2240	if (!error) {
2241		/*
2242		 * We are now either at end of the directory or have filled the
2243		 * the block.
2244		 */
2245		if (eof)
2246			dnp->n_direofoffset = uiop->uio_offset;
2247		else {
2248			if (uiop->uio_resid > 0)
2249				ncl_printf("EEK! readdirplusrpc resid > 0\n");
2250			ncl_dircookie_lock(dnp);
2251			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2252			*cookiep = cookie;
2253			ncl_dircookie_unlock(dnp);
2254		}
2255	} else if (NFS_ISV4(vp)) {
2256		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2257	}
2258	return (error);
2259}
2260
2261/*
2262 * Silly rename. To make the NFS filesystem that is stateless look a little
2263 * more like the "ufs" a remove of an active vnode is translated to a rename
2264 * to a funny looking filename that is removed by nfs_inactive on the
2265 * nfsnode. There is the potential for another process on a different client
2266 * to create the same funny name between the nfs_lookitup() fails and the
2267 * nfs_rename() completes, but...
2268 */
2269static int
2270nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2271{
2272	struct sillyrename *sp;
2273	struct nfsnode *np;
2274	int error;
2275	short pid;
2276	unsigned int lticks;
2277
2278	cache_purge(dvp);
2279	np = VTONFS(vp);
2280	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2281	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2282	    M_NEWNFSREQ, M_WAITOK);
2283	sp->s_cred = crhold(cnp->cn_cred);
2284	sp->s_dvp = dvp;
2285	VREF(dvp);
2286
2287	/*
2288	 * Fudge together a funny name.
2289	 * Changing the format of the funny name to accomodate more
2290	 * sillynames per directory.
2291	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2292	 * CPU ticks since boot.
2293	 */
2294	pid = cnp->cn_thread->td_proc->p_pid;
2295	lticks = (unsigned int)ticks;
2296	for ( ; ; ) {
2297		sp->s_namlen = sprintf(sp->s_name,
2298				       ".nfs.%08x.%04x4.4", lticks,
2299				       pid);
2300		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2301				 cnp->cn_thread, NULL))
2302			break;
2303		lticks++;
2304	}
2305	error = nfs_renameit(dvp, vp, cnp, sp);
2306	if (error)
2307		goto bad;
2308	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2309		cnp->cn_thread, &np);
2310	np->n_sillyrename = sp;
2311	return (0);
2312bad:
2313	vrele(sp->s_dvp);
2314	crfree(sp->s_cred);
2315	free((caddr_t)sp, M_NEWNFSREQ);
2316	return (error);
2317}
2318
2319/*
2320 * Look up a file name and optionally either update the file handle or
2321 * allocate an nfsnode, depending on the value of npp.
2322 * npp == NULL	--> just do the lookup
2323 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2324 *			handled too
2325 * *npp != NULL --> update the file handle in the vnode
2326 */
2327static int
2328nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2329    struct thread *td, struct nfsnode **npp)
2330{
2331	struct vnode *newvp = NULL, *vp;
2332	struct nfsnode *np, *dnp = VTONFS(dvp);
2333	struct nfsfh *nfhp, *onfhp;
2334	struct nfsvattr nfsva, dnfsva;
2335	struct componentname cn;
2336	int error = 0, attrflag, dattrflag;
2337	u_int hash;
2338
2339	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2340	    &nfhp, &attrflag, &dattrflag, NULL);
2341	if (dattrflag)
2342		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2343	if (npp && !error) {
2344		if (*npp != NULL) {
2345		    np = *npp;
2346		    vp = NFSTOV(np);
2347		    /*
2348		     * For NFSv4, check to see if it is the same name and
2349		     * replace the name, if it is different.
2350		     */
2351		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2352			(np->n_v4->n4_namelen != len ||
2353			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2354			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2355			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2356			 dnp->n_fhp->nfh_len))) {
2357#ifdef notdef
2358{ char nnn[100]; int nnnl;
2359nnnl = (len < 100) ? len : 99;
2360bcopy(name, nnn, nnnl);
2361nnn[nnnl] = '\0';
2362printf("replace=%s\n",nnn);
2363}
2364#endif
2365			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2366			    MALLOC(np->n_v4, struct nfsv4node *,
2367				sizeof (struct nfsv4node) +
2368				dnp->n_fhp->nfh_len + len - 1,
2369				M_NFSV4NODE, M_WAITOK);
2370			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2371			    np->n_v4->n4_namelen = len;
2372			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2373				dnp->n_fhp->nfh_len);
2374			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2375		    }
2376		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2377			FNV1_32_INIT);
2378		    onfhp = np->n_fhp;
2379		    /*
2380		     * Rehash node for new file handle.
2381		     */
2382		    vfs_hash_rehash(vp, hash);
2383		    np->n_fhp = nfhp;
2384		    if (onfhp != NULL)
2385			FREE((caddr_t)onfhp, M_NFSFH);
2386		    newvp = NFSTOV(np);
2387		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2388		    FREE((caddr_t)nfhp, M_NFSFH);
2389		    VREF(dvp);
2390		    newvp = dvp;
2391		} else {
2392		    cn.cn_nameptr = name;
2393		    cn.cn_namelen = len;
2394		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2395			&np, NULL);
2396		    if (error)
2397			return (error);
2398		    newvp = NFSTOV(np);
2399		}
2400		if (!attrflag && *npp == NULL) {
2401			vrele(newvp);
2402			return (ENOENT);
2403		}
2404		if (attrflag)
2405			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2406			    0, 1);
2407	}
2408	if (npp && *npp == NULL) {
2409		if (error) {
2410			if (newvp) {
2411				if (newvp == dvp)
2412					vrele(newvp);
2413				else
2414					vput(newvp);
2415			}
2416		} else
2417			*npp = np;
2418	}
2419	if (error && NFS_ISV4(dvp))
2420		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2421	return (error);
2422}
2423
2424/*
2425 * Nfs Version 3 and 4 commit rpc
2426 */
2427int
2428ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2429   struct thread *td)
2430{
2431	struct nfsvattr nfsva;
2432	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2433	int error, attrflag;
2434	u_char verf[NFSX_VERF];
2435
2436	mtx_lock(&nmp->nm_mtx);
2437	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2438		mtx_unlock(&nmp->nm_mtx);
2439		return (0);
2440	}
2441	mtx_unlock(&nmp->nm_mtx);
2442	error = nfsrpc_commit(vp, offset, cnt, cred, td, verf, &nfsva,
2443	    &attrflag, NULL);
2444	if (!error) {
2445		if (NFSBCMP((caddr_t)nmp->nm_verf, verf, NFSX_VERF)) {
2446			NFSBCOPY(verf, (caddr_t)nmp->nm_verf, NFSX_VERF);
2447			error = NFSERR_STALEWRITEVERF;
2448		}
2449		if (!error && attrflag)
2450			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2451			    0, 1);
2452	} else if (NFS_ISV4(vp)) {
2453		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2454	}
2455	return (error);
2456}
2457
2458/*
2459 * Strategy routine.
2460 * For async requests when nfsiod(s) are running, queue the request by
2461 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2462 * request.
2463 */
2464static int
2465nfs_strategy(struct vop_strategy_args *ap)
2466{
2467	struct buf *bp = ap->a_bp;
2468	struct ucred *cr;
2469
2470	KASSERT(!(bp->b_flags & B_DONE),
2471	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2472	BUF_ASSERT_HELD(bp);
2473
2474	if (bp->b_iocmd == BIO_READ)
2475		cr = bp->b_rcred;
2476	else
2477		cr = bp->b_wcred;
2478
2479	/*
2480	 * If the op is asynchronous and an i/o daemon is waiting
2481	 * queue the request, wake it up and wait for completion
2482	 * otherwise just do it ourselves.
2483	 */
2484	if ((bp->b_flags & B_ASYNC) == 0 ||
2485	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2486		(void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2487	return (0);
2488}
2489
2490/*
2491 * fsync vnode op. Just call ncl_flush() with commit == 1.
2492 */
2493/* ARGSUSED */
2494static int
2495nfs_fsync(struct vop_fsync_args *ap)
2496{
2497	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2498}
2499
2500/*
2501 * Flush all the blocks associated with a vnode.
2502 * 	Walk through the buffer pool and push any dirty pages
2503 *	associated with the vnode.
2504 * If the called_from_renewthread argument is TRUE, it has been called
2505 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2506 * waiting for a buffer write to complete.
2507 */
2508int
2509ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2510    int commit, int called_from_renewthread)
2511{
2512	struct nfsnode *np = VTONFS(vp);
2513	struct buf *bp;
2514	int i;
2515	struct buf *nbp;
2516	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2517	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2518	int passone = 1, trycnt = 0;
2519	u_quad_t off, endoff, toff;
2520	struct ucred* wcred = NULL;
2521	struct buf **bvec = NULL;
2522	struct bufobj *bo;
2523#ifndef NFS_COMMITBVECSIZ
2524#define	NFS_COMMITBVECSIZ	20
2525#endif
2526	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2527	int bvecsize = 0, bveccount;
2528
2529	if (called_from_renewthread != 0)
2530		slptimeo = hz;
2531	if (nmp->nm_flag & NFSMNT_INT)
2532		slpflag = NFS_PCATCH;
2533	if (!commit)
2534		passone = 0;
2535	bo = &vp->v_bufobj;
2536	/*
2537	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2538	 * server, but has not been committed to stable storage on the server
2539	 * yet. On the first pass, the byte range is worked out and the commit
2540	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2541	 * job.
2542	 */
2543again:
2544	off = (u_quad_t)-1;
2545	endoff = 0;
2546	bvecpos = 0;
2547	if (NFS_ISV34(vp) && commit) {
2548		if (bvec != NULL && bvec != bvec_on_stack)
2549			free(bvec, M_TEMP);
2550		/*
2551		 * Count up how many buffers waiting for a commit.
2552		 */
2553		bveccount = 0;
2554		BO_LOCK(bo);
2555		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2556			if (!BUF_ISLOCKED(bp) &&
2557			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2558				== (B_DELWRI | B_NEEDCOMMIT))
2559				bveccount++;
2560		}
2561		/*
2562		 * Allocate space to remember the list of bufs to commit.  It is
2563		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2564		 * If we can't get memory (for whatever reason), we will end up
2565		 * committing the buffers one-by-one in the loop below.
2566		 */
2567		if (bveccount > NFS_COMMITBVECSIZ) {
2568			/*
2569			 * Release the vnode interlock to avoid a lock
2570			 * order reversal.
2571			 */
2572			BO_UNLOCK(bo);
2573			bvec = (struct buf **)
2574				malloc(bveccount * sizeof(struct buf *),
2575				       M_TEMP, M_NOWAIT);
2576			BO_LOCK(bo);
2577			if (bvec == NULL) {
2578				bvec = bvec_on_stack;
2579				bvecsize = NFS_COMMITBVECSIZ;
2580			} else
2581				bvecsize = bveccount;
2582		} else {
2583			bvec = bvec_on_stack;
2584			bvecsize = NFS_COMMITBVECSIZ;
2585		}
2586		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2587			if (bvecpos >= bvecsize)
2588				break;
2589			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2590				nbp = TAILQ_NEXT(bp, b_bobufs);
2591				continue;
2592			}
2593			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2594			    (B_DELWRI | B_NEEDCOMMIT)) {
2595				BUF_UNLOCK(bp);
2596				nbp = TAILQ_NEXT(bp, b_bobufs);
2597				continue;
2598			}
2599			BO_UNLOCK(bo);
2600			bremfree(bp);
2601			/*
2602			 * Work out if all buffers are using the same cred
2603			 * so we can deal with them all with one commit.
2604			 *
2605			 * NOTE: we are not clearing B_DONE here, so we have
2606			 * to do it later on in this routine if we intend to
2607			 * initiate I/O on the bp.
2608			 *
2609			 * Note: to avoid loopback deadlocks, we do not
2610			 * assign b_runningbufspace.
2611			 */
2612			if (wcred == NULL)
2613				wcred = bp->b_wcred;
2614			else if (wcred != bp->b_wcred)
2615				wcred = NOCRED;
2616			vfs_busy_pages(bp, 1);
2617
2618			BO_LOCK(bo);
2619			/*
2620			 * bp is protected by being locked, but nbp is not
2621			 * and vfs_busy_pages() may sleep.  We have to
2622			 * recalculate nbp.
2623			 */
2624			nbp = TAILQ_NEXT(bp, b_bobufs);
2625
2626			/*
2627			 * A list of these buffers is kept so that the
2628			 * second loop knows which buffers have actually
2629			 * been committed. This is necessary, since there
2630			 * may be a race between the commit rpc and new
2631			 * uncommitted writes on the file.
2632			 */
2633			bvec[bvecpos++] = bp;
2634			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2635				bp->b_dirtyoff;
2636			if (toff < off)
2637				off = toff;
2638			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2639			if (toff > endoff)
2640				endoff = toff;
2641		}
2642		BO_UNLOCK(bo);
2643	}
2644	if (bvecpos > 0) {
2645		/*
2646		 * Commit data on the server, as required.
2647		 * If all bufs are using the same wcred, then use that with
2648		 * one call for all of them, otherwise commit each one
2649		 * separately.
2650		 */
2651		if (wcred != NOCRED)
2652			retv = ncl_commit(vp, off, (int)(endoff - off),
2653					  wcred, td);
2654		else {
2655			retv = 0;
2656			for (i = 0; i < bvecpos; i++) {
2657				off_t off, size;
2658				bp = bvec[i];
2659				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2660					bp->b_dirtyoff;
2661				size = (u_quad_t)(bp->b_dirtyend
2662						  - bp->b_dirtyoff);
2663				retv = ncl_commit(vp, off, (int)size,
2664						  bp->b_wcred, td);
2665				if (retv) break;
2666			}
2667		}
2668
2669		if (retv == NFSERR_STALEWRITEVERF)
2670			ncl_clearcommit(vp->v_mount);
2671
2672		/*
2673		 * Now, either mark the blocks I/O done or mark the
2674		 * blocks dirty, depending on whether the commit
2675		 * succeeded.
2676		 */
2677		for (i = 0; i < bvecpos; i++) {
2678			bp = bvec[i];
2679			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2680			if (retv) {
2681				/*
2682				 * Error, leave B_DELWRI intact
2683				 */
2684				vfs_unbusy_pages(bp);
2685				brelse(bp);
2686			} else {
2687				/*
2688				 * Success, remove B_DELWRI ( bundirty() ).
2689				 *
2690				 * b_dirtyoff/b_dirtyend seem to be NFS
2691				 * specific.  We should probably move that
2692				 * into bundirty(). XXX
2693				 */
2694				bufobj_wref(bo);
2695				bp->b_flags |= B_ASYNC;
2696				bundirty(bp);
2697				bp->b_flags &= ~B_DONE;
2698				bp->b_ioflags &= ~BIO_ERROR;
2699				bp->b_dirtyoff = bp->b_dirtyend = 0;
2700				bufdone(bp);
2701			}
2702		}
2703	}
2704
2705	/*
2706	 * Start/do any write(s) that are required.
2707	 */
2708loop:
2709	BO_LOCK(bo);
2710	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2711		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2712			if (waitfor != MNT_WAIT || passone)
2713				continue;
2714
2715			error = BUF_TIMELOCK(bp,
2716			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2717			    BO_MTX(bo), "nfsfsync", slpflag, slptimeo);
2718			if (error == 0) {
2719				BUF_UNLOCK(bp);
2720				goto loop;
2721			}
2722			if (error == ENOLCK) {
2723				error = 0;
2724				goto loop;
2725			}
2726			if (called_from_renewthread != 0) {
2727				/*
2728				 * Return EIO so the flush will be retried
2729				 * later.
2730				 */
2731				error = EIO;
2732				goto done;
2733			}
2734			if (newnfs_sigintr(nmp, td)) {
2735				error = EINTR;
2736				goto done;
2737			}
2738			if (slpflag & PCATCH) {
2739				slpflag = 0;
2740				slptimeo = 2 * hz;
2741			}
2742			goto loop;
2743		}
2744		if ((bp->b_flags & B_DELWRI) == 0)
2745			panic("nfs_fsync: not dirty");
2746		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2747			BUF_UNLOCK(bp);
2748			continue;
2749		}
2750		BO_UNLOCK(bo);
2751		bremfree(bp);
2752		if (passone || !commit)
2753		    bp->b_flags |= B_ASYNC;
2754		else
2755		    bp->b_flags |= B_ASYNC;
2756		bwrite(bp);
2757		if (newnfs_sigintr(nmp, td)) {
2758			error = EINTR;
2759			goto done;
2760		}
2761		goto loop;
2762	}
2763	if (passone) {
2764		passone = 0;
2765		BO_UNLOCK(bo);
2766		goto again;
2767	}
2768	if (waitfor == MNT_WAIT) {
2769		while (bo->bo_numoutput) {
2770			error = bufobj_wwait(bo, slpflag, slptimeo);
2771			if (error) {
2772			    BO_UNLOCK(bo);
2773			    if (called_from_renewthread != 0) {
2774				/*
2775				 * Return EIO so that the flush will be
2776				 * retried later.
2777				 */
2778				error = EIO;
2779				goto done;
2780			    }
2781			    error = newnfs_sigintr(nmp, td);
2782			    if (error)
2783				goto done;
2784			    if (slpflag & PCATCH) {
2785				slpflag = 0;
2786				slptimeo = 2 * hz;
2787			    }
2788			    BO_LOCK(bo);
2789			}
2790		}
2791		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2792			BO_UNLOCK(bo);
2793			goto loop;
2794		}
2795		/*
2796		 * Wait for all the async IO requests to drain
2797		 */
2798		BO_UNLOCK(bo);
2799		mtx_lock(&np->n_mtx);
2800		while (np->n_directio_asyncwr > 0) {
2801			np->n_flag |= NFSYNCWAIT;
2802			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2803			    &np->n_mtx, slpflag | (PRIBIO + 1),
2804			    "nfsfsync", 0);
2805			if (error) {
2806				if (newnfs_sigintr(nmp, td)) {
2807					mtx_unlock(&np->n_mtx);
2808					error = EINTR;
2809					goto done;
2810				}
2811			}
2812		}
2813		mtx_unlock(&np->n_mtx);
2814	} else
2815		BO_UNLOCK(bo);
2816	mtx_lock(&np->n_mtx);
2817	if (np->n_flag & NWRITEERR) {
2818		error = np->n_error;
2819		np->n_flag &= ~NWRITEERR;
2820	}
2821  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2822	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2823  		np->n_flag &= ~NMODIFIED;
2824	mtx_unlock(&np->n_mtx);
2825done:
2826	if (bvec != NULL && bvec != bvec_on_stack)
2827		free(bvec, M_TEMP);
2828	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2829	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2830	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2831		/* try, try again... */
2832		passone = 1;
2833		wcred = NULL;
2834		bvec = NULL;
2835		bvecsize = 0;
2836printf("try%d\n", trycnt);
2837		goto again;
2838	}
2839	return (error);
2840}
2841
2842/*
2843 * NFS advisory byte-level locks.
2844 */
2845static int
2846nfs_advlock(struct vop_advlock_args *ap)
2847{
2848	struct vnode *vp = ap->a_vp;
2849	struct ucred *cred;
2850	struct nfsnode *np = VTONFS(ap->a_vp);
2851	struct proc *p = (struct proc *)ap->a_id;
2852	struct thread *td = curthread;	/* XXX */
2853	struct vattr va;
2854	int ret, error = EOPNOTSUPP;
2855	u_quad_t size;
2856
2857	if (NFS_ISV4(vp) && (ap->a_flags & F_POSIX)) {
2858		cred = p->p_ucred;
2859		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2860		if (vp->v_iflag & VI_DOOMED) {
2861			VOP_UNLOCK(vp, 0);
2862			return (EBADF);
2863		}
2864
2865		/*
2866		 * If this is unlocking a write locked region, flush and
2867		 * commit them before unlocking. This is required by
2868		 * RFC3530 Sec. 9.3.2.
2869		 */
2870		if (ap->a_op == F_UNLCK &&
2871		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td))
2872			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
2873
2874		/*
2875		 * Loop around doing the lock op, while a blocking lock
2876		 * must wait for the lock op to succeed.
2877		 */
2878		do {
2879			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
2880			    ap->a_fl, 0, cred, td);
2881			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2882			    ap->a_op == F_SETLK) {
2883				VOP_UNLOCK(vp, 0);
2884				error = nfs_catnap(PZERO | PCATCH, ret,
2885				    "ncladvl");
2886				if (error)
2887					return (EINTR);
2888				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2889				if (vp->v_iflag & VI_DOOMED) {
2890					VOP_UNLOCK(vp, 0);
2891					return (EBADF);
2892				}
2893			}
2894		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2895		     ap->a_op == F_SETLK);
2896		if (ret == NFSERR_DENIED) {
2897			VOP_UNLOCK(vp, 0);
2898			return (EAGAIN);
2899		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
2900			VOP_UNLOCK(vp, 0);
2901			return (ret);
2902		} else if (ret != 0) {
2903			VOP_UNLOCK(vp, 0);
2904			return (EACCES);
2905		}
2906
2907		/*
2908		 * Now, if we just got a lock, invalidate data in the buffer
2909		 * cache, as required, so that the coherency conforms with
2910		 * RFC3530 Sec. 9.3.2.
2911		 */
2912		if (ap->a_op == F_SETLK) {
2913			if ((np->n_flag & NMODIFIED) == 0) {
2914				np->n_attrstamp = 0;
2915				ret = VOP_GETATTR(vp, &va, cred);
2916			}
2917			if ((np->n_flag & NMODIFIED) || ret ||
2918			    np->n_change != va.va_filerev) {
2919				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
2920				np->n_attrstamp = 0;
2921				ret = VOP_GETATTR(vp, &va, cred);
2922				if (!ret) {
2923					np->n_mtime = va.va_mtime;
2924					np->n_change = va.va_filerev;
2925				}
2926			}
2927		}
2928		VOP_UNLOCK(vp, 0);
2929		return (0);
2930	} else if (!NFS_ISV4(vp)) {
2931		error = vn_lock(vp, LK_SHARED);
2932		if (error)
2933			return (error);
2934		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2935			size = VTONFS(vp)->n_size;
2936			VOP_UNLOCK(vp, 0);
2937			error = lf_advlock(ap, &(vp->v_lockf), size);
2938		} else {
2939			if (ncl_advlock_p)
2940				error = ncl_advlock_p(ap);
2941			else
2942				error = ENOLCK;
2943		}
2944	}
2945	return (error);
2946}
2947
2948/*
2949 * NFS advisory byte-level locks.
2950 */
2951static int
2952nfs_advlockasync(struct vop_advlockasync_args *ap)
2953{
2954	struct vnode *vp = ap->a_vp;
2955	u_quad_t size;
2956	int error;
2957
2958	if (NFS_ISV4(vp))
2959		return (EOPNOTSUPP);
2960	error = vn_lock(vp, LK_SHARED);
2961	if (error)
2962		return (error);
2963	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2964		size = VTONFS(vp)->n_size;
2965		VOP_UNLOCK(vp, 0);
2966		error = lf_advlockasync(ap, &(vp->v_lockf), size);
2967	} else {
2968		VOP_UNLOCK(vp, 0);
2969		error = EOPNOTSUPP;
2970	}
2971	return (error);
2972}
2973
2974/*
2975 * Print out the contents of an nfsnode.
2976 */
2977static int
2978nfs_print(struct vop_print_args *ap)
2979{
2980	struct vnode *vp = ap->a_vp;
2981	struct nfsnode *np = VTONFS(vp);
2982
2983	ncl_printf("\tfileid %ld fsid 0x%x",
2984	   np->n_vattr.na_fileid, np->n_vattr.na_fsid);
2985	if (vp->v_type == VFIFO)
2986		fifo_printinfo(vp);
2987	printf("\n");
2988	return (0);
2989}
2990
2991/*
2992 * This is the "real" nfs::bwrite(struct buf*).
2993 * We set B_CACHE if this is a VMIO buffer.
2994 */
2995int
2996ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
2997{
2998	int s;
2999	int oldflags = bp->b_flags;
3000#if 0
3001	int retv = 1;
3002	off_t off;
3003#endif
3004
3005	BUF_ASSERT_HELD(bp);
3006
3007	if (bp->b_flags & B_INVAL) {
3008		brelse(bp);
3009		return(0);
3010	}
3011
3012	bp->b_flags |= B_CACHE;
3013
3014	/*
3015	 * Undirty the bp.  We will redirty it later if the I/O fails.
3016	 */
3017
3018	s = splbio();
3019	bundirty(bp);
3020	bp->b_flags &= ~B_DONE;
3021	bp->b_ioflags &= ~BIO_ERROR;
3022	bp->b_iocmd = BIO_WRITE;
3023
3024	bufobj_wref(bp->b_bufobj);
3025	curthread->td_ru.ru_oublock++;
3026	splx(s);
3027
3028	/*
3029	 * Note: to avoid loopback deadlocks, we do not
3030	 * assign b_runningbufspace.
3031	 */
3032	vfs_busy_pages(bp, 1);
3033
3034	BUF_KERNPROC(bp);
3035	bp->b_iooffset = dbtob(bp->b_blkno);
3036	bstrategy(bp);
3037
3038	if( (oldflags & B_ASYNC) == 0) {
3039		int rtval = bufwait(bp);
3040
3041		if (oldflags & B_DELWRI) {
3042			s = splbio();
3043			reassignbuf(bp);
3044			splx(s);
3045		}
3046		brelse(bp);
3047		return (rtval);
3048	}
3049
3050	return (0);
3051}
3052
3053/*
3054 * nfs special file access vnode op.
3055 * Essentially just get vattr and then imitate iaccess() since the device is
3056 * local to the client.
3057 */
3058static int
3059nfsspec_access(struct vop_access_args *ap)
3060{
3061	struct vattr *vap;
3062	struct ucred *cred = ap->a_cred;
3063	struct vnode *vp = ap->a_vp;
3064	accmode_t accmode = ap->a_accmode;
3065	struct vattr vattr;
3066	int error;
3067
3068	/*
3069	 * Disallow write attempts on filesystems mounted read-only;
3070	 * unless the file is a socket, fifo, or a block or character
3071	 * device resident on the filesystem.
3072	 */
3073	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3074		switch (vp->v_type) {
3075		case VREG:
3076		case VDIR:
3077		case VLNK:
3078			return (EROFS);
3079		default:
3080			break;
3081		}
3082	}
3083	vap = &vattr;
3084	error = VOP_GETATTR(vp, vap, cred);
3085	if (error)
3086		goto out;
3087	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3088	    accmode, cred, NULL);
3089out:
3090	return error;
3091}
3092
3093/*
3094 * Read wrapper for fifos.
3095 */
3096static int
3097nfsfifo_read(struct vop_read_args *ap)
3098{
3099	struct nfsnode *np = VTONFS(ap->a_vp);
3100	int error;
3101
3102	/*
3103	 * Set access flag.
3104	 */
3105	mtx_lock(&np->n_mtx);
3106	np->n_flag |= NACC;
3107	getnanotime(&np->n_atim);
3108	mtx_unlock(&np->n_mtx);
3109	error = fifo_specops.vop_read(ap);
3110	return error;
3111}
3112
3113/*
3114 * Write wrapper for fifos.
3115 */
3116static int
3117nfsfifo_write(struct vop_write_args *ap)
3118{
3119	struct nfsnode *np = VTONFS(ap->a_vp);
3120
3121	/*
3122	 * Set update flag.
3123	 */
3124	mtx_lock(&np->n_mtx);
3125	np->n_flag |= NUPD;
3126	getnanotime(&np->n_mtim);
3127	mtx_unlock(&np->n_mtx);
3128	return(fifo_specops.vop_write(ap));
3129}
3130
3131/*
3132 * Close wrapper for fifos.
3133 *
3134 * Update the times on the nfsnode then do fifo close.
3135 */
3136static int
3137nfsfifo_close(struct vop_close_args *ap)
3138{
3139	struct vnode *vp = ap->a_vp;
3140	struct nfsnode *np = VTONFS(vp);
3141	struct vattr vattr;
3142	struct timespec ts;
3143
3144	mtx_lock(&np->n_mtx);
3145	if (np->n_flag & (NACC | NUPD)) {
3146		getnanotime(&ts);
3147		if (np->n_flag & NACC)
3148			np->n_atim = ts;
3149		if (np->n_flag & NUPD)
3150			np->n_mtim = ts;
3151		np->n_flag |= NCHG;
3152		if (vrefcnt(vp) == 1 &&
3153		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3154			VATTR_NULL(&vattr);
3155			if (np->n_flag & NACC)
3156				vattr.va_atime = np->n_atim;
3157			if (np->n_flag & NUPD)
3158				vattr.va_mtime = np->n_mtim;
3159			mtx_unlock(&np->n_mtx);
3160			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3161			goto out;
3162		}
3163	}
3164	mtx_unlock(&np->n_mtx);
3165out:
3166	return (fifo_specops.vop_close(ap));
3167}
3168
3169/*
3170 * Just call ncl_writebp() with the force argument set to 1.
3171 *
3172 * NOTE: B_DONE may or may not be set in a_bp on call.
3173 */
3174static int
3175nfs_bwrite(struct buf *bp)
3176{
3177
3178	return (ncl_writebp(bp, 1, curthread));
3179}
3180
3181struct buf_ops buf_ops_newnfs = {
3182	.bop_name	=	"buf_ops_nfs",
3183	.bop_write	=	nfs_bwrite,
3184	.bop_strategy	=	bufstrategy,
3185	.bop_sync	=	bufsync,
3186	.bop_bdflush	=	bufbdflush,
3187};
3188
3189/*
3190 * Cloned from vop_stdlock(), and then the ugly hack added.
3191 */
3192static int
3193nfs_lock1(struct vop_lock1_args *ap)
3194{
3195	struct vnode *vp = ap->a_vp;
3196	int error = 0;
3197
3198	/*
3199	 * Since vfs_hash_get() calls vget() and it will no longer work
3200	 * for FreeBSD8 with flags == 0, I can only think of this horrible
3201	 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER
3202	 * and then handle it here. All I want for this case is a v_usecount
3203	 * on the vnode to use for recovery, while another thread might
3204	 * hold a lock on the vnode. I have the other threads blocked, so
3205	 * there isn't any race problem.
3206	 */
3207	if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) {
3208		if ((ap->a_flags & LK_INTERLOCK) == 0)
3209			panic("ncllock1");
3210		if ((vp->v_iflag & VI_DOOMED))
3211			error = ENOENT;
3212		VI_UNLOCK(vp);
3213		return (error);
3214	}
3215	return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp),
3216	    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file,
3217	    ap->a_line));
3218}
3219
3220static int
3221nfs_getacl(struct vop_getacl_args *ap)
3222{
3223	int error;
3224
3225	if (ap->a_type != ACL_TYPE_NFS4)
3226		return (EOPNOTSUPP);
3227	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3228	    NULL);
3229	if (error > NFSERR_STALE) {
3230		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3231		error = EPERM;
3232	}
3233	return (error);
3234}
3235
3236static int
3237nfs_setacl(struct vop_setacl_args *ap)
3238{
3239	int error;
3240
3241	if (ap->a_type != ACL_TYPE_NFS4)
3242		return (EOPNOTSUPP);
3243	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3244	    NULL);
3245	if (error > NFSERR_STALE) {
3246		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3247		error = EPERM;
3248	}
3249	return (error);
3250}
3251