nfs_clvnops.c revision 207170
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 207170 2010-04-24 22:52:14Z rmacklem $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_inet.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/systm.h>
47#include <sys/resourcevar.h>
48#include <sys/proc.h>
49#include <sys/mount.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/jail.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/namei.h>
56#include <sys/socket.h>
57#include <sys/vnode.h>
58#include <sys/dirent.h>
59#include <sys/fcntl.h>
60#include <sys/lockf.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/signalvar.h>
64
65#include <vm/vm.h>
66#include <vm/vm_object.h>
67#include <vm/vm_extern.h>
68#include <vm/vm_object.h>
69
70
71#include <fs/nfs/nfsport.h>
72#include <fs/nfsclient/nfsnode.h>
73#include <fs/nfsclient/nfsmount.h>
74#include <fs/nfsclient/nfs.h>
75#include <fs/nfsclient/nfs_lock.h>
76
77#include <net/if.h>
78#include <netinet/in.h>
79#include <netinet/in_var.h>
80
81/* Defs */
82#define	TRUE	1
83#define	FALSE	0
84
85extern struct nfsstats newnfsstats;
86MALLOC_DECLARE(M_NEWNFSREQ);
87vop_advlock_t	*ncl_advlock_p = ncl_dolock;
88
89/*
90 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
91 * calls are not in getblk() and brelse() so that they would not be necessary
92 * here.
93 */
94#ifndef B_VMIO
95#define	vfs_busy_pages(bp, f)
96#endif
97
98static vop_read_t	nfsfifo_read;
99static vop_write_t	nfsfifo_write;
100static vop_close_t	nfsfifo_close;
101static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
102		    struct thread *);
103static vop_lookup_t	nfs_lookup;
104static vop_create_t	nfs_create;
105static vop_mknod_t	nfs_mknod;
106static vop_open_t	nfs_open;
107static vop_close_t	nfs_close;
108static vop_access_t	nfs_access;
109static vop_getattr_t	nfs_getattr;
110static vop_setattr_t	nfs_setattr;
111static vop_read_t	nfs_read;
112static vop_fsync_t	nfs_fsync;
113static vop_remove_t	nfs_remove;
114static vop_link_t	nfs_link;
115static vop_rename_t	nfs_rename;
116static vop_mkdir_t	nfs_mkdir;
117static vop_rmdir_t	nfs_rmdir;
118static vop_symlink_t	nfs_symlink;
119static vop_readdir_t	nfs_readdir;
120static vop_strategy_t	nfs_strategy;
121static vop_lock1_t	nfs_lock1;
122static	int	nfs_lookitup(struct vnode *, char *, int,
123		    struct ucred *, struct thread *, struct nfsnode **);
124static	int	nfs_sillyrename(struct vnode *, struct vnode *,
125		    struct componentname *);
126static vop_access_t	nfsspec_access;
127static vop_readlink_t	nfs_readlink;
128static vop_print_t	nfs_print;
129static vop_advlock_t	nfs_advlock;
130static vop_advlockasync_t nfs_advlockasync;
131static vop_getacl_t nfs_getacl;
132static vop_setacl_t nfs_setacl;
133
134/*
135 * Global vfs data structures for nfs
136 */
137struct vop_vector newnfs_vnodeops = {
138	.vop_default =		&default_vnodeops,
139	.vop_access =		nfs_access,
140	.vop_advlock =		nfs_advlock,
141	.vop_advlockasync =	nfs_advlockasync,
142	.vop_close =		nfs_close,
143	.vop_create =		nfs_create,
144	.vop_fsync =		nfs_fsync,
145	.vop_getattr =		nfs_getattr,
146	.vop_getpages =		ncl_getpages,
147	.vop_putpages =		ncl_putpages,
148	.vop_inactive =		ncl_inactive,
149	.vop_link =		nfs_link,
150	.vop_lock1 = 		nfs_lock1,
151	.vop_lookup =		nfs_lookup,
152	.vop_mkdir =		nfs_mkdir,
153	.vop_mknod =		nfs_mknod,
154	.vop_open =		nfs_open,
155	.vop_print =		nfs_print,
156	.vop_read =		nfs_read,
157	.vop_readdir =		nfs_readdir,
158	.vop_readlink =		nfs_readlink,
159	.vop_reclaim =		ncl_reclaim,
160	.vop_remove =		nfs_remove,
161	.vop_rename =		nfs_rename,
162	.vop_rmdir =		nfs_rmdir,
163	.vop_setattr =		nfs_setattr,
164	.vop_strategy =		nfs_strategy,
165	.vop_symlink =		nfs_symlink,
166	.vop_write =		ncl_write,
167	.vop_getacl =		nfs_getacl,
168	.vop_setacl =		nfs_setacl,
169};
170
171struct vop_vector newnfs_fifoops = {
172	.vop_default =		&fifo_specops,
173	.vop_access =		nfsspec_access,
174	.vop_close =		nfsfifo_close,
175	.vop_fsync =		nfs_fsync,
176	.vop_getattr =		nfs_getattr,
177	.vop_inactive =		ncl_inactive,
178	.vop_print =		nfs_print,
179	.vop_read =		nfsfifo_read,
180	.vop_reclaim =		ncl_reclaim,
181	.vop_setattr =		nfs_setattr,
182	.vop_write =		nfsfifo_write,
183};
184
185static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
186    struct componentname *cnp, struct vattr *vap);
187static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
188    int namelen, struct ucred *cred, struct thread *td);
189static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
190    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
191    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
192static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
193    struct componentname *scnp, struct sillyrename *sp);
194
195/*
196 * Global variables
197 */
198#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
199
200SYSCTL_DECL(_vfs_newnfs);
201
202static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
203SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
204	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
205
206static int	nfs_prime_access_cache = 0;
207SYSCTL_INT(_vfs_newnfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
208	   &nfs_prime_access_cache, 0,
209	   "Prime NFS ACCESS cache when fetching attributes");
210
211static int	newnfs_commit_on_close = 0;
212SYSCTL_INT(_vfs_newnfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
213    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
214
215static int	nfs_clean_pages_on_close = 1;
216SYSCTL_INT(_vfs_newnfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
217	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
218
219int newnfs_directio_enable = 0;
220SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_enable, CTLFLAG_RW,
221	   &newnfs_directio_enable, 0, "Enable NFS directio");
222
223/*
224 * This sysctl allows other processes to mmap a file that has been opened
225 * O_DIRECT by a process.  In general, having processes mmap the file while
226 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
227 * this by default to prevent DoS attacks - to prevent a malicious user from
228 * opening up files O_DIRECT preventing other users from mmap'ing these
229 * files.  "Protected" environments where stricter consistency guarantees are
230 * required can disable this knob.  The process that opened the file O_DIRECT
231 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
232 * meaningful.
233 */
234int newnfs_directio_allow_mmap = 1;
235SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_allow_mmap, CTLFLAG_RW,
236	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
237
238#if 0
239SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
240	   &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
241
242SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
243	   &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
244#endif
245
246#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
247			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
248			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
249
250/*
251 * SMP Locking Note :
252 * The list of locks after the description of the lock is the ordering
253 * of other locks acquired with the lock held.
254 * np->n_mtx : Protects the fields in the nfsnode.
255       VM Object Lock
256       VI_MTX (acquired indirectly)
257 * nmp->nm_mtx : Protects the fields in the nfsmount.
258       rep->r_mtx
259 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
260 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
261       nmp->nm_mtx
262       rep->r_mtx
263 * rep->r_mtx : Protects the fields in an nfsreq.
264 */
265
266static int
267nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
268    struct ucred *cred, u_int32_t *retmode)
269{
270	int error = 0, attrflag, i, lrupos;
271	u_int32_t rmode;
272	struct nfsnode *np = VTONFS(vp);
273	struct nfsvattr nfsva;
274
275	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
276	    &rmode, NULL);
277	if (attrflag)
278		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
279	if (!error) {
280		lrupos = 0;
281		mtx_lock(&np->n_mtx);
282		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
283			if (np->n_accesscache[i].uid == cred->cr_uid) {
284				np->n_accesscache[i].mode = rmode;
285				np->n_accesscache[i].stamp = time_second;
286				break;
287			}
288			if (i > 0 && np->n_accesscache[i].stamp <
289			    np->n_accesscache[lrupos].stamp)
290				lrupos = i;
291		}
292		if (i == NFS_ACCESSCACHESIZE) {
293			np->n_accesscache[lrupos].uid = cred->cr_uid;
294			np->n_accesscache[lrupos].mode = rmode;
295			np->n_accesscache[lrupos].stamp = time_second;
296		}
297		mtx_unlock(&np->n_mtx);
298		if (retmode != NULL)
299			*retmode = rmode;
300	} else if (NFS_ISV4(vp)) {
301		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
302	}
303	return (error);
304}
305
306/*
307 * nfs access vnode op.
308 * For nfs version 2, just return ok. File accesses may fail later.
309 * For nfs version 3, use the access rpc to check accessibility. If file modes
310 * are changed on the server, accesses might still fail later.
311 */
312static int
313nfs_access(struct vop_access_args *ap)
314{
315	struct vnode *vp = ap->a_vp;
316	int error = 0, i, gotahit;
317	u_int32_t mode, wmode, rmode;
318	int v34 = NFS_ISV34(vp);
319	struct nfsnode *np = VTONFS(vp);
320
321	/*
322	 * Disallow write attempts on filesystems mounted read-only;
323	 * unless the file is a socket, fifo, or a block or character
324	 * device resident on the filesystem.
325	 */
326	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
327	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
328	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
329		switch (vp->v_type) {
330		case VREG:
331		case VDIR:
332		case VLNK:
333			return (EROFS);
334		default:
335			break;
336		}
337	}
338	/*
339	 * For nfs v3 or v4, check to see if we have done this recently, and if
340	 * so return our cached result instead of making an ACCESS call.
341	 * If not, do an access rpc, otherwise you are stuck emulating
342	 * ufs_access() locally using the vattr. This may not be correct,
343	 * since the server may apply other access criteria such as
344	 * client uid-->server uid mapping that we do not know about.
345	 */
346	if (v34) {
347		if (ap->a_accmode & VREAD)
348			mode = NFSACCESS_READ;
349		else
350			mode = 0;
351		if (vp->v_type != VDIR) {
352			if (ap->a_accmode & VWRITE)
353				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
354			if (ap->a_accmode & VAPPEND)
355				mode |= NFSACCESS_EXTEND;
356			if (ap->a_accmode & VEXEC)
357				mode |= NFSACCESS_EXECUTE;
358			if (ap->a_accmode & VDELETE)
359				mode |= NFSACCESS_DELETE;
360		} else {
361			if (ap->a_accmode & VWRITE)
362				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
363			if (ap->a_accmode & VAPPEND)
364				mode |= NFSACCESS_EXTEND;
365			if (ap->a_accmode & VEXEC)
366				mode |= NFSACCESS_LOOKUP;
367			if (ap->a_accmode & VDELETE)
368				mode |= NFSACCESS_DELETE;
369			if (ap->a_accmode & VDELETE_CHILD)
370				mode |= NFSACCESS_MODIFY;
371		}
372		/* XXX safety belt, only make blanket request if caching */
373		if (nfsaccess_cache_timeout > 0) {
374			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
375				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
376				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
377		} else {
378			wmode = mode;
379		}
380
381		/*
382		 * Does our cached result allow us to give a definite yes to
383		 * this request?
384		 */
385		gotahit = 0;
386		mtx_lock(&np->n_mtx);
387		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
388			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
389			    if (time_second < (np->n_accesscache[i].stamp
390				+ nfsaccess_cache_timeout) &&
391				(np->n_accesscache[i].mode & mode) == mode) {
392				NFSINCRGLOBAL(newnfsstats.accesscache_hits);
393				gotahit = 1;
394			    }
395			    break;
396			}
397		}
398		mtx_unlock(&np->n_mtx);
399		if (gotahit == 0) {
400			/*
401			 * Either a no, or a don't know.  Go to the wire.
402			 */
403			NFSINCRGLOBAL(newnfsstats.accesscache_misses);
404		        error = nfs34_access_otw(vp, wmode, ap->a_td,
405			    ap->a_cred, &rmode);
406			if (!error &&
407			    (rmode & mode) != mode)
408				error = EACCES;
409		}
410		return (error);
411	} else {
412		if ((error = nfsspec_access(ap)) != 0) {
413			return (error);
414		}
415		/*
416		 * Attempt to prevent a mapped root from accessing a file
417		 * which it shouldn't.  We try to read a byte from the file
418		 * if the user is root and the file is not zero length.
419		 * After calling nfsspec_access, we should have the correct
420		 * file size cached.
421		 */
422		mtx_lock(&np->n_mtx);
423		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
424		    && VTONFS(vp)->n_size > 0) {
425			struct iovec aiov;
426			struct uio auio;
427			char buf[1];
428
429			mtx_unlock(&np->n_mtx);
430			aiov.iov_base = buf;
431			aiov.iov_len = 1;
432			auio.uio_iov = &aiov;
433			auio.uio_iovcnt = 1;
434			auio.uio_offset = 0;
435			auio.uio_resid = 1;
436			auio.uio_segflg = UIO_SYSSPACE;
437			auio.uio_rw = UIO_READ;
438			auio.uio_td = ap->a_td;
439
440			if (vp->v_type == VREG)
441				error = ncl_readrpc(vp, &auio, ap->a_cred);
442			else if (vp->v_type == VDIR) {
443				char* bp;
444				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
445				aiov.iov_base = bp;
446				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
447				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
448				    ap->a_td);
449				free(bp, M_TEMP);
450			} else if (vp->v_type == VLNK)
451				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
452			else
453				error = EACCES;
454		} else
455			mtx_unlock(&np->n_mtx);
456		return (error);
457	}
458}
459
460
461/*
462 * nfs open vnode op
463 * Check to see if the type is ok
464 * and that deletion is not in progress.
465 * For paged in text files, you will need to flush the page cache
466 * if consistency is lost.
467 */
468/* ARGSUSED */
469static int
470nfs_open(struct vop_open_args *ap)
471{
472	struct vnode *vp = ap->a_vp;
473	struct nfsnode *np = VTONFS(vp);
474	struct vattr vattr;
475	int error;
476	int fmode = ap->a_mode;
477
478	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
479		return (EOPNOTSUPP);
480
481	/*
482	 * For NFSv4, we need to do the Open Op before cache validation,
483	 * so that we conform to RFC3530 Sec. 9.3.1.
484	 */
485	if (NFS_ISV4(vp)) {
486		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
487		if (error) {
488			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
489			    (gid_t)0);
490			return (error);
491		}
492	}
493
494	/*
495	 * Now, if this Open will be doing reading, re-validate/flush the
496	 * cache, so that Close/Open coherency is maintained.
497	 */
498	if ((fmode & FREAD) && (!NFS_ISV4(vp) || nfscl_mustflush(vp))) {
499		mtx_lock(&np->n_mtx);
500		if (np->n_flag & NMODIFIED) {
501			mtx_unlock(&np->n_mtx);
502			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
503			if (error == EINTR || error == EIO) {
504				if (NFS_ISV4(vp))
505					(void) nfsrpc_close(vp, 0, ap->a_td);
506				return (error);
507			}
508			np->n_attrstamp = 0;
509			if (vp->v_type == VDIR)
510				np->n_direofoffset = 0;
511			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
512			if (error) {
513				if (NFS_ISV4(vp))
514					(void) nfsrpc_close(vp, 0, ap->a_td);
515				return (error);
516			}
517			mtx_lock(&np->n_mtx);
518			np->n_mtime = vattr.va_mtime;
519			if (NFS_ISV4(vp))
520				np->n_change = vattr.va_filerev;
521			mtx_unlock(&np->n_mtx);
522		} else {
523			struct thread *td = curthread;
524
525			if (np->n_ac_ts_syscalls != td->td_syscalls ||
526			    np->n_ac_ts_tid != td->td_tid ||
527			    td->td_proc == NULL ||
528			    np->n_ac_ts_pid != td->td_proc->p_pid) {
529				np->n_attrstamp = 0;
530			}
531			mtx_unlock(&np->n_mtx);
532			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
533			if (error) {
534				if (NFS_ISV4(vp))
535					(void) nfsrpc_close(vp, 0, ap->a_td);
536				return (error);
537			}
538			mtx_lock(&np->n_mtx);
539			if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
540			    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
541				if (vp->v_type == VDIR)
542					np->n_direofoffset = 0;
543				mtx_unlock(&np->n_mtx);
544				error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
545				if (error == EINTR || error == EIO) {
546					if (NFS_ISV4(vp))
547						(void) nfsrpc_close(vp, 0,
548						    ap->a_td);
549					return (error);
550				}
551				mtx_lock(&np->n_mtx);
552				np->n_mtime = vattr.va_mtime;
553				if (NFS_ISV4(vp))
554					np->n_change = vattr.va_filerev;
555			}
556			mtx_unlock(&np->n_mtx);
557		}
558	}
559
560	/*
561	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
562	 */
563	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
564		if (np->n_directio_opens == 0) {
565			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
566			if (error) {
567				if (NFS_ISV4(vp))
568					(void) nfsrpc_close(vp, 0, ap->a_td);
569				return (error);
570			}
571			mtx_lock(&np->n_mtx);
572			np->n_flag |= NNONCACHE;
573		} else {
574			mtx_lock(&np->n_mtx);
575		}
576		np->n_directio_opens++;
577		mtx_unlock(&np->n_mtx);
578	}
579	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
580	return (0);
581}
582
583/*
584 * nfs close vnode op
585 * What an NFS client should do upon close after writing is a debatable issue.
586 * Most NFS clients push delayed writes to the server upon close, basically for
587 * two reasons:
588 * 1 - So that any write errors may be reported back to the client process
589 *     doing the close system call. By far the two most likely errors are
590 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
591 * 2 - To put a worst case upper bound on cache inconsistency between
592 *     multiple clients for the file.
593 * There is also a consistency problem for Version 2 of the protocol w.r.t.
594 * not being able to tell if other clients are writing a file concurrently,
595 * since there is no way of knowing if the changed modify time in the reply
596 * is only due to the write for this client.
597 * (NFS Version 3 provides weak cache consistency data in the reply that
598 *  should be sufficient to detect and handle this case.)
599 *
600 * The current code does the following:
601 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
602 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
603 *                     or commit them (this satisfies 1 and 2 except for the
604 *                     case where the server crashes after this close but
605 *                     before the commit RPC, which is felt to be "good
606 *                     enough". Changing the last argument to ncl_flush() to
607 *                     a 1 would force a commit operation, if it is felt a
608 *                     commit is necessary now.
609 * for NFS Version 4 - flush the dirty buffers and commit them, if
610 *		       nfscl_mustflush() says this is necessary.
611 *                     It is necessary if there is no write delegation held,
612 *                     in order to satisfy open/close coherency.
613 *                     If the file isn't cached on local stable storage,
614 *                     it may be necessary in order to detect "out of space"
615 *                     errors from the server, if the write delegation
616 *                     issued by the server doesn't allow the file to grow.
617 */
618/* ARGSUSED */
619static int
620nfs_close(struct vop_close_args *ap)
621{
622	struct vnode *vp = ap->a_vp;
623	struct nfsnode *np = VTONFS(vp);
624	struct nfsvattr nfsva;
625	struct ucred *cred;
626	int error = 0, ret, localcred = 0;
627	int fmode = ap->a_fflag;
628
629	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
630		return (0);
631	/*
632	 * During shutdown, a_cred isn't valid, so just use root.
633	 */
634	if (ap->a_cred == NOCRED) {
635		cred = newnfs_getcred();
636		localcred = 1;
637	} else {
638		cred = ap->a_cred;
639	}
640	if (vp->v_type == VREG) {
641	    /*
642	     * Examine and clean dirty pages, regardless of NMODIFIED.
643	     * This closes a major hole in close-to-open consistency.
644	     * We want to push out all dirty pages (and buffers) on
645	     * close, regardless of whether they were dirtied by
646	     * mmap'ed writes or via write().
647	     */
648	    if (nfs_clean_pages_on_close && vp->v_object) {
649		VM_OBJECT_LOCK(vp->v_object);
650		vm_object_page_clean(vp->v_object, 0, 0, 0);
651		VM_OBJECT_UNLOCK(vp->v_object);
652	    }
653	    mtx_lock(&np->n_mtx);
654	    if (np->n_flag & NMODIFIED) {
655		mtx_unlock(&np->n_mtx);
656		if (NFS_ISV3(vp)) {
657		    /*
658		     * Under NFSv3 we have dirty buffers to dispose of.  We
659		     * must flush them to the NFS server.  We have the option
660		     * of waiting all the way through the commit rpc or just
661		     * waiting for the initial write.  The default is to only
662		     * wait through the initial write so the data is in the
663		     * server's cache, which is roughly similar to the state
664		     * a standard disk subsystem leaves the file in on close().
665		     *
666		     * We cannot clear the NMODIFIED bit in np->n_flag due to
667		     * potential races with other processes, and certainly
668		     * cannot clear it if we don't commit.
669		     * These races occur when there is no longer the old
670		     * traditional vnode locking implemented for Vnode Ops.
671		     */
672		    int cm = newnfs_commit_on_close ? 1 : 0;
673		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
674		    /* np->n_flag &= ~NMODIFIED; */
675		} else if (NFS_ISV4(vp)) {
676			if (nfscl_mustflush(vp)) {
677				int cm = newnfs_commit_on_close ? 1 : 0;
678				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
679				    cm, 0);
680				/*
681				 * as above w.r.t races when clearing
682				 * NMODIFIED.
683				 * np->n_flag &= ~NMODIFIED;
684				 */
685			}
686		} else
687		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
688		mtx_lock(&np->n_mtx);
689	    }
690 	    /*
691 	     * Invalidate the attribute cache in all cases.
692 	     * An open is going to fetch fresh attrs any way, other procs
693 	     * on this node that have file open will be forced to do an
694 	     * otw attr fetch, but this is safe.
695	     * --> A user found that their RPC count dropped by 20% when
696	     *     this was commented out and I can't see any requirement
697	     *     for it, so I've disabled it when negative lookups are
698	     *     enabled. (What does this have to do with negative lookup
699	     *     caching? Well nothing, except it was reported by the
700	     *     same user that needed negative lookup caching and I wanted
701	     *     there to be a way to disable it to see if it
702	     *     is the cause of some caching/coherency issue that might
703	     *     crop up.)
704 	     */
705	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0)
706		    np->n_attrstamp = 0;
707	    if (np->n_flag & NWRITEERR) {
708		np->n_flag &= ~NWRITEERR;
709		error = np->n_error;
710	    }
711	    mtx_unlock(&np->n_mtx);
712	}
713
714	if (NFS_ISV4(vp)) {
715		/*
716		 * Get attributes so "change" is up to date.
717		 */
718		if (!error) {
719			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
720			    NULL);
721			if (!ret) {
722				np->n_change = nfsva.na_filerev;
723				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
724				    NULL, 0, 0);
725			}
726		}
727
728		/*
729		 * and do the close.
730		 */
731		ret = nfsrpc_close(vp, 0, ap->a_td);
732		if (!error && ret)
733			error = ret;
734		if (error)
735			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
736			    (gid_t)0);
737	}
738	if (newnfs_directio_enable)
739		KASSERT((np->n_directio_asyncwr == 0),
740			("nfs_close: dirty unflushed (%d) directio buffers\n",
741			 np->n_directio_asyncwr));
742	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
743		mtx_lock(&np->n_mtx);
744		KASSERT((np->n_directio_opens > 0),
745			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
746		np->n_directio_opens--;
747		if (np->n_directio_opens == 0)
748			np->n_flag &= ~NNONCACHE;
749		mtx_unlock(&np->n_mtx);
750	}
751	if (localcred)
752		NFSFREECRED(cred);
753	return (error);
754}
755
756/*
757 * nfs getattr call from vfs.
758 */
759static int
760nfs_getattr(struct vop_getattr_args *ap)
761{
762	struct vnode *vp = ap->a_vp;
763	struct thread *td = curthread;	/* XXX */
764	struct nfsnode *np = VTONFS(vp);
765	int error = 0;
766	struct nfsvattr nfsva;
767	struct vattr *vap = ap->a_vap;
768	struct vattr vattr;
769
770	/*
771	 * Update local times for special files.
772	 */
773	mtx_lock(&np->n_mtx);
774	if (np->n_flag & (NACC | NUPD))
775		np->n_flag |= NCHG;
776	mtx_unlock(&np->n_mtx);
777	/*
778	 * First look in the cache.
779	 */
780	if (ncl_getattrcache(vp, &vattr) == 0) {
781		vap->va_type = vattr.va_type;
782		vap->va_mode = vattr.va_mode;
783		vap->va_nlink = vattr.va_nlink;
784		vap->va_uid = vattr.va_uid;
785		vap->va_gid = vattr.va_gid;
786		vap->va_fsid = vattr.va_fsid;
787		vap->va_fileid = vattr.va_fileid;
788		vap->va_size = vattr.va_size;
789		vap->va_blocksize = vattr.va_blocksize;
790		vap->va_atime = vattr.va_atime;
791		vap->va_mtime = vattr.va_mtime;
792		vap->va_ctime = vattr.va_ctime;
793		vap->va_gen = vattr.va_gen;
794		vap->va_flags = vattr.va_flags;
795		vap->va_rdev = vattr.va_rdev;
796		vap->va_bytes = vattr.va_bytes;
797		vap->va_filerev = vattr.va_filerev;
798		/*
799		 * Get the local modify time for the case of a write
800		 * delegation.
801		 */
802		nfscl_deleggetmodtime(vp, &vap->va_mtime);
803		return (0);
804	}
805
806	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
807	    nfsaccess_cache_timeout > 0) {
808		NFSINCRGLOBAL(newnfsstats.accesscache_misses);
809		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
810		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
811			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
812			return (0);
813		}
814	}
815	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
816	if (!error)
817		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
818	if (!error) {
819		/*
820		 * Get the local modify time for the case of a write
821		 * delegation.
822		 */
823		nfscl_deleggetmodtime(vp, &vap->va_mtime);
824	} else if (NFS_ISV4(vp)) {
825		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
826	}
827	return (error);
828}
829
830/*
831 * nfs setattr call.
832 */
833static int
834nfs_setattr(struct vop_setattr_args *ap)
835{
836	struct vnode *vp = ap->a_vp;
837	struct nfsnode *np = VTONFS(vp);
838	struct thread *td = curthread;	/* XXX */
839	struct vattr *vap = ap->a_vap;
840	int error = 0;
841	u_quad_t tsize;
842
843#ifndef nolint
844	tsize = (u_quad_t)0;
845#endif
846
847	/*
848	 * Setting of flags and marking of atimes are not supported.
849	 */
850	if (vap->va_flags != VNOVAL)
851		return (EOPNOTSUPP);
852
853	/*
854	 * Disallow write attempts if the filesystem is mounted read-only.
855	 */
856  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
857	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
858	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
859	    (vp->v_mount->mnt_flag & MNT_RDONLY))
860		return (EROFS);
861	if (vap->va_size != VNOVAL) {
862 		switch (vp->v_type) {
863 		case VDIR:
864 			return (EISDIR);
865 		case VCHR:
866 		case VBLK:
867 		case VSOCK:
868 		case VFIFO:
869			if (vap->va_mtime.tv_sec == VNOVAL &&
870			    vap->va_atime.tv_sec == VNOVAL &&
871			    vap->va_mode == (mode_t)VNOVAL &&
872			    vap->va_uid == (uid_t)VNOVAL &&
873			    vap->va_gid == (gid_t)VNOVAL)
874				return (0);
875 			vap->va_size = VNOVAL;
876 			break;
877 		default:
878			/*
879			 * Disallow write attempts if the filesystem is
880			 * mounted read-only.
881			 */
882			if (vp->v_mount->mnt_flag & MNT_RDONLY)
883				return (EROFS);
884			/*
885			 *  We run vnode_pager_setsize() early (why?),
886			 * we must set np->n_size now to avoid vinvalbuf
887			 * V_SAVE races that might setsize a lower
888			 * value.
889			 */
890			mtx_lock(&np->n_mtx);
891			tsize = np->n_size;
892			mtx_unlock(&np->n_mtx);
893			error = ncl_meta_setsize(vp, ap->a_cred, td,
894			    vap->va_size);
895			mtx_lock(&np->n_mtx);
896 			if (np->n_flag & NMODIFIED) {
897			    tsize = np->n_size;
898			    mtx_unlock(&np->n_mtx);
899 			    if (vap->va_size == 0)
900 				error = ncl_vinvalbuf(vp, 0, td, 1);
901 			    else
902 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
903 			    if (error) {
904				vnode_pager_setsize(vp, tsize);
905				return (error);
906			    }
907			    /*
908			     * Call nfscl_delegmodtime() to set the modify time
909			     * locally, as required.
910			     */
911			    nfscl_delegmodtime(vp);
912 			} else
913			    mtx_unlock(&np->n_mtx);
914			/*
915			 * np->n_size has already been set to vap->va_size
916			 * in ncl_meta_setsize(). We must set it again since
917			 * nfs_loadattrcache() could be called through
918			 * ncl_meta_setsize() and could modify np->n_size.
919			 */
920			mtx_lock(&np->n_mtx);
921 			np->n_vattr.na_size = np->n_size = vap->va_size;
922			mtx_unlock(&np->n_mtx);
923  		};
924  	} else {
925		mtx_lock(&np->n_mtx);
926		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
927		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
928			mtx_unlock(&np->n_mtx);
929			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
930			    (error == EINTR || error == EIO))
931				return (error);
932		} else
933			mtx_unlock(&np->n_mtx);
934	}
935	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
936	if (error && vap->va_size != VNOVAL) {
937		mtx_lock(&np->n_mtx);
938		np->n_size = np->n_vattr.na_size = tsize;
939		vnode_pager_setsize(vp, tsize);
940		mtx_unlock(&np->n_mtx);
941	}
942	return (error);
943}
944
945/*
946 * Do an nfs setattr rpc.
947 */
948static int
949nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
950    struct thread *td)
951{
952	struct nfsnode *np = VTONFS(vp);
953	int error, ret, attrflag, i;
954	struct nfsvattr nfsva;
955
956	if (NFS_ISV34(vp)) {
957		mtx_lock(&np->n_mtx);
958		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
959			np->n_accesscache[i].stamp = 0;
960		np->n_flag |= NDELEGMOD;
961		mtx_unlock(&np->n_mtx);
962	}
963	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
964	    NULL);
965	if (attrflag) {
966		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
967		if (ret && !error)
968			error = ret;
969	}
970	if (error && NFS_ISV4(vp))
971		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
972	return (error);
973}
974
975/*
976 * nfs lookup call, one step at a time...
977 * First look in cache
978 * If not found, unlock the directory nfsnode and do the rpc
979 */
980static int
981nfs_lookup(struct vop_lookup_args *ap)
982{
983	struct componentname *cnp = ap->a_cnp;
984	struct vnode *dvp = ap->a_dvp;
985	struct vnode **vpp = ap->a_vpp;
986	struct mount *mp = dvp->v_mount;
987	int flags = cnp->cn_flags;
988	struct vnode *newvp;
989	struct nfsmount *nmp;
990	struct nfsnode *np;
991	int error = 0, attrflag, dattrflag, ltype;
992	struct thread *td = cnp->cn_thread;
993	struct nfsfh *nfhp;
994	struct nfsvattr dnfsva, nfsva;
995	struct vattr vattr;
996	time_t dmtime;
997
998	*vpp = NULLVP;
999	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1000	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1001		return (EROFS);
1002	if (dvp->v_type != VDIR)
1003		return (ENOTDIR);
1004	nmp = VFSTONFS(mp);
1005	np = VTONFS(dvp);
1006
1007	/* For NFSv4, wait until any remove is done. */
1008	mtx_lock(&np->n_mtx);
1009	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1010		np->n_flag |= NREMOVEWANT;
1011		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1012	}
1013	mtx_unlock(&np->n_mtx);
1014
1015	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1016		return (error);
1017	error = cache_lookup(dvp, vpp, cnp);
1018	if (error > 0 && error != ENOENT)
1019		return (error);
1020	if (error == -1) {
1021		/*
1022		 * We only accept a positive hit in the cache if the
1023		 * change time of the file matches our cached copy.
1024		 * Otherwise, we discard the cache entry and fallback
1025		 * to doing a lookup RPC.
1026		 */
1027		newvp = *vpp;
1028		if (nfscl_nodeleg(newvp, 0) == 0 ||
1029		    (!VOP_GETATTR(newvp, &vattr, cnp->cn_cred)
1030		    && vattr.va_ctime.tv_sec == VTONFS(newvp)->n_ctime)) {
1031			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1032			if (cnp->cn_nameiop != LOOKUP &&
1033			    (flags & ISLASTCN))
1034				cnp->cn_flags |= SAVENAME;
1035			return (0);
1036		}
1037		cache_purge(newvp);
1038		if (dvp != newvp)
1039			vput(newvp);
1040		else
1041			vrele(newvp);
1042		*vpp = NULLVP;
1043	} else if (error == ENOENT) {
1044		if (dvp->v_iflag & VI_DOOMED)
1045			return (ENOENT);
1046		/*
1047		 * We only accept a negative hit in the cache if the
1048		 * modification time of the parent directory matches
1049		 * our cached copy.  Otherwise, we discard all of the
1050		 * negative cache entries for this directory. We also
1051		 * only trust -ve cache entries for less than
1052		 * nm_negative_namecache_timeout seconds.
1053		 */
1054		if ((u_int)(ticks - np->n_dmtime_ticks) <
1055		    (nmp->nm_negnametimeo * hz) &&
1056		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1057		    vattr.va_mtime.tv_sec == np->n_dmtime) {
1058			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1059			return (ENOENT);
1060		}
1061		cache_purge_negative(dvp);
1062		mtx_lock(&np->n_mtx);
1063		np->n_dmtime = 0;
1064		mtx_unlock(&np->n_mtx);
1065	}
1066
1067	/*
1068	 * Cache the modification time of the parent directory in case
1069	 * the lookup fails and results in adding the first negative
1070	 * name cache entry for the directory.  Since this is reading
1071	 * a single time_t, don't bother with locking.  The
1072	 * modification time may be a bit stale, but it must be read
1073	 * before performing the lookup RPC to prevent a race where
1074	 * another lookup updates the timestamp on the directory after
1075	 * the lookup RPC has been performed on the server but before
1076	 * n_dmtime is set at the end of this function.
1077	 */
1078	dmtime = np->n_vattr.na_mtime.tv_sec;
1079	error = 0;
1080	newvp = NULLVP;
1081	NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
1082	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1083	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1084	    NULL);
1085	if (dattrflag)
1086		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1087	if (error) {
1088		if (newvp != NULLVP) {
1089			vput(newvp);
1090			*vpp = NULLVP;
1091		}
1092
1093		if (error != ENOENT) {
1094			if (NFS_ISV4(dvp))
1095				error = nfscl_maperr(td, error, (uid_t)0,
1096				    (gid_t)0);
1097			return (error);
1098		}
1099
1100		/* The requested file was not found. */
1101		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1102		    (flags & ISLASTCN)) {
1103			/*
1104			 * XXX: UFS does a full VOP_ACCESS(dvp,
1105			 * VWRITE) here instead of just checking
1106			 * MNT_RDONLY.
1107			 */
1108			if (mp->mnt_flag & MNT_RDONLY)
1109				return (EROFS);
1110			cnp->cn_flags |= SAVENAME;
1111			return (EJUSTRETURN);
1112		}
1113
1114		if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE) {
1115			/*
1116			 * Maintain n_dmtime as the modification time
1117			 * of the parent directory when the oldest -ve
1118			 * name cache entry for this directory was
1119			 * added.  If a -ve cache entry has already
1120			 * been added with a newer modification time
1121			 * by a concurrent lookup, then don't bother
1122			 * adding a cache entry.  The modification
1123			 * time of the directory might have changed
1124			 * due to the file this lookup failed to find
1125			 * being created.  In that case a subsequent
1126			 * lookup would incorrectly use the entry
1127			 * added here instead of doing an extra
1128			 * lookup.
1129			 */
1130			mtx_lock(&np->n_mtx);
1131			if (np->n_dmtime <= dmtime) {
1132				if (np->n_dmtime == 0) {
1133					np->n_dmtime = dmtime;
1134					np->n_dmtime_ticks = ticks;
1135				}
1136				mtx_unlock(&np->n_mtx);
1137				cache_enter(dvp, NULL, cnp);
1138			} else
1139				mtx_unlock(&np->n_mtx);
1140		}
1141		return (ENOENT);
1142	}
1143
1144	/*
1145	 * Handle RENAME case...
1146	 */
1147	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1148		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1149			FREE((caddr_t)nfhp, M_NFSFH);
1150			return (EISDIR);
1151		}
1152		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1153		if (error)
1154			return (error);
1155		newvp = NFSTOV(np);
1156		if (attrflag)
1157			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1158			    0, 1);
1159		*vpp = newvp;
1160		cnp->cn_flags |= SAVENAME;
1161		return (0);
1162	}
1163
1164	if (flags & ISDOTDOT) {
1165		ltype = VOP_ISLOCKED(dvp);
1166		error = vfs_busy(mp, MBF_NOWAIT);
1167		if (error != 0) {
1168			vfs_ref(mp);
1169			VOP_UNLOCK(dvp, 0);
1170			error = vfs_busy(mp, 0);
1171			vn_lock(dvp, ltype | LK_RETRY);
1172			vfs_rel(mp);
1173			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1174				vfs_unbusy(mp);
1175				error = ENOENT;
1176			}
1177			if (error != 0)
1178				return (error);
1179		}
1180		VOP_UNLOCK(dvp, 0);
1181		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1182		if (error == 0)
1183			newvp = NFSTOV(np);
1184		vfs_unbusy(mp);
1185		if (newvp != dvp)
1186			vn_lock(dvp, ltype | LK_RETRY);
1187		if (dvp->v_iflag & VI_DOOMED) {
1188			if (error == 0) {
1189				if (newvp == dvp)
1190					vrele(newvp);
1191				else
1192					vput(newvp);
1193			}
1194			error = ENOENT;
1195		}
1196		if (error != 0)
1197			return (error);
1198		if (attrflag)
1199			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1200			    0, 1);
1201	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1202		FREE((caddr_t)nfhp, M_NFSFH);
1203		VREF(dvp);
1204		newvp = dvp;
1205		if (attrflag)
1206			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1207			    0, 1);
1208	} else {
1209		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1210		if (error)
1211			return (error);
1212		newvp = NFSTOV(np);
1213		if (attrflag)
1214			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1215			    0, 1);
1216	}
1217	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1218		cnp->cn_flags |= SAVENAME;
1219	if ((cnp->cn_flags & MAKEENTRY) &&
1220	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) {
1221		np->n_ctime = np->n_vattr.na_vattr.va_ctime.tv_sec;
1222		cache_enter(dvp, newvp, cnp);
1223	}
1224	*vpp = newvp;
1225	return (0);
1226}
1227
1228/*
1229 * nfs read call.
1230 * Just call ncl_bioread() to do the work.
1231 */
1232static int
1233nfs_read(struct vop_read_args *ap)
1234{
1235	struct vnode *vp = ap->a_vp;
1236
1237	switch (vp->v_type) {
1238	case VREG:
1239		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1240	case VDIR:
1241		return (EISDIR);
1242	default:
1243		return (EOPNOTSUPP);
1244	}
1245}
1246
1247/*
1248 * nfs readlink call
1249 */
1250static int
1251nfs_readlink(struct vop_readlink_args *ap)
1252{
1253	struct vnode *vp = ap->a_vp;
1254
1255	if (vp->v_type != VLNK)
1256		return (EINVAL);
1257	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1258}
1259
1260/*
1261 * Do a readlink rpc.
1262 * Called by ncl_doio() from below the buffer cache.
1263 */
1264int
1265ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1266{
1267	int error, ret, attrflag;
1268	struct nfsvattr nfsva;
1269
1270	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1271	    &attrflag, NULL);
1272	if (attrflag) {
1273		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1274		if (ret && !error)
1275			error = ret;
1276	}
1277	if (error && NFS_ISV4(vp))
1278		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1279	return (error);
1280}
1281
1282/*
1283 * nfs read rpc call
1284 * Ditto above
1285 */
1286int
1287ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1288{
1289	int error, ret, attrflag;
1290	struct nfsvattr nfsva;
1291
1292	error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag,
1293	    NULL);
1294	if (attrflag) {
1295		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1296		if (ret && !error)
1297			error = ret;
1298	}
1299	if (error && NFS_ISV4(vp))
1300		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1301	return (error);
1302}
1303
1304/*
1305 * nfs write call
1306 */
1307int
1308ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1309    int *iomode, int *must_commit, int called_from_strategy)
1310{
1311	struct nfsvattr nfsva;
1312	int error = 0, attrflag, ret;
1313	u_char verf[NFSX_VERF];
1314	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1315
1316	*must_commit = 0;
1317	error = nfsrpc_write(vp, uiop, iomode, verf, cred,
1318	    uiop->uio_td, &nfsva, &attrflag, NULL, called_from_strategy);
1319	NFSLOCKMNT(nmp);
1320	if (!error && NFSHASWRITEVERF(nmp) &&
1321	    NFSBCMP(verf, nmp->nm_verf, NFSX_VERF)) {
1322		*must_commit = 1;
1323		NFSBCOPY(verf, nmp->nm_verf, NFSX_VERF);
1324	}
1325	NFSUNLOCKMNT(nmp);
1326	if (attrflag) {
1327		if (VTONFS(vp)->n_flag & ND_NFSV4)
1328			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1329			    1);
1330		else
1331			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1332			    1);
1333		if (ret && !error)
1334			error = ret;
1335	}
1336	if (vp->v_mount->mnt_kern_flag & MNTK_ASYNC)
1337		*iomode = NFSWRITE_FILESYNC;
1338	if (error && NFS_ISV4(vp))
1339		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1340	return (error);
1341}
1342
1343/*
1344 * nfs mknod rpc
1345 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1346 * mode set to specify the file type and the size field for rdev.
1347 */
1348static int
1349nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1350    struct vattr *vap)
1351{
1352	struct nfsvattr nfsva, dnfsva;
1353	struct vnode *newvp = NULL;
1354	struct nfsnode *np = NULL, *dnp;
1355	struct nfsfh *nfhp;
1356	struct vattr vattr;
1357	int error = 0, attrflag, dattrflag;
1358	u_int32_t rdev;
1359
1360	if (vap->va_type == VCHR || vap->va_type == VBLK)
1361		rdev = vap->va_rdev;
1362	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1363		rdev = 0xffffffff;
1364	else
1365		return (EOPNOTSUPP);
1366	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1367		return (error);
1368	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1369	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1370	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1371	if (!error) {
1372		if (!nfhp)
1373			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1374			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1375			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1376			    NULL);
1377		if (nfhp)
1378			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1379			    cnp->cn_thread, &np, NULL);
1380	}
1381	if (dattrflag)
1382		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1383	if (!error) {
1384		newvp = NFSTOV(np);
1385		if (attrflag)
1386			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1387			    0, 1);
1388	}
1389	if (!error) {
1390		if ((cnp->cn_flags & MAKEENTRY))
1391			cache_enter(dvp, newvp, cnp);
1392		*vpp = newvp;
1393	} else if (NFS_ISV4(dvp)) {
1394		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1395		    vap->va_gid);
1396	}
1397	dnp = VTONFS(dvp);
1398	mtx_lock(&dnp->n_mtx);
1399	dnp->n_flag |= NMODIFIED;
1400	if (!dattrflag)
1401		dnp->n_attrstamp = 0;
1402	mtx_unlock(&dnp->n_mtx);
1403	return (error);
1404}
1405
1406/*
1407 * nfs mknod vop
1408 * just call nfs_mknodrpc() to do the work.
1409 */
1410/* ARGSUSED */
1411static int
1412nfs_mknod(struct vop_mknod_args *ap)
1413{
1414	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1415}
1416
1417static struct mtx nfs_cverf_mtx;
1418MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1419    MTX_DEF);
1420
1421static nfsquad_t
1422nfs_get_cverf(void)
1423{
1424	static nfsquad_t cverf;
1425	nfsquad_t ret;
1426	static int cverf_initialized = 0;
1427
1428	mtx_lock(&nfs_cverf_mtx);
1429	if (cverf_initialized == 0) {
1430		cverf.lval[0] = arc4random();
1431		cverf.lval[1] = arc4random();
1432		cverf_initialized = 1;
1433	} else
1434		cverf.qval++;
1435	ret = cverf;
1436	mtx_unlock(&nfs_cverf_mtx);
1437
1438	return (ret);
1439}
1440
1441/*
1442 * nfs file create call
1443 */
1444static int
1445nfs_create(struct vop_create_args *ap)
1446{
1447	struct vnode *dvp = ap->a_dvp;
1448	struct vattr *vap = ap->a_vap;
1449	struct componentname *cnp = ap->a_cnp;
1450	struct nfsnode *np = NULL, *dnp;
1451	struct vnode *newvp = NULL;
1452	struct nfsmount *nmp;
1453	struct nfsvattr dnfsva, nfsva;
1454	struct nfsfh *nfhp;
1455	nfsquad_t cverf;
1456	int error = 0, attrflag, dattrflag, fmode = 0;
1457	struct vattr vattr;
1458
1459	/*
1460	 * Oops, not for me..
1461	 */
1462	if (vap->va_type == VSOCK)
1463		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1464
1465	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1466		return (error);
1467	if (vap->va_vaflags & VA_EXCLUSIVE)
1468		fmode |= O_EXCL;
1469	dnp = VTONFS(dvp);
1470	nmp = VFSTONFS(vnode_mount(dvp));
1471again:
1472	/* For NFSv4, wait until any remove is done. */
1473	mtx_lock(&dnp->n_mtx);
1474	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1475		dnp->n_flag |= NREMOVEWANT;
1476		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1477	}
1478	mtx_unlock(&dnp->n_mtx);
1479
1480	cverf = nfs_get_cverf();
1481	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1482	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1483	    &nfhp, &attrflag, &dattrflag, NULL);
1484	if (!error) {
1485		if (nfhp == NULL)
1486			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1487			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1488			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1489			    NULL);
1490		if (nfhp != NULL)
1491			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1492			    cnp->cn_thread, &np, NULL);
1493	}
1494	if (dattrflag)
1495		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1496	if (!error) {
1497		newvp = NFSTOV(np);
1498		if (attrflag)
1499			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1500			    0, 1);
1501	}
1502	if (error) {
1503		if (newvp != NULL) {
1504			vrele(newvp);
1505			newvp = NULL;
1506		}
1507		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1508		    error == NFSERR_NOTSUPP) {
1509			fmode &= ~O_EXCL;
1510			goto again;
1511		}
1512	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1513		if (nfscl_checksattr(vap, &nfsva)) {
1514			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1515			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1516			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1517			    vap->va_gid != (gid_t)VNOVAL)) {
1518				/* try again without setting uid/gid */
1519				vap->va_uid = (uid_t)VNOVAL;
1520				vap->va_gid = (uid_t)VNOVAL;
1521				error = nfsrpc_setattr(newvp, vap, NULL,
1522				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1523				    &attrflag, NULL);
1524			}
1525			if (attrflag)
1526				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1527				    NULL, 0, 1);
1528		}
1529	}
1530	if (!error) {
1531		if (cnp->cn_flags & MAKEENTRY)
1532			cache_enter(dvp, newvp, cnp);
1533		*ap->a_vpp = newvp;
1534	} else if (NFS_ISV4(dvp)) {
1535		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1536		    vap->va_gid);
1537	}
1538	mtx_lock(&dnp->n_mtx);
1539	dnp->n_flag |= NMODIFIED;
1540	if (!dattrflag)
1541		dnp->n_attrstamp = 0;
1542	mtx_unlock(&dnp->n_mtx);
1543	return (error);
1544}
1545
1546/*
1547 * nfs file remove call
1548 * To try and make nfs semantics closer to ufs semantics, a file that has
1549 * other processes using the vnode is renamed instead of removed and then
1550 * removed later on the last close.
1551 * - If v_usecount > 1
1552 *	  If a rename is not already in the works
1553 *	     call nfs_sillyrename() to set it up
1554 *     else
1555 *	  do the remove rpc
1556 */
1557static int
1558nfs_remove(struct vop_remove_args *ap)
1559{
1560	struct vnode *vp = ap->a_vp;
1561	struct vnode *dvp = ap->a_dvp;
1562	struct componentname *cnp = ap->a_cnp;
1563	struct nfsnode *np = VTONFS(vp);
1564	int error = 0;
1565	struct vattr vattr;
1566
1567#ifndef DIAGNOSTIC
1568	if ((cnp->cn_flags & HASBUF) == 0)
1569		panic("nfs_remove: no name");
1570	if (vrefcnt(vp) < 1)
1571		panic("nfs_remove: bad v_usecount");
1572#endif
1573	if (vp->v_type == VDIR)
1574		error = EPERM;
1575	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1576	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1577	    vattr.va_nlink > 1)) {
1578		/*
1579		 * Purge the name cache so that the chance of a lookup for
1580		 * the name succeeding while the remove is in progress is
1581		 * minimized. Without node locking it can still happen, such
1582		 * that an I/O op returns ESTALE, but since you get this if
1583		 * another host removes the file..
1584		 */
1585		cache_purge(vp);
1586		/*
1587		 * throw away biocache buffers, mainly to avoid
1588		 * unnecessary delayed writes later.
1589		 */
1590		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1591		/* Do the rpc */
1592		if (error != EINTR && error != EIO)
1593			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1594			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1595		/*
1596		 * Kludge City: If the first reply to the remove rpc is lost..
1597		 *   the reply to the retransmitted request will be ENOENT
1598		 *   since the file was in fact removed
1599		 *   Therefore, we cheat and return success.
1600		 */
1601		if (error == ENOENT)
1602			error = 0;
1603	} else if (!np->n_sillyrename)
1604		error = nfs_sillyrename(dvp, vp, cnp);
1605	np->n_attrstamp = 0;
1606	return (error);
1607}
1608
1609/*
1610 * nfs file remove rpc called from nfs_inactive
1611 */
1612int
1613ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1614{
1615	/*
1616	 * Make sure that the directory vnode is still valid.
1617	 * XXX we should lock sp->s_dvp here.
1618	 */
1619	if (sp->s_dvp->v_type == VBAD)
1620		return (0);
1621	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1622	    sp->s_cred, NULL));
1623}
1624
1625/*
1626 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1627 */
1628static int
1629nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1630    int namelen, struct ucred *cred, struct thread *td)
1631{
1632	struct nfsvattr dnfsva;
1633	struct nfsnode *dnp = VTONFS(dvp);
1634	int error = 0, dattrflag;
1635
1636	mtx_lock(&dnp->n_mtx);
1637	dnp->n_flag |= NREMOVEINPROG;
1638	mtx_unlock(&dnp->n_mtx);
1639	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1640	    &dattrflag, NULL);
1641	mtx_lock(&dnp->n_mtx);
1642	if ((dnp->n_flag & NREMOVEWANT)) {
1643		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1644		mtx_unlock(&dnp->n_mtx);
1645		wakeup((caddr_t)dnp);
1646	} else {
1647		dnp->n_flag &= ~NREMOVEINPROG;
1648		mtx_unlock(&dnp->n_mtx);
1649	}
1650	if (dattrflag)
1651		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1652	mtx_lock(&dnp->n_mtx);
1653	dnp->n_flag |= NMODIFIED;
1654	if (!dattrflag)
1655		dnp->n_attrstamp = 0;
1656	mtx_unlock(&dnp->n_mtx);
1657	if (error && NFS_ISV4(dvp))
1658		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1659	return (error);
1660}
1661
1662/*
1663 * nfs file rename call
1664 */
1665static int
1666nfs_rename(struct vop_rename_args *ap)
1667{
1668	struct vnode *fvp = ap->a_fvp;
1669	struct vnode *tvp = ap->a_tvp;
1670	struct vnode *fdvp = ap->a_fdvp;
1671	struct vnode *tdvp = ap->a_tdvp;
1672	struct componentname *tcnp = ap->a_tcnp;
1673	struct componentname *fcnp = ap->a_fcnp;
1674	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1675	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1676	struct nfsv4node *newv4 = NULL;
1677	int error;
1678
1679#ifndef DIAGNOSTIC
1680	if ((tcnp->cn_flags & HASBUF) == 0 ||
1681	    (fcnp->cn_flags & HASBUF) == 0)
1682		panic("nfs_rename: no name");
1683#endif
1684	/* Check for cross-device rename */
1685	if ((fvp->v_mount != tdvp->v_mount) ||
1686	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1687		error = EXDEV;
1688		goto out;
1689	}
1690
1691	if (fvp == tvp) {
1692		ncl_printf("nfs_rename: fvp == tvp (can't happen)\n");
1693		error = 0;
1694		goto out;
1695	}
1696	if ((error = vn_lock(fvp, LK_EXCLUSIVE)))
1697		goto out;
1698
1699	/*
1700	 * We have to flush B_DELWRI data prior to renaming
1701	 * the file.  If we don't, the delayed-write buffers
1702	 * can be flushed out later after the file has gone stale
1703	 * under NFSV3.  NFSV2 does not have this problem because
1704	 * ( as far as I can tell ) it flushes dirty buffers more
1705	 * often.
1706	 *
1707	 * Skip the rename operation if the fsync fails, this can happen
1708	 * due to the server's volume being full, when we pushed out data
1709	 * that was written back to our cache earlier. Not checking for
1710	 * this condition can result in potential (silent) data loss.
1711	 */
1712	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1713	VOP_UNLOCK(fvp, 0);
1714	if (!error && tvp)
1715		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1716	if (error)
1717		goto out;
1718
1719	/*
1720	 * If the tvp exists and is in use, sillyrename it before doing the
1721	 * rename of the new file over it.
1722	 * XXX Can't sillyrename a directory.
1723	 */
1724	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1725		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1726		vput(tvp);
1727		tvp = NULL;
1728	}
1729
1730	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1731	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1732	    tcnp->cn_thread);
1733
1734	if (!error) {
1735		/*
1736		 * For NFSv4, check to see if it is the same name and
1737		 * replace the name, if it is different.
1738		 */
1739		MALLOC(newv4, struct nfsv4node *,
1740		    sizeof (struct nfsv4node) +
1741		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1742		    M_NFSV4NODE, M_WAITOK);
1743		mtx_lock(&tdnp->n_mtx);
1744		mtx_lock(&fnp->n_mtx);
1745		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1746		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1747		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1748		      tcnp->cn_namelen) ||
1749		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1750		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1751			tdnp->n_fhp->nfh_len))) {
1752#ifdef notdef
1753{ char nnn[100]; int nnnl;
1754nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1755bcopy(tcnp->cn_nameptr, nnn, nnnl);
1756nnn[nnnl] = '\0';
1757printf("ren replace=%s\n",nnn);
1758}
1759#endif
1760			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1761			fnp->n_v4 = newv4;
1762			newv4 = NULL;
1763			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1764			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1765			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1766			    tdnp->n_fhp->nfh_len);
1767			NFSBCOPY(tcnp->cn_nameptr,
1768			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1769		}
1770		mtx_unlock(&tdnp->n_mtx);
1771		mtx_unlock(&fnp->n_mtx);
1772		if (newv4 != NULL)
1773			FREE((caddr_t)newv4, M_NFSV4NODE);
1774	}
1775
1776	if (fvp->v_type == VDIR) {
1777		if (tvp != NULL && tvp->v_type == VDIR)
1778			cache_purge(tdvp);
1779		cache_purge(fdvp);
1780	}
1781
1782out:
1783	if (tdvp == tvp)
1784		vrele(tdvp);
1785	else
1786		vput(tdvp);
1787	if (tvp)
1788		vput(tvp);
1789	vrele(fdvp);
1790	vrele(fvp);
1791	/*
1792	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1793	 */
1794	if (error == ENOENT)
1795		error = 0;
1796	return (error);
1797}
1798
1799/*
1800 * nfs file rename rpc called from nfs_remove() above
1801 */
1802static int
1803nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1804    struct sillyrename *sp)
1805{
1806
1807	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1808	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1809	    scnp->cn_thread));
1810}
1811
1812/*
1813 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1814 */
1815static int
1816nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1817    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1818    int tnamelen, struct ucred *cred, struct thread *td)
1819{
1820	struct nfsvattr fnfsva, tnfsva;
1821	struct nfsnode *fdnp = VTONFS(fdvp);
1822	struct nfsnode *tdnp = VTONFS(tdvp);
1823	int error = 0, fattrflag, tattrflag;
1824
1825	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1826	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1827	    &tattrflag, NULL, NULL);
1828	mtx_lock(&fdnp->n_mtx);
1829	fdnp->n_flag |= NMODIFIED;
1830	mtx_unlock(&fdnp->n_mtx);
1831	mtx_lock(&tdnp->n_mtx);
1832	tdnp->n_flag |= NMODIFIED;
1833	mtx_unlock(&tdnp->n_mtx);
1834	if (fattrflag)
1835		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1836	else
1837		fdnp->n_attrstamp = 0;
1838	if (tattrflag)
1839		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1840	else
1841		tdnp->n_attrstamp = 0;
1842	if (error && NFS_ISV4(fdvp))
1843		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1844	return (error);
1845}
1846
1847/*
1848 * nfs hard link create call
1849 */
1850static int
1851nfs_link(struct vop_link_args *ap)
1852{
1853	struct vnode *vp = ap->a_vp;
1854	struct vnode *tdvp = ap->a_tdvp;
1855	struct componentname *cnp = ap->a_cnp;
1856	struct nfsnode *tdnp;
1857	struct nfsvattr nfsva, dnfsva;
1858	int error = 0, attrflag, dattrflag;
1859
1860	if (vp->v_mount != tdvp->v_mount) {
1861		return (EXDEV);
1862	}
1863
1864	/*
1865	 * Push all writes to the server, so that the attribute cache
1866	 * doesn't get "out of sync" with the server.
1867	 * XXX There should be a better way!
1868	 */
1869	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1870
1871	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1872	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1873	    &dattrflag, NULL);
1874	tdnp = VTONFS(tdvp);
1875	mtx_lock(&tdnp->n_mtx);
1876	tdnp->n_flag |= NMODIFIED;
1877	mtx_unlock(&tdnp->n_mtx);
1878	if (attrflag)
1879		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1880	else
1881		VTONFS(vp)->n_attrstamp = 0;
1882	if (dattrflag)
1883		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1884	else
1885		tdnp->n_attrstamp = 0;
1886	/*
1887	 * If negative lookup caching is enabled, I might as well
1888	 * add an entry for this node. Not necessary for correctness,
1889	 * but if negative caching is enabled, then the system
1890	 * must care about lookup caching hit rate, so...
1891	 */
1892	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1893	    (cnp->cn_flags & MAKEENTRY))
1894		cache_enter(tdvp, vp, cnp);
1895	if (error && NFS_ISV4(vp))
1896		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1897		    (gid_t)0);
1898	return (error);
1899}
1900
1901/*
1902 * nfs symbolic link create call
1903 */
1904static int
1905nfs_symlink(struct vop_symlink_args *ap)
1906{
1907	struct vnode *dvp = ap->a_dvp;
1908	struct vattr *vap = ap->a_vap;
1909	struct componentname *cnp = ap->a_cnp;
1910	struct nfsvattr nfsva, dnfsva;
1911	struct nfsfh *nfhp;
1912	struct nfsnode *np = NULL, *dnp;
1913	struct vnode *newvp = NULL;
1914	int error = 0, attrflag, dattrflag, ret;
1915
1916	vap->va_type = VLNK;
1917	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1918	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1919	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1920	if (nfhp) {
1921		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
1922		    &np, NULL);
1923		if (!ret)
1924			newvp = NFSTOV(np);
1925		else if (!error)
1926			error = ret;
1927	}
1928	if (newvp != NULL) {
1929		if (attrflag)
1930			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1931			    0, 1);
1932	} else if (!error) {
1933		/*
1934		 * If we do not have an error and we could not extract the
1935		 * newvp from the response due to the request being NFSv2, we
1936		 * have to do a lookup in order to obtain a newvp to return.
1937		 */
1938		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1939		    cnp->cn_cred, cnp->cn_thread, &np);
1940		if (!error)
1941			newvp = NFSTOV(np);
1942	}
1943	if (error) {
1944		if (newvp)
1945			vput(newvp);
1946		if (NFS_ISV4(dvp))
1947			error = nfscl_maperr(cnp->cn_thread, error,
1948			    vap->va_uid, vap->va_gid);
1949	} else {
1950		/*
1951		 * If negative lookup caching is enabled, I might as well
1952		 * add an entry for this node. Not necessary for correctness,
1953		 * but if negative caching is enabled, then the system
1954		 * must care about lookup caching hit rate, so...
1955		 */
1956		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
1957		    (cnp->cn_flags & MAKEENTRY))
1958			cache_enter(dvp, newvp, cnp);
1959		*ap->a_vpp = newvp;
1960	}
1961
1962	dnp = VTONFS(dvp);
1963	mtx_lock(&dnp->n_mtx);
1964	dnp->n_flag |= NMODIFIED;
1965	mtx_unlock(&dnp->n_mtx);
1966	if (dattrflag)
1967		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1968	else
1969		dnp->n_attrstamp = 0;
1970	return (error);
1971}
1972
1973/*
1974 * nfs make dir call
1975 */
1976static int
1977nfs_mkdir(struct vop_mkdir_args *ap)
1978{
1979	struct vnode *dvp = ap->a_dvp;
1980	struct vattr *vap = ap->a_vap;
1981	struct componentname *cnp = ap->a_cnp;
1982	struct nfsnode *np = NULL, *dnp;
1983	struct vnode *newvp = NULL;
1984	struct vattr vattr;
1985	struct nfsfh *nfhp;
1986	struct nfsvattr nfsva, dnfsva;
1987	int error = 0, attrflag, dattrflag, ret;
1988
1989	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1990		return (error);
1991	vap->va_type = VDIR;
1992	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1993	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
1994	    &attrflag, &dattrflag, NULL);
1995	dnp = VTONFS(dvp);
1996	mtx_lock(&dnp->n_mtx);
1997	dnp->n_flag |= NMODIFIED;
1998	mtx_unlock(&dnp->n_mtx);
1999	if (dattrflag)
2000		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2001	else
2002		dnp->n_attrstamp = 0;
2003	if (nfhp) {
2004		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2005		    &np, NULL);
2006		if (!ret) {
2007			newvp = NFSTOV(np);
2008			if (attrflag)
2009			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2010				NULL, 0, 1);
2011		} else if (!error)
2012			error = ret;
2013	}
2014	if (!error && newvp == NULL) {
2015		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2016		    cnp->cn_cred, cnp->cn_thread, &np);
2017		if (!error) {
2018			newvp = NFSTOV(np);
2019			if (newvp->v_type != VDIR)
2020				error = EEXIST;
2021		}
2022	}
2023	if (error) {
2024		if (newvp)
2025			vput(newvp);
2026		if (NFS_ISV4(dvp))
2027			error = nfscl_maperr(cnp->cn_thread, error,
2028			    vap->va_uid, vap->va_gid);
2029	} else {
2030		/*
2031		 * If negative lookup caching is enabled, I might as well
2032		 * add an entry for this node. Not necessary for correctness,
2033		 * but if negative caching is enabled, then the system
2034		 * must care about lookup caching hit rate, so...
2035		 */
2036		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2037		    (cnp->cn_flags & MAKEENTRY))
2038			cache_enter(dvp, newvp, cnp);
2039		*ap->a_vpp = newvp;
2040	}
2041	return (error);
2042}
2043
2044/*
2045 * nfs remove directory call
2046 */
2047static int
2048nfs_rmdir(struct vop_rmdir_args *ap)
2049{
2050	struct vnode *vp = ap->a_vp;
2051	struct vnode *dvp = ap->a_dvp;
2052	struct componentname *cnp = ap->a_cnp;
2053	struct nfsnode *dnp;
2054	struct nfsvattr dnfsva;
2055	int error, dattrflag;
2056
2057	if (dvp == vp)
2058		return (EINVAL);
2059	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2060	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2061	dnp = VTONFS(dvp);
2062	mtx_lock(&dnp->n_mtx);
2063	dnp->n_flag |= NMODIFIED;
2064	mtx_unlock(&dnp->n_mtx);
2065	if (dattrflag)
2066		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2067	else
2068		dnp->n_attrstamp = 0;
2069
2070	cache_purge(dvp);
2071	cache_purge(vp);
2072	if (error && NFS_ISV4(dvp))
2073		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2074		    (gid_t)0);
2075	/*
2076	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2077	 */
2078	if (error == ENOENT)
2079		error = 0;
2080	return (error);
2081}
2082
2083/*
2084 * nfs readdir call
2085 */
2086static int
2087nfs_readdir(struct vop_readdir_args *ap)
2088{
2089	struct vnode *vp = ap->a_vp;
2090	struct nfsnode *np = VTONFS(vp);
2091	struct uio *uio = ap->a_uio;
2092	int tresid, error = 0;
2093	struct vattr vattr;
2094
2095	if (vp->v_type != VDIR)
2096		return(EPERM);
2097
2098	/*
2099	 * First, check for hit on the EOF offset cache
2100	 */
2101	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2102	    (np->n_flag & NMODIFIED) == 0) {
2103		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2104			mtx_lock(&np->n_mtx);
2105			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2106			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2107				mtx_unlock(&np->n_mtx);
2108				NFSINCRGLOBAL(newnfsstats.direofcache_hits);
2109				return (0);
2110			} else
2111				mtx_unlock(&np->n_mtx);
2112		}
2113	}
2114
2115	/*
2116	 * Call ncl_bioread() to do the real work.
2117	 */
2118	tresid = uio->uio_resid;
2119	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2120
2121	if (!error && uio->uio_resid == tresid)
2122		NFSINCRGLOBAL(newnfsstats.direofcache_misses);
2123	return (error);
2124}
2125
2126/*
2127 * Readdir rpc call.
2128 * Called from below the buffer cache by ncl_doio().
2129 */
2130int
2131ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2132    struct thread *td)
2133{
2134	struct nfsvattr nfsva;
2135	nfsuint64 *cookiep, cookie;
2136	struct nfsnode *dnp = VTONFS(vp);
2137	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2138	int error = 0, eof, attrflag;
2139
2140#ifndef DIAGNOSTIC
2141	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2142		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2143		panic("nfs readdirrpc bad uio");
2144#endif
2145
2146	/*
2147	 * If there is no cookie, assume directory was stale.
2148	 */
2149	ncl_dircookie_lock(dnp);
2150	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2151	if (cookiep) {
2152		cookie = *cookiep;
2153		ncl_dircookie_unlock(dnp);
2154	} else {
2155		ncl_dircookie_unlock(dnp);
2156		return (NFSERR_BAD_COOKIE);
2157	}
2158
2159	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2160		(void)ncl_fsinfo(nmp, vp, cred, td);
2161
2162	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2163	    &attrflag, &eof, NULL);
2164	if (attrflag)
2165		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2166
2167	if (!error) {
2168		/*
2169		 * We are now either at the end of the directory or have filled
2170		 * the block.
2171		 */
2172		if (eof)
2173			dnp->n_direofoffset = uiop->uio_offset;
2174		else {
2175			if (uiop->uio_resid > 0)
2176				ncl_printf("EEK! readdirrpc resid > 0\n");
2177			ncl_dircookie_lock(dnp);
2178			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2179			*cookiep = cookie;
2180			ncl_dircookie_unlock(dnp);
2181		}
2182	} else if (NFS_ISV4(vp)) {
2183		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2184	}
2185	return (error);
2186}
2187
2188/*
2189 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2190 */
2191int
2192ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2193    struct thread *td)
2194{
2195	struct nfsvattr nfsva;
2196	nfsuint64 *cookiep, cookie;
2197	struct nfsnode *dnp = VTONFS(vp);
2198	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2199	int error = 0, attrflag, eof;
2200
2201#ifndef DIAGNOSTIC
2202	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2203		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2204		panic("nfs readdirplusrpc bad uio");
2205#endif
2206
2207	/*
2208	 * If there is no cookie, assume directory was stale.
2209	 */
2210	ncl_dircookie_lock(dnp);
2211	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2212	if (cookiep) {
2213		cookie = *cookiep;
2214		ncl_dircookie_unlock(dnp);
2215	} else {
2216		ncl_dircookie_unlock(dnp);
2217		return (NFSERR_BAD_COOKIE);
2218	}
2219
2220	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2221		(void)ncl_fsinfo(nmp, vp, cred, td);
2222	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2223	    &attrflag, &eof, NULL);
2224	if (attrflag)
2225		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2226
2227	if (!error) {
2228		/*
2229		 * We are now either at end of the directory or have filled the
2230		 * the block.
2231		 */
2232		if (eof)
2233			dnp->n_direofoffset = uiop->uio_offset;
2234		else {
2235			if (uiop->uio_resid > 0)
2236				ncl_printf("EEK! readdirplusrpc resid > 0\n");
2237			ncl_dircookie_lock(dnp);
2238			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2239			*cookiep = cookie;
2240			ncl_dircookie_unlock(dnp);
2241		}
2242	} else if (NFS_ISV4(vp)) {
2243		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2244	}
2245	return (error);
2246}
2247
2248/*
2249 * Silly rename. To make the NFS filesystem that is stateless look a little
2250 * more like the "ufs" a remove of an active vnode is translated to a rename
2251 * to a funny looking filename that is removed by nfs_inactive on the
2252 * nfsnode. There is the potential for another process on a different client
2253 * to create the same funny name between the nfs_lookitup() fails and the
2254 * nfs_rename() completes, but...
2255 */
2256static int
2257nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2258{
2259	struct sillyrename *sp;
2260	struct nfsnode *np;
2261	int error;
2262	short pid;
2263	unsigned int lticks;
2264
2265	cache_purge(dvp);
2266	np = VTONFS(vp);
2267#ifndef DIAGNOSTIC
2268	if (vp->v_type == VDIR)
2269		panic("nfs: sillyrename dir");
2270#endif
2271	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2272	    M_NEWNFSREQ, M_WAITOK);
2273	sp->s_cred = crhold(cnp->cn_cred);
2274	sp->s_dvp = dvp;
2275	VREF(dvp);
2276
2277	/*
2278	 * Fudge together a funny name.
2279	 * Changing the format of the funny name to accomodate more
2280	 * sillynames per directory.
2281	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2282	 * CPU ticks since boot.
2283	 */
2284	pid = cnp->cn_thread->td_proc->p_pid;
2285	lticks = (unsigned int)ticks;
2286	for ( ; ; ) {
2287		sp->s_namlen = sprintf(sp->s_name,
2288				       ".nfs.%08x.%04x4.4", lticks,
2289				       pid);
2290		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2291				 cnp->cn_thread, NULL))
2292			break;
2293		lticks++;
2294	}
2295	error = nfs_renameit(dvp, vp, cnp, sp);
2296	if (error)
2297		goto bad;
2298	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2299		cnp->cn_thread, &np);
2300	np->n_sillyrename = sp;
2301	return (0);
2302bad:
2303	vrele(sp->s_dvp);
2304	crfree(sp->s_cred);
2305	free((caddr_t)sp, M_NEWNFSREQ);
2306	return (error);
2307}
2308
2309/*
2310 * Look up a file name and optionally either update the file handle or
2311 * allocate an nfsnode, depending on the value of npp.
2312 * npp == NULL	--> just do the lookup
2313 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2314 *			handled too
2315 * *npp != NULL --> update the file handle in the vnode
2316 */
2317static int
2318nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2319    struct thread *td, struct nfsnode **npp)
2320{
2321	struct vnode *newvp = NULL, *vp;
2322	struct nfsnode *np, *dnp = VTONFS(dvp);
2323	struct nfsfh *nfhp, *onfhp;
2324	struct nfsvattr nfsva, dnfsva;
2325	struct componentname cn;
2326	int error = 0, attrflag, dattrflag;
2327	u_int hash;
2328
2329	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2330	    &nfhp, &attrflag, &dattrflag, NULL);
2331	if (dattrflag)
2332		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2333	if (npp && !error) {
2334		if (*npp != NULL) {
2335		    np = *npp;
2336		    vp = NFSTOV(np);
2337		    /*
2338		     * For NFSv4, check to see if it is the same name and
2339		     * replace the name, if it is different.
2340		     */
2341		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2342			(np->n_v4->n4_namelen != len ||
2343			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2344			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2345			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2346			 dnp->n_fhp->nfh_len))) {
2347#ifdef notdef
2348{ char nnn[100]; int nnnl;
2349nnnl = (len < 100) ? len : 99;
2350bcopy(name, nnn, nnnl);
2351nnn[nnnl] = '\0';
2352printf("replace=%s\n",nnn);
2353}
2354#endif
2355			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2356			    MALLOC(np->n_v4, struct nfsv4node *,
2357				sizeof (struct nfsv4node) +
2358				dnp->n_fhp->nfh_len + len - 1,
2359				M_NFSV4NODE, M_WAITOK);
2360			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2361			    np->n_v4->n4_namelen = len;
2362			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2363				dnp->n_fhp->nfh_len);
2364			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2365		    }
2366		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2367			FNV1_32_INIT);
2368		    onfhp = np->n_fhp;
2369		    /*
2370		     * Rehash node for new file handle.
2371		     */
2372		    vfs_hash_rehash(vp, hash);
2373		    np->n_fhp = nfhp;
2374		    if (onfhp != NULL)
2375			FREE((caddr_t)onfhp, M_NFSFH);
2376		    newvp = NFSTOV(np);
2377		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2378		    FREE((caddr_t)nfhp, M_NFSFH);
2379		    VREF(dvp);
2380		    newvp = dvp;
2381		} else {
2382		    cn.cn_nameptr = name;
2383		    cn.cn_namelen = len;
2384		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2385			&np, NULL);
2386		    if (error)
2387			return (error);
2388		    newvp = NFSTOV(np);
2389		}
2390		if (!attrflag && *npp == NULL) {
2391			vrele(newvp);
2392			return (ENOENT);
2393		}
2394		if (attrflag)
2395			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2396			    0, 1);
2397	}
2398	if (npp && *npp == NULL) {
2399		if (error) {
2400			if (newvp) {
2401				if (newvp == dvp)
2402					vrele(newvp);
2403				else
2404					vput(newvp);
2405			}
2406		} else
2407			*npp = np;
2408	}
2409	if (error && NFS_ISV4(dvp))
2410		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2411	return (error);
2412}
2413
2414/*
2415 * Nfs Version 3 and 4 commit rpc
2416 */
2417int
2418ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2419   struct thread *td)
2420{
2421	struct nfsvattr nfsva;
2422	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2423	int error, attrflag;
2424	u_char verf[NFSX_VERF];
2425
2426	mtx_lock(&nmp->nm_mtx);
2427	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2428		mtx_unlock(&nmp->nm_mtx);
2429		return (0);
2430	}
2431	mtx_unlock(&nmp->nm_mtx);
2432	error = nfsrpc_commit(vp, offset, cnt, cred, td, verf, &nfsva,
2433	    &attrflag, NULL);
2434	if (!error) {
2435		if (NFSBCMP((caddr_t)nmp->nm_verf, verf, NFSX_VERF)) {
2436			NFSBCOPY(verf, (caddr_t)nmp->nm_verf, NFSX_VERF);
2437			error = NFSERR_STALEWRITEVERF;
2438		}
2439		if (!error && attrflag)
2440			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2441			    0, 1);
2442	} else if (NFS_ISV4(vp)) {
2443		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2444	}
2445	return (error);
2446}
2447
2448/*
2449 * Strategy routine.
2450 * For async requests when nfsiod(s) are running, queue the request by
2451 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2452 * request.
2453 */
2454static int
2455nfs_strategy(struct vop_strategy_args *ap)
2456{
2457	struct buf *bp = ap->a_bp;
2458	struct ucred *cr;
2459
2460	KASSERT(!(bp->b_flags & B_DONE),
2461	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2462	BUF_ASSERT_HELD(bp);
2463
2464	if (bp->b_iocmd == BIO_READ)
2465		cr = bp->b_rcred;
2466	else
2467		cr = bp->b_wcred;
2468
2469	/*
2470	 * If the op is asynchronous and an i/o daemon is waiting
2471	 * queue the request, wake it up and wait for completion
2472	 * otherwise just do it ourselves.
2473	 */
2474	if ((bp->b_flags & B_ASYNC) == 0 ||
2475	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2476		(void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2477	return (0);
2478}
2479
2480/*
2481 * fsync vnode op. Just call ncl_flush() with commit == 1.
2482 */
2483/* ARGSUSED */
2484static int
2485nfs_fsync(struct vop_fsync_args *ap)
2486{
2487	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2488}
2489
2490/*
2491 * Flush all the blocks associated with a vnode.
2492 * 	Walk through the buffer pool and push any dirty pages
2493 *	associated with the vnode.
2494 * If the called_from_renewthread argument is TRUE, it has been called
2495 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2496 * waiting for a buffer write to complete.
2497 */
2498int
2499ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2500    int commit, int called_from_renewthread)
2501{
2502	struct nfsnode *np = VTONFS(vp);
2503	struct buf *bp;
2504	int i;
2505	struct buf *nbp;
2506	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2507	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2508	int passone = 1, trycnt = 0;
2509	u_quad_t off, endoff, toff;
2510	struct ucred* wcred = NULL;
2511	struct buf **bvec = NULL;
2512	struct bufobj *bo;
2513#ifndef NFS_COMMITBVECSIZ
2514#define	NFS_COMMITBVECSIZ	20
2515#endif
2516	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2517	int bvecsize = 0, bveccount;
2518
2519	if (called_from_renewthread != 0)
2520		slptimeo = hz;
2521	if (nmp->nm_flag & NFSMNT_INT)
2522		slpflag = NFS_PCATCH;
2523	if (!commit)
2524		passone = 0;
2525	bo = &vp->v_bufobj;
2526	/*
2527	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2528	 * server, but has not been committed to stable storage on the server
2529	 * yet. On the first pass, the byte range is worked out and the commit
2530	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2531	 * job.
2532	 */
2533again:
2534	off = (u_quad_t)-1;
2535	endoff = 0;
2536	bvecpos = 0;
2537	if (NFS_ISV34(vp) && commit) {
2538		if (bvec != NULL && bvec != bvec_on_stack)
2539			free(bvec, M_TEMP);
2540		/*
2541		 * Count up how many buffers waiting for a commit.
2542		 */
2543		bveccount = 0;
2544		BO_LOCK(bo);
2545		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2546			if (!BUF_ISLOCKED(bp) &&
2547			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2548				== (B_DELWRI | B_NEEDCOMMIT))
2549				bveccount++;
2550		}
2551		/*
2552		 * Allocate space to remember the list of bufs to commit.  It is
2553		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2554		 * If we can't get memory (for whatever reason), we will end up
2555		 * committing the buffers one-by-one in the loop below.
2556		 */
2557		if (bveccount > NFS_COMMITBVECSIZ) {
2558			/*
2559			 * Release the vnode interlock to avoid a lock
2560			 * order reversal.
2561			 */
2562			BO_UNLOCK(bo);
2563			bvec = (struct buf **)
2564				malloc(bveccount * sizeof(struct buf *),
2565				       M_TEMP, M_NOWAIT);
2566			BO_LOCK(bo);
2567			if (bvec == NULL) {
2568				bvec = bvec_on_stack;
2569				bvecsize = NFS_COMMITBVECSIZ;
2570			} else
2571				bvecsize = bveccount;
2572		} else {
2573			bvec = bvec_on_stack;
2574			bvecsize = NFS_COMMITBVECSIZ;
2575		}
2576		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2577			if (bvecpos >= bvecsize)
2578				break;
2579			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2580				nbp = TAILQ_NEXT(bp, b_bobufs);
2581				continue;
2582			}
2583			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2584			    (B_DELWRI | B_NEEDCOMMIT)) {
2585				BUF_UNLOCK(bp);
2586				nbp = TAILQ_NEXT(bp, b_bobufs);
2587				continue;
2588			}
2589			BO_UNLOCK(bo);
2590			bremfree(bp);
2591			/*
2592			 * Work out if all buffers are using the same cred
2593			 * so we can deal with them all with one commit.
2594			 *
2595			 * NOTE: we are not clearing B_DONE here, so we have
2596			 * to do it later on in this routine if we intend to
2597			 * initiate I/O on the bp.
2598			 *
2599			 * Note: to avoid loopback deadlocks, we do not
2600			 * assign b_runningbufspace.
2601			 */
2602			if (wcred == NULL)
2603				wcred = bp->b_wcred;
2604			else if (wcred != bp->b_wcred)
2605				wcred = NOCRED;
2606			vfs_busy_pages(bp, 1);
2607
2608			BO_LOCK(bo);
2609			/*
2610			 * bp is protected by being locked, but nbp is not
2611			 * and vfs_busy_pages() may sleep.  We have to
2612			 * recalculate nbp.
2613			 */
2614			nbp = TAILQ_NEXT(bp, b_bobufs);
2615
2616			/*
2617			 * A list of these buffers is kept so that the
2618			 * second loop knows which buffers have actually
2619			 * been committed. This is necessary, since there
2620			 * may be a race between the commit rpc and new
2621			 * uncommitted writes on the file.
2622			 */
2623			bvec[bvecpos++] = bp;
2624			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2625				bp->b_dirtyoff;
2626			if (toff < off)
2627				off = toff;
2628			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2629			if (toff > endoff)
2630				endoff = toff;
2631		}
2632		BO_UNLOCK(bo);
2633	}
2634	if (bvecpos > 0) {
2635		/*
2636		 * Commit data on the server, as required.
2637		 * If all bufs are using the same wcred, then use that with
2638		 * one call for all of them, otherwise commit each one
2639		 * separately.
2640		 */
2641		if (wcred != NOCRED)
2642			retv = ncl_commit(vp, off, (int)(endoff - off),
2643					  wcred, td);
2644		else {
2645			retv = 0;
2646			for (i = 0; i < bvecpos; i++) {
2647				off_t off, size;
2648				bp = bvec[i];
2649				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2650					bp->b_dirtyoff;
2651				size = (u_quad_t)(bp->b_dirtyend
2652						  - bp->b_dirtyoff);
2653				retv = ncl_commit(vp, off, (int)size,
2654						  bp->b_wcred, td);
2655				if (retv) break;
2656			}
2657		}
2658
2659		if (retv == NFSERR_STALEWRITEVERF)
2660			ncl_clearcommit(vp->v_mount);
2661
2662		/*
2663		 * Now, either mark the blocks I/O done or mark the
2664		 * blocks dirty, depending on whether the commit
2665		 * succeeded.
2666		 */
2667		for (i = 0; i < bvecpos; i++) {
2668			bp = bvec[i];
2669			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2670			if (retv) {
2671				/*
2672				 * Error, leave B_DELWRI intact
2673				 */
2674				vfs_unbusy_pages(bp);
2675				brelse(bp);
2676			} else {
2677				/*
2678				 * Success, remove B_DELWRI ( bundirty() ).
2679				 *
2680				 * b_dirtyoff/b_dirtyend seem to be NFS
2681				 * specific.  We should probably move that
2682				 * into bundirty(). XXX
2683				 */
2684				bufobj_wref(bo);
2685				bp->b_flags |= B_ASYNC;
2686				bundirty(bp);
2687				bp->b_flags &= ~B_DONE;
2688				bp->b_ioflags &= ~BIO_ERROR;
2689				bp->b_dirtyoff = bp->b_dirtyend = 0;
2690				bufdone(bp);
2691			}
2692		}
2693	}
2694
2695	/*
2696	 * Start/do any write(s) that are required.
2697	 */
2698loop:
2699	BO_LOCK(bo);
2700	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2701		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2702			if (waitfor != MNT_WAIT || passone)
2703				continue;
2704
2705			error = BUF_TIMELOCK(bp,
2706			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2707			    BO_MTX(bo), "nfsfsync", slpflag, slptimeo);
2708			if (error == 0) {
2709				BUF_UNLOCK(bp);
2710				goto loop;
2711			}
2712			if (error == ENOLCK) {
2713				error = 0;
2714				goto loop;
2715			}
2716			if (called_from_renewthread != 0) {
2717				/*
2718				 * Return EIO so the flush will be retried
2719				 * later.
2720				 */
2721				error = EIO;
2722				goto done;
2723			}
2724			if (newnfs_sigintr(nmp, td)) {
2725				error = EINTR;
2726				goto done;
2727			}
2728			if (slpflag & PCATCH) {
2729				slpflag = 0;
2730				slptimeo = 2 * hz;
2731			}
2732			goto loop;
2733		}
2734		if ((bp->b_flags & B_DELWRI) == 0)
2735			panic("nfs_fsync: not dirty");
2736		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2737			BUF_UNLOCK(bp);
2738			continue;
2739		}
2740		BO_UNLOCK(bo);
2741		bremfree(bp);
2742		if (passone || !commit)
2743		    bp->b_flags |= B_ASYNC;
2744		else
2745		    bp->b_flags |= B_ASYNC;
2746		bwrite(bp);
2747		if (newnfs_sigintr(nmp, td)) {
2748			error = EINTR;
2749			goto done;
2750		}
2751		goto loop;
2752	}
2753	if (passone) {
2754		passone = 0;
2755		BO_UNLOCK(bo);
2756		goto again;
2757	}
2758	if (waitfor == MNT_WAIT) {
2759		while (bo->bo_numoutput) {
2760			error = bufobj_wwait(bo, slpflag, slptimeo);
2761			if (error) {
2762			    BO_UNLOCK(bo);
2763			    if (called_from_renewthread != 0) {
2764				/*
2765				 * Return EIO so that the flush will be
2766				 * retried later.
2767				 */
2768				error = EIO;
2769				goto done;
2770			    }
2771			    error = newnfs_sigintr(nmp, td);
2772			    if (error)
2773				goto done;
2774			    if (slpflag & PCATCH) {
2775				slpflag = 0;
2776				slptimeo = 2 * hz;
2777			    }
2778			    BO_LOCK(bo);
2779			}
2780		}
2781		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2782			BO_UNLOCK(bo);
2783			goto loop;
2784		}
2785		/*
2786		 * Wait for all the async IO requests to drain
2787		 */
2788		BO_UNLOCK(bo);
2789		mtx_lock(&np->n_mtx);
2790		while (np->n_directio_asyncwr > 0) {
2791			np->n_flag |= NFSYNCWAIT;
2792			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2793			    &np->n_mtx, slpflag | (PRIBIO + 1),
2794			    "nfsfsync", 0);
2795			if (error) {
2796				if (newnfs_sigintr(nmp, td)) {
2797					mtx_unlock(&np->n_mtx);
2798					error = EINTR;
2799					goto done;
2800				}
2801			}
2802		}
2803		mtx_unlock(&np->n_mtx);
2804	} else
2805		BO_UNLOCK(bo);
2806	mtx_lock(&np->n_mtx);
2807	if (np->n_flag & NWRITEERR) {
2808		error = np->n_error;
2809		np->n_flag &= ~NWRITEERR;
2810	}
2811  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2812	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2813  		np->n_flag &= ~NMODIFIED;
2814	mtx_unlock(&np->n_mtx);
2815done:
2816	if (bvec != NULL && bvec != bvec_on_stack)
2817		free(bvec, M_TEMP);
2818	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2819	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2820	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2821		/* try, try again... */
2822		passone = 1;
2823		wcred = NULL;
2824		bvec = NULL;
2825		bvecsize = 0;
2826printf("try%d\n", trycnt);
2827		goto again;
2828	}
2829	return (error);
2830}
2831
2832/*
2833 * NFS advisory byte-level locks.
2834 */
2835static int
2836nfs_advlock(struct vop_advlock_args *ap)
2837{
2838	struct vnode *vp = ap->a_vp;
2839	struct ucred *cred;
2840	struct nfsnode *np = VTONFS(ap->a_vp);
2841	struct proc *p = (struct proc *)ap->a_id;
2842	struct thread *td = curthread;	/* XXX */
2843	struct vattr va;
2844	int ret, error = EOPNOTSUPP;
2845	u_quad_t size;
2846
2847	if (NFS_ISV4(vp) && (ap->a_flags & F_POSIX)) {
2848		cred = p->p_ucred;
2849		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2850		if (vp->v_iflag & VI_DOOMED) {
2851			VOP_UNLOCK(vp, 0);
2852			return (EBADF);
2853		}
2854
2855		/*
2856		 * If this is unlocking a write locked region, flush and
2857		 * commit them before unlocking. This is required by
2858		 * RFC3530 Sec. 9.3.2.
2859		 */
2860		if (ap->a_op == F_UNLCK &&
2861		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td))
2862			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
2863
2864		/*
2865		 * Loop around doing the lock op, while a blocking lock
2866		 * must wait for the lock op to succeed.
2867		 */
2868		do {
2869			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
2870			    ap->a_fl, 0, cred, td);
2871			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2872			    ap->a_op == F_SETLK) {
2873				VOP_UNLOCK(vp, 0);
2874				error = nfs_catnap(PZERO | PCATCH, ret,
2875				    "ncladvl");
2876				if (error)
2877					return (EINTR);
2878				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2879				if (vp->v_iflag & VI_DOOMED) {
2880					VOP_UNLOCK(vp, 0);
2881					return (EBADF);
2882				}
2883			}
2884		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2885		     ap->a_op == F_SETLK);
2886		if (ret == NFSERR_DENIED) {
2887			VOP_UNLOCK(vp, 0);
2888			return (EAGAIN);
2889		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
2890			VOP_UNLOCK(vp, 0);
2891			return (ret);
2892		} else if (ret != 0) {
2893			VOP_UNLOCK(vp, 0);
2894			return (EACCES);
2895		}
2896
2897		/*
2898		 * Now, if we just got a lock, invalidate data in the buffer
2899		 * cache, as required, so that the coherency conforms with
2900		 * RFC3530 Sec. 9.3.2.
2901		 */
2902		if (ap->a_op == F_SETLK) {
2903			if ((np->n_flag & NMODIFIED) == 0) {
2904				np->n_attrstamp = 0;
2905				ret = VOP_GETATTR(vp, &va, cred);
2906			}
2907			if ((np->n_flag & NMODIFIED) || ret ||
2908			    np->n_change != va.va_filerev) {
2909				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
2910				np->n_attrstamp = 0;
2911				ret = VOP_GETATTR(vp, &va, cred);
2912				if (!ret) {
2913					np->n_mtime = va.va_mtime;
2914					np->n_change = va.va_filerev;
2915				}
2916			}
2917		}
2918		VOP_UNLOCK(vp, 0);
2919		return (0);
2920	} else if (!NFS_ISV4(vp)) {
2921		error = vn_lock(vp, LK_SHARED);
2922		if (error)
2923			return (error);
2924		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2925			size = VTONFS(vp)->n_size;
2926			VOP_UNLOCK(vp, 0);
2927			error = lf_advlock(ap, &(vp->v_lockf), size);
2928		} else {
2929			if (ncl_advlock_p)
2930				error = ncl_advlock_p(ap);
2931			else
2932				error = ENOLCK;
2933		}
2934	}
2935	return (error);
2936}
2937
2938/*
2939 * NFS advisory byte-level locks.
2940 */
2941static int
2942nfs_advlockasync(struct vop_advlockasync_args *ap)
2943{
2944	struct vnode *vp = ap->a_vp;
2945	u_quad_t size;
2946	int error;
2947
2948	if (NFS_ISV4(vp))
2949		return (EOPNOTSUPP);
2950	error = vn_lock(vp, LK_SHARED);
2951	if (error)
2952		return (error);
2953	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2954		size = VTONFS(vp)->n_size;
2955		VOP_UNLOCK(vp, 0);
2956		error = lf_advlockasync(ap, &(vp->v_lockf), size);
2957	} else {
2958		VOP_UNLOCK(vp, 0);
2959		error = EOPNOTSUPP;
2960	}
2961	return (error);
2962}
2963
2964/*
2965 * Print out the contents of an nfsnode.
2966 */
2967static int
2968nfs_print(struct vop_print_args *ap)
2969{
2970	struct vnode *vp = ap->a_vp;
2971	struct nfsnode *np = VTONFS(vp);
2972
2973	ncl_printf("\tfileid %ld fsid 0x%x",
2974	   np->n_vattr.na_fileid, np->n_vattr.na_fsid);
2975	if (vp->v_type == VFIFO)
2976		fifo_printinfo(vp);
2977	printf("\n");
2978	return (0);
2979}
2980
2981/*
2982 * This is the "real" nfs::bwrite(struct buf*).
2983 * We set B_CACHE if this is a VMIO buffer.
2984 */
2985int
2986ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
2987{
2988	int s;
2989	int oldflags = bp->b_flags;
2990#if 0
2991	int retv = 1;
2992	off_t off;
2993#endif
2994
2995	BUF_ASSERT_HELD(bp);
2996
2997	if (bp->b_flags & B_INVAL) {
2998		brelse(bp);
2999		return(0);
3000	}
3001
3002	bp->b_flags |= B_CACHE;
3003
3004	/*
3005	 * Undirty the bp.  We will redirty it later if the I/O fails.
3006	 */
3007
3008	s = splbio();
3009	bundirty(bp);
3010	bp->b_flags &= ~B_DONE;
3011	bp->b_ioflags &= ~BIO_ERROR;
3012	bp->b_iocmd = BIO_WRITE;
3013
3014	bufobj_wref(bp->b_bufobj);
3015	curthread->td_ru.ru_oublock++;
3016	splx(s);
3017
3018	/*
3019	 * Note: to avoid loopback deadlocks, we do not
3020	 * assign b_runningbufspace.
3021	 */
3022	vfs_busy_pages(bp, 1);
3023
3024	BUF_KERNPROC(bp);
3025	bp->b_iooffset = dbtob(bp->b_blkno);
3026	bstrategy(bp);
3027
3028	if( (oldflags & B_ASYNC) == 0) {
3029		int rtval = bufwait(bp);
3030
3031		if (oldflags & B_DELWRI) {
3032			s = splbio();
3033			reassignbuf(bp);
3034			splx(s);
3035		}
3036		brelse(bp);
3037		return (rtval);
3038	}
3039
3040	return (0);
3041}
3042
3043/*
3044 * nfs special file access vnode op.
3045 * Essentially just get vattr and then imitate iaccess() since the device is
3046 * local to the client.
3047 */
3048static int
3049nfsspec_access(struct vop_access_args *ap)
3050{
3051	struct vattr *vap;
3052	struct ucred *cred = ap->a_cred;
3053	struct vnode *vp = ap->a_vp;
3054	accmode_t accmode = ap->a_accmode;
3055	struct vattr vattr;
3056	int error;
3057
3058	/*
3059	 * Disallow write attempts on filesystems mounted read-only;
3060	 * unless the file is a socket, fifo, or a block or character
3061	 * device resident on the filesystem.
3062	 */
3063	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3064		switch (vp->v_type) {
3065		case VREG:
3066		case VDIR:
3067		case VLNK:
3068			return (EROFS);
3069		default:
3070			break;
3071		}
3072	}
3073	vap = &vattr;
3074	error = VOP_GETATTR(vp, vap, cred);
3075	if (error)
3076		goto out;
3077	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3078	    accmode, cred, NULL);
3079out:
3080	return error;
3081}
3082
3083/*
3084 * Read wrapper for fifos.
3085 */
3086static int
3087nfsfifo_read(struct vop_read_args *ap)
3088{
3089	struct nfsnode *np = VTONFS(ap->a_vp);
3090	int error;
3091
3092	/*
3093	 * Set access flag.
3094	 */
3095	mtx_lock(&np->n_mtx);
3096	np->n_flag |= NACC;
3097	getnanotime(&np->n_atim);
3098	mtx_unlock(&np->n_mtx);
3099	error = fifo_specops.vop_read(ap);
3100	return error;
3101}
3102
3103/*
3104 * Write wrapper for fifos.
3105 */
3106static int
3107nfsfifo_write(struct vop_write_args *ap)
3108{
3109	struct nfsnode *np = VTONFS(ap->a_vp);
3110
3111	/*
3112	 * Set update flag.
3113	 */
3114	mtx_lock(&np->n_mtx);
3115	np->n_flag |= NUPD;
3116	getnanotime(&np->n_mtim);
3117	mtx_unlock(&np->n_mtx);
3118	return(fifo_specops.vop_write(ap));
3119}
3120
3121/*
3122 * Close wrapper for fifos.
3123 *
3124 * Update the times on the nfsnode then do fifo close.
3125 */
3126static int
3127nfsfifo_close(struct vop_close_args *ap)
3128{
3129	struct vnode *vp = ap->a_vp;
3130	struct nfsnode *np = VTONFS(vp);
3131	struct vattr vattr;
3132	struct timespec ts;
3133
3134	mtx_lock(&np->n_mtx);
3135	if (np->n_flag & (NACC | NUPD)) {
3136		getnanotime(&ts);
3137		if (np->n_flag & NACC)
3138			np->n_atim = ts;
3139		if (np->n_flag & NUPD)
3140			np->n_mtim = ts;
3141		np->n_flag |= NCHG;
3142		if (vrefcnt(vp) == 1 &&
3143		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3144			VATTR_NULL(&vattr);
3145			if (np->n_flag & NACC)
3146				vattr.va_atime = np->n_atim;
3147			if (np->n_flag & NUPD)
3148				vattr.va_mtime = np->n_mtim;
3149			mtx_unlock(&np->n_mtx);
3150			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3151			goto out;
3152		}
3153	}
3154	mtx_unlock(&np->n_mtx);
3155out:
3156	return (fifo_specops.vop_close(ap));
3157}
3158
3159/*
3160 * Just call ncl_writebp() with the force argument set to 1.
3161 *
3162 * NOTE: B_DONE may or may not be set in a_bp on call.
3163 */
3164static int
3165nfs_bwrite(struct buf *bp)
3166{
3167
3168	return (ncl_writebp(bp, 1, curthread));
3169}
3170
3171struct buf_ops buf_ops_newnfs = {
3172	.bop_name	=	"buf_ops_nfs",
3173	.bop_write	=	nfs_bwrite,
3174	.bop_strategy	=	bufstrategy,
3175	.bop_sync	=	bufsync,
3176	.bop_bdflush	=	bufbdflush,
3177};
3178
3179/*
3180 * Cloned from vop_stdlock(), and then the ugly hack added.
3181 */
3182static int
3183nfs_lock1(struct vop_lock1_args *ap)
3184{
3185	struct vnode *vp = ap->a_vp;
3186	int error = 0;
3187
3188	/*
3189	 * Since vfs_hash_get() calls vget() and it will no longer work
3190	 * for FreeBSD8 with flags == 0, I can only think of this horrible
3191	 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER
3192	 * and then handle it here. All I want for this case is a v_usecount
3193	 * on the vnode to use for recovery, while another thread might
3194	 * hold a lock on the vnode. I have the other threads blocked, so
3195	 * there isn't any race problem.
3196	 */
3197	if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) {
3198		if ((ap->a_flags & LK_INTERLOCK) == 0)
3199			panic("ncllock1");
3200		if ((vp->v_iflag & VI_DOOMED))
3201			error = ENOENT;
3202		VI_UNLOCK(vp);
3203		return (error);
3204	}
3205	return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp),
3206	    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file,
3207	    ap->a_line));
3208}
3209
3210static int
3211nfs_getacl(struct vop_getacl_args *ap)
3212{
3213	int error;
3214
3215	if (ap->a_type != ACL_TYPE_NFS4)
3216		return (EOPNOTSUPP);
3217	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3218	    NULL);
3219	if (error > NFSERR_STALE) {
3220		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3221		error = EPERM;
3222	}
3223	return (error);
3224}
3225
3226static int
3227nfs_setacl(struct vop_setacl_args *ap)
3228{
3229	int error;
3230
3231	if (ap->a_type != ACL_TYPE_NFS4)
3232		return (EOPNOTSUPP);
3233	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3234	    NULL);
3235	if (error > NFSERR_STALE) {
3236		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3237		error = EPERM;
3238	}
3239	return (error);
3240}
3241