nfs_clvnops.c revision 195699
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 195699 2009-07-14 22:48:30Z rwatson $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_inet.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/systm.h>
47#include <sys/resourcevar.h>
48#include <sys/proc.h>
49#include <sys/mount.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/jail.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/namei.h>
56#include <sys/socket.h>
57#include <sys/vnode.h>
58#include <sys/dirent.h>
59#include <sys/fcntl.h>
60#include <sys/lockf.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/signalvar.h>
64
65#include <vm/vm.h>
66#include <vm/vm_object.h>
67#include <vm/vm_extern.h>
68#include <vm/vm_object.h>
69
70
71#include <fs/nfs/nfsport.h>
72#include <fs/nfsclient/nfsnode.h>
73#include <fs/nfsclient/nfsmount.h>
74#include <fs/nfsclient/nfs.h>
75#include <fs/nfsclient/nfs_lock.h>
76
77#include <net/if.h>
78#include <netinet/in.h>
79#include <netinet/in_var.h>
80
81/* Defs */
82#define	TRUE	1
83#define	FALSE	0
84
85extern struct nfsstats newnfsstats;
86MALLOC_DECLARE(M_NEWNFSREQ);
87vop_advlock_t	*ncl_advlock_p = ncl_dolock;
88
89/*
90 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
91 * calls are not in getblk() and brelse() so that they would not be necessary
92 * here.
93 */
94#ifndef B_VMIO
95#define	vfs_busy_pages(bp, f)
96#endif
97
98static vop_read_t	nfsfifo_read;
99static vop_write_t	nfsfifo_write;
100static vop_close_t	nfsfifo_close;
101static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
102		    struct thread *);
103static vop_lookup_t	nfs_lookup;
104static vop_create_t	nfs_create;
105static vop_mknod_t	nfs_mknod;
106static vop_open_t	nfs_open;
107static vop_close_t	nfs_close;
108static vop_access_t	nfs_access;
109static vop_getattr_t	nfs_getattr;
110static vop_setattr_t	nfs_setattr;
111static vop_read_t	nfs_read;
112static vop_fsync_t	nfs_fsync;
113static vop_remove_t	nfs_remove;
114static vop_link_t	nfs_link;
115static vop_rename_t	nfs_rename;
116static vop_mkdir_t	nfs_mkdir;
117static vop_rmdir_t	nfs_rmdir;
118static vop_symlink_t	nfs_symlink;
119static vop_readdir_t	nfs_readdir;
120static vop_strategy_t	nfs_strategy;
121static vop_lock1_t	nfs_lock1;
122static	int	nfs_lookitup(struct vnode *, char *, int,
123		    struct ucred *, struct thread *, struct nfsnode **);
124static	int	nfs_sillyrename(struct vnode *, struct vnode *,
125		    struct componentname *);
126static vop_access_t	nfsspec_access;
127static vop_readlink_t	nfs_readlink;
128static vop_print_t	nfs_print;
129static vop_advlock_t	nfs_advlock;
130static vop_advlockasync_t nfs_advlockasync;
131#ifdef NFS4_ACL_EXTATTR_NAME
132static vop_getacl_t nfs_getacl;
133static vop_setacl_t nfs_setacl;
134#endif
135
136/*
137 * Global vfs data structures for nfs
138 */
139struct vop_vector newnfs_vnodeops = {
140	.vop_default =		&default_vnodeops,
141	.vop_access =		nfs_access,
142	.vop_advlock =		nfs_advlock,
143	.vop_advlockasync =	nfs_advlockasync,
144	.vop_close =		nfs_close,
145	.vop_create =		nfs_create,
146	.vop_fsync =		nfs_fsync,
147	.vop_getattr =		nfs_getattr,
148	.vop_getpages =		ncl_getpages,
149	.vop_putpages =		ncl_putpages,
150	.vop_inactive =		ncl_inactive,
151	.vop_link =		nfs_link,
152	.vop_lock1 = 		nfs_lock1,
153	.vop_lookup =		nfs_lookup,
154	.vop_mkdir =		nfs_mkdir,
155	.vop_mknod =		nfs_mknod,
156	.vop_open =		nfs_open,
157	.vop_print =		nfs_print,
158	.vop_read =		nfs_read,
159	.vop_readdir =		nfs_readdir,
160	.vop_readlink =		nfs_readlink,
161	.vop_reclaim =		ncl_reclaim,
162	.vop_remove =		nfs_remove,
163	.vop_rename =		nfs_rename,
164	.vop_rmdir =		nfs_rmdir,
165	.vop_setattr =		nfs_setattr,
166	.vop_strategy =		nfs_strategy,
167	.vop_symlink =		nfs_symlink,
168	.vop_write =		ncl_write,
169#ifdef NFS4_ACL_EXTATTR_NAME
170	.vop_getacl =		nfs_getacl,
171	.vop_setacl =		nfs_setacl,
172#endif
173};
174
175struct vop_vector newnfs_fifoops = {
176	.vop_default =		&fifo_specops,
177	.vop_access =		nfsspec_access,
178	.vop_close =		nfsfifo_close,
179	.vop_fsync =		nfs_fsync,
180	.vop_getattr =		nfs_getattr,
181	.vop_inactive =		ncl_inactive,
182	.vop_print =		nfs_print,
183	.vop_read =		nfsfifo_read,
184	.vop_reclaim =		ncl_reclaim,
185	.vop_setattr =		nfs_setattr,
186	.vop_write =		nfsfifo_write,
187};
188
189static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
190    struct componentname *cnp, struct vattr *vap);
191static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
192    int namelen, struct ucred *cred, struct thread *td);
193static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
194    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
195    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
196static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
197    struct componentname *scnp, struct sillyrename *sp);
198
199/*
200 * Global variables
201 */
202#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
203
204SYSCTL_DECL(_vfs_newnfs);
205
206static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
207SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
208	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
209
210static int	nfs_prime_access_cache = 0;
211SYSCTL_INT(_vfs_newnfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
212	   &nfs_prime_access_cache, 0,
213	   "Prime NFS ACCESS cache when fetching attributes");
214
215static int	newnfs_commit_on_close = 0;
216SYSCTL_INT(_vfs_newnfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
217    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
218
219static int	nfs_clean_pages_on_close = 1;
220SYSCTL_INT(_vfs_newnfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
221	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
222
223int newnfs_directio_enable = 0;
224SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_enable, CTLFLAG_RW,
225	   &newnfs_directio_enable, 0, "Enable NFS directio");
226
227static int newnfs_neglookup_enable = 1;
228SYSCTL_INT(_vfs_newnfs, OID_AUTO, neglookup_enable, CTLFLAG_RW,
229    &newnfs_neglookup_enable, 0, "Enable NFS negative lookup caching");
230
231/*
232 * This sysctl allows other processes to mmap a file that has been opened
233 * O_DIRECT by a process.  In general, having processes mmap the file while
234 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
235 * this by default to prevent DoS attacks - to prevent a malicious user from
236 * opening up files O_DIRECT preventing other users from mmap'ing these
237 * files.  "Protected" environments where stricter consistency guarantees are
238 * required can disable this knob.  The process that opened the file O_DIRECT
239 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
240 * meaningful.
241 */
242int newnfs_directio_allow_mmap = 1;
243SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_allow_mmap, CTLFLAG_RW,
244	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
245
246#if 0
247SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
248	   &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
249
250SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
251	   &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
252#endif
253
254#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
255			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
256			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
257
258/*
259 * SMP Locking Note :
260 * The list of locks after the description of the lock is the ordering
261 * of other locks acquired with the lock held.
262 * np->n_mtx : Protects the fields in the nfsnode.
263       VM Object Lock
264       VI_MTX (acquired indirectly)
265 * nmp->nm_mtx : Protects the fields in the nfsmount.
266       rep->r_mtx
267 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
268 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
269       nmp->nm_mtx
270       rep->r_mtx
271 * rep->r_mtx : Protects the fields in an nfsreq.
272 */
273
274static int
275nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
276    struct ucred *cred, u_int32_t *retmode)
277{
278	int error = 0, attrflag, i, lrupos;
279	u_int32_t rmode;
280	struct nfsnode *np = VTONFS(vp);
281	struct nfsvattr nfsva;
282
283	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
284	    &rmode, NULL);
285	if (attrflag)
286		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
287	if (!error) {
288		lrupos = 0;
289		mtx_lock(&np->n_mtx);
290		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
291			if (np->n_accesscache[i].uid == cred->cr_uid) {
292				np->n_accesscache[i].mode = rmode;
293				np->n_accesscache[i].stamp = time_second;
294				break;
295			}
296			if (i > 0 && np->n_accesscache[i].stamp <
297			    np->n_accesscache[lrupos].stamp)
298				lrupos = i;
299		}
300		if (i == NFS_ACCESSCACHESIZE) {
301			np->n_accesscache[lrupos].uid = cred->cr_uid;
302			np->n_accesscache[lrupos].mode = rmode;
303			np->n_accesscache[lrupos].stamp = time_second;
304		}
305		mtx_unlock(&np->n_mtx);
306		if (retmode != NULL)
307			*retmode = rmode;
308	} else if (NFS_ISV4(vp)) {
309		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
310	}
311	return (error);
312}
313
314/*
315 * nfs access vnode op.
316 * For nfs version 2, just return ok. File accesses may fail later.
317 * For nfs version 3, use the access rpc to check accessibility. If file modes
318 * are changed on the server, accesses might still fail later.
319 */
320static int
321nfs_access(struct vop_access_args *ap)
322{
323	struct vnode *vp = ap->a_vp;
324	int error = 0, i, gotahit;
325	u_int32_t mode, wmode, rmode;
326	int v34 = NFS_ISV34(vp);
327	struct nfsnode *np = VTONFS(vp);
328
329	/*
330	 * Disallow write attempts on filesystems mounted read-only;
331	 * unless the file is a socket, fifo, or a block or character
332	 * device resident on the filesystem.
333	 */
334	if ((ap->a_accmode & (VWRITE | VAPPEND
335#ifdef NFS4_ACL_EXTATTR_NAME
336	    | VWRITE_NAMED_ATTRS | VDELETE_CHILD | VWRITE_ATTRIBUTES |
337	    VDELETE | VWRITE_ACL | VWRITE_OWNER
338#endif
339	    )) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
340		switch (vp->v_type) {
341		case VREG:
342		case VDIR:
343		case VLNK:
344			return (EROFS);
345		default:
346			break;
347		}
348	}
349	/*
350	 * For nfs v3 or v4, check to see if we have done this recently, and if
351	 * so return our cached result instead of making an ACCESS call.
352	 * If not, do an access rpc, otherwise you are stuck emulating
353	 * ufs_access() locally using the vattr. This may not be correct,
354	 * since the server may apply other access criteria such as
355	 * client uid-->server uid mapping that we do not know about.
356	 */
357	if (v34) {
358		if (ap->a_accmode & VREAD)
359			mode = NFSACCESS_READ;
360		else
361			mode = 0;
362		if (vp->v_type != VDIR) {
363			if (ap->a_accmode & VWRITE)
364				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
365			if (ap->a_accmode & VAPPEND)
366				mode |= NFSACCESS_EXTEND;
367			if (ap->a_accmode & VEXEC)
368				mode |= NFSACCESS_EXECUTE;
369#ifdef NFS4_ACL_EXTATTR_NAME
370			if (ap->a_accmode & VDELETE)
371				mode |= NFSACCESS_DELETE;
372#endif
373		} else {
374			if (ap->a_accmode & VWRITE)
375				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
376			if (ap->a_accmode & VAPPEND)
377				mode |= NFSACCESS_EXTEND;
378			if (ap->a_accmode & VEXEC)
379				mode |= NFSACCESS_LOOKUP;
380#ifdef NFS4_ACL_EXTATTR_NAME
381			if (ap->a_accmode & VDELETE)
382				mode |= NFSACCESS_DELETE;
383			if (ap->a_accmode & VDELETE_CHILD)
384				mode |= NFSACCESS_MODIFY;
385#endif
386		}
387		/* XXX safety belt, only make blanket request if caching */
388		if (nfsaccess_cache_timeout > 0) {
389			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
390				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
391				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
392		} else {
393			wmode = mode;
394		}
395
396		/*
397		 * Does our cached result allow us to give a definite yes to
398		 * this request?
399		 */
400		gotahit = 0;
401		mtx_lock(&np->n_mtx);
402		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
403			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
404			    if (time_second < (np->n_accesscache[i].stamp
405				+ nfsaccess_cache_timeout) &&
406				(np->n_accesscache[i].mode & mode) == mode) {
407				NFSINCRGLOBAL(newnfsstats.accesscache_hits);
408				gotahit = 1;
409			    }
410			    break;
411			}
412		}
413		mtx_unlock(&np->n_mtx);
414		if (gotahit == 0) {
415			/*
416			 * Either a no, or a don't know.  Go to the wire.
417			 */
418			NFSINCRGLOBAL(newnfsstats.accesscache_misses);
419		        error = nfs34_access_otw(vp, wmode, ap->a_td,
420			    ap->a_cred, &rmode);
421			if (!error &&
422			    (rmode & mode) != mode)
423				error = EACCES;
424		}
425		return (error);
426	} else {
427		if ((error = nfsspec_access(ap)) != 0) {
428			return (error);
429		}
430		/*
431		 * Attempt to prevent a mapped root from accessing a file
432		 * which it shouldn't.  We try to read a byte from the file
433		 * if the user is root and the file is not zero length.
434		 * After calling nfsspec_access, we should have the correct
435		 * file size cached.
436		 */
437		mtx_lock(&np->n_mtx);
438		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
439		    && VTONFS(vp)->n_size > 0) {
440			struct iovec aiov;
441			struct uio auio;
442			char buf[1];
443
444			mtx_unlock(&np->n_mtx);
445			aiov.iov_base = buf;
446			aiov.iov_len = 1;
447			auio.uio_iov = &aiov;
448			auio.uio_iovcnt = 1;
449			auio.uio_offset = 0;
450			auio.uio_resid = 1;
451			auio.uio_segflg = UIO_SYSSPACE;
452			auio.uio_rw = UIO_READ;
453			auio.uio_td = ap->a_td;
454
455			if (vp->v_type == VREG)
456				error = ncl_readrpc(vp, &auio, ap->a_cred);
457			else if (vp->v_type == VDIR) {
458				char* bp;
459				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
460				aiov.iov_base = bp;
461				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
462				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
463				    ap->a_td);
464				free(bp, M_TEMP);
465			} else if (vp->v_type == VLNK)
466				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
467			else
468				error = EACCES;
469		} else
470			mtx_unlock(&np->n_mtx);
471		return (error);
472	}
473}
474
475
476/*
477 * nfs open vnode op
478 * Check to see if the type is ok
479 * and that deletion is not in progress.
480 * For paged in text files, you will need to flush the page cache
481 * if consistency is lost.
482 */
483/* ARGSUSED */
484static int
485nfs_open(struct vop_open_args *ap)
486{
487	struct vnode *vp = ap->a_vp;
488	struct nfsnode *np = VTONFS(vp);
489	struct vattr vattr;
490	int error;
491	int fmode = ap->a_mode;
492
493	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
494		return (EOPNOTSUPP);
495
496	/*
497	 * For NFSv4, we need to do the Open Op before cache validation,
498	 * so that we conform to RFC3530 Sec. 9.3.1.
499	 */
500	if (NFS_ISV4(vp)) {
501		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
502		if (error) {
503			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
504			    (gid_t)0);
505			return (error);
506		}
507	}
508
509	/*
510	 * Now, if this Open will be doing reading, re-validate/flush the
511	 * cache, so that Close/Open coherency is maintained.
512	 */
513	if ((fmode & FREAD) && (!NFS_ISV4(vp) || nfscl_mustflush(vp))) {
514		mtx_lock(&np->n_mtx);
515		if (np->n_flag & NMODIFIED) {
516			mtx_unlock(&np->n_mtx);
517			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
518			if (error == EINTR || error == EIO) {
519				if (NFS_ISV4(vp))
520					(void) nfsrpc_close(vp, 0, ap->a_td);
521				return (error);
522			}
523			np->n_attrstamp = 0;
524			if (vp->v_type == VDIR)
525				np->n_direofoffset = 0;
526			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
527			if (error) {
528				if (NFS_ISV4(vp))
529					(void) nfsrpc_close(vp, 0, ap->a_td);
530				return (error);
531			}
532			mtx_lock(&np->n_mtx);
533			np->n_mtime = vattr.va_mtime;
534			if (NFS_ISV4(vp))
535				np->n_change = vattr.va_filerev;
536			mtx_unlock(&np->n_mtx);
537		} else {
538			struct thread *td = curthread;
539
540			if (np->n_ac_ts_syscalls != td->td_syscalls ||
541			    np->n_ac_ts_tid != td->td_tid ||
542			    td->td_proc == NULL ||
543			    np->n_ac_ts_pid != td->td_proc->p_pid) {
544				np->n_attrstamp = 0;
545			}
546			mtx_unlock(&np->n_mtx);
547			error = VOP_GETATTR(vp, &vattr, ap->a_cred);
548			if (error) {
549				if (NFS_ISV4(vp))
550					(void) nfsrpc_close(vp, 0, ap->a_td);
551				return (error);
552			}
553			mtx_lock(&np->n_mtx);
554			if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
555			    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
556				if (vp->v_type == VDIR)
557					np->n_direofoffset = 0;
558				mtx_unlock(&np->n_mtx);
559				error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
560				if (error == EINTR || error == EIO) {
561					if (NFS_ISV4(vp))
562						(void) nfsrpc_close(vp, 0,
563						    ap->a_td);
564					return (error);
565				}
566				mtx_lock(&np->n_mtx);
567				np->n_mtime = vattr.va_mtime;
568				if (NFS_ISV4(vp))
569					np->n_change = vattr.va_filerev;
570			}
571			mtx_unlock(&np->n_mtx);
572		}
573	}
574
575	/*
576	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
577	 */
578	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
579		if (np->n_directio_opens == 0) {
580			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
581			if (error) {
582				if (NFS_ISV4(vp))
583					(void) nfsrpc_close(vp, 0, ap->a_td);
584				return (error);
585			}
586			mtx_lock(&np->n_mtx);
587			np->n_flag |= NNONCACHE;
588		} else {
589			mtx_lock(&np->n_mtx);
590		}
591		np->n_directio_opens++;
592		mtx_unlock(&np->n_mtx);
593	}
594	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
595	return (0);
596}
597
598/*
599 * nfs close vnode op
600 * What an NFS client should do upon close after writing is a debatable issue.
601 * Most NFS clients push delayed writes to the server upon close, basically for
602 * two reasons:
603 * 1 - So that any write errors may be reported back to the client process
604 *     doing the close system call. By far the two most likely errors are
605 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
606 * 2 - To put a worst case upper bound on cache inconsistency between
607 *     multiple clients for the file.
608 * There is also a consistency problem for Version 2 of the protocol w.r.t.
609 * not being able to tell if other clients are writing a file concurrently,
610 * since there is no way of knowing if the changed modify time in the reply
611 * is only due to the write for this client.
612 * (NFS Version 3 provides weak cache consistency data in the reply that
613 *  should be sufficient to detect and handle this case.)
614 *
615 * The current code does the following:
616 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
617 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
618 *                     or commit them (this satisfies 1 and 2 except for the
619 *                     case where the server crashes after this close but
620 *                     before the commit RPC, which is felt to be "good
621 *                     enough". Changing the last argument to ncl_flush() to
622 *                     a 1 would force a commit operation, if it is felt a
623 *                     commit is necessary now.
624 * for NFS Version 4 - flush the dirty buffers and commit them, if
625 *		       nfscl_mustflush() says this is necessary.
626 *                     It is necessary if there is no write delegation held,
627 *                     in order to satisfy open/close coherency.
628 *                     If the file isn't cached on local stable storage,
629 *                     it may be necessary in order to detect "out of space"
630 *                     errors from the server, if the write delegation
631 *                     issued by the server doesn't allow the file to grow.
632 */
633/* ARGSUSED */
634static int
635nfs_close(struct vop_close_args *ap)
636{
637	struct vnode *vp = ap->a_vp;
638	struct nfsnode *np = VTONFS(vp);
639	struct nfsvattr nfsva;
640	struct ucred *cred;
641	int error = 0, ret, localcred = 0;
642	int fmode = ap->a_fflag;
643
644	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
645		return (0);
646	/*
647	 * During shutdown, a_cred isn't valid, so just use root.
648	 */
649	if (ap->a_cred == NOCRED) {
650		cred = newnfs_getcred();
651		localcred = 1;
652	} else {
653		cred = ap->a_cred;
654	}
655	if (vp->v_type == VREG) {
656	    /*
657	     * Examine and clean dirty pages, regardless of NMODIFIED.
658	     * This closes a major hole in close-to-open consistency.
659	     * We want to push out all dirty pages (and buffers) on
660	     * close, regardless of whether they were dirtied by
661	     * mmap'ed writes or via write().
662	     */
663	    if (nfs_clean_pages_on_close && vp->v_object) {
664		VM_OBJECT_LOCK(vp->v_object);
665		vm_object_page_clean(vp->v_object, 0, 0, 0);
666		VM_OBJECT_UNLOCK(vp->v_object);
667	    }
668	    mtx_lock(&np->n_mtx);
669	    if (np->n_flag & NMODIFIED) {
670		mtx_unlock(&np->n_mtx);
671		if (NFS_ISV3(vp)) {
672		    /*
673		     * Under NFSv3 we have dirty buffers to dispose of.  We
674		     * must flush them to the NFS server.  We have the option
675		     * of waiting all the way through the commit rpc or just
676		     * waiting for the initial write.  The default is to only
677		     * wait through the initial write so the data is in the
678		     * server's cache, which is roughly similar to the state
679		     * a standard disk subsystem leaves the file in on close().
680		     *
681		     * We cannot clear the NMODIFIED bit in np->n_flag due to
682		     * potential races with other processes, and certainly
683		     * cannot clear it if we don't commit.
684		     * These races occur when there is no longer the old
685		     * traditional vnode locking implemented for Vnode Ops.
686		     */
687		    int cm = newnfs_commit_on_close ? 1 : 0;
688		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm);
689		    /* np->n_flag &= ~NMODIFIED; */
690		} else if (NFS_ISV4(vp) && nfscl_mustflush(vp)) {
691			int cm = newnfs_commit_on_close ? 1 : 0;
692			error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm);
693			/* as above w.r.t. races when clearing NMODIFIED */
694			/* np->n_flag &= ~NMODIFIED; */
695		} else
696		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
697		mtx_lock(&np->n_mtx);
698	    }
699 	    /*
700 	     * Invalidate the attribute cache in all cases.
701 	     * An open is going to fetch fresh attrs any way, other procs
702 	     * on this node that have file open will be forced to do an
703 	     * otw attr fetch, but this is safe.
704	     * --> A user found that their RPC count dropped by 20% when
705	     *     this was commented out and I can't see any requirement
706	     *     for it, so I've disabled it when negative lookups are
707	     *     enabled. (What does this have to do with negative lookup
708	     *     caching? Well nothing, except it was reported by the
709	     *     same user that needed negative lookup caching and I wanted
710	     *     there to be a way to disable it via sysctl to see if it
711	     *     is the cause of some caching/coherency issue that might
712	     *     crop up.)
713 	     */
714	    if (newnfs_neglookup_enable == 0)
715		    np->n_attrstamp = 0;
716	    if (np->n_flag & NWRITEERR) {
717		np->n_flag &= ~NWRITEERR;
718		error = np->n_error;
719	    }
720	    mtx_unlock(&np->n_mtx);
721	}
722
723	if (NFS_ISV4(vp)) {
724		/*
725		 * Get attributes so "change" is up to date.
726		 */
727		if (!error) {
728			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
729			    NULL);
730			if (!ret) {
731				np->n_change = nfsva.na_filerev;
732				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
733				    NULL, 0, 0);
734			}
735		}
736
737		/*
738		 * and do the close.
739		 */
740		ret = nfsrpc_close(vp, 0, ap->a_td);
741		if (!error && ret)
742			error = ret;
743		if (error)
744			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
745			    (gid_t)0);
746	}
747	if (newnfs_directio_enable)
748		KASSERT((np->n_directio_asyncwr == 0),
749			("nfs_close: dirty unflushed (%d) directio buffers\n",
750			 np->n_directio_asyncwr));
751	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
752		mtx_lock(&np->n_mtx);
753		KASSERT((np->n_directio_opens > 0),
754			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
755		np->n_directio_opens--;
756		if (np->n_directio_opens == 0)
757			np->n_flag &= ~NNONCACHE;
758		mtx_unlock(&np->n_mtx);
759	}
760	if (localcred)
761		NFSFREECRED(cred);
762	return (error);
763}
764
765/*
766 * nfs getattr call from vfs.
767 */
768static int
769nfs_getattr(struct vop_getattr_args *ap)
770{
771	struct vnode *vp = ap->a_vp;
772	struct thread *td = curthread;	/* XXX */
773	struct nfsnode *np = VTONFS(vp);
774	int error = 0;
775	struct nfsvattr nfsva;
776	struct vattr *vap = ap->a_vap;
777	struct vattr vattr;
778
779	/*
780	 * Update local times for special files.
781	 */
782	mtx_lock(&np->n_mtx);
783	if (np->n_flag & (NACC | NUPD))
784		np->n_flag |= NCHG;
785	mtx_unlock(&np->n_mtx);
786	/*
787	 * First look in the cache.
788	 */
789	if (ncl_getattrcache(vp, &vattr) == 0) {
790		vap->va_type = vattr.va_type;
791		vap->va_mode = vattr.va_mode;
792		vap->va_nlink = vattr.va_nlink;
793		vap->va_uid = vattr.va_uid;
794		vap->va_gid = vattr.va_gid;
795		vap->va_fsid = vattr.va_fsid;
796		vap->va_fileid = vattr.va_fileid;
797		vap->va_size = vattr.va_size;
798		vap->va_blocksize = vattr.va_blocksize;
799		vap->va_atime = vattr.va_atime;
800		vap->va_mtime = vattr.va_mtime;
801		vap->va_ctime = vattr.va_ctime;
802		vap->va_gen = vattr.va_gen;
803		vap->va_flags = vattr.va_flags;
804		vap->va_rdev = vattr.va_rdev;
805		vap->va_bytes = vattr.va_bytes;
806		vap->va_filerev = vattr.va_filerev;
807		/*
808		 * Get the local modify time for the case of a write
809		 * delegation.
810		 */
811		nfscl_deleggetmodtime(vp, &vap->va_mtime);
812		return (0);
813	}
814
815	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
816	    nfsaccess_cache_timeout > 0) {
817		NFSINCRGLOBAL(newnfsstats.accesscache_misses);
818		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
819		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
820			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
821			return (0);
822		}
823	}
824	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
825	if (!error)
826		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
827	if (!error) {
828		/*
829		 * Get the local modify time for the case of a write
830		 * delegation.
831		 */
832		nfscl_deleggetmodtime(vp, &vap->va_mtime);
833	} else if (NFS_ISV4(vp)) {
834		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
835	}
836	return (error);
837}
838
839/*
840 * nfs setattr call.
841 */
842static int
843nfs_setattr(struct vop_setattr_args *ap)
844{
845	struct vnode *vp = ap->a_vp;
846	struct nfsnode *np = VTONFS(vp);
847	struct thread *td = curthread;	/* XXX */
848	struct vattr *vap = ap->a_vap;
849	int error = 0;
850	u_quad_t tsize;
851
852#ifndef nolint
853	tsize = (u_quad_t)0;
854#endif
855
856	/*
857	 * Setting of flags and marking of atimes are not supported.
858	 */
859	if (vap->va_flags != VNOVAL)
860		return (EOPNOTSUPP);
861
862	/*
863	 * Disallow write attempts if the filesystem is mounted read-only.
864	 */
865  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
866	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
867	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
868	    (vp->v_mount->mnt_flag & MNT_RDONLY))
869		return (EROFS);
870	if (vap->va_size != VNOVAL) {
871 		switch (vp->v_type) {
872 		case VDIR:
873 			return (EISDIR);
874 		case VCHR:
875 		case VBLK:
876 		case VSOCK:
877 		case VFIFO:
878			if (vap->va_mtime.tv_sec == VNOVAL &&
879			    vap->va_atime.tv_sec == VNOVAL &&
880			    vap->va_mode == (mode_t)VNOVAL &&
881			    vap->va_uid == (uid_t)VNOVAL &&
882			    vap->va_gid == (gid_t)VNOVAL)
883				return (0);
884 			vap->va_size = VNOVAL;
885 			break;
886 		default:
887			/*
888			 * Disallow write attempts if the filesystem is
889			 * mounted read-only.
890			 */
891			if (vp->v_mount->mnt_flag & MNT_RDONLY)
892				return (EROFS);
893			/*
894			 *  We run vnode_pager_setsize() early (why?),
895			 * we must set np->n_size now to avoid vinvalbuf
896			 * V_SAVE races that might setsize a lower
897			 * value.
898			 */
899			mtx_lock(&np->n_mtx);
900			tsize = np->n_size;
901			mtx_unlock(&np->n_mtx);
902			error = ncl_meta_setsize(vp, ap->a_cred, td,
903			    vap->va_size);
904			mtx_lock(&np->n_mtx);
905 			if (np->n_flag & NMODIFIED) {
906			    tsize = np->n_size;
907			    mtx_unlock(&np->n_mtx);
908 			    if (vap->va_size == 0)
909 				error = ncl_vinvalbuf(vp, 0, td, 1);
910 			    else
911 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
912 			    if (error) {
913				vnode_pager_setsize(vp, tsize);
914				return (error);
915			    }
916			    /*
917			     * Call nfscl_delegmodtime() to set the modify time
918			     * locally, as required.
919			     */
920			    nfscl_delegmodtime(vp);
921 			} else
922			    mtx_unlock(&np->n_mtx);
923			/*
924			 * np->n_size has already been set to vap->va_size
925			 * in ncl_meta_setsize(). We must set it again since
926			 * nfs_loadattrcache() could be called through
927			 * ncl_meta_setsize() and could modify np->n_size.
928			 */
929			mtx_lock(&np->n_mtx);
930 			np->n_vattr.na_size = np->n_size = vap->va_size;
931			mtx_unlock(&np->n_mtx);
932  		};
933  	} else {
934		mtx_lock(&np->n_mtx);
935		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
936		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
937			mtx_unlock(&np->n_mtx);
938			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
939			    (error == EINTR || error == EIO))
940				return (error);
941		} else
942			mtx_unlock(&np->n_mtx);
943	}
944	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
945	if (error && vap->va_size != VNOVAL) {
946		mtx_lock(&np->n_mtx);
947		np->n_size = np->n_vattr.na_size = tsize;
948		vnode_pager_setsize(vp, tsize);
949		mtx_unlock(&np->n_mtx);
950	}
951	return (error);
952}
953
954/*
955 * Do an nfs setattr rpc.
956 */
957static int
958nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
959    struct thread *td)
960{
961	struct nfsnode *np = VTONFS(vp);
962	int error, ret, attrflag, i;
963	struct nfsvattr nfsva;
964
965	if (NFS_ISV34(vp)) {
966		mtx_lock(&np->n_mtx);
967		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
968			np->n_accesscache[i].stamp = 0;
969		np->n_flag |= NDELEGMOD;
970		mtx_unlock(&np->n_mtx);
971	}
972	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
973	    NULL);
974	if (attrflag) {
975		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
976		if (ret && !error)
977			error = ret;
978	}
979	if (error && NFS_ISV4(vp))
980		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
981	return (error);
982}
983
984/*
985 * nfs lookup call, one step at a time...
986 * First look in cache
987 * If not found, unlock the directory nfsnode and do the rpc
988 */
989static int
990nfs_lookup(struct vop_lookup_args *ap)
991{
992	struct componentname *cnp = ap->a_cnp;
993	struct vnode *dvp = ap->a_dvp;
994	struct vnode **vpp = ap->a_vpp;
995	struct mount *mp = dvp->v_mount;
996	int flags = cnp->cn_flags;
997	struct vnode *newvp;
998	struct nfsmount *nmp;
999	struct nfsnode *np;
1000	int error = 0, attrflag, dattrflag, ltype;
1001	struct thread *td = cnp->cn_thread;
1002	struct nfsfh *nfhp;
1003	struct nfsvattr dnfsva, nfsva;
1004
1005	*vpp = NULLVP;
1006	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1007	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1008		return (EROFS);
1009	if (dvp->v_type != VDIR)
1010		return (ENOTDIR);
1011	nmp = VFSTONFS(mp);
1012	np = VTONFS(dvp);
1013
1014	/* For NFSv4, wait until any remove is done. */
1015	mtx_lock(&np->n_mtx);
1016	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1017		np->n_flag |= NREMOVEWANT;
1018		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1019	}
1020	mtx_unlock(&np->n_mtx);
1021
1022	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1023		return (error);
1024	if ((error = cache_lookup(dvp, vpp, cnp)) &&
1025	    (error != ENOENT || newnfs_neglookup_enable != 0)) {
1026		struct vattr vattr;
1027
1028		if (error == ENOENT) {
1029			if (!VOP_GETATTR(dvp, &vattr, cnp->cn_cred) &&
1030			    vattr.va_mtime.tv_sec == np->n_dmtime) {
1031			     NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1032				return (ENOENT);
1033			}
1034			cache_purge_negative(dvp);
1035			np->n_dmtime = 0;
1036		} else {
1037			newvp = *vpp;
1038			if (nfscl_nodeleg(newvp, 0) == 0 ||
1039			    (!VOP_GETATTR(newvp, &vattr, cnp->cn_cred) &&
1040			     vattr.va_ctime.tv_sec==VTONFS(newvp)->n_ctime)) {
1041			     NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1042			     if (cnp->cn_nameiop != LOOKUP &&
1043				 (flags & ISLASTCN))
1044				     cnp->cn_flags |= SAVENAME;
1045			     return (0);
1046			}
1047			cache_purge(newvp);
1048			if (dvp != newvp)
1049				vput(newvp);
1050			else
1051				vrele(newvp);
1052			*vpp = NULLVP;
1053		}
1054	}
1055	error = 0;
1056	newvp = NULLVP;
1057	NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
1058	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1059	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1060	    NULL);
1061	if (dattrflag)
1062		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1063	if (error) {
1064		if (newnfs_neglookup_enable != 0 &&
1065		    error == ENOENT && (cnp->cn_flags & MAKEENTRY) &&
1066		    cnp->cn_nameiop != CREATE) {
1067			if (np->n_dmtime == 0)
1068				np->n_dmtime = np->n_vattr.na_mtime.tv_sec;
1069			cache_enter(dvp, NULL, cnp);
1070		}
1071		if (newvp != NULLVP) {
1072			vput(newvp);
1073			*vpp = NULLVP;
1074		}
1075		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1076		    (flags & ISLASTCN) && error == ENOENT) {
1077			if (mp->mnt_flag & MNT_RDONLY)
1078				error = EROFS;
1079			else
1080				error = EJUSTRETURN;
1081		}
1082		if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1083			cnp->cn_flags |= SAVENAME;
1084		if (NFS_ISV4(dvp))
1085			error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1086		return (error);
1087	}
1088
1089	/*
1090	 * Handle RENAME case...
1091	 */
1092	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1093		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1094			FREE((caddr_t)nfhp, M_NFSFH);
1095			return (EISDIR);
1096		}
1097		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1098		if (error)
1099			return (error);
1100		newvp = NFSTOV(np);
1101		if (attrflag)
1102			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1103			    0, 1);
1104		*vpp = newvp;
1105		cnp->cn_flags |= SAVENAME;
1106		return (0);
1107	}
1108
1109	if (flags & ISDOTDOT) {
1110		ltype = VOP_ISLOCKED(dvp);
1111		error = vfs_busy(mp, MBF_NOWAIT);
1112		if (error != 0) {
1113			vfs_ref(mp);
1114			VOP_UNLOCK(dvp, 0);
1115			error = vfs_busy(mp, 0);
1116			vn_lock(dvp, ltype | LK_RETRY);
1117			vfs_rel(mp);
1118			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1119				vfs_unbusy(mp);
1120				error = ENOENT;
1121			}
1122			if (error != 0)
1123				return (error);
1124		}
1125		VOP_UNLOCK(dvp, 0);
1126		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1127		if (error == 0)
1128			newvp = NFSTOV(np);
1129		vfs_unbusy(mp);
1130		vn_lock(dvp, ltype | LK_RETRY);
1131		if (dvp->v_iflag & VI_DOOMED) {
1132			if (error == 0) {
1133				if (newvp == dvp)
1134					vrele(newvp);
1135				else
1136					vput(newvp);
1137			}
1138			error = ENOENT;
1139		}
1140		if (error != 0)
1141			return (error);
1142		if (attrflag)
1143			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1144			    0, 1);
1145	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1146		FREE((caddr_t)nfhp, M_NFSFH);
1147		VREF(dvp);
1148		newvp = dvp;
1149		if (attrflag)
1150			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1151			    0, 1);
1152	} else {
1153		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
1154		if (error)
1155			return (error);
1156		newvp = NFSTOV(np);
1157		if (attrflag)
1158			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1159			    0, 1);
1160	}
1161	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1162		cnp->cn_flags |= SAVENAME;
1163	if ((cnp->cn_flags & MAKEENTRY) &&
1164	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) {
1165		np->n_ctime = np->n_vattr.na_vattr.va_ctime.tv_sec;
1166		cache_enter(dvp, newvp, cnp);
1167	}
1168	*vpp = newvp;
1169	return (0);
1170}
1171
1172/*
1173 * nfs read call.
1174 * Just call ncl_bioread() to do the work.
1175 */
1176static int
1177nfs_read(struct vop_read_args *ap)
1178{
1179	struct vnode *vp = ap->a_vp;
1180
1181	switch (vp->v_type) {
1182	case VREG:
1183		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1184	case VDIR:
1185		return (EISDIR);
1186	default:
1187		return (EOPNOTSUPP);
1188	}
1189}
1190
1191/*
1192 * nfs readlink call
1193 */
1194static int
1195nfs_readlink(struct vop_readlink_args *ap)
1196{
1197	struct vnode *vp = ap->a_vp;
1198
1199	if (vp->v_type != VLNK)
1200		return (EINVAL);
1201	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1202}
1203
1204/*
1205 * Do a readlink rpc.
1206 * Called by ncl_doio() from below the buffer cache.
1207 */
1208int
1209ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1210{
1211	int error, ret, attrflag;
1212	struct nfsvattr nfsva;
1213
1214	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1215	    &attrflag, NULL);
1216	if (attrflag) {
1217		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1218		if (ret && !error)
1219			error = ret;
1220	}
1221	if (error && NFS_ISV4(vp))
1222		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1223	return (error);
1224}
1225
1226/*
1227 * nfs read rpc call
1228 * Ditto above
1229 */
1230int
1231ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1232{
1233	int error, ret, attrflag;
1234	struct nfsvattr nfsva;
1235
1236	error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag,
1237	    NULL);
1238	if (attrflag) {
1239		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1240		if (ret && !error)
1241			error = ret;
1242	}
1243	if (error && NFS_ISV4(vp))
1244		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1245	return (error);
1246}
1247
1248/*
1249 * nfs write call
1250 */
1251int
1252ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1253	     int *iomode, int *must_commit)
1254{
1255	struct nfsvattr nfsva;
1256	int error = 0, attrflag, ret;
1257	u_char verf[NFSX_VERF];
1258	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1259
1260	*must_commit = 0;
1261	error = nfsrpc_write(vp, uiop, iomode, verf, cred,
1262	    uiop->uio_td, &nfsva, &attrflag, NULL);
1263	NFSLOCKMNT(nmp);
1264	if (!error && NFSHASWRITEVERF(nmp) &&
1265	    NFSBCMP(verf, nmp->nm_verf, NFSX_VERF)) {
1266		*must_commit = 1;
1267		NFSBCOPY(verf, nmp->nm_verf, NFSX_VERF);
1268	}
1269	NFSUNLOCKMNT(nmp);
1270	if (attrflag) {
1271		if (VTONFS(vp)->n_flag & ND_NFSV4)
1272			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1273			    1);
1274		else
1275			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1276			    1);
1277		if (ret && !error)
1278			error = ret;
1279	}
1280	if (vp->v_mount->mnt_kern_flag & MNTK_ASYNC)
1281		*iomode = NFSWRITE_FILESYNC;
1282	if (error && NFS_ISV4(vp))
1283		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1284	return (error);
1285}
1286
1287/*
1288 * nfs mknod rpc
1289 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1290 * mode set to specify the file type and the size field for rdev.
1291 */
1292static int
1293nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1294    struct vattr *vap)
1295{
1296	struct nfsvattr nfsva, dnfsva;
1297	struct vnode *newvp = NULL;
1298	struct nfsnode *np = NULL, *dnp;
1299	struct nfsfh *nfhp;
1300	struct vattr vattr;
1301	int error = 0, attrflag, dattrflag;
1302	u_int32_t rdev;
1303
1304	if (vap->va_type == VCHR || vap->va_type == VBLK)
1305		rdev = vap->va_rdev;
1306	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1307		rdev = 0xffffffff;
1308	else
1309		return (EOPNOTSUPP);
1310	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1311		return (error);
1312	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1313	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1314	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1315	if (!error) {
1316		if (!nfhp)
1317			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1318			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1319			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1320			    NULL);
1321		if (nfhp)
1322			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1323			    cnp->cn_thread, &np, NULL);
1324	}
1325	if (dattrflag)
1326		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1327	if (!error) {
1328		newvp = NFSTOV(np);
1329		if (attrflag)
1330			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1331			    0, 1);
1332	}
1333	if (!error) {
1334		if ((cnp->cn_flags & MAKEENTRY))
1335			cache_enter(dvp, newvp, cnp);
1336		*vpp = newvp;
1337	} else if (NFS_ISV4(dvp)) {
1338		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1339		    vap->va_gid);
1340	}
1341	dnp = VTONFS(dvp);
1342	mtx_lock(&dnp->n_mtx);
1343	dnp->n_flag |= NMODIFIED;
1344	if (!dattrflag)
1345		dnp->n_attrstamp = 0;
1346	mtx_unlock(&dnp->n_mtx);
1347	return (error);
1348}
1349
1350/*
1351 * nfs mknod vop
1352 * just call nfs_mknodrpc() to do the work.
1353 */
1354/* ARGSUSED */
1355static int
1356nfs_mknod(struct vop_mknod_args *ap)
1357{
1358	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1359}
1360
1361static u_long create_verf;
1362/*
1363 * nfs file create call
1364 */
1365static int
1366nfs_create(struct vop_create_args *ap)
1367{
1368	struct vnode *dvp = ap->a_dvp;
1369	struct vattr *vap = ap->a_vap;
1370	struct componentname *cnp = ap->a_cnp;
1371	struct nfsnode *np = NULL, *dnp;
1372	struct vnode *newvp = NULL;
1373	struct nfsmount *nmp;
1374	struct nfsvattr dnfsva, nfsva;
1375	struct nfsfh *nfhp;
1376	nfsquad_t cverf;
1377	int error = 0, attrflag, dattrflag, fmode = 0;
1378	struct vattr vattr;
1379
1380	/*
1381	 * Oops, not for me..
1382	 */
1383	if (vap->va_type == VSOCK)
1384		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1385
1386	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1387		return (error);
1388	if (vap->va_vaflags & VA_EXCLUSIVE)
1389		fmode |= O_EXCL;
1390	dnp = VTONFS(dvp);
1391	nmp = VFSTONFS(vnode_mount(dvp));
1392again:
1393	/* For NFSv4, wait until any remove is done. */
1394	mtx_lock(&dnp->n_mtx);
1395	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1396		dnp->n_flag |= NREMOVEWANT;
1397		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1398	}
1399	mtx_unlock(&dnp->n_mtx);
1400
1401	CURVNET_SET(P_TO_VNET(&proc0));
1402#ifdef INET
1403	IN_IFADDR_RLOCK();
1404	if (!TAILQ_EMPTY(&V_in_ifaddrhead))
1405		cverf.lval[0] = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr.s_addr;
1406	else
1407#endif
1408		cverf.lval[0] = create_verf;
1409#ifdef INET
1410	IN_IFADDR_RUNLOCK();
1411#endif
1412	cverf.lval[1] = ++create_verf;
1413	CURVNET_RESTORE();
1414	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1415	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1416	    &nfhp, &attrflag, &dattrflag, NULL);
1417	if (!error) {
1418		if (nfhp == NULL)
1419			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1420			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1421			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1422			    NULL);
1423		if (nfhp != NULL)
1424			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1425			    cnp->cn_thread, &np, NULL);
1426	}
1427	if (dattrflag)
1428		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1429	if (!error) {
1430		newvp = NFSTOV(np);
1431		if (attrflag)
1432			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1433			    0, 1);
1434	}
1435	if (error) {
1436		if (newvp != NULL) {
1437			vrele(newvp);
1438			newvp = NULL;
1439		}
1440		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1441		    error == NFSERR_NOTSUPP) {
1442			fmode &= ~O_EXCL;
1443			goto again;
1444		}
1445	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1446		if (nfscl_checksattr(vap, &nfsva)) {
1447			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1448			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1449			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1450			    vap->va_gid != (gid_t)VNOVAL)) {
1451				/* try again without setting uid/gid */
1452				vap->va_uid = (uid_t)VNOVAL;
1453				vap->va_gid = (uid_t)VNOVAL;
1454				error = nfsrpc_setattr(newvp, vap, NULL,
1455				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1456				    &attrflag, NULL);
1457			}
1458			if (attrflag)
1459				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1460				    NULL, 0, 1);
1461		}
1462	}
1463	if (!error) {
1464		if (cnp->cn_flags & MAKEENTRY)
1465			cache_enter(dvp, newvp, cnp);
1466		*ap->a_vpp = newvp;
1467	} else if (NFS_ISV4(dvp)) {
1468		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1469		    vap->va_gid);
1470	}
1471	mtx_lock(&dnp->n_mtx);
1472	dnp->n_flag |= NMODIFIED;
1473	if (!dattrflag)
1474		dnp->n_attrstamp = 0;
1475	mtx_unlock(&dnp->n_mtx);
1476	return (error);
1477}
1478
1479/*
1480 * nfs file remove call
1481 * To try and make nfs semantics closer to ufs semantics, a file that has
1482 * other processes using the vnode is renamed instead of removed and then
1483 * removed later on the last close.
1484 * - If v_usecount > 1
1485 *	  If a rename is not already in the works
1486 *	     call nfs_sillyrename() to set it up
1487 *     else
1488 *	  do the remove rpc
1489 */
1490static int
1491nfs_remove(struct vop_remove_args *ap)
1492{
1493	struct vnode *vp = ap->a_vp;
1494	struct vnode *dvp = ap->a_dvp;
1495	struct componentname *cnp = ap->a_cnp;
1496	struct nfsnode *np = VTONFS(vp);
1497	int error = 0;
1498	struct vattr vattr;
1499
1500#ifndef DIAGNOSTIC
1501	if ((cnp->cn_flags & HASBUF) == 0)
1502		panic("nfs_remove: no name");
1503	if (vrefcnt(vp) < 1)
1504		panic("nfs_remove: bad v_usecount");
1505#endif
1506	if (vp->v_type == VDIR)
1507		error = EPERM;
1508	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1509	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1510	    vattr.va_nlink > 1)) {
1511		/*
1512		 * Purge the name cache so that the chance of a lookup for
1513		 * the name succeeding while the remove is in progress is
1514		 * minimized. Without node locking it can still happen, such
1515		 * that an I/O op returns ESTALE, but since you get this if
1516		 * another host removes the file..
1517		 */
1518		cache_purge(vp);
1519		/*
1520		 * throw away biocache buffers, mainly to avoid
1521		 * unnecessary delayed writes later.
1522		 */
1523		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1524		/* Do the rpc */
1525		if (error != EINTR && error != EIO)
1526			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1527			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1528		/*
1529		 * Kludge City: If the first reply to the remove rpc is lost..
1530		 *   the reply to the retransmitted request will be ENOENT
1531		 *   since the file was in fact removed
1532		 *   Therefore, we cheat and return success.
1533		 */
1534		if (error == ENOENT)
1535			error = 0;
1536	} else if (!np->n_sillyrename)
1537		error = nfs_sillyrename(dvp, vp, cnp);
1538	np->n_attrstamp = 0;
1539	return (error);
1540}
1541
1542/*
1543 * nfs file remove rpc called from nfs_inactive
1544 */
1545int
1546ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1547{
1548	/*
1549	 * Make sure that the directory vnode is still valid.
1550	 * XXX we should lock sp->s_dvp here.
1551	 */
1552	if (sp->s_dvp->v_type == VBAD)
1553		return (0);
1554	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1555	    sp->s_cred, NULL));
1556}
1557
1558/*
1559 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1560 */
1561static int
1562nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1563    int namelen, struct ucred *cred, struct thread *td)
1564{
1565	struct nfsvattr dnfsva;
1566	struct nfsnode *dnp = VTONFS(dvp);
1567	int error = 0, dattrflag;
1568
1569	mtx_lock(&dnp->n_mtx);
1570	dnp->n_flag |= NREMOVEINPROG;
1571	mtx_unlock(&dnp->n_mtx);
1572	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1573	    &dattrflag, NULL);
1574	mtx_lock(&dnp->n_mtx);
1575	if ((dnp->n_flag & NREMOVEWANT)) {
1576		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1577		mtx_unlock(&dnp->n_mtx);
1578		wakeup((caddr_t)dnp);
1579	} else {
1580		dnp->n_flag &= ~NREMOVEINPROG;
1581		mtx_unlock(&dnp->n_mtx);
1582	}
1583	if (dattrflag)
1584		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1585	mtx_lock(&dnp->n_mtx);
1586	dnp->n_flag |= NMODIFIED;
1587	if (!dattrflag)
1588		dnp->n_attrstamp = 0;
1589	mtx_unlock(&dnp->n_mtx);
1590	if (error && NFS_ISV4(dvp))
1591		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1592	return (error);
1593}
1594
1595/*
1596 * nfs file rename call
1597 */
1598static int
1599nfs_rename(struct vop_rename_args *ap)
1600{
1601	struct vnode *fvp = ap->a_fvp;
1602	struct vnode *tvp = ap->a_tvp;
1603	struct vnode *fdvp = ap->a_fdvp;
1604	struct vnode *tdvp = ap->a_tdvp;
1605	struct componentname *tcnp = ap->a_tcnp;
1606	struct componentname *fcnp = ap->a_fcnp;
1607	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1608	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1609	struct nfsv4node *newv4 = NULL;
1610	int error;
1611
1612#ifndef DIAGNOSTIC
1613	if ((tcnp->cn_flags & HASBUF) == 0 ||
1614	    (fcnp->cn_flags & HASBUF) == 0)
1615		panic("nfs_rename: no name");
1616#endif
1617	/* Check for cross-device rename */
1618	if ((fvp->v_mount != tdvp->v_mount) ||
1619	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1620		error = EXDEV;
1621		goto out;
1622	}
1623
1624	if (fvp == tvp) {
1625		ncl_printf("nfs_rename: fvp == tvp (can't happen)\n");
1626		error = 0;
1627		goto out;
1628	}
1629	if ((error = vn_lock(fvp, LK_EXCLUSIVE)))
1630		goto out;
1631
1632	/*
1633	 * We have to flush B_DELWRI data prior to renaming
1634	 * the file.  If we don't, the delayed-write buffers
1635	 * can be flushed out later after the file has gone stale
1636	 * under NFSV3.  NFSV2 does not have this problem because
1637	 * ( as far as I can tell ) it flushes dirty buffers more
1638	 * often.
1639	 *
1640	 * Skip the rename operation if the fsync fails, this can happen
1641	 * due to the server's volume being full, when we pushed out data
1642	 * that was written back to our cache earlier. Not checking for
1643	 * this condition can result in potential (silent) data loss.
1644	 */
1645	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1646	VOP_UNLOCK(fvp, 0);
1647	if (!error && tvp)
1648		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1649	if (error)
1650		goto out;
1651
1652	/*
1653	 * If the tvp exists and is in use, sillyrename it before doing the
1654	 * rename of the new file over it.
1655	 * XXX Can't sillyrename a directory.
1656	 */
1657	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1658		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1659		vput(tvp);
1660		tvp = NULL;
1661	}
1662
1663	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1664	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1665	    tcnp->cn_thread);
1666
1667	if (!error) {
1668		/*
1669		 * For NFSv4, check to see if it is the same name and
1670		 * replace the name, if it is different.
1671		 */
1672		MALLOC(newv4, struct nfsv4node *,
1673		    sizeof (struct nfsv4node) +
1674		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1675		    M_NFSV4NODE, M_WAITOK);
1676		mtx_lock(&tdnp->n_mtx);
1677		mtx_lock(&fnp->n_mtx);
1678		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1679		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1680		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1681		      tcnp->cn_namelen) ||
1682		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1683		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1684			tdnp->n_fhp->nfh_len))) {
1685#ifdef notdef
1686{ char nnn[100]; int nnnl;
1687nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1688bcopy(tcnp->cn_nameptr, nnn, nnnl);
1689nnn[nnnl] = '\0';
1690printf("ren replace=%s\n",nnn);
1691}
1692#endif
1693			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1694			fnp->n_v4 = newv4;
1695			newv4 = NULL;
1696			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1697			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1698			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1699			    tdnp->n_fhp->nfh_len);
1700			NFSBCOPY(tcnp->cn_nameptr,
1701			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1702		}
1703		mtx_unlock(&tdnp->n_mtx);
1704		mtx_unlock(&fnp->n_mtx);
1705		if (newv4 != NULL)
1706			FREE((caddr_t)newv4, M_NFSV4NODE);
1707	}
1708
1709	if (fvp->v_type == VDIR) {
1710		if (tvp != NULL && tvp->v_type == VDIR)
1711			cache_purge(tdvp);
1712		cache_purge(fdvp);
1713	}
1714
1715out:
1716	if (tdvp == tvp)
1717		vrele(tdvp);
1718	else
1719		vput(tdvp);
1720	if (tvp)
1721		vput(tvp);
1722	vrele(fdvp);
1723	vrele(fvp);
1724	/*
1725	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1726	 */
1727	if (error == ENOENT)
1728		error = 0;
1729	return (error);
1730}
1731
1732/*
1733 * nfs file rename rpc called from nfs_remove() above
1734 */
1735static int
1736nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1737    struct sillyrename *sp)
1738{
1739
1740	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1741	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1742	    scnp->cn_thread));
1743}
1744
1745/*
1746 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1747 */
1748static int
1749nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1750    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1751    int tnamelen, struct ucred *cred, struct thread *td)
1752{
1753	struct nfsvattr fnfsva, tnfsva;
1754	struct nfsnode *fdnp = VTONFS(fdvp);
1755	struct nfsnode *tdnp = VTONFS(tdvp);
1756	int error = 0, fattrflag, tattrflag;
1757
1758	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1759	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1760	    &tattrflag, NULL, NULL);
1761	mtx_lock(&fdnp->n_mtx);
1762	fdnp->n_flag |= NMODIFIED;
1763	mtx_unlock(&fdnp->n_mtx);
1764	mtx_lock(&tdnp->n_mtx);
1765	tdnp->n_flag |= NMODIFIED;
1766	mtx_unlock(&tdnp->n_mtx);
1767	if (fattrflag)
1768		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1769	else
1770		fdnp->n_attrstamp = 0;
1771	if (tattrflag)
1772		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1773	else
1774		tdnp->n_attrstamp = 0;
1775	if (error && NFS_ISV4(fdvp))
1776		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1777	return (error);
1778}
1779
1780/*
1781 * nfs hard link create call
1782 */
1783static int
1784nfs_link(struct vop_link_args *ap)
1785{
1786	struct vnode *vp = ap->a_vp;
1787	struct vnode *tdvp = ap->a_tdvp;
1788	struct componentname *cnp = ap->a_cnp;
1789	struct nfsnode *tdnp;
1790	struct nfsvattr nfsva, dnfsva;
1791	int error = 0, attrflag, dattrflag;
1792
1793	if (vp->v_mount != tdvp->v_mount) {
1794		return (EXDEV);
1795	}
1796
1797	/*
1798	 * Push all writes to the server, so that the attribute cache
1799	 * doesn't get "out of sync" with the server.
1800	 * XXX There should be a better way!
1801	 */
1802	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1803
1804	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1805	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1806	    &dattrflag, NULL);
1807	tdnp = VTONFS(tdvp);
1808	mtx_lock(&tdnp->n_mtx);
1809	tdnp->n_flag |= NMODIFIED;
1810	mtx_unlock(&tdnp->n_mtx);
1811	if (attrflag)
1812		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1813	else
1814		VTONFS(vp)->n_attrstamp = 0;
1815	if (dattrflag)
1816		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1817	else
1818		tdnp->n_attrstamp = 0;
1819	/*
1820	 * If negative lookup caching is enabled, I might as well
1821	 * add an entry for this node. Not necessary for correctness,
1822	 * but if negative caching is enabled, then the system
1823	 * must care about lookup caching hit rate, so...
1824	 */
1825	if (newnfs_neglookup_enable != 0 &&
1826	    (cnp->cn_flags & MAKEENTRY))
1827		cache_enter(tdvp, vp, cnp);
1828	if (error && NFS_ISV4(vp))
1829		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1830		    (gid_t)0);
1831	return (error);
1832}
1833
1834/*
1835 * nfs symbolic link create call
1836 */
1837static int
1838nfs_symlink(struct vop_symlink_args *ap)
1839{
1840	struct vnode *dvp = ap->a_dvp;
1841	struct vattr *vap = ap->a_vap;
1842	struct componentname *cnp = ap->a_cnp;
1843	struct nfsvattr nfsva, dnfsva;
1844	struct nfsfh *nfhp;
1845	struct nfsnode *np = NULL, *dnp;
1846	struct vnode *newvp = NULL;
1847	int error = 0, attrflag, dattrflag, ret;
1848
1849	vap->va_type = VLNK;
1850	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1851	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1852	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1853	if (nfhp) {
1854		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
1855		    &np, NULL);
1856		if (!ret)
1857			newvp = NFSTOV(np);
1858		else if (!error)
1859			error = ret;
1860	}
1861	if (newvp != NULL) {
1862		if (attrflag)
1863			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1864			    0, 1);
1865	} else if (!error) {
1866		/*
1867		 * If we do not have an error and we could not extract the
1868		 * newvp from the response due to the request being NFSv2, we
1869		 * have to do a lookup in order to obtain a newvp to return.
1870		 */
1871		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1872		    cnp->cn_cred, cnp->cn_thread, &np);
1873		if (!error)
1874			newvp = NFSTOV(np);
1875	}
1876	if (error) {
1877		if (newvp)
1878			vput(newvp);
1879		if (NFS_ISV4(dvp))
1880			error = nfscl_maperr(cnp->cn_thread, error,
1881			    vap->va_uid, vap->va_gid);
1882	} else {
1883		/*
1884		 * If negative lookup caching is enabled, I might as well
1885		 * add an entry for this node. Not necessary for correctness,
1886		 * but if negative caching is enabled, then the system
1887		 * must care about lookup caching hit rate, so...
1888		 */
1889		if (newnfs_neglookup_enable != 0 &&
1890		    (cnp->cn_flags & MAKEENTRY))
1891			cache_enter(dvp, newvp, cnp);
1892		*ap->a_vpp = newvp;
1893	}
1894
1895	dnp = VTONFS(dvp);
1896	mtx_lock(&dnp->n_mtx);
1897	dnp->n_flag |= NMODIFIED;
1898	mtx_unlock(&dnp->n_mtx);
1899	if (dattrflag)
1900		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1901	else
1902		dnp->n_attrstamp = 0;
1903	return (error);
1904}
1905
1906/*
1907 * nfs make dir call
1908 */
1909static int
1910nfs_mkdir(struct vop_mkdir_args *ap)
1911{
1912	struct vnode *dvp = ap->a_dvp;
1913	struct vattr *vap = ap->a_vap;
1914	struct componentname *cnp = ap->a_cnp;
1915	struct nfsnode *np = NULL, *dnp;
1916	struct vnode *newvp = NULL;
1917	struct vattr vattr;
1918	struct nfsfh *nfhp;
1919	struct nfsvattr nfsva, dnfsva;
1920	int error = 0, attrflag, dattrflag, ret;
1921
1922	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1923		return (error);
1924	vap->va_type = VDIR;
1925	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1926	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
1927	    &attrflag, &dattrflag, NULL);
1928	dnp = VTONFS(dvp);
1929	mtx_lock(&dnp->n_mtx);
1930	dnp->n_flag |= NMODIFIED;
1931	mtx_unlock(&dnp->n_mtx);
1932	if (dattrflag)
1933		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1934	else
1935		dnp->n_attrstamp = 0;
1936	if (nfhp) {
1937		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
1938		    &np, NULL);
1939		if (!ret) {
1940			newvp = NFSTOV(np);
1941			if (attrflag)
1942			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1943				NULL, 0, 1);
1944		} else if (!error)
1945			error = ret;
1946	}
1947	if (!error && newvp == NULL) {
1948		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1949		    cnp->cn_cred, cnp->cn_thread, &np);
1950		if (!error) {
1951			newvp = NFSTOV(np);
1952			if (newvp->v_type != VDIR)
1953				error = EEXIST;
1954		}
1955	}
1956	if (error) {
1957		if (newvp)
1958			vput(newvp);
1959		if (NFS_ISV4(dvp))
1960			error = nfscl_maperr(cnp->cn_thread, error,
1961			    vap->va_uid, vap->va_gid);
1962	} else {
1963		/*
1964		 * If negative lookup caching is enabled, I might as well
1965		 * add an entry for this node. Not necessary for correctness,
1966		 * but if negative caching is enabled, then the system
1967		 * must care about lookup caching hit rate, so...
1968		 */
1969		if (newnfs_neglookup_enable != 0 &&
1970		    (cnp->cn_flags & MAKEENTRY))
1971			cache_enter(dvp, newvp, cnp);
1972		*ap->a_vpp = newvp;
1973	}
1974	return (error);
1975}
1976
1977/*
1978 * nfs remove directory call
1979 */
1980static int
1981nfs_rmdir(struct vop_rmdir_args *ap)
1982{
1983	struct vnode *vp = ap->a_vp;
1984	struct vnode *dvp = ap->a_dvp;
1985	struct componentname *cnp = ap->a_cnp;
1986	struct nfsnode *dnp;
1987	struct nfsvattr dnfsva;
1988	int error, dattrflag;
1989
1990	if (dvp == vp)
1991		return (EINVAL);
1992	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1993	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
1994	dnp = VTONFS(dvp);
1995	mtx_lock(&dnp->n_mtx);
1996	dnp->n_flag |= NMODIFIED;
1997	mtx_unlock(&dnp->n_mtx);
1998	if (dattrflag)
1999		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2000	else
2001		dnp->n_attrstamp = 0;
2002
2003	cache_purge(dvp);
2004	cache_purge(vp);
2005	if (error && NFS_ISV4(dvp))
2006		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2007		    (gid_t)0);
2008	/*
2009	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2010	 */
2011	if (error == ENOENT)
2012		error = 0;
2013	return (error);
2014}
2015
2016/*
2017 * nfs readdir call
2018 */
2019static int
2020nfs_readdir(struct vop_readdir_args *ap)
2021{
2022	struct vnode *vp = ap->a_vp;
2023	struct nfsnode *np = VTONFS(vp);
2024	struct uio *uio = ap->a_uio;
2025	int tresid, error = 0;
2026	struct vattr vattr;
2027
2028	if (vp->v_type != VDIR)
2029		return(EPERM);
2030
2031	/*
2032	 * First, check for hit on the EOF offset cache
2033	 */
2034	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2035	    (np->n_flag & NMODIFIED) == 0) {
2036		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2037			mtx_lock(&np->n_mtx);
2038			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2039			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2040				mtx_unlock(&np->n_mtx);
2041				NFSINCRGLOBAL(newnfsstats.direofcache_hits);
2042				return (0);
2043			} else
2044				mtx_unlock(&np->n_mtx);
2045		}
2046	}
2047
2048	/*
2049	 * Call ncl_bioread() to do the real work.
2050	 */
2051	tresid = uio->uio_resid;
2052	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2053
2054	if (!error && uio->uio_resid == tresid)
2055		NFSINCRGLOBAL(newnfsstats.direofcache_misses);
2056	return (error);
2057}
2058
2059/*
2060 * Readdir rpc call.
2061 * Called from below the buffer cache by ncl_doio().
2062 */
2063int
2064ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2065    struct thread *td)
2066{
2067	struct nfsvattr nfsva;
2068	nfsuint64 *cookiep, cookie;
2069	struct nfsnode *dnp = VTONFS(vp);
2070	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2071	int error = 0, eof, attrflag;
2072
2073#ifndef DIAGNOSTIC
2074	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2075		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2076		panic("nfs readdirrpc bad uio");
2077#endif
2078
2079	/*
2080	 * If there is no cookie, assume directory was stale.
2081	 */
2082	ncl_dircookie_lock(dnp);
2083	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2084	if (cookiep) {
2085		cookie = *cookiep;
2086		ncl_dircookie_unlock(dnp);
2087	} else {
2088		ncl_dircookie_unlock(dnp);
2089		return (NFSERR_BAD_COOKIE);
2090	}
2091
2092	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2093		(void)ncl_fsinfo(nmp, vp, cred, td);
2094
2095	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2096	    &attrflag, &eof, NULL);
2097	if (attrflag)
2098		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2099
2100	if (!error) {
2101		/*
2102		 * We are now either at the end of the directory or have filled
2103		 * the block.
2104		 */
2105		if (eof)
2106			dnp->n_direofoffset = uiop->uio_offset;
2107		else {
2108			if (uiop->uio_resid > 0)
2109				ncl_printf("EEK! readdirrpc resid > 0\n");
2110			ncl_dircookie_lock(dnp);
2111			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2112			*cookiep = cookie;
2113			ncl_dircookie_unlock(dnp);
2114		}
2115	} else if (NFS_ISV4(vp)) {
2116		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2117	}
2118	return (error);
2119}
2120
2121/*
2122 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2123 */
2124int
2125ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2126    struct thread *td)
2127{
2128	struct nfsvattr nfsva;
2129	nfsuint64 *cookiep, cookie;
2130	struct nfsnode *dnp = VTONFS(vp);
2131	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2132	int error = 0, attrflag, eof;
2133
2134#ifndef DIAGNOSTIC
2135	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2136		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2137		panic("nfs readdirplusrpc bad uio");
2138#endif
2139
2140	/*
2141	 * If there is no cookie, assume directory was stale.
2142	 */
2143	ncl_dircookie_lock(dnp);
2144	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2145	if (cookiep) {
2146		cookie = *cookiep;
2147		ncl_dircookie_unlock(dnp);
2148	} else {
2149		ncl_dircookie_unlock(dnp);
2150		return (NFSERR_BAD_COOKIE);
2151	}
2152
2153	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2154		(void)ncl_fsinfo(nmp, vp, cred, td);
2155	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2156	    &attrflag, &eof, NULL);
2157	if (attrflag)
2158		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2159
2160	if (!error) {
2161		/*
2162		 * We are now either at end of the directory or have filled the
2163		 * the block.
2164		 */
2165		if (eof)
2166			dnp->n_direofoffset = uiop->uio_offset;
2167		else {
2168			if (uiop->uio_resid > 0)
2169				ncl_printf("EEK! readdirplusrpc resid > 0\n");
2170			ncl_dircookie_lock(dnp);
2171			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2172			*cookiep = cookie;
2173			ncl_dircookie_unlock(dnp);
2174		}
2175	} else if (NFS_ISV4(vp)) {
2176		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2177	}
2178	return (error);
2179}
2180
2181/*
2182 * Silly rename. To make the NFS filesystem that is stateless look a little
2183 * more like the "ufs" a remove of an active vnode is translated to a rename
2184 * to a funny looking filename that is removed by nfs_inactive on the
2185 * nfsnode. There is the potential for another process on a different client
2186 * to create the same funny name between the nfs_lookitup() fails and the
2187 * nfs_rename() completes, but...
2188 */
2189static int
2190nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2191{
2192	struct sillyrename *sp;
2193	struct nfsnode *np;
2194	int error;
2195	short pid;
2196	unsigned int lticks;
2197
2198	cache_purge(dvp);
2199	np = VTONFS(vp);
2200#ifndef DIAGNOSTIC
2201	if (vp->v_type == VDIR)
2202		panic("nfs: sillyrename dir");
2203#endif
2204	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2205	    M_NEWNFSREQ, M_WAITOK);
2206	sp->s_cred = crhold(cnp->cn_cred);
2207	sp->s_dvp = dvp;
2208	VREF(dvp);
2209
2210	/*
2211	 * Fudge together a funny name.
2212	 * Changing the format of the funny name to accomodate more
2213	 * sillynames per directory.
2214	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2215	 * CPU ticks since boot.
2216	 */
2217	pid = cnp->cn_thread->td_proc->p_pid;
2218	lticks = (unsigned int)ticks;
2219	for ( ; ; ) {
2220		sp->s_namlen = sprintf(sp->s_name,
2221				       ".nfs.%08x.%04x4.4", lticks,
2222				       pid);
2223		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2224				 cnp->cn_thread, NULL))
2225			break;
2226		lticks++;
2227	}
2228	error = nfs_renameit(dvp, vp, cnp, sp);
2229	if (error)
2230		goto bad;
2231	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2232		cnp->cn_thread, &np);
2233	np->n_sillyrename = sp;
2234	return (0);
2235bad:
2236	vrele(sp->s_dvp);
2237	crfree(sp->s_cred);
2238	free((caddr_t)sp, M_NEWNFSREQ);
2239	return (error);
2240}
2241
2242/*
2243 * Look up a file name and optionally either update the file handle or
2244 * allocate an nfsnode, depending on the value of npp.
2245 * npp == NULL	--> just do the lookup
2246 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2247 *			handled too
2248 * *npp != NULL --> update the file handle in the vnode
2249 */
2250static int
2251nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2252    struct thread *td, struct nfsnode **npp)
2253{
2254	struct vnode *newvp = NULL, *vp;
2255	struct nfsnode *np, *dnp = VTONFS(dvp);
2256	struct nfsfh *nfhp, *onfhp;
2257	struct nfsvattr nfsva, dnfsva;
2258	struct componentname cn;
2259	int error = 0, attrflag, dattrflag;
2260	u_int hash;
2261
2262	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2263	    &nfhp, &attrflag, &dattrflag, NULL);
2264	if (dattrflag)
2265		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2266	if (npp && !error) {
2267		if (*npp != NULL) {
2268		    np = *npp;
2269		    vp = NFSTOV(np);
2270		    /*
2271		     * For NFSv4, check to see if it is the same name and
2272		     * replace the name, if it is different.
2273		     */
2274		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2275			(np->n_v4->n4_namelen != len ||
2276			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2277			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2278			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2279			 dnp->n_fhp->nfh_len))) {
2280#ifdef notdef
2281{ char nnn[100]; int nnnl;
2282nnnl = (len < 100) ? len : 99;
2283bcopy(name, nnn, nnnl);
2284nnn[nnnl] = '\0';
2285printf("replace=%s\n",nnn);
2286}
2287#endif
2288			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2289			    MALLOC(np->n_v4, struct nfsv4node *,
2290				sizeof (struct nfsv4node) +
2291				dnp->n_fhp->nfh_len + len - 1,
2292				M_NFSV4NODE, M_WAITOK);
2293			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2294			    np->n_v4->n4_namelen = len;
2295			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2296				dnp->n_fhp->nfh_len);
2297			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2298		    }
2299		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2300			FNV1_32_INIT);
2301		    onfhp = np->n_fhp;
2302		    /*
2303		     * Rehash node for new file handle.
2304		     */
2305		    vfs_hash_rehash(vp, hash);
2306		    np->n_fhp = nfhp;
2307		    if (onfhp != NULL)
2308			FREE((caddr_t)onfhp, M_NFSFH);
2309		    newvp = NFSTOV(np);
2310		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2311		    FREE((caddr_t)nfhp, M_NFSFH);
2312		    VREF(dvp);
2313		    newvp = dvp;
2314		} else {
2315		    cn.cn_nameptr = name;
2316		    cn.cn_namelen = len;
2317		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2318			&np, NULL);
2319		    if (error)
2320			return (error);
2321		    newvp = NFSTOV(np);
2322		}
2323		if (!attrflag && *npp == NULL) {
2324			vrele(newvp);
2325			return (ENOENT);
2326		}
2327		if (attrflag)
2328			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2329			    0, 1);
2330	}
2331	if (npp && *npp == NULL) {
2332		if (error) {
2333			if (newvp) {
2334				if (newvp == dvp)
2335					vrele(newvp);
2336				else
2337					vput(newvp);
2338			}
2339		} else
2340			*npp = np;
2341	}
2342	if (error && NFS_ISV4(dvp))
2343		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2344	return (error);
2345}
2346
2347/*
2348 * Nfs Version 3 and 4 commit rpc
2349 */
2350int
2351ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2352   struct thread *td)
2353{
2354	struct nfsvattr nfsva;
2355	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2356	int error, attrflag;
2357	u_char verf[NFSX_VERF];
2358
2359	mtx_lock(&nmp->nm_mtx);
2360	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2361		mtx_unlock(&nmp->nm_mtx);
2362		return (0);
2363	}
2364	mtx_unlock(&nmp->nm_mtx);
2365	error = nfsrpc_commit(vp, offset, cnt, cred, td, verf, &nfsva,
2366	    &attrflag, NULL);
2367	if (!error) {
2368		if (NFSBCMP((caddr_t)nmp->nm_verf, verf, NFSX_VERF)) {
2369			NFSBCOPY(verf, (caddr_t)nmp->nm_verf, NFSX_VERF);
2370			error = NFSERR_STALEWRITEVERF;
2371		}
2372		if (!error && attrflag)
2373			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2374			    0, 1);
2375	} else if (NFS_ISV4(vp)) {
2376		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2377	}
2378	return (error);
2379}
2380
2381/*
2382 * Strategy routine.
2383 * For async requests when nfsiod(s) are running, queue the request by
2384 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2385 * request.
2386 */
2387static int
2388nfs_strategy(struct vop_strategy_args *ap)
2389{
2390	struct buf *bp = ap->a_bp;
2391	struct ucred *cr;
2392
2393	KASSERT(!(bp->b_flags & B_DONE),
2394	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2395	BUF_ASSERT_HELD(bp);
2396
2397	if (bp->b_iocmd == BIO_READ)
2398		cr = bp->b_rcred;
2399	else
2400		cr = bp->b_wcred;
2401
2402	/*
2403	 * If the op is asynchronous and an i/o daemon is waiting
2404	 * queue the request, wake it up and wait for completion
2405	 * otherwise just do it ourselves.
2406	 */
2407	if ((bp->b_flags & B_ASYNC) == 0 ||
2408	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2409		(void)ncl_doio(ap->a_vp, bp, cr, curthread);
2410	return (0);
2411}
2412
2413/*
2414 * fsync vnode op. Just call ncl_flush() with commit == 1.
2415 */
2416/* ARGSUSED */
2417static int
2418nfs_fsync(struct vop_fsync_args *ap)
2419{
2420	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1));
2421}
2422
2423/*
2424 * Flush all the blocks associated with a vnode.
2425 * 	Walk through the buffer pool and push any dirty pages
2426 *	associated with the vnode.
2427 */
2428int
2429ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2430    int commit)
2431{
2432	struct nfsnode *np = VTONFS(vp);
2433	struct buf *bp;
2434	int i;
2435	struct buf *nbp;
2436	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2437	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2438	int passone = 1, trycnt = 0;
2439	u_quad_t off, endoff, toff;
2440	struct ucred* wcred = NULL;
2441	struct buf **bvec = NULL;
2442	struct bufobj *bo;
2443#ifndef NFS_COMMITBVECSIZ
2444#define	NFS_COMMITBVECSIZ	20
2445#endif
2446	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2447	int bvecsize = 0, bveccount;
2448
2449	if (nmp->nm_flag & NFSMNT_INT)
2450		slpflag = PCATCH;
2451	if (!commit)
2452		passone = 0;
2453	bo = &vp->v_bufobj;
2454	/*
2455	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2456	 * server, but has not been committed to stable storage on the server
2457	 * yet. On the first pass, the byte range is worked out and the commit
2458	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2459	 * job.
2460	 */
2461again:
2462	off = (u_quad_t)-1;
2463	endoff = 0;
2464	bvecpos = 0;
2465	if (NFS_ISV34(vp) && commit) {
2466		if (bvec != NULL && bvec != bvec_on_stack)
2467			free(bvec, M_TEMP);
2468		/*
2469		 * Count up how many buffers waiting for a commit.
2470		 */
2471		bveccount = 0;
2472		BO_LOCK(bo);
2473		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2474			if (!BUF_ISLOCKED(bp) &&
2475			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2476				== (B_DELWRI | B_NEEDCOMMIT))
2477				bveccount++;
2478		}
2479		/*
2480		 * Allocate space to remember the list of bufs to commit.  It is
2481		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2482		 * If we can't get memory (for whatever reason), we will end up
2483		 * committing the buffers one-by-one in the loop below.
2484		 */
2485		if (bveccount > NFS_COMMITBVECSIZ) {
2486			/*
2487			 * Release the vnode interlock to avoid a lock
2488			 * order reversal.
2489			 */
2490			BO_UNLOCK(bo);
2491			bvec = (struct buf **)
2492				malloc(bveccount * sizeof(struct buf *),
2493				       M_TEMP, M_NOWAIT);
2494			BO_LOCK(bo);
2495			if (bvec == NULL) {
2496				bvec = bvec_on_stack;
2497				bvecsize = NFS_COMMITBVECSIZ;
2498			} else
2499				bvecsize = bveccount;
2500		} else {
2501			bvec = bvec_on_stack;
2502			bvecsize = NFS_COMMITBVECSIZ;
2503		}
2504		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2505			if (bvecpos >= bvecsize)
2506				break;
2507			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2508				nbp = TAILQ_NEXT(bp, b_bobufs);
2509				continue;
2510			}
2511			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2512			    (B_DELWRI | B_NEEDCOMMIT)) {
2513				BUF_UNLOCK(bp);
2514				nbp = TAILQ_NEXT(bp, b_bobufs);
2515				continue;
2516			}
2517			BO_UNLOCK(bo);
2518			bremfree(bp);
2519			/*
2520			 * Work out if all buffers are using the same cred
2521			 * so we can deal with them all with one commit.
2522			 *
2523			 * NOTE: we are not clearing B_DONE here, so we have
2524			 * to do it later on in this routine if we intend to
2525			 * initiate I/O on the bp.
2526			 *
2527			 * Note: to avoid loopback deadlocks, we do not
2528			 * assign b_runningbufspace.
2529			 */
2530			if (wcred == NULL)
2531				wcred = bp->b_wcred;
2532			else if (wcred != bp->b_wcred)
2533				wcred = NOCRED;
2534			vfs_busy_pages(bp, 1);
2535
2536			BO_LOCK(bo);
2537			/*
2538			 * bp is protected by being locked, but nbp is not
2539			 * and vfs_busy_pages() may sleep.  We have to
2540			 * recalculate nbp.
2541			 */
2542			nbp = TAILQ_NEXT(bp, b_bobufs);
2543
2544			/*
2545			 * A list of these buffers is kept so that the
2546			 * second loop knows which buffers have actually
2547			 * been committed. This is necessary, since there
2548			 * may be a race between the commit rpc and new
2549			 * uncommitted writes on the file.
2550			 */
2551			bvec[bvecpos++] = bp;
2552			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2553				bp->b_dirtyoff;
2554			if (toff < off)
2555				off = toff;
2556			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2557			if (toff > endoff)
2558				endoff = toff;
2559		}
2560		BO_UNLOCK(bo);
2561	}
2562	if (bvecpos > 0) {
2563		/*
2564		 * Commit data on the server, as required.
2565		 * If all bufs are using the same wcred, then use that with
2566		 * one call for all of them, otherwise commit each one
2567		 * separately.
2568		 */
2569		if (wcred != NOCRED)
2570			retv = ncl_commit(vp, off, (int)(endoff - off),
2571					  wcred, td);
2572		else {
2573			retv = 0;
2574			for (i = 0; i < bvecpos; i++) {
2575				off_t off, size;
2576				bp = bvec[i];
2577				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2578					bp->b_dirtyoff;
2579				size = (u_quad_t)(bp->b_dirtyend
2580						  - bp->b_dirtyoff);
2581				retv = ncl_commit(vp, off, (int)size,
2582						  bp->b_wcred, td);
2583				if (retv) break;
2584			}
2585		}
2586
2587		if (retv == NFSERR_STALEWRITEVERF)
2588			ncl_clearcommit(vp->v_mount);
2589
2590		/*
2591		 * Now, either mark the blocks I/O done or mark the
2592		 * blocks dirty, depending on whether the commit
2593		 * succeeded.
2594		 */
2595		for (i = 0; i < bvecpos; i++) {
2596			bp = bvec[i];
2597			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2598			if (retv) {
2599				/*
2600				 * Error, leave B_DELWRI intact
2601				 */
2602				vfs_unbusy_pages(bp);
2603				brelse(bp);
2604			} else {
2605				/*
2606				 * Success, remove B_DELWRI ( bundirty() ).
2607				 *
2608				 * b_dirtyoff/b_dirtyend seem to be NFS
2609				 * specific.  We should probably move that
2610				 * into bundirty(). XXX
2611				 */
2612				bufobj_wref(bo);
2613				bp->b_flags |= B_ASYNC;
2614				bundirty(bp);
2615				bp->b_flags &= ~B_DONE;
2616				bp->b_ioflags &= ~BIO_ERROR;
2617				bp->b_dirtyoff = bp->b_dirtyend = 0;
2618				bufdone(bp);
2619			}
2620		}
2621	}
2622
2623	/*
2624	 * Start/do any write(s) that are required.
2625	 */
2626loop:
2627	BO_LOCK(bo);
2628	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2629		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2630			if (waitfor != MNT_WAIT || passone)
2631				continue;
2632
2633			error = BUF_TIMELOCK(bp,
2634			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2635			    BO_MTX(bo), "nfsfsync", slpflag, slptimeo);
2636			if (error == 0) {
2637				BUF_UNLOCK(bp);
2638				goto loop;
2639			}
2640			if (error == ENOLCK) {
2641				error = 0;
2642				goto loop;
2643			}
2644			if (newnfs_sigintr(nmp, td)) {
2645				error = EINTR;
2646				goto done;
2647			}
2648			if (slpflag == PCATCH) {
2649				slpflag = 0;
2650				slptimeo = 2 * hz;
2651			}
2652			goto loop;
2653		}
2654		if ((bp->b_flags & B_DELWRI) == 0)
2655			panic("nfs_fsync: not dirty");
2656		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2657			BUF_UNLOCK(bp);
2658			continue;
2659		}
2660		BO_UNLOCK(bo);
2661		bremfree(bp);
2662		if (passone || !commit)
2663		    bp->b_flags |= B_ASYNC;
2664		else
2665		    bp->b_flags |= B_ASYNC;
2666		bwrite(bp);
2667		if (newnfs_sigintr(nmp, td)) {
2668			error = EINTR;
2669			goto done;
2670		}
2671		goto loop;
2672	}
2673	if (passone) {
2674		passone = 0;
2675		BO_UNLOCK(bo);
2676		goto again;
2677	}
2678	if (waitfor == MNT_WAIT) {
2679		while (bo->bo_numoutput) {
2680			error = bufobj_wwait(bo, slpflag, slptimeo);
2681			if (error) {
2682			    BO_UNLOCK(bo);
2683			    error = newnfs_sigintr(nmp, td);
2684			    if (error)
2685				goto done;
2686			    if (slpflag == PCATCH) {
2687				slpflag = 0;
2688				slptimeo = 2 * hz;
2689			    }
2690			    BO_LOCK(bo);
2691			}
2692		}
2693		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2694			BO_UNLOCK(bo);
2695			goto loop;
2696		}
2697		/*
2698		 * Wait for all the async IO requests to drain
2699		 */
2700		BO_UNLOCK(bo);
2701		mtx_lock(&np->n_mtx);
2702		while (np->n_directio_asyncwr > 0) {
2703			np->n_flag |= NFSYNCWAIT;
2704			error = ncl_msleep(td, (caddr_t)&np->n_directio_asyncwr,
2705					   &np->n_mtx, slpflag | (PRIBIO + 1),
2706					   "nfsfsync", 0);
2707			if (error) {
2708				if (newnfs_sigintr(nmp, td)) {
2709					mtx_unlock(&np->n_mtx);
2710					error = EINTR;
2711					goto done;
2712				}
2713			}
2714		}
2715		mtx_unlock(&np->n_mtx);
2716	} else
2717		BO_UNLOCK(bo);
2718	mtx_lock(&np->n_mtx);
2719	if (np->n_flag & NWRITEERR) {
2720		error = np->n_error;
2721		np->n_flag &= ~NWRITEERR;
2722	}
2723  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2724	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2725  		np->n_flag &= ~NMODIFIED;
2726	mtx_unlock(&np->n_mtx);
2727done:
2728	if (bvec != NULL && bvec != bvec_on_stack)
2729		free(bvec, M_TEMP);
2730	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2731	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2732	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2733		/* try, try again... */
2734		passone = 1;
2735		wcred = NULL;
2736		bvec = NULL;
2737		bvecsize = 0;
2738printf("try%d\n", trycnt);
2739		goto again;
2740	}
2741	return (error);
2742}
2743
2744/*
2745 * NFS advisory byte-level locks.
2746 */
2747static int
2748nfs_advlock(struct vop_advlock_args *ap)
2749{
2750	struct vnode *vp = ap->a_vp;
2751	struct ucred *cred;
2752	struct nfsnode *np = VTONFS(ap->a_vp);
2753	struct proc *p = (struct proc *)ap->a_id;
2754	struct thread *td = curthread;	/* XXX */
2755	struct vattr va;
2756	int ret, error = EOPNOTSUPP;
2757	u_quad_t size;
2758
2759	if (NFS_ISV4(vp) && (ap->a_flags & F_POSIX)) {
2760		cred = p->p_ucred;
2761		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2762		if (vp->v_iflag & VI_DOOMED) {
2763			VOP_UNLOCK(vp, 0);
2764			return (EBADF);
2765		}
2766
2767		/*
2768		 * If this is unlocking a write locked region, flush and
2769		 * commit them before unlocking. This is required by
2770		 * RFC3530 Sec. 9.3.2.
2771		 */
2772		if (ap->a_op == F_UNLCK &&
2773		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td))
2774			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1);
2775
2776		/*
2777		 * Loop around doing the lock op, while a blocking lock
2778		 * must wait for the lock op to succeed.
2779		 */
2780		do {
2781			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
2782			    ap->a_fl, 0, cred, td);
2783			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2784			    ap->a_op == F_SETLK) {
2785				VOP_UNLOCK(vp, 0);
2786				error = nfs_catnap(PZERO | PCATCH, "ncladvl");
2787				if (error)
2788					return (EINTR);
2789				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2790				if (vp->v_iflag & VI_DOOMED) {
2791					VOP_UNLOCK(vp, 0);
2792					return (EBADF);
2793				}
2794			}
2795		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
2796		     ap->a_op == F_SETLK);
2797		if (ret == NFSERR_DENIED) {
2798			VOP_UNLOCK(vp, 0);
2799			return (EAGAIN);
2800		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
2801			VOP_UNLOCK(vp, 0);
2802			return (ret);
2803		} else if (ret != 0) {
2804			VOP_UNLOCK(vp, 0);
2805			return (EACCES);
2806		}
2807
2808		/*
2809		 * Now, if we just got a lock, invalidate data in the buffer
2810		 * cache, as required, so that the coherency conforms with
2811		 * RFC3530 Sec. 9.3.2.
2812		 */
2813		if (ap->a_op == F_SETLK) {
2814			if ((np->n_flag & NMODIFIED) == 0) {
2815				np->n_attrstamp = 0;
2816				ret = VOP_GETATTR(vp, &va, cred);
2817			}
2818			if ((np->n_flag & NMODIFIED) || ret ||
2819			    np->n_change != va.va_filerev) {
2820				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
2821				np->n_attrstamp = 0;
2822				ret = VOP_GETATTR(vp, &va, cred);
2823				if (!ret) {
2824					np->n_mtime = va.va_mtime;
2825					np->n_change = va.va_filerev;
2826				}
2827			}
2828		}
2829		VOP_UNLOCK(vp, 0);
2830		return (0);
2831	} else if (!NFS_ISV4(vp)) {
2832		error = vn_lock(vp, LK_SHARED);
2833		if (error)
2834			return (error);
2835		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2836			size = VTONFS(vp)->n_size;
2837			VOP_UNLOCK(vp, 0);
2838			error = lf_advlock(ap, &(vp->v_lockf), size);
2839		} else {
2840			if (ncl_advlock_p)
2841				error = ncl_advlock_p(ap);
2842			else
2843				error = ENOLCK;
2844		}
2845	}
2846	return (error);
2847}
2848
2849/*
2850 * NFS advisory byte-level locks.
2851 */
2852static int
2853nfs_advlockasync(struct vop_advlockasync_args *ap)
2854{
2855	struct vnode *vp = ap->a_vp;
2856	u_quad_t size;
2857	int error;
2858
2859	if (NFS_ISV4(vp))
2860		return (EOPNOTSUPP);
2861	error = vn_lock(vp, LK_SHARED);
2862	if (error)
2863		return (error);
2864	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
2865		size = VTONFS(vp)->n_size;
2866		VOP_UNLOCK(vp, 0);
2867		error = lf_advlockasync(ap, &(vp->v_lockf), size);
2868	} else {
2869		VOP_UNLOCK(vp, 0);
2870		error = EOPNOTSUPP;
2871	}
2872	return (error);
2873}
2874
2875/*
2876 * Print out the contents of an nfsnode.
2877 */
2878static int
2879nfs_print(struct vop_print_args *ap)
2880{
2881	struct vnode *vp = ap->a_vp;
2882	struct nfsnode *np = VTONFS(vp);
2883
2884	ncl_printf("\tfileid %ld fsid 0x%x",
2885	   np->n_vattr.na_fileid, np->n_vattr.na_fsid);
2886	if (vp->v_type == VFIFO)
2887		fifo_printinfo(vp);
2888	printf("\n");
2889	return (0);
2890}
2891
2892/*
2893 * This is the "real" nfs::bwrite(struct buf*).
2894 * We set B_CACHE if this is a VMIO buffer.
2895 */
2896int
2897ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
2898{
2899	int s;
2900	int oldflags = bp->b_flags;
2901#if 0
2902	int retv = 1;
2903	off_t off;
2904#endif
2905
2906	BUF_ASSERT_HELD(bp);
2907
2908	if (bp->b_flags & B_INVAL) {
2909		brelse(bp);
2910		return(0);
2911	}
2912
2913	bp->b_flags |= B_CACHE;
2914
2915	/*
2916	 * Undirty the bp.  We will redirty it later if the I/O fails.
2917	 */
2918
2919	s = splbio();
2920	bundirty(bp);
2921	bp->b_flags &= ~B_DONE;
2922	bp->b_ioflags &= ~BIO_ERROR;
2923	bp->b_iocmd = BIO_WRITE;
2924
2925	bufobj_wref(bp->b_bufobj);
2926	curthread->td_ru.ru_oublock++;
2927	splx(s);
2928
2929	/*
2930	 * Note: to avoid loopback deadlocks, we do not
2931	 * assign b_runningbufspace.
2932	 */
2933	vfs_busy_pages(bp, 1);
2934
2935	BUF_KERNPROC(bp);
2936	bp->b_iooffset = dbtob(bp->b_blkno);
2937	bstrategy(bp);
2938
2939	if( (oldflags & B_ASYNC) == 0) {
2940		int rtval = bufwait(bp);
2941
2942		if (oldflags & B_DELWRI) {
2943			s = splbio();
2944			reassignbuf(bp);
2945			splx(s);
2946		}
2947		brelse(bp);
2948		return (rtval);
2949	}
2950
2951	return (0);
2952}
2953
2954/*
2955 * nfs special file access vnode op.
2956 * Essentially just get vattr and then imitate iaccess() since the device is
2957 * local to the client.
2958 */
2959static int
2960nfsspec_access(struct vop_access_args *ap)
2961{
2962	struct vattr *vap;
2963	struct ucred *cred = ap->a_cred;
2964	struct vnode *vp = ap->a_vp;
2965	accmode_t accmode = ap->a_accmode;
2966	struct vattr vattr;
2967	int error;
2968
2969	/*
2970	 * Disallow write attempts on filesystems mounted read-only;
2971	 * unless the file is a socket, fifo, or a block or character
2972	 * device resident on the filesystem.
2973	 */
2974	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
2975		switch (vp->v_type) {
2976		case VREG:
2977		case VDIR:
2978		case VLNK:
2979			return (EROFS);
2980		default:
2981			break;
2982		}
2983	}
2984	vap = &vattr;
2985	error = VOP_GETATTR(vp, vap, cred);
2986	if (error)
2987		goto out;
2988	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
2989	    accmode, cred, NULL);
2990out:
2991	return error;
2992}
2993
2994/*
2995 * Read wrapper for fifos.
2996 */
2997static int
2998nfsfifo_read(struct vop_read_args *ap)
2999{
3000	struct nfsnode *np = VTONFS(ap->a_vp);
3001	int error;
3002
3003	/*
3004	 * Set access flag.
3005	 */
3006	mtx_lock(&np->n_mtx);
3007	np->n_flag |= NACC;
3008	getnanotime(&np->n_atim);
3009	mtx_unlock(&np->n_mtx);
3010	error = fifo_specops.vop_read(ap);
3011	return error;
3012}
3013
3014/*
3015 * Write wrapper for fifos.
3016 */
3017static int
3018nfsfifo_write(struct vop_write_args *ap)
3019{
3020	struct nfsnode *np = VTONFS(ap->a_vp);
3021
3022	/*
3023	 * Set update flag.
3024	 */
3025	mtx_lock(&np->n_mtx);
3026	np->n_flag |= NUPD;
3027	getnanotime(&np->n_mtim);
3028	mtx_unlock(&np->n_mtx);
3029	return(fifo_specops.vop_write(ap));
3030}
3031
3032/*
3033 * Close wrapper for fifos.
3034 *
3035 * Update the times on the nfsnode then do fifo close.
3036 */
3037static int
3038nfsfifo_close(struct vop_close_args *ap)
3039{
3040	struct vnode *vp = ap->a_vp;
3041	struct nfsnode *np = VTONFS(vp);
3042	struct vattr vattr;
3043	struct timespec ts;
3044
3045	mtx_lock(&np->n_mtx);
3046	if (np->n_flag & (NACC | NUPD)) {
3047		getnanotime(&ts);
3048		if (np->n_flag & NACC)
3049			np->n_atim = ts;
3050		if (np->n_flag & NUPD)
3051			np->n_mtim = ts;
3052		np->n_flag |= NCHG;
3053		if (vrefcnt(vp) == 1 &&
3054		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3055			VATTR_NULL(&vattr);
3056			if (np->n_flag & NACC)
3057				vattr.va_atime = np->n_atim;
3058			if (np->n_flag & NUPD)
3059				vattr.va_mtime = np->n_mtim;
3060			mtx_unlock(&np->n_mtx);
3061			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3062			goto out;
3063		}
3064	}
3065	mtx_unlock(&np->n_mtx);
3066out:
3067	return (fifo_specops.vop_close(ap));
3068}
3069
3070/*
3071 * Just call ncl_writebp() with the force argument set to 1.
3072 *
3073 * NOTE: B_DONE may or may not be set in a_bp on call.
3074 */
3075static int
3076nfs_bwrite(struct buf *bp)
3077{
3078
3079	return (ncl_writebp(bp, 1, curthread));
3080}
3081
3082struct buf_ops buf_ops_newnfs = {
3083	.bop_name	=	"buf_ops_nfs",
3084	.bop_write	=	nfs_bwrite,
3085	.bop_strategy	=	bufstrategy,
3086	.bop_sync	=	bufsync,
3087	.bop_bdflush	=	bufbdflush,
3088};
3089
3090/*
3091 * Cloned from vop_stdlock(), and then the ugly hack added.
3092 */
3093static int
3094nfs_lock1(struct vop_lock1_args *ap)
3095{
3096	struct vnode *vp = ap->a_vp;
3097	int error = 0;
3098
3099	/*
3100	 * Since vfs_hash_get() calls vget() and it will no longer work
3101	 * for FreeBSD8 with flags == 0, I can only think of this horrible
3102	 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER
3103	 * and then handle it here. All I want for this case is a v_usecount
3104	 * on the vnode to use for recovery, while another thread might
3105	 * hold a lock on the vnode. I have the other threads blocked, so
3106	 * there isn't any race problem.
3107	 */
3108	if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) {
3109		if ((ap->a_flags & LK_INTERLOCK) == 0)
3110			panic("ncllock1");
3111		if ((vp->v_iflag & VI_DOOMED))
3112			error = ENOENT;
3113		VI_UNLOCK(vp);
3114		return (error);
3115	}
3116	return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp),
3117	    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file,
3118	    ap->a_line));
3119}
3120
3121#ifdef NFS4_ACL_EXTATTR_NAME
3122static int
3123nfs_getacl(struct vop_getacl_args *ap)
3124{
3125	int error;
3126
3127	if (ap->a_type != ACL_TYPE_NFS4)
3128		return (EOPNOTSUPP);
3129	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3130	    NULL);
3131	if (error > NFSERR_STALE) {
3132		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3133		error = EPERM;
3134	}
3135	return (error);
3136}
3137
3138static int
3139nfs_setacl(struct vop_setacl_args *ap)
3140{
3141	int error;
3142
3143	if (ap->a_type != ACL_TYPE_NFS4)
3144		return (EOPNOTSUPP);
3145	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3146	    NULL);
3147	if (error > NFSERR_STALE) {
3148		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3149		error = EPERM;
3150	}
3151	return (error);
3152}
3153
3154#endif	/* NFS4_ACL_EXTATTR_NAME */
3155