if_upgt.c revision 286410
1/*	$OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2/*	$FreeBSD: head/sys/dev/usb/wlan/if_upgt.c 286410 2015-08-07 11:43:14Z glebius $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/param.h>
21#include <sys/systm.h>
22#include <sys/kernel.h>
23#include <sys/endian.h>
24#include <sys/firmware.h>
25#include <sys/linker.h>
26#include <sys/mbuf.h>
27#include <sys/malloc.h>
28#include <sys/module.h>
29#include <sys/socket.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32
33#include <net/if.h>
34#include <net/if_var.h>
35#include <net/if_arp.h>
36#include <net/ethernet.h>
37#include <net/if_dl.h>
38#include <net/if_media.h>
39#include <net/if_types.h>
40
41#include <sys/bus.h>
42#include <machine/bus.h>
43
44#include <net80211/ieee80211_var.h>
45#include <net80211/ieee80211_phy.h>
46#include <net80211/ieee80211_radiotap.h>
47#include <net80211/ieee80211_regdomain.h>
48
49#include <net/bpf.h>
50
51#include <dev/usb/usb.h>
52#include <dev/usb/usbdi.h>
53#include "usbdevs.h"
54
55#include <dev/usb/wlan/if_upgtvar.h>
56
57/*
58 * Driver for the USB PrismGT devices.
59 *
60 * For now just USB 2.0 devices with the GW3887 chipset are supported.
61 * The driver has been written based on the firmware version 2.13.1.0_LM87.
62 *
63 * TODO's:
64 * - MONITOR mode test.
65 * - Add HOSTAP mode.
66 * - Add IBSS mode.
67 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
68 *
69 * Parts of this driver has been influenced by reading the p54u driver
70 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
71 * Sebastien Bourdeauducq <lekernel@prism54.org>.
72 */
73
74static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
75    "USB PrismGT GW3887 driver parameters");
76
77#ifdef UPGT_DEBUG
78int upgt_debug = 0;
79SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RWTUN, &upgt_debug,
80	    0, "control debugging printfs");
81enum {
82	UPGT_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
83	UPGT_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
84	UPGT_DEBUG_RESET	= 0x00000004,	/* reset processing */
85	UPGT_DEBUG_INTR		= 0x00000008,	/* INTR */
86	UPGT_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
87	UPGT_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
88	UPGT_DEBUG_STATE	= 0x00000040,	/* 802.11 state transitions */
89	UPGT_DEBUG_STAT		= 0x00000080,	/* statistic */
90	UPGT_DEBUG_FW		= 0x00000100,	/* firmware */
91	UPGT_DEBUG_ANY		= 0xffffffff
92};
93#define	DPRINTF(sc, m, fmt, ...) do {				\
94	if (sc->sc_debug & (m))					\
95		printf(fmt, __VA_ARGS__);			\
96} while (0)
97#else
98#define	DPRINTF(sc, m, fmt, ...) do {				\
99	(void) sc;						\
100} while (0)
101#endif
102
103/*
104 * Prototypes.
105 */
106static device_probe_t upgt_match;
107static device_attach_t upgt_attach;
108static device_detach_t upgt_detach;
109static int	upgt_alloc_tx(struct upgt_softc *);
110static int	upgt_alloc_rx(struct upgt_softc *);
111static int	upgt_device_reset(struct upgt_softc *);
112static void	upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113static int	upgt_fw_verify(struct upgt_softc *);
114static int	upgt_mem_init(struct upgt_softc *);
115static int	upgt_fw_load(struct upgt_softc *);
116static int	upgt_fw_copy(const uint8_t *, char *, int);
117static uint32_t	upgt_crc32_le(const void *, size_t);
118static struct mbuf *
119		upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120static struct mbuf *
121		upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122static void	upgt_txeof(struct usb_xfer *, struct upgt_data *);
123static int	upgt_eeprom_read(struct upgt_softc *);
124static int	upgt_eeprom_parse(struct upgt_softc *);
125static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
130static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
131static void	upgt_init(struct upgt_softc *);
132static void	upgt_parent(struct ieee80211com *);
133static int	upgt_transmit(struct ieee80211com *, struct mbuf *);
134static void	upgt_start(struct upgt_softc *);
135static int	upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136		    const struct ieee80211_bpf_params *);
137static void	upgt_scan_start(struct ieee80211com *);
138static void	upgt_scan_end(struct ieee80211com *);
139static void	upgt_set_channel(struct ieee80211com *);
140static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
142		    const uint8_t [IEEE80211_ADDR_LEN],
143		    const uint8_t [IEEE80211_ADDR_LEN]);
144static void	upgt_vap_delete(struct ieee80211vap *);
145static void	upgt_update_mcast(struct ieee80211com *);
146static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
147static void	upgt_set_multi(void *);
148static void	upgt_stop(struct upgt_softc *);
149static void	upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
151static int	upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152static void	upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153static void	upgt_set_led(struct upgt_softc *, int);
154static void	upgt_set_led_blink(void *);
155static void	upgt_get_stats(struct upgt_softc *);
156static void	upgt_mem_free(struct upgt_softc *, uint32_t);
157static uint32_t	upgt_mem_alloc(struct upgt_softc *);
158static void	upgt_free_tx(struct upgt_softc *);
159static void	upgt_free_rx(struct upgt_softc *);
160static void	upgt_watchdog(void *);
161static void	upgt_abort_xfers(struct upgt_softc *);
162static void	upgt_abort_xfers_locked(struct upgt_softc *);
163static void	upgt_sysctl_node(struct upgt_softc *);
164static struct upgt_data *
165		upgt_getbuf(struct upgt_softc *);
166static struct upgt_data *
167		upgt_gettxbuf(struct upgt_softc *);
168static int	upgt_tx_start(struct upgt_softc *, struct mbuf *,
169		    struct ieee80211_node *, struct upgt_data *);
170
171static const char *upgt_fwname = "upgt-gw3887";
172
173static const STRUCT_USB_HOST_ID upgt_devs[] = {
174#define	UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175	/* version 2 devices */
176	UPGT_DEV(ACCTON,	PRISM_GT),
177	UPGT_DEV(BELKIN,	F5D7050),
178	UPGT_DEV(CISCOLINKSYS,	WUSB54AG),
179	UPGT_DEV(CONCEPTRONIC,	PRISM_GT),
180	UPGT_DEV(DELL,		PRISM_GT_1),
181	UPGT_DEV(DELL,		PRISM_GT_2),
182	UPGT_DEV(FSC,		E5400),
183	UPGT_DEV(GLOBESPAN,	PRISM_GT_1),
184	UPGT_DEV(GLOBESPAN,	PRISM_GT_2),
185	UPGT_DEV(NETGEAR,	WG111V1_2),
186	UPGT_DEV(INTERSIL,	PRISM_GT),
187	UPGT_DEV(SMC,		2862WG),
188	UPGT_DEV(USR,		USR5422),
189	UPGT_DEV(WISTRONNEWEB,	UR045G),
190	UPGT_DEV(XYRATEX,	PRISM_GT_1),
191	UPGT_DEV(XYRATEX,	PRISM_GT_2),
192	UPGT_DEV(ZCOM,		XG703A),
193	UPGT_DEV(ZCOM,		XM142)
194};
195
196static usb_callback_t upgt_bulk_rx_callback;
197static usb_callback_t upgt_bulk_tx_callback;
198
199static const struct usb_config upgt_config[UPGT_N_XFERS] = {
200	[UPGT_BULK_TX] = {
201		.type = UE_BULK,
202		.endpoint = UE_ADDR_ANY,
203		.direction = UE_DIR_OUT,
204		.bufsize = MCLBYTES * UPGT_TX_MAXCOUNT,
205		.flags = {
206			.force_short_xfer = 1,
207			.pipe_bof = 1
208		},
209		.callback = upgt_bulk_tx_callback,
210		.timeout = UPGT_USB_TIMEOUT,	/* ms */
211	},
212	[UPGT_BULK_RX] = {
213		.type = UE_BULK,
214		.endpoint = UE_ADDR_ANY,
215		.direction = UE_DIR_IN,
216		.bufsize = MCLBYTES * UPGT_RX_MAXCOUNT,
217		.flags = {
218			.pipe_bof = 1,
219			.short_xfer_ok = 1
220		},
221		.callback = upgt_bulk_rx_callback,
222	},
223};
224
225static int
226upgt_match(device_t dev)
227{
228	struct usb_attach_arg *uaa = device_get_ivars(dev);
229
230	if (uaa->usb_mode != USB_MODE_HOST)
231		return (ENXIO);
232	if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
233		return (ENXIO);
234	if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
235		return (ENXIO);
236
237	return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa));
238}
239
240static int
241upgt_attach(device_t dev)
242{
243	struct upgt_softc *sc = device_get_softc(dev);
244	struct ieee80211com *ic = &sc->sc_ic;
245	struct usb_attach_arg *uaa = device_get_ivars(dev);
246	uint8_t bands, iface_index = UPGT_IFACE_INDEX;
247	int error;
248
249	sc->sc_dev = dev;
250	sc->sc_udev = uaa->device;
251#ifdef UPGT_DEBUG
252	sc->sc_debug = upgt_debug;
253#endif
254	device_set_usb_desc(dev);
255
256	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
257	    MTX_DEF);
258	callout_init(&sc->sc_led_ch, 0);
259	callout_init(&sc->sc_watchdog_ch, 0);
260	mbufq_init(&sc->sc_snd, ifqmaxlen);
261
262	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
263	    upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
264	if (error) {
265		device_printf(dev, "could not allocate USB transfers, "
266		    "err=%s\n", usbd_errstr(error));
267		goto fail1;
268	}
269
270	sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer(
271	    sc->sc_xfer[UPGT_BULK_RX], 0);
272	sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(
273	    sc->sc_xfer[UPGT_BULK_TX], 0);
274
275	/* Setup TX and RX buffers */
276	error = upgt_alloc_tx(sc);
277	if (error)
278		goto fail2;
279	error = upgt_alloc_rx(sc);
280	if (error)
281		goto fail3;
282
283	/* Initialize the device.  */
284	error = upgt_device_reset(sc);
285	if (error)
286		goto fail4;
287	/* Verify the firmware.  */
288	error = upgt_fw_verify(sc);
289	if (error)
290		goto fail4;
291	/* Calculate device memory space.  */
292	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
293		device_printf(dev,
294		    "could not find memory space addresses on FW\n");
295		error = EIO;
296		goto fail4;
297	}
298	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
299	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
300
301	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
302	    sc->sc_memaddr_frame_start);
303	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
304	    sc->sc_memaddr_frame_end);
305	DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
306	    sc->sc_memaddr_rx_start);
307
308	upgt_mem_init(sc);
309
310	/* Load the firmware.  */
311	error = upgt_fw_load(sc);
312	if (error)
313		goto fail4;
314
315	/* Read the whole EEPROM content and parse it.  */
316	error = upgt_eeprom_read(sc);
317	if (error)
318		goto fail4;
319	error = upgt_eeprom_parse(sc);
320	if (error)
321		goto fail4;
322
323	/* all works related with the device have done here. */
324	upgt_abort_xfers(sc);
325
326	ic->ic_softc = sc;
327	ic->ic_name = device_get_nameunit(dev);
328	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
329	ic->ic_opmode = IEEE80211_M_STA;
330	/* set device capabilities */
331	ic->ic_caps =
332		  IEEE80211_C_STA		/* station mode */
333		| IEEE80211_C_MONITOR		/* monitor mode */
334		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
335	        | IEEE80211_C_SHSLOT		/* short slot time supported */
336		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
337	        | IEEE80211_C_WPA		/* 802.11i */
338		;
339
340	bands = 0;
341	setbit(&bands, IEEE80211_MODE_11B);
342	setbit(&bands, IEEE80211_MODE_11G);
343	ieee80211_init_channels(ic, NULL, &bands);
344
345	ieee80211_ifattach(ic);
346	ic->ic_raw_xmit = upgt_raw_xmit;
347	ic->ic_scan_start = upgt_scan_start;
348	ic->ic_scan_end = upgt_scan_end;
349	ic->ic_set_channel = upgt_set_channel;
350	ic->ic_vap_create = upgt_vap_create;
351	ic->ic_vap_delete = upgt_vap_delete;
352	ic->ic_update_mcast = upgt_update_mcast;
353	ic->ic_transmit = upgt_transmit;
354	ic->ic_parent = upgt_parent;
355
356	ieee80211_radiotap_attach(ic,
357	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
358		UPGT_TX_RADIOTAP_PRESENT,
359	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
360		UPGT_RX_RADIOTAP_PRESENT);
361
362	upgt_sysctl_node(sc);
363
364	if (bootverbose)
365		ieee80211_announce(ic);
366
367	return (0);
368
369fail4:	upgt_free_rx(sc);
370fail3:	upgt_free_tx(sc);
371fail2:	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
372fail1:	mtx_destroy(&sc->sc_mtx);
373
374	return (error);
375}
376
377static void
378upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
379{
380
381	if (data->m) {
382		/* XXX status? */
383		ieee80211_tx_complete(data->ni, data->m, 0);
384		data->m = NULL;
385		data->ni = NULL;
386	}
387}
388
389static void
390upgt_get_stats(struct upgt_softc *sc)
391{
392	struct upgt_data *data_cmd;
393	struct upgt_lmac_mem *mem;
394	struct upgt_lmac_stats *stats;
395
396	data_cmd = upgt_getbuf(sc);
397	if (data_cmd == NULL) {
398		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
399		return;
400	}
401
402	/*
403	 * Transmit the URB containing the CMD data.
404	 */
405	memset(data_cmd->buf, 0, MCLBYTES);
406
407	mem = (struct upgt_lmac_mem *)data_cmd->buf;
408	mem->addr = htole32(sc->sc_memaddr_frame_start +
409	    UPGT_MEMSIZE_FRAME_HEAD);
410
411	stats = (struct upgt_lmac_stats *)(mem + 1);
412
413	stats->header1.flags = 0;
414	stats->header1.type = UPGT_H1_TYPE_CTRL;
415	stats->header1.len = htole16(
416	    sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
417
418	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
419	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
420	stats->header2.flags = 0;
421
422	data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
423
424	mem->chksum = upgt_chksum_le((uint32_t *)stats,
425	    data_cmd->buflen - sizeof(*mem));
426
427	upgt_bulk_tx(sc, data_cmd);
428}
429
430static void
431upgt_parent(struct ieee80211com *ic)
432{
433	struct upgt_softc *sc = ic->ic_softc;
434	int startall = 0;
435
436	UPGT_LOCK(sc);
437	if (sc->sc_flags & UPGT_FLAG_DETACHED) {
438		UPGT_UNLOCK(sc);
439		return;
440	}
441	if (ic->ic_nrunning > 0) {
442		if (sc->sc_flags & UPGT_FLAG_INITDONE) {
443			if (ic->ic_allmulti > 0 || ic->ic_promisc > 0)
444				upgt_set_multi(sc);
445		} else {
446			upgt_init(sc);
447			startall = 1;
448		}
449	} else if (sc->sc_flags & UPGT_FLAG_INITDONE)
450		upgt_stop(sc);
451	UPGT_UNLOCK(sc);
452	if (startall)
453		ieee80211_start_all(ic);
454}
455
456static void
457upgt_stop(struct upgt_softc *sc)
458{
459
460	UPGT_ASSERT_LOCKED(sc);
461
462	if (sc->sc_flags & UPGT_FLAG_INITDONE)
463		upgt_set_macfilter(sc, IEEE80211_S_INIT);
464	upgt_abort_xfers_locked(sc);
465	/* device down */
466	sc->sc_tx_timer = 0;
467	sc->sc_flags &= ~UPGT_FLAG_INITDONE;
468}
469
470static void
471upgt_set_led(struct upgt_softc *sc, int action)
472{
473	struct upgt_data *data_cmd;
474	struct upgt_lmac_mem *mem;
475	struct upgt_lmac_led *led;
476
477	data_cmd = upgt_getbuf(sc);
478	if (data_cmd == NULL) {
479		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
480		return;
481	}
482
483	/*
484	 * Transmit the URB containing the CMD data.
485	 */
486	memset(data_cmd->buf, 0, MCLBYTES);
487
488	mem = (struct upgt_lmac_mem *)data_cmd->buf;
489	mem->addr = htole32(sc->sc_memaddr_frame_start +
490	    UPGT_MEMSIZE_FRAME_HEAD);
491
492	led = (struct upgt_lmac_led *)(mem + 1);
493
494	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
495	led->header1.type = UPGT_H1_TYPE_CTRL;
496	led->header1.len = htole16(
497	    sizeof(struct upgt_lmac_led) -
498	    sizeof(struct upgt_lmac_header));
499
500	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
501	led->header2.type = htole16(UPGT_H2_TYPE_LED);
502	led->header2.flags = 0;
503
504	switch (action) {
505	case UPGT_LED_OFF:
506		led->mode = htole16(UPGT_LED_MODE_SET);
507		led->action_fix = 0;
508		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
509		led->action_tmp_dur = 0;
510		break;
511	case UPGT_LED_ON:
512		led->mode = htole16(UPGT_LED_MODE_SET);
513		led->action_fix = 0;
514		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
515		led->action_tmp_dur = 0;
516		break;
517	case UPGT_LED_BLINK:
518		if (sc->sc_state != IEEE80211_S_RUN) {
519			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
520			return;
521		}
522		if (sc->sc_led_blink) {
523			/* previous blink was not finished */
524			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
525			return;
526		}
527		led->mode = htole16(UPGT_LED_MODE_SET);
528		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
529		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
530		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
531		/* lock blink */
532		sc->sc_led_blink = 1;
533		callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
534		break;
535	default:
536		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
537		return;
538	}
539
540	data_cmd->buflen = sizeof(*mem) + sizeof(*led);
541
542	mem->chksum = upgt_chksum_le((uint32_t *)led,
543	    data_cmd->buflen - sizeof(*mem));
544
545	upgt_bulk_tx(sc, data_cmd);
546}
547
548static void
549upgt_set_led_blink(void *arg)
550{
551	struct upgt_softc *sc = arg;
552
553	/* blink finished, we are ready for a next one */
554	sc->sc_led_blink = 0;
555}
556
557static void
558upgt_init(struct upgt_softc *sc)
559{
560
561	UPGT_ASSERT_LOCKED(sc);
562
563	if (sc->sc_flags & UPGT_FLAG_INITDONE)
564		upgt_stop(sc);
565
566	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
567
568	(void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
569
570	sc->sc_flags |= UPGT_FLAG_INITDONE;
571
572	callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
573}
574
575static int
576upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
577{
578	struct ieee80211com *ic = &sc->sc_ic;
579	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
580	struct ieee80211_node *ni;
581	struct upgt_data *data_cmd;
582	struct upgt_lmac_mem *mem;
583	struct upgt_lmac_filter *filter;
584
585	UPGT_ASSERT_LOCKED(sc);
586
587	data_cmd = upgt_getbuf(sc);
588	if (data_cmd == NULL) {
589		device_printf(sc->sc_dev, "out of TX buffers.\n");
590		return (ENOBUFS);
591	}
592
593	/*
594	 * Transmit the URB containing the CMD data.
595	 */
596	memset(data_cmd->buf, 0, MCLBYTES);
597
598	mem = (struct upgt_lmac_mem *)data_cmd->buf;
599	mem->addr = htole32(sc->sc_memaddr_frame_start +
600	    UPGT_MEMSIZE_FRAME_HEAD);
601
602	filter = (struct upgt_lmac_filter *)(mem + 1);
603
604	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
605	filter->header1.type = UPGT_H1_TYPE_CTRL;
606	filter->header1.len = htole16(
607	    sizeof(struct upgt_lmac_filter) -
608	    sizeof(struct upgt_lmac_header));
609
610	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
611	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
612	filter->header2.flags = 0;
613
614	switch (state) {
615	case IEEE80211_S_INIT:
616		DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
617		    __func__);
618		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
619		break;
620	case IEEE80211_S_SCAN:
621		DPRINTF(sc, UPGT_DEBUG_STATE,
622		    "set MAC filter to SCAN (bssid %s)\n",
623		    ether_sprintf(ieee80211broadcastaddr));
624		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
625		IEEE80211_ADDR_COPY(filter->dst,
626		    vap ? vap->iv_myaddr : ic->ic_macaddr);
627		IEEE80211_ADDR_COPY(filter->src, ieee80211broadcastaddr);
628		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
629		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
630		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
631		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
632		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
633		break;
634	case IEEE80211_S_RUN:
635		ni = ieee80211_ref_node(vap->iv_bss);
636		/* XXX monitor mode isn't tested yet.  */
637		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
638			filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
639			IEEE80211_ADDR_COPY(filter->dst,
640			    vap ? vap->iv_myaddr : ic->ic_macaddr);
641			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
642			filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
643			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
644			filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
645			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
646			filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
647		} else {
648			DPRINTF(sc, UPGT_DEBUG_STATE,
649			    "set MAC filter to RUN (bssid %s)\n",
650			    ether_sprintf(ni->ni_bssid));
651			filter->type = htole16(UPGT_FILTER_TYPE_STA);
652			IEEE80211_ADDR_COPY(filter->dst,
653			    vap ? vap->iv_myaddr : ic->ic_macaddr);
654			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
655			filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
656			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
657			filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
658			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
659			filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
660		}
661		ieee80211_free_node(ni);
662		break;
663	default:
664		device_printf(sc->sc_dev,
665		    "MAC filter does not know that state\n");
666		break;
667	}
668
669	data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
670
671	mem->chksum = upgt_chksum_le((uint32_t *)filter,
672	    data_cmd->buflen - sizeof(*mem));
673
674	upgt_bulk_tx(sc, data_cmd);
675
676	return (0);
677}
678
679static void
680upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
681{
682	struct upgt_softc *sc = ic->ic_softc;
683	const struct ieee80211_txparam *tp;
684
685	/*
686	 * 0x01 = OFMD6   0x10 = DS1
687	 * 0x04 = OFDM9   0x11 = DS2
688	 * 0x06 = OFDM12  0x12 = DS5
689	 * 0x07 = OFDM18  0x13 = DS11
690	 * 0x08 = OFDM24
691	 * 0x09 = OFDM36
692	 * 0x0a = OFDM48
693	 * 0x0b = OFDM54
694	 */
695	const uint8_t rateset_auto_11b[] =
696	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
697	const uint8_t rateset_auto_11g[] =
698	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
699	const uint8_t rateset_fix_11bg[] =
700	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
701	      0x08, 0x09, 0x0a, 0x0b };
702
703	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
704
705	/* XXX */
706	if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
707		/*
708		 * Automatic rate control is done by the device.
709		 * We just pass the rateset from which the device
710		 * will pickup a rate.
711		 */
712		if (ic->ic_curmode == IEEE80211_MODE_11B)
713			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
714			    sizeof(sc->sc_cur_rateset));
715		if (ic->ic_curmode == IEEE80211_MODE_11G ||
716		    ic->ic_curmode == IEEE80211_MODE_AUTO)
717			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
718			    sizeof(sc->sc_cur_rateset));
719	} else {
720		/* set a fixed rate */
721		memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
722		    sizeof(sc->sc_cur_rateset));
723	}
724}
725
726static void
727upgt_set_multi(void *arg)
728{
729
730	/* XXX don't know how to set a device.  Lack of docs. */
731}
732
733static int
734upgt_transmit(struct ieee80211com *ic, struct mbuf *m)
735{
736	struct upgt_softc *sc = ic->ic_softc;
737	int error;
738
739	UPGT_LOCK(sc);
740	if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) {
741		UPGT_UNLOCK(sc);
742		return (ENXIO);
743	}
744	error = mbufq_enqueue(&sc->sc_snd, m);
745	if (error) {
746		UPGT_UNLOCK(sc);
747		return (error);
748	}
749	upgt_start(sc);
750	UPGT_UNLOCK(sc);
751
752	return (0);
753}
754
755static void
756upgt_start(struct upgt_softc *sc)
757{
758	struct upgt_data *data_tx;
759	struct ieee80211_node *ni;
760	struct mbuf *m;
761
762	UPGT_ASSERT_LOCKED(sc);
763
764	if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0)
765		return;
766
767	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
768		data_tx = upgt_gettxbuf(sc);
769		if (data_tx == NULL) {
770			mbufq_prepend(&sc->sc_snd, m);
771			break;
772		}
773
774		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
775		m->m_pkthdr.rcvif = NULL;
776
777		if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
778			if_inc_counter(ni->ni_vap->iv_ifp,
779			    IFCOUNTER_OERRORS, 1);
780			STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
781			UPGT_STAT_INC(sc, st_tx_inactive);
782			ieee80211_free_node(ni);
783			continue;
784		}
785		sc->sc_tx_timer = 5;
786	}
787}
788
789static int
790upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
791	const struct ieee80211_bpf_params *params)
792{
793	struct ieee80211com *ic = ni->ni_ic;
794	struct upgt_softc *sc = ic->ic_softc;
795	struct upgt_data *data_tx = NULL;
796
797	UPGT_LOCK(sc);
798	/* prevent management frames from being sent if we're not ready */
799	if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) {
800		m_freem(m);
801		ieee80211_free_node(ni);
802		UPGT_UNLOCK(sc);
803		return ENETDOWN;
804	}
805
806	data_tx = upgt_gettxbuf(sc);
807	if (data_tx == NULL) {
808		ieee80211_free_node(ni);
809		m_freem(m);
810		UPGT_UNLOCK(sc);
811		return (ENOBUFS);
812	}
813
814	if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
815		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
816		UPGT_STAT_INC(sc, st_tx_inactive);
817		ieee80211_free_node(ni);
818		UPGT_UNLOCK(sc);
819		return (EIO);
820	}
821	UPGT_UNLOCK(sc);
822
823	sc->sc_tx_timer = 5;
824	return (0);
825}
826
827static void
828upgt_watchdog(void *arg)
829{
830	struct upgt_softc *sc = arg;
831	struct ieee80211com *ic = &sc->sc_ic;
832
833	if (sc->sc_tx_timer > 0) {
834		if (--sc->sc_tx_timer == 0) {
835			device_printf(sc->sc_dev, "watchdog timeout\n");
836			/* upgt_init(sc); XXX needs a process context ? */
837			counter_u64_add(ic->ic_oerrors, 1);
838			return;
839		}
840		callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
841	}
842}
843
844static uint32_t
845upgt_mem_alloc(struct upgt_softc *sc)
846{
847	int i;
848
849	for (i = 0; i < sc->sc_memory.pages; i++) {
850		if (sc->sc_memory.page[i].used == 0) {
851			sc->sc_memory.page[i].used = 1;
852			return (sc->sc_memory.page[i].addr);
853		}
854	}
855
856	return (0);
857}
858
859static void
860upgt_scan_start(struct ieee80211com *ic)
861{
862	/* do nothing.  */
863}
864
865static void
866upgt_scan_end(struct ieee80211com *ic)
867{
868	/* do nothing.  */
869}
870
871static void
872upgt_set_channel(struct ieee80211com *ic)
873{
874	struct upgt_softc *sc = ic->ic_softc;
875
876	UPGT_LOCK(sc);
877	upgt_set_chan(sc, ic->ic_curchan);
878	UPGT_UNLOCK(sc);
879}
880
881static void
882upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
883{
884	struct ieee80211com *ic = &sc->sc_ic;
885	struct upgt_data *data_cmd;
886	struct upgt_lmac_mem *mem;
887	struct upgt_lmac_channel *chan;
888	int channel;
889
890	UPGT_ASSERT_LOCKED(sc);
891
892	channel = ieee80211_chan2ieee(ic, c);
893	if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
894		/* XXX should NEVER happen */
895		device_printf(sc->sc_dev,
896		    "%s: invalid channel %x\n", __func__, channel);
897		return;
898	}
899
900	DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
901
902	data_cmd = upgt_getbuf(sc);
903	if (data_cmd == NULL) {
904		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
905		return;
906	}
907	/*
908	 * Transmit the URB containing the CMD data.
909	 */
910	memset(data_cmd->buf, 0, MCLBYTES);
911
912	mem = (struct upgt_lmac_mem *)data_cmd->buf;
913	mem->addr = htole32(sc->sc_memaddr_frame_start +
914	    UPGT_MEMSIZE_FRAME_HEAD);
915
916	chan = (struct upgt_lmac_channel *)(mem + 1);
917
918	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
919	chan->header1.type = UPGT_H1_TYPE_CTRL;
920	chan->header1.len = htole16(
921	    sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
922
923	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
924	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
925	chan->header2.flags = 0;
926
927	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
928	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
929	chan->freq6 = sc->sc_eeprom_freq6[channel];
930	chan->settings = sc->sc_eeprom_freq6_settings;
931	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
932
933	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
934	    sizeof(chan->freq3_1));
935	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
936	    sizeof(sc->sc_eeprom_freq4[channel]));
937	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
938	    sizeof(chan->freq3_2));
939
940	data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
941
942	mem->chksum = upgt_chksum_le((uint32_t *)chan,
943	    data_cmd->buflen - sizeof(*mem));
944
945	upgt_bulk_tx(sc, data_cmd);
946}
947
948static struct ieee80211vap *
949upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
950    enum ieee80211_opmode opmode, int flags,
951    const uint8_t bssid[IEEE80211_ADDR_LEN],
952    const uint8_t mac[IEEE80211_ADDR_LEN])
953{
954	struct upgt_vap *uvp;
955	struct ieee80211vap *vap;
956
957	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
958		return NULL;
959	uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
960	    M_80211_VAP, M_NOWAIT | M_ZERO);
961	if (uvp == NULL)
962		return NULL;
963	vap = &uvp->vap;
964	/* enable s/w bmiss handling for sta mode */
965
966	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
967	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
968		/* out of memory */
969		free(uvp, M_80211_VAP);
970		return (NULL);
971	}
972
973	/* override state transition machine */
974	uvp->newstate = vap->iv_newstate;
975	vap->iv_newstate = upgt_newstate;
976
977	/* setup device rates */
978	upgt_setup_rates(vap, ic);
979
980	/* complete setup */
981	ieee80211_vap_attach(vap, ieee80211_media_change,
982	    ieee80211_media_status, mac);
983	ic->ic_opmode = opmode;
984	return vap;
985}
986
987static int
988upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
989{
990	struct upgt_vap *uvp = UPGT_VAP(vap);
991	struct ieee80211com *ic = vap->iv_ic;
992	struct upgt_softc *sc = ic->ic_softc;
993
994	/* do it in a process context */
995	sc->sc_state = nstate;
996
997	IEEE80211_UNLOCK(ic);
998	UPGT_LOCK(sc);
999	callout_stop(&sc->sc_led_ch);
1000	callout_stop(&sc->sc_watchdog_ch);
1001
1002	switch (nstate) {
1003	case IEEE80211_S_INIT:
1004		/* do not accept any frames if the device is down */
1005		(void)upgt_set_macfilter(sc, sc->sc_state);
1006		upgt_set_led(sc, UPGT_LED_OFF);
1007		break;
1008	case IEEE80211_S_SCAN:
1009		upgt_set_chan(sc, ic->ic_curchan);
1010		break;
1011	case IEEE80211_S_AUTH:
1012		upgt_set_chan(sc, ic->ic_curchan);
1013		break;
1014	case IEEE80211_S_ASSOC:
1015		break;
1016	case IEEE80211_S_RUN:
1017		upgt_set_macfilter(sc, sc->sc_state);
1018		upgt_set_led(sc, UPGT_LED_ON);
1019		break;
1020	default:
1021		break;
1022	}
1023	UPGT_UNLOCK(sc);
1024	IEEE80211_LOCK(ic);
1025	return (uvp->newstate(vap, nstate, arg));
1026}
1027
1028static void
1029upgt_vap_delete(struct ieee80211vap *vap)
1030{
1031	struct upgt_vap *uvp = UPGT_VAP(vap);
1032
1033	ieee80211_vap_detach(vap);
1034	free(uvp, M_80211_VAP);
1035}
1036
1037static void
1038upgt_update_mcast(struct ieee80211com *ic)
1039{
1040	struct upgt_softc *sc = ic->ic_softc;
1041
1042	upgt_set_multi(sc);
1043}
1044
1045static int
1046upgt_eeprom_parse(struct upgt_softc *sc)
1047{
1048	struct ieee80211com *ic = &sc->sc_ic;
1049	struct upgt_eeprom_header *eeprom_header;
1050	struct upgt_eeprom_option *eeprom_option;
1051	uint16_t option_len;
1052	uint16_t option_type;
1053	uint16_t preamble_len;
1054	int option_end = 0;
1055
1056	/* calculate eeprom options start offset */
1057	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1058	preamble_len = le16toh(eeprom_header->preamble_len);
1059	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1060	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1061
1062	while (!option_end) {
1063
1064		/* sanity check */
1065		if (eeprom_option >= (struct upgt_eeprom_option *)
1066		    (sc->sc_eeprom + UPGT_EEPROM_SIZE)) {
1067			return (EINVAL);
1068		}
1069
1070		/* the eeprom option length is stored in words */
1071		option_len =
1072		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1073		option_type =
1074		    le16toh(eeprom_option->type);
1075
1076		/* sanity check */
1077		if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE)
1078			return (EINVAL);
1079
1080		switch (option_type) {
1081		case UPGT_EEPROM_TYPE_NAME:
1082			DPRINTF(sc, UPGT_DEBUG_FW,
1083			    "EEPROM name len=%d\n", option_len);
1084			break;
1085		case UPGT_EEPROM_TYPE_SERIAL:
1086			DPRINTF(sc, UPGT_DEBUG_FW,
1087			    "EEPROM serial len=%d\n", option_len);
1088			break;
1089		case UPGT_EEPROM_TYPE_MAC:
1090			DPRINTF(sc, UPGT_DEBUG_FW,
1091			    "EEPROM mac len=%d\n", option_len);
1092
1093			IEEE80211_ADDR_COPY(ic->ic_macaddr,
1094			    eeprom_option->data);
1095			break;
1096		case UPGT_EEPROM_TYPE_HWRX:
1097			DPRINTF(sc, UPGT_DEBUG_FW,
1098			    "EEPROM hwrx len=%d\n", option_len);
1099
1100			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1101			break;
1102		case UPGT_EEPROM_TYPE_CHIP:
1103			DPRINTF(sc, UPGT_DEBUG_FW,
1104			    "EEPROM chip len=%d\n", option_len);
1105			break;
1106		case UPGT_EEPROM_TYPE_FREQ3:
1107			DPRINTF(sc, UPGT_DEBUG_FW,
1108			    "EEPROM freq3 len=%d\n", option_len);
1109
1110			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1111			    option_len);
1112			break;
1113		case UPGT_EEPROM_TYPE_FREQ4:
1114			DPRINTF(sc, UPGT_DEBUG_FW,
1115			    "EEPROM freq4 len=%d\n", option_len);
1116
1117			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1118			    option_len);
1119			break;
1120		case UPGT_EEPROM_TYPE_FREQ5:
1121			DPRINTF(sc, UPGT_DEBUG_FW,
1122			    "EEPROM freq5 len=%d\n", option_len);
1123			break;
1124		case UPGT_EEPROM_TYPE_FREQ6:
1125			DPRINTF(sc, UPGT_DEBUG_FW,
1126			    "EEPROM freq6 len=%d\n", option_len);
1127
1128			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1129			    option_len);
1130			break;
1131		case UPGT_EEPROM_TYPE_END:
1132			DPRINTF(sc, UPGT_DEBUG_FW,
1133			    "EEPROM end len=%d\n", option_len);
1134			option_end = 1;
1135			break;
1136		case UPGT_EEPROM_TYPE_OFF:
1137			DPRINTF(sc, UPGT_DEBUG_FW,
1138			    "%s: EEPROM off without end option\n", __func__);
1139			return (EIO);
1140		default:
1141			DPRINTF(sc, UPGT_DEBUG_FW,
1142			    "EEPROM unknown type 0x%04x len=%d\n",
1143			    option_type, option_len);
1144			break;
1145		}
1146
1147		/* jump to next EEPROM option */
1148		eeprom_option = (struct upgt_eeprom_option *)
1149		    (eeprom_option->data + option_len);
1150	}
1151	return (0);
1152}
1153
1154static void
1155upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1156{
1157	struct upgt_eeprom_freq3_header *freq3_header;
1158	struct upgt_lmac_freq3 *freq3;
1159	int i;
1160	int elements;
1161	int flags;
1162	unsigned channel;
1163
1164	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1165	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1166
1167	flags = freq3_header->flags;
1168	elements = freq3_header->elements;
1169
1170	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1171	    flags, elements);
1172
1173	if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0])))
1174		return;
1175
1176	for (i = 0; i < elements; i++) {
1177		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1178		if (channel >= IEEE80211_CHAN_MAX)
1179			continue;
1180
1181		sc->sc_eeprom_freq3[channel] = freq3[i];
1182
1183		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1184		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1185	}
1186}
1187
1188void
1189upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1190{
1191	struct upgt_eeprom_freq4_header *freq4_header;
1192	struct upgt_eeprom_freq4_1 *freq4_1;
1193	struct upgt_eeprom_freq4_2 *freq4_2;
1194	int i;
1195	int j;
1196	int elements;
1197	int settings;
1198	int flags;
1199	unsigned channel;
1200
1201	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1202	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1203	flags = freq4_header->flags;
1204	elements = freq4_header->elements;
1205	settings = freq4_header->settings;
1206
1207	/* we need this value later */
1208	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1209
1210	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1211	    flags, elements, settings);
1212
1213	if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0])))
1214		return;
1215
1216	for (i = 0; i < elements; i++) {
1217		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1218		if (channel >= IEEE80211_CHAN_MAX)
1219			continue;
1220
1221		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1222		for (j = 0; j < settings; j++) {
1223			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1224			sc->sc_eeprom_freq4[channel][j].pad = 0;
1225		}
1226
1227		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1228		    le16toh(freq4_1[i].freq), channel);
1229	}
1230}
1231
1232void
1233upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1234{
1235	struct upgt_lmac_freq6 *freq6;
1236	int i;
1237	int elements;
1238	unsigned channel;
1239
1240	freq6 = (struct upgt_lmac_freq6 *)data;
1241	elements = len / sizeof(struct upgt_lmac_freq6);
1242
1243	DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1244
1245	if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0])))
1246		return;
1247
1248	for (i = 0; i < elements; i++) {
1249		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1250		if (channel >= IEEE80211_CHAN_MAX)
1251			continue;
1252
1253		sc->sc_eeprom_freq6[channel] = freq6[i];
1254
1255		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1256		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1257	}
1258}
1259
1260static void
1261upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1262{
1263	struct upgt_eeprom_option_hwrx *option_hwrx;
1264
1265	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1266
1267	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1268
1269	DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1270	    sc->sc_eeprom_hwrx);
1271}
1272
1273static int
1274upgt_eeprom_read(struct upgt_softc *sc)
1275{
1276	struct upgt_data *data_cmd;
1277	struct upgt_lmac_mem *mem;
1278	struct upgt_lmac_eeprom	*eeprom;
1279	int block, error, offset;
1280
1281	UPGT_LOCK(sc);
1282	usb_pause_mtx(&sc->sc_mtx, 100);
1283
1284	offset = 0;
1285	block = UPGT_EEPROM_BLOCK_SIZE;
1286	while (offset < UPGT_EEPROM_SIZE) {
1287		DPRINTF(sc, UPGT_DEBUG_FW,
1288		    "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1289
1290		data_cmd = upgt_getbuf(sc);
1291		if (data_cmd == NULL) {
1292			UPGT_UNLOCK(sc);
1293			return (ENOBUFS);
1294		}
1295
1296		/*
1297		 * Transmit the URB containing the CMD data.
1298		 */
1299		memset(data_cmd->buf, 0, MCLBYTES);
1300
1301		mem = (struct upgt_lmac_mem *)data_cmd->buf;
1302		mem->addr = htole32(sc->sc_memaddr_frame_start +
1303		    UPGT_MEMSIZE_FRAME_HEAD);
1304
1305		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1306		eeprom->header1.flags = 0;
1307		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1308		eeprom->header1.len = htole16((
1309		    sizeof(struct upgt_lmac_eeprom) -
1310		    sizeof(struct upgt_lmac_header)) + block);
1311
1312		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1313		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1314		eeprom->header2.flags = 0;
1315
1316		eeprom->offset = htole16(offset);
1317		eeprom->len = htole16(block);
1318
1319		data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1320
1321		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1322		    data_cmd->buflen - sizeof(*mem));
1323		upgt_bulk_tx(sc, data_cmd);
1324
1325		error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1326		if (error != 0) {
1327			device_printf(sc->sc_dev,
1328			    "timeout while waiting for EEPROM data\n");
1329			UPGT_UNLOCK(sc);
1330			return (EIO);
1331		}
1332
1333		offset += block;
1334		if (UPGT_EEPROM_SIZE - offset < block)
1335			block = UPGT_EEPROM_SIZE - offset;
1336	}
1337
1338	UPGT_UNLOCK(sc);
1339	return (0);
1340}
1341
1342/*
1343 * When a rx data came in the function returns a mbuf and a rssi values.
1344 */
1345static struct mbuf *
1346upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1347{
1348	struct mbuf *m = NULL;
1349	struct upgt_softc *sc = usbd_xfer_softc(xfer);
1350	struct upgt_lmac_header *header;
1351	struct upgt_lmac_eeprom *eeprom;
1352	uint8_t h1_type;
1353	uint16_t h2_type;
1354	int actlen, sumlen;
1355
1356	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1357
1358	UPGT_ASSERT_LOCKED(sc);
1359
1360	if (actlen < 1)
1361		return (NULL);
1362
1363	/* Check only at the very beginning.  */
1364	if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1365	    (memcmp(data->buf, "OK", 2) == 0)) {
1366		sc->sc_flags |= UPGT_FLAG_FWLOADED;
1367		wakeup_one(sc);
1368		return (NULL);
1369	}
1370
1371	if (actlen < (int)UPGT_RX_MINSZ)
1372		return (NULL);
1373
1374	/*
1375	 * Check what type of frame came in.
1376	 */
1377	header = (struct upgt_lmac_header *)(data->buf + 4);
1378
1379	h1_type = header->header1.type;
1380	h2_type = le16toh(header->header2.type);
1381
1382	if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1383		eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1384		uint16_t eeprom_offset = le16toh(eeprom->offset);
1385		uint16_t eeprom_len = le16toh(eeprom->len);
1386
1387		DPRINTF(sc, UPGT_DEBUG_FW,
1388		    "received EEPROM block (offset=%d, len=%d)\n",
1389		    eeprom_offset, eeprom_len);
1390
1391		memcpy(sc->sc_eeprom + eeprom_offset,
1392		    data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1393		    eeprom_len);
1394
1395		/* EEPROM data has arrived in time, wakeup.  */
1396		wakeup(sc);
1397	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1398	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1399		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1400		    __func__);
1401		upgt_tx_done(sc, data->buf + 4);
1402	} else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1403	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1404		DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1405		    __func__);
1406		m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1407		    rssi);
1408	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1409	    h2_type == UPGT_H2_TYPE_STATS) {
1410		DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1411		    __func__);
1412		/* TODO: what could we do with the statistic data? */
1413	} else {
1414		/* ignore unknown frame types */
1415		DPRINTF(sc, UPGT_DEBUG_INTR,
1416		    "received unknown frame type 0x%02x\n",
1417		    header->header1.type);
1418	}
1419	return (m);
1420}
1421
1422/*
1423 * The firmware awaits a checksum for each frame we send to it.
1424 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1425 */
1426static uint32_t
1427upgt_chksum_le(const uint32_t *buf, size_t size)
1428{
1429	size_t i;
1430	uint32_t crc = 0;
1431
1432	for (i = 0; i < size; i += sizeof(uint32_t)) {
1433		crc = htole32(crc ^ *buf++);
1434		crc = htole32((crc >> 5) ^ (crc << 3));
1435	}
1436
1437	return (crc);
1438}
1439
1440static struct mbuf *
1441upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1442{
1443	struct ieee80211com *ic = &sc->sc_ic;
1444	struct upgt_lmac_rx_desc *rxdesc;
1445	struct mbuf *m;
1446
1447	/*
1448	 * don't pass packets to the ieee80211 framework if the driver isn't
1449	 * RUNNING.
1450	 */
1451	if (!(sc->sc_flags & UPGT_FLAG_INITDONE))
1452		return (NULL);
1453
1454	/* access RX packet descriptor */
1455	rxdesc = (struct upgt_lmac_rx_desc *)data;
1456
1457	/* create mbuf which is suitable for strict alignment archs */
1458	KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1459	    ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1460	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1461	if (m == NULL) {
1462		device_printf(sc->sc_dev, "could not create RX mbuf\n");
1463		return (NULL);
1464	}
1465	m_adj(m, ETHER_ALIGN);
1466	memcpy(mtod(m, char *), rxdesc->data, pkglen);
1467	/* trim FCS */
1468	m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1469
1470	if (ieee80211_radiotap_active(ic)) {
1471		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1472
1473		tap->wr_flags = 0;
1474		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1475		tap->wr_antsignal = rxdesc->rssi;
1476	}
1477
1478	DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1479	*rssi = rxdesc->rssi;
1480	return (m);
1481}
1482
1483static uint8_t
1484upgt_rx_rate(struct upgt_softc *sc, const int rate)
1485{
1486	struct ieee80211com *ic = &sc->sc_ic;
1487	static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1488	static const uint8_t ofdm_upgt2rate[12] =
1489	    { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1490
1491	if (ic->ic_curmode == IEEE80211_MODE_11B &&
1492	    !(rate < 0 || rate > 3))
1493		return cck_upgt2rate[rate & 0xf];
1494
1495	if (ic->ic_curmode == IEEE80211_MODE_11G &&
1496	    !(rate < 0 || rate > 11))
1497		return ofdm_upgt2rate[rate & 0xf];
1498
1499	return (0);
1500}
1501
1502static void
1503upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1504{
1505	struct upgt_lmac_tx_done_desc *desc;
1506	int i, freed = 0;
1507
1508	UPGT_ASSERT_LOCKED(sc);
1509
1510	desc = (struct upgt_lmac_tx_done_desc *)data;
1511
1512	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1513		struct upgt_data *data_tx = &sc->sc_tx_data[i];
1514
1515		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1516			upgt_mem_free(sc, data_tx->addr);
1517			data_tx->ni = NULL;
1518			data_tx->addr = 0;
1519			data_tx->m = NULL;
1520
1521			DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1522			    "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1523			    le32toh(desc->header2.reqid),
1524			    le16toh(desc->status), le16toh(desc->rssi));
1525			DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1526			    le16toh(desc->seq));
1527
1528			freed++;
1529		}
1530	}
1531
1532	if (freed != 0) {
1533		UPGT_UNLOCK(sc);
1534		sc->sc_tx_timer = 0;
1535		upgt_start(sc);
1536		UPGT_LOCK(sc);
1537	}
1538}
1539
1540static void
1541upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1542{
1543	int i;
1544
1545	for (i = 0; i < sc->sc_memory.pages; i++) {
1546		if (sc->sc_memory.page[i].addr == addr) {
1547			sc->sc_memory.page[i].used = 0;
1548			return;
1549		}
1550	}
1551
1552	device_printf(sc->sc_dev,
1553	    "could not free memory address 0x%08x\n", addr);
1554}
1555
1556static int
1557upgt_fw_load(struct upgt_softc *sc)
1558{
1559	const struct firmware *fw;
1560	struct upgt_data *data_cmd;
1561	struct upgt_fw_x2_header *x2;
1562	char start_fwload_cmd[] = { 0x3c, 0x0d };
1563	int error = 0;
1564	size_t offset;
1565	int bsize;
1566	int n;
1567	uint32_t crc32;
1568
1569	fw = firmware_get(upgt_fwname);
1570	if (fw == NULL) {
1571		device_printf(sc->sc_dev, "could not read microcode %s\n",
1572		    upgt_fwname);
1573		return (EIO);
1574	}
1575
1576	UPGT_LOCK(sc);
1577
1578	/* send firmware start load command */
1579	data_cmd = upgt_getbuf(sc);
1580	if (data_cmd == NULL) {
1581		error = ENOBUFS;
1582		goto fail;
1583	}
1584	data_cmd->buflen = sizeof(start_fwload_cmd);
1585	memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen);
1586	upgt_bulk_tx(sc, data_cmd);
1587
1588	/* send X2 header */
1589	data_cmd = upgt_getbuf(sc);
1590	if (data_cmd == NULL) {
1591		error = ENOBUFS;
1592		goto fail;
1593	}
1594	data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1595	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1596	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
1597	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1598	x2->len = htole32(fw->datasize);
1599	x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1600	    UPGT_X2_SIGNATURE_SIZE,
1601	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1602	    sizeof(uint32_t));
1603	upgt_bulk_tx(sc, data_cmd);
1604
1605	/* download firmware */
1606	for (offset = 0; offset < fw->datasize; offset += bsize) {
1607		if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1608			bsize = UPGT_FW_BLOCK_SIZE;
1609		else
1610			bsize = fw->datasize - offset;
1611
1612		data_cmd = upgt_getbuf(sc);
1613		if (data_cmd == NULL) {
1614			error = ENOBUFS;
1615			goto fail;
1616		}
1617		n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1618		    data_cmd->buf, bsize);
1619		data_cmd->buflen = bsize;
1620		upgt_bulk_tx(sc, data_cmd);
1621
1622		DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1623		    offset, n, bsize);
1624		bsize = n;
1625	}
1626	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1627
1628	/* load firmware */
1629	data_cmd = upgt_getbuf(sc);
1630	if (data_cmd == NULL) {
1631		error = ENOBUFS;
1632		goto fail;
1633	}
1634	crc32 = upgt_crc32_le(fw->data, fw->datasize);
1635	*((uint32_t *)(data_cmd->buf)    ) = crc32;
1636	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
1637	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
1638	data_cmd->buflen = 6;
1639	upgt_bulk_tx(sc, data_cmd);
1640
1641	/* waiting 'OK' response.  */
1642	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1643	error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1644	if (error != 0) {
1645		device_printf(sc->sc_dev, "firmware load failed\n");
1646		error = EIO;
1647	}
1648
1649	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1650fail:
1651	UPGT_UNLOCK(sc);
1652	firmware_put(fw, FIRMWARE_UNLOAD);
1653	return (error);
1654}
1655
1656static uint32_t
1657upgt_crc32_le(const void *buf, size_t size)
1658{
1659	uint32_t crc;
1660
1661	crc = ether_crc32_le(buf, size);
1662
1663	/* apply final XOR value as common for CRC-32 */
1664	crc = htole32(crc ^ 0xffffffffU);
1665
1666	return (crc);
1667}
1668
1669/*
1670 * While copying the version 2 firmware, we need to replace two characters:
1671 *
1672 * 0x7e -> 0x7d 0x5e
1673 * 0x7d -> 0x7d 0x5d
1674 */
1675static int
1676upgt_fw_copy(const uint8_t *src, char *dst, int size)
1677{
1678	int i, j;
1679
1680	for (i = 0, j = 0; i < size && j < size; i++) {
1681		switch (src[i]) {
1682		case 0x7e:
1683			dst[j] = 0x7d;
1684			j++;
1685			dst[j] = 0x5e;
1686			j++;
1687			break;
1688		case 0x7d:
1689			dst[j] = 0x7d;
1690			j++;
1691			dst[j] = 0x5d;
1692			j++;
1693			break;
1694		default:
1695			dst[j] = src[i];
1696			j++;
1697			break;
1698		}
1699	}
1700
1701	return (i);
1702}
1703
1704static int
1705upgt_mem_init(struct upgt_softc *sc)
1706{
1707	int i;
1708
1709	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1710		sc->sc_memory.page[i].used = 0;
1711
1712		if (i == 0) {
1713			/*
1714			 * The first memory page is always reserved for
1715			 * command data.
1716			 */
1717			sc->sc_memory.page[i].addr =
1718			    sc->sc_memaddr_frame_start + MCLBYTES;
1719		} else {
1720			sc->sc_memory.page[i].addr =
1721			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
1722		}
1723
1724		if (sc->sc_memory.page[i].addr + MCLBYTES >=
1725		    sc->sc_memaddr_frame_end)
1726			break;
1727
1728		DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1729		    i, sc->sc_memory.page[i].addr);
1730	}
1731
1732	sc->sc_memory.pages = i;
1733
1734	DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1735	return (0);
1736}
1737
1738static int
1739upgt_fw_verify(struct upgt_softc *sc)
1740{
1741	const struct firmware *fw;
1742	const struct upgt_fw_bra_option *bra_opt;
1743	const struct upgt_fw_bra_descr *descr;
1744	const uint8_t *p;
1745	const uint32_t *uc;
1746	uint32_t bra_option_type, bra_option_len;
1747	size_t offset;
1748	int bra_end = 0;
1749	int error = 0;
1750
1751	fw = firmware_get(upgt_fwname);
1752	if (fw == NULL) {
1753		device_printf(sc->sc_dev, "could not read microcode %s\n",
1754		    upgt_fwname);
1755		return EIO;
1756	}
1757
1758	/*
1759	 * Seek to beginning of Boot Record Area (BRA).
1760	 */
1761	for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1762		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1763		if (*uc == 0)
1764			break;
1765	}
1766	for (; offset < fw->datasize; offset += sizeof(*uc)) {
1767		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1768		if (*uc != 0)
1769			break;
1770	}
1771	if (offset == fw->datasize) {
1772		device_printf(sc->sc_dev,
1773		    "firmware Boot Record Area not found\n");
1774		error = EIO;
1775		goto fail;
1776	}
1777
1778	DPRINTF(sc, UPGT_DEBUG_FW,
1779	    "firmware Boot Record Area found at offset %d\n", offset);
1780
1781	/*
1782	 * Parse Boot Record Area (BRA) options.
1783	 */
1784	while (offset < fw->datasize && bra_end == 0) {
1785		/* get current BRA option */
1786		p = (const uint8_t *)fw->data + offset;
1787		bra_opt = (const struct upgt_fw_bra_option *)p;
1788		bra_option_type = le32toh(bra_opt->type);
1789		bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1790
1791		switch (bra_option_type) {
1792		case UPGT_BRA_TYPE_FW:
1793			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1794			    bra_option_len);
1795
1796			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1797				device_printf(sc->sc_dev,
1798				    "wrong UPGT_BRA_TYPE_FW len\n");
1799				error = EIO;
1800				goto fail;
1801			}
1802			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1803			    bra_option_len) == 0) {
1804				sc->sc_fw_type = UPGT_FWTYPE_LM86;
1805				break;
1806			}
1807			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1808			    bra_option_len) == 0) {
1809				sc->sc_fw_type = UPGT_FWTYPE_LM87;
1810				break;
1811			}
1812			device_printf(sc->sc_dev,
1813			    "unsupported firmware type\n");
1814			error = EIO;
1815			goto fail;
1816		case UPGT_BRA_TYPE_VERSION:
1817			DPRINTF(sc, UPGT_DEBUG_FW,
1818			    "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1819			break;
1820		case UPGT_BRA_TYPE_DEPIF:
1821			DPRINTF(sc, UPGT_DEBUG_FW,
1822			    "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1823			break;
1824		case UPGT_BRA_TYPE_EXPIF:
1825			DPRINTF(sc, UPGT_DEBUG_FW,
1826			    "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1827			break;
1828		case UPGT_BRA_TYPE_DESCR:
1829			DPRINTF(sc, UPGT_DEBUG_FW,
1830			    "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1831
1832			descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1833
1834			sc->sc_memaddr_frame_start =
1835			    le32toh(descr->memaddr_space_start);
1836			sc->sc_memaddr_frame_end =
1837			    le32toh(descr->memaddr_space_end);
1838
1839			DPRINTF(sc, UPGT_DEBUG_FW,
1840			    "memory address space start=0x%08x\n",
1841			    sc->sc_memaddr_frame_start);
1842			DPRINTF(sc, UPGT_DEBUG_FW,
1843			    "memory address space end=0x%08x\n",
1844			    sc->sc_memaddr_frame_end);
1845			break;
1846		case UPGT_BRA_TYPE_END:
1847			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1848			    bra_option_len);
1849			bra_end = 1;
1850			break;
1851		default:
1852			DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1853			    bra_option_len);
1854			error = EIO;
1855			goto fail;
1856		}
1857
1858		/* jump to next BRA option */
1859		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1860	}
1861
1862	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1863fail:
1864	firmware_put(fw, FIRMWARE_UNLOAD);
1865	return (error);
1866}
1867
1868static void
1869upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1870{
1871
1872	UPGT_ASSERT_LOCKED(sc);
1873
1874	STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1875	UPGT_STAT_INC(sc, st_tx_pending);
1876	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1877}
1878
1879static int
1880upgt_device_reset(struct upgt_softc *sc)
1881{
1882	struct upgt_data *data;
1883	char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1884
1885	UPGT_LOCK(sc);
1886
1887	data = upgt_getbuf(sc);
1888	if (data == NULL) {
1889		UPGT_UNLOCK(sc);
1890		return (ENOBUFS);
1891	}
1892	memcpy(data->buf, init_cmd, sizeof(init_cmd));
1893	data->buflen = sizeof(init_cmd);
1894	upgt_bulk_tx(sc, data);
1895	usb_pause_mtx(&sc->sc_mtx, 100);
1896
1897	UPGT_UNLOCK(sc);
1898	DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1899	return (0);
1900}
1901
1902static int
1903upgt_alloc_tx(struct upgt_softc *sc)
1904{
1905	int i;
1906
1907	STAILQ_INIT(&sc->sc_tx_active);
1908	STAILQ_INIT(&sc->sc_tx_inactive);
1909	STAILQ_INIT(&sc->sc_tx_pending);
1910
1911	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1912		struct upgt_data *data = &sc->sc_tx_data[i];
1913		data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES);
1914		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1915		UPGT_STAT_INC(sc, st_tx_inactive);
1916	}
1917
1918	return (0);
1919}
1920
1921static int
1922upgt_alloc_rx(struct upgt_softc *sc)
1923{
1924	int i;
1925
1926	STAILQ_INIT(&sc->sc_rx_active);
1927	STAILQ_INIT(&sc->sc_rx_inactive);
1928
1929	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1930		struct upgt_data *data = &sc->sc_rx_data[i];
1931		data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES);
1932		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1933	}
1934	return (0);
1935}
1936
1937static int
1938upgt_detach(device_t dev)
1939{
1940	struct upgt_softc *sc = device_get_softc(dev);
1941	struct ieee80211com *ic = &sc->sc_ic;
1942	unsigned int x;
1943
1944	/*
1945	 * Prevent further allocations from RX/TX/CMD
1946	 * data lists and ioctls
1947	 */
1948	UPGT_LOCK(sc);
1949	sc->sc_flags |= UPGT_FLAG_DETACHED;
1950
1951	STAILQ_INIT(&sc->sc_tx_active);
1952	STAILQ_INIT(&sc->sc_tx_inactive);
1953	STAILQ_INIT(&sc->sc_tx_pending);
1954
1955	STAILQ_INIT(&sc->sc_rx_active);
1956	STAILQ_INIT(&sc->sc_rx_inactive);
1957
1958	upgt_stop(sc);
1959	UPGT_UNLOCK(sc);
1960
1961	callout_drain(&sc->sc_led_ch);
1962	callout_drain(&sc->sc_watchdog_ch);
1963
1964	/* drain USB transfers */
1965	for (x = 0; x != UPGT_N_XFERS; x++)
1966		usbd_transfer_drain(sc->sc_xfer[x]);
1967
1968	/* free data buffers */
1969	UPGT_LOCK(sc);
1970	upgt_free_rx(sc);
1971	upgt_free_tx(sc);
1972	UPGT_UNLOCK(sc);
1973
1974	/* free USB transfers and some data buffers */
1975	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
1976
1977	ieee80211_ifdetach(ic);
1978	mbufq_drain(&sc->sc_snd);
1979	mtx_destroy(&sc->sc_mtx);
1980
1981	return (0);
1982}
1983
1984static void
1985upgt_free_rx(struct upgt_softc *sc)
1986{
1987	int i;
1988
1989	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1990		struct upgt_data *data = &sc->sc_rx_data[i];
1991
1992		data->buf = NULL;
1993		data->ni = NULL;
1994	}
1995}
1996
1997static void
1998upgt_free_tx(struct upgt_softc *sc)
1999{
2000	int i;
2001
2002	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2003		struct upgt_data *data = &sc->sc_tx_data[i];
2004
2005		if (data->ni != NULL)
2006			ieee80211_free_node(data->ni);
2007
2008		data->buf = NULL;
2009		data->ni = NULL;
2010	}
2011}
2012
2013static void
2014upgt_abort_xfers_locked(struct upgt_softc *sc)
2015{
2016	int i;
2017
2018	UPGT_ASSERT_LOCKED(sc);
2019	/* abort any pending transfers */
2020	for (i = 0; i < UPGT_N_XFERS; i++)
2021		usbd_transfer_stop(sc->sc_xfer[i]);
2022}
2023
2024static void
2025upgt_abort_xfers(struct upgt_softc *sc)
2026{
2027
2028	UPGT_LOCK(sc);
2029	upgt_abort_xfers_locked(sc);
2030	UPGT_UNLOCK(sc);
2031}
2032
2033#define	UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2034	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2035
2036static void
2037upgt_sysctl_node(struct upgt_softc *sc)
2038{
2039	struct sysctl_ctx_list *ctx;
2040	struct sysctl_oid_list *child;
2041	struct sysctl_oid *tree;
2042	struct upgt_stat *stats;
2043
2044	stats = &sc->sc_stat;
2045	ctx = device_get_sysctl_ctx(sc->sc_dev);
2046	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2047
2048	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2049	    NULL, "UPGT statistics");
2050	child = SYSCTL_CHILDREN(tree);
2051	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2052	    &stats->st_tx_active, "Active numbers in TX queue");
2053	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2054	    &stats->st_tx_inactive, "Inactive numbers in TX queue");
2055	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2056	    &stats->st_tx_pending, "Pending numbers in TX queue");
2057}
2058
2059#undef UPGT_SYSCTL_STAT_ADD32
2060
2061static struct upgt_data *
2062_upgt_getbuf(struct upgt_softc *sc)
2063{
2064	struct upgt_data *bf;
2065
2066	bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2067	if (bf != NULL) {
2068		STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2069		UPGT_STAT_DEC(sc, st_tx_inactive);
2070	} else
2071		bf = NULL;
2072	if (bf == NULL)
2073		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2074		    "out of xmit buffers");
2075	return (bf);
2076}
2077
2078static struct upgt_data *
2079upgt_getbuf(struct upgt_softc *sc)
2080{
2081	struct upgt_data *bf;
2082
2083	UPGT_ASSERT_LOCKED(sc);
2084
2085	bf = _upgt_getbuf(sc);
2086	if (bf == NULL)
2087		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2088
2089	return (bf);
2090}
2091
2092static struct upgt_data *
2093upgt_gettxbuf(struct upgt_softc *sc)
2094{
2095	struct upgt_data *bf;
2096
2097	UPGT_ASSERT_LOCKED(sc);
2098
2099	bf = upgt_getbuf(sc);
2100	if (bf == NULL)
2101		return (NULL);
2102
2103	bf->addr = upgt_mem_alloc(sc);
2104	if (bf->addr == 0) {
2105		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2106		    __func__);
2107		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2108		UPGT_STAT_INC(sc, st_tx_inactive);
2109		return (NULL);
2110	}
2111	return (bf);
2112}
2113
2114static int
2115upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2116    struct upgt_data *data)
2117{
2118	struct ieee80211vap *vap = ni->ni_vap;
2119	int error = 0, len;
2120	struct ieee80211_frame *wh;
2121	struct ieee80211_key *k;
2122	struct upgt_lmac_mem *mem;
2123	struct upgt_lmac_tx_desc *txdesc;
2124
2125	UPGT_ASSERT_LOCKED(sc);
2126
2127	upgt_set_led(sc, UPGT_LED_BLINK);
2128
2129	/*
2130	 * Software crypto.
2131	 */
2132	wh = mtod(m, struct ieee80211_frame *);
2133	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2134		k = ieee80211_crypto_encap(ni, m);
2135		if (k == NULL) {
2136			device_printf(sc->sc_dev,
2137			    "ieee80211_crypto_encap returns NULL.\n");
2138			error = EIO;
2139			goto done;
2140		}
2141
2142		/* in case packet header moved, reset pointer */
2143		wh = mtod(m, struct ieee80211_frame *);
2144	}
2145
2146	/* Transmit the URB containing the TX data.  */
2147	memset(data->buf, 0, MCLBYTES);
2148	mem = (struct upgt_lmac_mem *)data->buf;
2149	mem->addr = htole32(data->addr);
2150	txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2151
2152	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2153	    IEEE80211_FC0_TYPE_MGT) {
2154		/* mgmt frames  */
2155		txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2156		/* always send mgmt frames at lowest rate (DS1) */
2157		memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2158	} else {
2159		/* data frames  */
2160		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2161		memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates));
2162	}
2163	txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2164	txdesc->header1.len = htole16(m->m_pkthdr.len);
2165	txdesc->header2.reqid = htole32(data->addr);
2166	txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2167	txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2168	txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2169	txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2170
2171	if (ieee80211_radiotap_active_vap(vap)) {
2172		struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2173
2174		tap->wt_flags = 0;
2175		tap->wt_rate = 0;	/* XXX where to get from? */
2176
2177		ieee80211_radiotap_tx(vap, m);
2178	}
2179
2180	/* copy frame below our TX descriptor header */
2181	m_copydata(m, 0, m->m_pkthdr.len,
2182	    data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2183	/* calculate frame size */
2184	len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2185	/* we need to align the frame to a 4 byte boundary */
2186	len = (len + 3) & ~3;
2187	/* calculate frame checksum */
2188	mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2189	data->ni = ni;
2190	data->m = m;
2191	data->buflen = len;
2192
2193	DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2194	    __func__, len);
2195	KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2196
2197	upgt_bulk_tx(sc, data);
2198done:
2199	/*
2200	 * If we don't regulary read the device statistics, the RX queue
2201	 * will stall.  It's strange, but it works, so we keep reading
2202	 * the statistics here.  *shrug*
2203	 */
2204	if (!(vap->iv_ifp->if_get_counter(vap->iv_ifp, IFCOUNTER_OPACKETS) %
2205	    UPGT_TX_STAT_INTERVAL))
2206		upgt_get_stats(sc);
2207
2208	return (error);
2209}
2210
2211static void
2212upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2213{
2214	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2215	struct ieee80211com *ic = &sc->sc_ic;
2216	struct ieee80211_frame *wh;
2217	struct ieee80211_node *ni;
2218	struct mbuf *m = NULL;
2219	struct upgt_data *data;
2220	int8_t nf;
2221	int rssi = -1;
2222
2223	UPGT_ASSERT_LOCKED(sc);
2224
2225	switch (USB_GET_STATE(xfer)) {
2226	case USB_ST_TRANSFERRED:
2227		data = STAILQ_FIRST(&sc->sc_rx_active);
2228		if (data == NULL)
2229			goto setup;
2230		STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2231		m = upgt_rxeof(xfer, data, &rssi);
2232		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2233		/* FALLTHROUGH */
2234	case USB_ST_SETUP:
2235setup:
2236		data = STAILQ_FIRST(&sc->sc_rx_inactive);
2237		if (data == NULL)
2238			return;
2239		STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2240		STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2241		usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES);
2242		usbd_transfer_submit(xfer);
2243
2244		/*
2245		 * To avoid LOR we should unlock our private mutex here to call
2246		 * ieee80211_input() because here is at the end of a USB
2247		 * callback and safe to unlock.
2248		 */
2249		UPGT_UNLOCK(sc);
2250		if (m != NULL) {
2251			wh = mtod(m, struct ieee80211_frame *);
2252			ni = ieee80211_find_rxnode(ic,
2253			    (struct ieee80211_frame_min *)wh);
2254			nf = -95;	/* XXX */
2255			if (ni != NULL) {
2256				(void) ieee80211_input(ni, m, rssi, nf);
2257				/* node is no longer needed */
2258				ieee80211_free_node(ni);
2259			} else
2260				(void) ieee80211_input_all(ic, m, rssi, nf);
2261			m = NULL;
2262		}
2263		UPGT_LOCK(sc);
2264		upgt_start(sc);
2265		break;
2266	default:
2267		/* needs it to the inactive queue due to a error.  */
2268		data = STAILQ_FIRST(&sc->sc_rx_active);
2269		if (data != NULL) {
2270			STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2271			STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2272		}
2273		if (error != USB_ERR_CANCELLED) {
2274			usbd_xfer_set_stall(xfer);
2275			counter_u64_add(ic->ic_ierrors, 1);
2276			goto setup;
2277		}
2278		break;
2279	}
2280}
2281
2282static void
2283upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2284{
2285	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2286	struct upgt_data *data;
2287
2288	UPGT_ASSERT_LOCKED(sc);
2289	switch (USB_GET_STATE(xfer)) {
2290	case USB_ST_TRANSFERRED:
2291		data = STAILQ_FIRST(&sc->sc_tx_active);
2292		if (data == NULL)
2293			goto setup;
2294		STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2295		UPGT_STAT_DEC(sc, st_tx_active);
2296		upgt_txeof(xfer, data);
2297		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2298		UPGT_STAT_INC(sc, st_tx_inactive);
2299		/* FALLTHROUGH */
2300	case USB_ST_SETUP:
2301setup:
2302		data = STAILQ_FIRST(&sc->sc_tx_pending);
2303		if (data == NULL) {
2304			DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2305			    __func__);
2306			return;
2307		}
2308		STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2309		UPGT_STAT_DEC(sc, st_tx_pending);
2310		STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2311		UPGT_STAT_INC(sc, st_tx_active);
2312
2313		usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2314		usbd_transfer_submit(xfer);
2315		upgt_start(sc);
2316		break;
2317	default:
2318		data = STAILQ_FIRST(&sc->sc_tx_active);
2319		if (data == NULL)
2320			goto setup;
2321		if (data->ni != NULL) {
2322			if_inc_counter(data->ni->ni_vap->iv_ifp,
2323			    IFCOUNTER_OERRORS, 1);
2324			ieee80211_free_node(data->ni);
2325			data->ni = NULL;
2326		}
2327		if (error != USB_ERR_CANCELLED) {
2328			usbd_xfer_set_stall(xfer);
2329			goto setup;
2330		}
2331		break;
2332	}
2333}
2334
2335static device_method_t upgt_methods[] = {
2336        /* Device interface */
2337        DEVMETHOD(device_probe, upgt_match),
2338        DEVMETHOD(device_attach, upgt_attach),
2339        DEVMETHOD(device_detach, upgt_detach),
2340	DEVMETHOD_END
2341};
2342
2343static driver_t upgt_driver = {
2344	.name = "upgt",
2345	.methods = upgt_methods,
2346	.size = sizeof(struct upgt_softc)
2347};
2348
2349static devclass_t upgt_devclass;
2350
2351DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2352MODULE_VERSION(if_upgt, 1);
2353MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2354MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2355MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);
2356