if_upgt.c revision 212127
1/*	$OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2/*	$FreeBSD: head/sys/dev/usb/wlan/if_upgt.c 212127 2010-09-02 03:28:03Z thompsa $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/param.h>
21#include <sys/systm.h>
22#include <sys/kernel.h>
23#include <sys/endian.h>
24#include <sys/firmware.h>
25#include <sys/linker.h>
26#include <sys/mbuf.h>
27#include <sys/malloc.h>
28#include <sys/module.h>
29#include <sys/socket.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32
33#include <net/if.h>
34#include <net/if_arp.h>
35#include <net/ethernet.h>
36#include <net/if_dl.h>
37#include <net/if_media.h>
38#include <net/if_types.h>
39
40#include <sys/bus.h>
41#include <machine/bus.h>
42
43#include <net80211/ieee80211_var.h>
44#include <net80211/ieee80211_phy.h>
45#include <net80211/ieee80211_radiotap.h>
46#include <net80211/ieee80211_regdomain.h>
47
48#include <net/bpf.h>
49
50#include <dev/usb/usb.h>
51#include <dev/usb/usbdi.h>
52#include "usbdevs.h"
53
54#include <dev/usb/wlan/if_upgtvar.h>
55
56/*
57 * Driver for the USB PrismGT devices.
58 *
59 * For now just USB 2.0 devices with the GW3887 chipset are supported.
60 * The driver has been written based on the firmware version 2.13.1.0_LM87.
61 *
62 * TODO's:
63 * - MONITOR mode test.
64 * - Add HOSTAP mode.
65 * - Add IBSS mode.
66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67 *
68 * Parts of this driver has been influenced by reading the p54u driver
69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70 * Sebastien Bourdeauducq <lekernel@prism54.org>.
71 */
72
73SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74    "USB PrismGT GW3887 driver parameters");
75
76#ifdef UPGT_DEBUG
77int upgt_debug = 0;
78SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug,
79	    0, "control debugging printfs");
80TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81enum {
82	UPGT_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
83	UPGT_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
84	UPGT_DEBUG_RESET	= 0x00000004,	/* reset processing */
85	UPGT_DEBUG_INTR		= 0x00000008,	/* INTR */
86	UPGT_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
87	UPGT_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
88	UPGT_DEBUG_STATE	= 0x00000040,	/* 802.11 state transitions */
89	UPGT_DEBUG_STAT		= 0x00000080,	/* statistic */
90	UPGT_DEBUG_FW		= 0x00000100,	/* firmware */
91	UPGT_DEBUG_ANY		= 0xffffffff
92};
93#define	DPRINTF(sc, m, fmt, ...) do {				\
94	if (sc->sc_debug & (m))					\
95		printf(fmt, __VA_ARGS__);			\
96} while (0)
97#else
98#define	DPRINTF(sc, m, fmt, ...) do {				\
99	(void) sc;						\
100} while (0)
101#endif
102
103/*
104 * Prototypes.
105 */
106static device_probe_t upgt_match;
107static device_attach_t upgt_attach;
108static device_detach_t upgt_detach;
109static int	upgt_alloc_tx(struct upgt_softc *);
110static int	upgt_alloc_rx(struct upgt_softc *);
111static int	upgt_device_reset(struct upgt_softc *);
112static void	upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113static int	upgt_fw_verify(struct upgt_softc *);
114static int	upgt_mem_init(struct upgt_softc *);
115static int	upgt_fw_load(struct upgt_softc *);
116static int	upgt_fw_copy(const uint8_t *, char *, int);
117static uint32_t	upgt_crc32_le(const void *, size_t);
118static struct mbuf *
119		upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120static struct mbuf *
121		upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122static void	upgt_txeof(struct usb_xfer *, struct upgt_data *);
123static int	upgt_eeprom_read(struct upgt_softc *);
124static int	upgt_eeprom_parse(struct upgt_softc *);
125static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
130static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
131static void	upgt_init(void *);
132static void	upgt_init_locked(struct upgt_softc *);
133static int	upgt_ioctl(struct ifnet *, u_long, caddr_t);
134static void	upgt_start(struct ifnet *);
135static int	upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136		    const struct ieee80211_bpf_params *);
137static void	upgt_scan_start(struct ieee80211com *);
138static void	upgt_scan_end(struct ieee80211com *);
139static void	upgt_set_channel(struct ieee80211com *);
140static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141		    const char name[IFNAMSIZ], int unit, int opmode,
142		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
143		    const uint8_t mac[IEEE80211_ADDR_LEN]);
144static void	upgt_vap_delete(struct ieee80211vap *);
145static void	upgt_update_mcast(struct ifnet *);
146static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
147static void	upgt_set_multi(void *);
148static void	upgt_stop(struct upgt_softc *);
149static void	upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
151static int	upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152static void	upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153static void	upgt_set_led(struct upgt_softc *, int);
154static void	upgt_set_led_blink(void *);
155static void	upgt_get_stats(struct upgt_softc *);
156static void	upgt_mem_free(struct upgt_softc *, uint32_t);
157static uint32_t	upgt_mem_alloc(struct upgt_softc *);
158static void	upgt_free_tx(struct upgt_softc *);
159static void	upgt_free_rx(struct upgt_softc *);
160static void	upgt_watchdog(void *);
161static void	upgt_abort_xfers(struct upgt_softc *);
162static void	upgt_abort_xfers_locked(struct upgt_softc *);
163static void	upgt_sysctl_node(struct upgt_softc *);
164static struct upgt_data *
165		upgt_getbuf(struct upgt_softc *);
166static struct upgt_data *
167		upgt_gettxbuf(struct upgt_softc *);
168static int	upgt_tx_start(struct upgt_softc *, struct mbuf *,
169		    struct ieee80211_node *, struct upgt_data *);
170
171static const char *upgt_fwname = "upgt-gw3887";
172
173static const struct usb_device_id upgt_devs_2[] = {
174#define	UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175	/* version 2 devices */
176	UPGT_DEV(ACCTON,	PRISM_GT),
177	UPGT_DEV(BELKIN,	F5D7050),
178	UPGT_DEV(CISCOLINKSYS,	WUSB54AG),
179	UPGT_DEV(CONCEPTRONIC,	PRISM_GT),
180	UPGT_DEV(DELL,		PRISM_GT_1),
181	UPGT_DEV(DELL,		PRISM_GT_2),
182	UPGT_DEV(FSC,		E5400),
183	UPGT_DEV(GLOBESPAN,	PRISM_GT_1),
184	UPGT_DEV(GLOBESPAN,	PRISM_GT_2),
185	UPGT_DEV(INTERSIL,	PRISM_GT),
186	UPGT_DEV(SMC,		2862WG),
187	UPGT_DEV(USR,		USR5422),
188	UPGT_DEV(WISTRONNEWEB,	UR045G),
189	UPGT_DEV(XYRATEX,	PRISM_GT_1),
190	UPGT_DEV(XYRATEX,	PRISM_GT_2),
191	UPGT_DEV(ZCOM,		XG703A),
192	UPGT_DEV(ZCOM,		XM142)
193};
194
195static usb_callback_t upgt_bulk_rx_callback;
196static usb_callback_t upgt_bulk_tx_callback;
197
198static const struct usb_config upgt_config[UPGT_N_XFERS] = {
199	[UPGT_BULK_TX] = {
200		.type = UE_BULK,
201		.endpoint = UE_ADDR_ANY,
202		.direction = UE_DIR_OUT,
203		.bufsize = MCLBYTES,
204		.flags = {
205			.ext_buffer = 1,
206			.force_short_xfer = 1,
207			.pipe_bof = 1
208		},
209		.callback = upgt_bulk_tx_callback,
210		.timeout = UPGT_USB_TIMEOUT,	/* ms */
211	},
212	[UPGT_BULK_RX] = {
213		.type = UE_BULK,
214		.endpoint = UE_ADDR_ANY,
215		.direction = UE_DIR_IN,
216		.bufsize = MCLBYTES,
217		.flags = {
218			.ext_buffer = 1,
219			.pipe_bof = 1,
220			.short_xfer_ok = 1
221		},
222		.callback = upgt_bulk_rx_callback,
223	},
224};
225
226static int
227upgt_match(device_t dev)
228{
229	struct usb_attach_arg *uaa = device_get_ivars(dev);
230
231	if (uaa->usb_mode != USB_MODE_HOST)
232		return (ENXIO);
233	if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
234		return (ENXIO);
235	if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
236		return (ENXIO);
237
238	return (usbd_lookup_id_by_uaa(upgt_devs_2, sizeof(upgt_devs_2), uaa));
239}
240
241static int
242upgt_attach(device_t dev)
243{
244	int error;
245	struct ieee80211com *ic;
246	struct ifnet *ifp;
247	struct upgt_softc *sc = device_get_softc(dev);
248	struct usb_attach_arg *uaa = device_get_ivars(dev);
249	uint8_t bands, iface_index = UPGT_IFACE_INDEX;
250
251	sc->sc_dev = dev;
252	sc->sc_udev = uaa->device;
253#ifdef UPGT_DEBUG
254	sc->sc_debug = upgt_debug;
255#endif
256	device_set_usb_desc(dev);
257
258	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
259	    MTX_DEF);
260	callout_init(&sc->sc_led_ch, 0);
261	callout_init(&sc->sc_watchdog_ch, 0);
262
263	/* Allocate TX and RX xfers.  */
264	error = upgt_alloc_tx(sc);
265	if (error)
266		goto fail1;
267	error = upgt_alloc_rx(sc);
268	if (error)
269		goto fail2;
270
271	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
272	    upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
273	if (error) {
274		device_printf(dev, "could not allocate USB transfers, "
275		    "err=%s\n", usbd_errstr(error));
276		goto fail3;
277	}
278
279	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
280	if (ifp == NULL) {
281		device_printf(dev, "can not if_alloc()\n");
282		goto fail4;
283	}
284
285	/* Initialize the device.  */
286	error = upgt_device_reset(sc);
287	if (error)
288		goto fail5;
289	/* Verify the firmware.  */
290	error = upgt_fw_verify(sc);
291	if (error)
292		goto fail5;
293	/* Calculate device memory space.  */
294	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
295		device_printf(dev,
296		    "could not find memory space addresses on FW\n");
297		error = EIO;
298		goto fail5;
299	}
300	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
301	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
302
303	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
304	    sc->sc_memaddr_frame_start);
305	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
306	    sc->sc_memaddr_frame_end);
307	DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
308	    sc->sc_memaddr_rx_start);
309
310	upgt_mem_init(sc);
311
312	/* Load the firmware.  */
313	error = upgt_fw_load(sc);
314	if (error)
315		goto fail5;
316
317	/* Read the whole EEPROM content and parse it.  */
318	error = upgt_eeprom_read(sc);
319	if (error)
320		goto fail5;
321	error = upgt_eeprom_parse(sc);
322	if (error)
323		goto fail5;
324
325	/* all works related with the device have done here. */
326	upgt_abort_xfers(sc);
327
328	/* Setup the 802.11 device.  */
329	ifp->if_softc = sc;
330	if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
331	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332	ifp->if_init = upgt_init;
333	ifp->if_ioctl = upgt_ioctl;
334	ifp->if_start = upgt_start;
335	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
336	IFQ_SET_READY(&ifp->if_snd);
337
338	ic = ifp->if_l2com;
339	ic->ic_ifp = ifp;
340	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
341	ic->ic_opmode = IEEE80211_M_STA;
342	/* set device capabilities */
343	ic->ic_caps =
344		  IEEE80211_C_STA		/* station mode */
345		| IEEE80211_C_MONITOR		/* monitor mode */
346		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
347	        | IEEE80211_C_SHSLOT		/* short slot time supported */
348		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
349	        | IEEE80211_C_WPA		/* 802.11i */
350		;
351
352	bands = 0;
353	setbit(&bands, IEEE80211_MODE_11B);
354	setbit(&bands, IEEE80211_MODE_11G);
355	ieee80211_init_channels(ic, NULL, &bands);
356
357	ieee80211_ifattach(ic, sc->sc_myaddr);
358	ic->ic_raw_xmit = upgt_raw_xmit;
359	ic->ic_scan_start = upgt_scan_start;
360	ic->ic_scan_end = upgt_scan_end;
361	ic->ic_set_channel = upgt_set_channel;
362
363	ic->ic_vap_create = upgt_vap_create;
364	ic->ic_vap_delete = upgt_vap_delete;
365	ic->ic_update_mcast = upgt_update_mcast;
366
367	ieee80211_radiotap_attach(ic,
368	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
369		UPGT_TX_RADIOTAP_PRESENT,
370	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
371		UPGT_RX_RADIOTAP_PRESENT);
372
373	upgt_sysctl_node(sc);
374
375	if (bootverbose)
376		ieee80211_announce(ic);
377
378	return (0);
379
380fail5:	if_free(ifp);
381fail4:	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
382fail3:	upgt_free_rx(sc);
383fail2:	upgt_free_tx(sc);
384fail1:	mtx_destroy(&sc->sc_mtx);
385
386	return (error);
387}
388
389static void
390upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
391{
392	struct upgt_softc *sc = usbd_xfer_softc(xfer);
393	struct ifnet *ifp = sc->sc_ifp;
394	struct mbuf *m;
395
396	UPGT_ASSERT_LOCKED(sc);
397
398	/*
399	 * Do any tx complete callback.  Note this must be done before releasing
400	 * the node reference.
401	 */
402	if (data->m) {
403		m = data->m;
404		if (m->m_flags & M_TXCB) {
405			/* XXX status? */
406			ieee80211_process_callback(data->ni, m, 0);
407		}
408		m_freem(m);
409		data->m = NULL;
410	}
411	if (data->ni) {
412		ieee80211_free_node(data->ni);
413		data->ni = NULL;
414	}
415	ifp->if_opackets++;
416}
417
418static void
419upgt_get_stats(struct upgt_softc *sc)
420{
421	struct upgt_data *data_cmd;
422	struct upgt_lmac_mem *mem;
423	struct upgt_lmac_stats *stats;
424
425	data_cmd = upgt_getbuf(sc);
426	if (data_cmd == NULL) {
427		device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
428		return;
429	}
430
431	/*
432	 * Transmit the URB containing the CMD data.
433	 */
434	bzero(data_cmd->buf, MCLBYTES);
435
436	mem = (struct upgt_lmac_mem *)data_cmd->buf;
437	mem->addr = htole32(sc->sc_memaddr_frame_start +
438	    UPGT_MEMSIZE_FRAME_HEAD);
439
440	stats = (struct upgt_lmac_stats *)(mem + 1);
441
442	stats->header1.flags = 0;
443	stats->header1.type = UPGT_H1_TYPE_CTRL;
444	stats->header1.len = htole16(
445	    sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
446
447	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
448	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
449	stats->header2.flags = 0;
450
451	data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
452
453	mem->chksum = upgt_chksum_le((uint32_t *)stats,
454	    data_cmd->buflen - sizeof(*mem));
455
456	upgt_bulk_tx(sc, data_cmd);
457}
458
459static int
460upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
461{
462	struct upgt_softc *sc = ifp->if_softc;
463	struct ieee80211com *ic = ifp->if_l2com;
464	struct ifreq *ifr = (struct ifreq *) data;
465	int error = 0, startall = 0;
466
467	switch (cmd) {
468	case SIOCSIFFLAGS:
469		if (ifp->if_flags & IFF_UP) {
470			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
471				if ((ifp->if_flags ^ sc->sc_if_flags) &
472				    (IFF_ALLMULTI | IFF_PROMISC))
473					upgt_set_multi(sc);
474			} else {
475				upgt_init(sc);
476				startall = 1;
477			}
478		} else {
479			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
480				upgt_stop(sc);
481		}
482		sc->sc_if_flags = ifp->if_flags;
483		if (startall)
484			ieee80211_start_all(ic);
485		break;
486	case SIOCGIFMEDIA:
487		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
488		break;
489	case SIOCGIFADDR:
490		error = ether_ioctl(ifp, cmd, data);
491		break;
492	default:
493		error = EINVAL;
494		break;
495	}
496	return error;
497}
498
499static void
500upgt_stop_locked(struct upgt_softc *sc)
501{
502	struct ifnet *ifp = sc->sc_ifp;
503
504	UPGT_ASSERT_LOCKED(sc);
505
506	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
507		upgt_set_macfilter(sc, IEEE80211_S_INIT);
508	upgt_abort_xfers_locked(sc);
509}
510
511static void
512upgt_stop(struct upgt_softc *sc)
513{
514	struct ifnet *ifp = sc->sc_ifp;
515
516	UPGT_LOCK(sc);
517	upgt_stop_locked(sc);
518	UPGT_UNLOCK(sc);
519
520	/* device down */
521	sc->sc_tx_timer = 0;
522	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
523	sc->sc_flags &= ~UPGT_FLAG_INITDONE;
524}
525
526static void
527upgt_set_led(struct upgt_softc *sc, int action)
528{
529	struct upgt_data *data_cmd;
530	struct upgt_lmac_mem *mem;
531	struct upgt_lmac_led *led;
532
533	data_cmd = upgt_getbuf(sc);
534	if (data_cmd == NULL) {
535		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
536		return;
537	}
538
539	/*
540	 * Transmit the URB containing the CMD data.
541	 */
542	bzero(data_cmd->buf, MCLBYTES);
543
544	mem = (struct upgt_lmac_mem *)data_cmd->buf;
545	mem->addr = htole32(sc->sc_memaddr_frame_start +
546	    UPGT_MEMSIZE_FRAME_HEAD);
547
548	led = (struct upgt_lmac_led *)(mem + 1);
549
550	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
551	led->header1.type = UPGT_H1_TYPE_CTRL;
552	led->header1.len = htole16(
553	    sizeof(struct upgt_lmac_led) -
554	    sizeof(struct upgt_lmac_header));
555
556	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
557	led->header2.type = htole16(UPGT_H2_TYPE_LED);
558	led->header2.flags = 0;
559
560	switch (action) {
561	case UPGT_LED_OFF:
562		led->mode = htole16(UPGT_LED_MODE_SET);
563		led->action_fix = 0;
564		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
565		led->action_tmp_dur = 0;
566		break;
567	case UPGT_LED_ON:
568		led->mode = htole16(UPGT_LED_MODE_SET);
569		led->action_fix = 0;
570		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
571		led->action_tmp_dur = 0;
572		break;
573	case UPGT_LED_BLINK:
574		if (sc->sc_state != IEEE80211_S_RUN) {
575			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
576			return;
577		}
578		if (sc->sc_led_blink) {
579			/* previous blink was not finished */
580			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
581			return;
582		}
583		led->mode = htole16(UPGT_LED_MODE_SET);
584		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
585		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
586		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
587		/* lock blink */
588		sc->sc_led_blink = 1;
589		callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
590		break;
591	default:
592		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
593		return;
594	}
595
596	data_cmd->buflen = sizeof(*mem) + sizeof(*led);
597
598	mem->chksum = upgt_chksum_le((uint32_t *)led,
599	    data_cmd->buflen - sizeof(*mem));
600
601	upgt_bulk_tx(sc, data_cmd);
602}
603
604static void
605upgt_set_led_blink(void *arg)
606{
607	struct upgt_softc *sc = arg;
608
609	/* blink finished, we are ready for a next one */
610	sc->sc_led_blink = 0;
611}
612
613static void
614upgt_init(void *priv)
615{
616	struct upgt_softc *sc = priv;
617	struct ifnet *ifp = sc->sc_ifp;
618	struct ieee80211com *ic = ifp->if_l2com;
619
620	UPGT_LOCK(sc);
621	upgt_init_locked(sc);
622	UPGT_UNLOCK(sc);
623
624	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
625		ieee80211_start_all(ic);		/* start all vap's */
626}
627
628static void
629upgt_init_locked(struct upgt_softc *sc)
630{
631	struct ifnet *ifp = sc->sc_ifp;
632
633	UPGT_ASSERT_LOCKED(sc);
634
635	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
636		upgt_stop_locked(sc);
637
638	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
639
640	(void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
641
642	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
643	ifp->if_drv_flags |= IFF_DRV_RUNNING;
644	sc->sc_flags |= UPGT_FLAG_INITDONE;
645
646	callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
647}
648
649static int
650upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
651{
652	struct ifnet *ifp = sc->sc_ifp;
653	struct ieee80211com *ic = ifp->if_l2com;
654	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
655	struct upgt_data *data_cmd;
656	struct upgt_lmac_mem *mem;
657	struct upgt_lmac_filter *filter;
658	uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
659
660	UPGT_ASSERT_LOCKED(sc);
661
662	data_cmd = upgt_getbuf(sc);
663	if (data_cmd == NULL) {
664		device_printf(sc->sc_dev, "out of TX buffers.\n");
665		return (ENOBUFS);
666	}
667
668	/*
669	 * Transmit the URB containing the CMD data.
670	 */
671	bzero(data_cmd->buf, MCLBYTES);
672
673	mem = (struct upgt_lmac_mem *)data_cmd->buf;
674	mem->addr = htole32(sc->sc_memaddr_frame_start +
675	    UPGT_MEMSIZE_FRAME_HEAD);
676
677	filter = (struct upgt_lmac_filter *)(mem + 1);
678
679	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
680	filter->header1.type = UPGT_H1_TYPE_CTRL;
681	filter->header1.len = htole16(
682	    sizeof(struct upgt_lmac_filter) -
683	    sizeof(struct upgt_lmac_header));
684
685	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
686	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
687	filter->header2.flags = 0;
688
689	switch (state) {
690	case IEEE80211_S_INIT:
691		DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
692		    __func__);
693		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
694		break;
695	case IEEE80211_S_SCAN:
696		DPRINTF(sc, UPGT_DEBUG_STATE,
697		    "set MAC filter to SCAN (bssid %s)\n",
698		    ether_sprintf(broadcast));
699		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
700		IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
701		IEEE80211_ADDR_COPY(filter->src, broadcast);
702		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
703		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
704		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
705		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
706		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
707		break;
708	case IEEE80211_S_RUN:
709		struct ieee80211_node *ni;
710
711		ni = ieee80211_ref_node(vap->iv_bss);
712		/* XXX monitor mode isn't tested yet.  */
713		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
714			filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
715			IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
716			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
717			filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
718			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
719			filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
720			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
721			filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
722		} else {
723			DPRINTF(sc, UPGT_DEBUG_STATE,
724			    "set MAC filter to RUN (bssid %s)\n",
725			    ether_sprintf(ni->ni_bssid));
726			filter->type = htole16(UPGT_FILTER_TYPE_STA);
727			IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
728			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
729			filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
730			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
731			filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
732			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
733			filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
734		}
735		ieee80211_free_node(ni);
736		break;
737	default:
738		device_printf(sc->sc_dev,
739		    "MAC filter does not know that state\n");
740		break;
741	}
742
743	data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
744
745	mem->chksum = upgt_chksum_le((uint32_t *)filter,
746	    data_cmd->buflen - sizeof(*mem));
747
748	upgt_bulk_tx(sc, data_cmd);
749
750	return (0);
751}
752
753static void
754upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
755{
756	struct ifnet *ifp = ic->ic_ifp;
757	struct upgt_softc *sc = ifp->if_softc;
758	const struct ieee80211_txparam *tp;
759
760	/*
761	 * 0x01 = OFMD6   0x10 = DS1
762	 * 0x04 = OFDM9   0x11 = DS2
763	 * 0x06 = OFDM12  0x12 = DS5
764	 * 0x07 = OFDM18  0x13 = DS11
765	 * 0x08 = OFDM24
766	 * 0x09 = OFDM36
767	 * 0x0a = OFDM48
768	 * 0x0b = OFDM54
769	 */
770	const uint8_t rateset_auto_11b[] =
771	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
772	const uint8_t rateset_auto_11g[] =
773	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
774	const uint8_t rateset_fix_11bg[] =
775	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
776	      0x08, 0x09, 0x0a, 0x0b };
777
778	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
779
780	/* XXX */
781	if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
782		/*
783		 * Automatic rate control is done by the device.
784		 * We just pass the rateset from which the device
785		 * will pickup a rate.
786		 */
787		if (ic->ic_curmode == IEEE80211_MODE_11B)
788			bcopy(rateset_auto_11b, sc->sc_cur_rateset,
789			    sizeof(sc->sc_cur_rateset));
790		if (ic->ic_curmode == IEEE80211_MODE_11G ||
791		    ic->ic_curmode == IEEE80211_MODE_AUTO)
792			bcopy(rateset_auto_11g, sc->sc_cur_rateset,
793			    sizeof(sc->sc_cur_rateset));
794	} else {
795		/* set a fixed rate */
796		memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
797		    sizeof(sc->sc_cur_rateset));
798	}
799}
800
801static void
802upgt_set_multi(void *arg)
803{
804	struct upgt_softc *sc = arg;
805	struct ifnet *ifp = sc->sc_ifp;
806
807	if (!(ifp->if_flags & IFF_UP))
808		return;
809
810	/*
811	 * XXX don't know how to set a device.  Lack of docs.  Just try to set
812	 * IFF_ALLMULTI flag here.
813	 */
814	ifp->if_flags |= IFF_ALLMULTI;
815}
816
817static void
818upgt_start(struct ifnet *ifp)
819{
820	struct upgt_softc *sc = ifp->if_softc;
821	struct upgt_data *data_tx;
822	struct ieee80211_node *ni;
823	struct mbuf *m;
824
825	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
826		return;
827
828	UPGT_LOCK(sc);
829	for (;;) {
830		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
831		if (m == NULL)
832			break;
833
834		data_tx = upgt_gettxbuf(sc);
835		if (data_tx == NULL) {
836			IFQ_DRV_PREPEND(&ifp->if_snd, m);
837			break;
838		}
839
840		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
841		m->m_pkthdr.rcvif = NULL;
842
843		if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
844			STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
845			UPGT_STAT_INC(sc, st_tx_inactive);
846			ieee80211_free_node(ni);
847			ifp->if_oerrors++;
848			continue;
849		}
850		sc->sc_tx_timer = 5;
851	}
852	UPGT_UNLOCK(sc);
853}
854
855static int
856upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
857	const struct ieee80211_bpf_params *params)
858{
859	struct ieee80211com *ic = ni->ni_ic;
860	struct ifnet *ifp = ic->ic_ifp;
861	struct upgt_softc *sc = ifp->if_softc;
862	struct upgt_data *data_tx = NULL;
863
864	/* prevent management frames from being sent if we're not ready */
865	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
866		m_freem(m);
867		ieee80211_free_node(ni);
868		return ENETDOWN;
869	}
870
871	UPGT_LOCK(sc);
872	data_tx = upgt_gettxbuf(sc);
873	if (data_tx == NULL) {
874		ieee80211_free_node(ni);
875		m_freem(m);
876		UPGT_UNLOCK(sc);
877		return (ENOBUFS);
878	}
879
880	if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
881		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
882		UPGT_STAT_INC(sc, st_tx_inactive);
883		ieee80211_free_node(ni);
884		ifp->if_oerrors++;
885		UPGT_UNLOCK(sc);
886		return (EIO);
887	}
888	UPGT_UNLOCK(sc);
889
890	sc->sc_tx_timer = 5;
891	return (0);
892}
893
894static void
895upgt_watchdog(void *arg)
896{
897	struct upgt_softc *sc = arg;
898	struct ifnet *ifp = sc->sc_ifp;
899
900	if (sc->sc_tx_timer > 0) {
901		if (--sc->sc_tx_timer == 0) {
902			device_printf(sc->sc_dev, "watchdog timeout\n");
903			/* upgt_init(ifp); XXX needs a process context ? */
904			ifp->if_oerrors++;
905			return;
906		}
907		callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
908	}
909}
910
911static uint32_t
912upgt_mem_alloc(struct upgt_softc *sc)
913{
914	int i;
915
916	for (i = 0; i < sc->sc_memory.pages; i++) {
917		if (sc->sc_memory.page[i].used == 0) {
918			sc->sc_memory.page[i].used = 1;
919			return (sc->sc_memory.page[i].addr);
920		}
921	}
922
923	return (0);
924}
925
926static void
927upgt_scan_start(struct ieee80211com *ic)
928{
929	/* do nothing.  */
930}
931
932static void
933upgt_scan_end(struct ieee80211com *ic)
934{
935	/* do nothing.  */
936}
937
938static void
939upgt_set_channel(struct ieee80211com *ic)
940{
941	struct upgt_softc *sc = ic->ic_ifp->if_softc;
942
943	UPGT_LOCK(sc);
944	upgt_set_chan(sc, ic->ic_curchan);
945	UPGT_UNLOCK(sc);
946}
947
948static void
949upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
950{
951	struct ifnet *ifp = sc->sc_ifp;
952	struct ieee80211com *ic = ifp->if_l2com;
953	struct upgt_data *data_cmd;
954	struct upgt_lmac_mem *mem;
955	struct upgt_lmac_channel *chan;
956	int channel;
957
958	UPGT_ASSERT_LOCKED(sc);
959
960	channel = ieee80211_chan2ieee(ic, c);
961	if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
962		/* XXX should NEVER happen */
963		device_printf(sc->sc_dev,
964		    "%s: invalid channel %x\n", __func__, channel);
965		return;
966	}
967
968	DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
969
970	data_cmd = upgt_getbuf(sc);
971	if (data_cmd == NULL) {
972		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
973		return;
974	}
975	/*
976	 * Transmit the URB containing the CMD data.
977	 */
978	bzero(data_cmd->buf, MCLBYTES);
979
980	mem = (struct upgt_lmac_mem *)data_cmd->buf;
981	mem->addr = htole32(sc->sc_memaddr_frame_start +
982	    UPGT_MEMSIZE_FRAME_HEAD);
983
984	chan = (struct upgt_lmac_channel *)(mem + 1);
985
986	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
987	chan->header1.type = UPGT_H1_TYPE_CTRL;
988	chan->header1.len = htole16(
989	    sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
990
991	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
992	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
993	chan->header2.flags = 0;
994
995	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
996	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
997	chan->freq6 = sc->sc_eeprom_freq6[channel];
998	chan->settings = sc->sc_eeprom_freq6_settings;
999	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1000
1001	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
1002	    sizeof(chan->freq3_1));
1003	bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1004	    sizeof(sc->sc_eeprom_freq4[channel]));
1005	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1006	    sizeof(chan->freq3_2));
1007
1008	data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1009
1010	mem->chksum = upgt_chksum_le((uint32_t *)chan,
1011	    data_cmd->buflen - sizeof(*mem));
1012
1013	upgt_bulk_tx(sc, data_cmd);
1014}
1015
1016static struct ieee80211vap *
1017upgt_vap_create(struct ieee80211com *ic,
1018	const char name[IFNAMSIZ], int unit, int opmode, int flags,
1019	const uint8_t bssid[IEEE80211_ADDR_LEN],
1020	const uint8_t mac[IEEE80211_ADDR_LEN])
1021{
1022	struct upgt_vap *uvp;
1023	struct ieee80211vap *vap;
1024
1025	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1026		return NULL;
1027	uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1028	    M_80211_VAP, M_NOWAIT | M_ZERO);
1029	if (uvp == NULL)
1030		return NULL;
1031	vap = &uvp->vap;
1032	/* enable s/w bmiss handling for sta mode */
1033	ieee80211_vap_setup(ic, vap, name, unit, opmode,
1034	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1035
1036	/* override state transition machine */
1037	uvp->newstate = vap->iv_newstate;
1038	vap->iv_newstate = upgt_newstate;
1039
1040	/* setup device rates */
1041	upgt_setup_rates(vap, ic);
1042
1043	/* complete setup */
1044	ieee80211_vap_attach(vap, ieee80211_media_change,
1045	    ieee80211_media_status);
1046	ic->ic_opmode = opmode;
1047	return vap;
1048}
1049
1050static int
1051upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1052{
1053	struct upgt_vap *uvp = UPGT_VAP(vap);
1054	struct ieee80211com *ic = vap->iv_ic;
1055	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1056
1057	/* do it in a process context */
1058	sc->sc_state = nstate;
1059
1060	IEEE80211_UNLOCK(ic);
1061	UPGT_LOCK(sc);
1062	callout_stop(&sc->sc_led_ch);
1063	callout_stop(&sc->sc_watchdog_ch);
1064
1065	switch (nstate) {
1066	case IEEE80211_S_INIT:
1067		/* do not accept any frames if the device is down */
1068		(void)upgt_set_macfilter(sc, sc->sc_state);
1069		upgt_set_led(sc, UPGT_LED_OFF);
1070		break;
1071	case IEEE80211_S_SCAN:
1072		upgt_set_chan(sc, ic->ic_curchan);
1073		break;
1074	case IEEE80211_S_AUTH:
1075		upgt_set_chan(sc, ic->ic_curchan);
1076		break;
1077	case IEEE80211_S_ASSOC:
1078		break;
1079	case IEEE80211_S_RUN:
1080		upgt_set_macfilter(sc, sc->sc_state);
1081		upgt_set_led(sc, UPGT_LED_ON);
1082		break;
1083	default:
1084		break;
1085	}
1086	UPGT_UNLOCK(sc);
1087	IEEE80211_LOCK(ic);
1088	return (uvp->newstate(vap, nstate, arg));
1089}
1090
1091static void
1092upgt_vap_delete(struct ieee80211vap *vap)
1093{
1094	struct upgt_vap *uvp = UPGT_VAP(vap);
1095
1096	ieee80211_vap_detach(vap);
1097	free(uvp, M_80211_VAP);
1098}
1099
1100static void
1101upgt_update_mcast(struct ifnet *ifp)
1102{
1103	struct upgt_softc *sc = ifp->if_softc;
1104
1105	upgt_set_multi(sc);
1106}
1107
1108static int
1109upgt_eeprom_parse(struct upgt_softc *sc)
1110{
1111	struct upgt_eeprom_header *eeprom_header;
1112	struct upgt_eeprom_option *eeprom_option;
1113	uint16_t option_len;
1114	uint16_t option_type;
1115	uint16_t preamble_len;
1116	int option_end = 0;
1117
1118	/* calculate eeprom options start offset */
1119	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1120	preamble_len = le16toh(eeprom_header->preamble_len);
1121	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1122	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1123
1124	while (!option_end) {
1125		/* the eeprom option length is stored in words */
1126		option_len =
1127		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1128		option_type =
1129		    le16toh(eeprom_option->type);
1130
1131		switch (option_type) {
1132		case UPGT_EEPROM_TYPE_NAME:
1133			DPRINTF(sc, UPGT_DEBUG_FW,
1134			    "EEPROM name len=%d\n", option_len);
1135			break;
1136		case UPGT_EEPROM_TYPE_SERIAL:
1137			DPRINTF(sc, UPGT_DEBUG_FW,
1138			    "EEPROM serial len=%d\n", option_len);
1139			break;
1140		case UPGT_EEPROM_TYPE_MAC:
1141			DPRINTF(sc, UPGT_DEBUG_FW,
1142			    "EEPROM mac len=%d\n", option_len);
1143
1144			IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1145			break;
1146		case UPGT_EEPROM_TYPE_HWRX:
1147			DPRINTF(sc, UPGT_DEBUG_FW,
1148			    "EEPROM hwrx len=%d\n", option_len);
1149
1150			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1151			break;
1152		case UPGT_EEPROM_TYPE_CHIP:
1153			DPRINTF(sc, UPGT_DEBUG_FW,
1154			    "EEPROM chip len=%d\n", option_len);
1155			break;
1156		case UPGT_EEPROM_TYPE_FREQ3:
1157			DPRINTF(sc, UPGT_DEBUG_FW,
1158			    "EEPROM freq3 len=%d\n", option_len);
1159
1160			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1161			    option_len);
1162			break;
1163		case UPGT_EEPROM_TYPE_FREQ4:
1164			DPRINTF(sc, UPGT_DEBUG_FW,
1165			    "EEPROM freq4 len=%d\n", option_len);
1166
1167			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1168			    option_len);
1169			break;
1170		case UPGT_EEPROM_TYPE_FREQ5:
1171			DPRINTF(sc, UPGT_DEBUG_FW,
1172			    "EEPROM freq5 len=%d\n", option_len);
1173			break;
1174		case UPGT_EEPROM_TYPE_FREQ6:
1175			DPRINTF(sc, UPGT_DEBUG_FW,
1176			    "EEPROM freq6 len=%d\n", option_len);
1177
1178			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1179			    option_len);
1180			break;
1181		case UPGT_EEPROM_TYPE_END:
1182			DPRINTF(sc, UPGT_DEBUG_FW,
1183			    "EEPROM end len=%d\n", option_len);
1184			option_end = 1;
1185			break;
1186		case UPGT_EEPROM_TYPE_OFF:
1187			DPRINTF(sc, UPGT_DEBUG_FW,
1188			    "%s: EEPROM off without end option\n", __func__);
1189			return (EIO);
1190		default:
1191			DPRINTF(sc, UPGT_DEBUG_FW,
1192			    "EEPROM unknown type 0x%04x len=%d\n",
1193			    option_type, option_len);
1194			break;
1195		}
1196
1197		/* jump to next EEPROM option */
1198		eeprom_option = (struct upgt_eeprom_option *)
1199		    (eeprom_option->data + option_len);
1200	}
1201
1202	return (0);
1203}
1204
1205static void
1206upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1207{
1208	struct upgt_eeprom_freq3_header *freq3_header;
1209	struct upgt_lmac_freq3 *freq3;
1210	int i, elements, flags;
1211	unsigned channel;
1212
1213	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1214	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1215
1216	flags = freq3_header->flags;
1217	elements = freq3_header->elements;
1218
1219	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1220	    flags, elements);
1221
1222	for (i = 0; i < elements; i++) {
1223		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1224		if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1225			continue;
1226
1227		sc->sc_eeprom_freq3[channel] = freq3[i];
1228
1229		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1230		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1231	}
1232}
1233
1234void
1235upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1236{
1237	struct upgt_eeprom_freq4_header *freq4_header;
1238	struct upgt_eeprom_freq4_1 *freq4_1;
1239	struct upgt_eeprom_freq4_2 *freq4_2;
1240	int i, j, elements, settings, flags;
1241	unsigned channel;
1242
1243	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1244	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1245	flags = freq4_header->flags;
1246	elements = freq4_header->elements;
1247	settings = freq4_header->settings;
1248
1249	/* we need this value later */
1250	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1251
1252	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1253	    flags, elements, settings);
1254
1255	for (i = 0; i < elements; i++) {
1256		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1257		if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1258			continue;
1259
1260		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1261		for (j = 0; j < settings; j++) {
1262			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1263			sc->sc_eeprom_freq4[channel][j].pad = 0;
1264		}
1265
1266		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1267		    le16toh(freq4_1[i].freq), channel);
1268	}
1269}
1270
1271void
1272upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1273{
1274	struct upgt_lmac_freq6 *freq6;
1275	int i, elements;
1276	unsigned channel;
1277
1278	freq6 = (struct upgt_lmac_freq6 *)data;
1279	elements = len / sizeof(struct upgt_lmac_freq6);
1280
1281	DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1282
1283	for (i = 0; i < elements; i++) {
1284		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1285		if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1286			continue;
1287
1288		sc->sc_eeprom_freq6[channel] = freq6[i];
1289
1290		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1291		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1292	}
1293}
1294
1295static void
1296upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1297{
1298	struct upgt_eeprom_option_hwrx *option_hwrx;
1299
1300	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1301
1302	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1303
1304	DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1305	    sc->sc_eeprom_hwrx);
1306}
1307
1308static int
1309upgt_eeprom_read(struct upgt_softc *sc)
1310{
1311	struct upgt_data *data_cmd;
1312	struct upgt_lmac_mem *mem;
1313	struct upgt_lmac_eeprom	*eeprom;
1314	int block, error, offset;
1315
1316	UPGT_LOCK(sc);
1317	usb_pause_mtx(&sc->sc_mtx, 100);
1318
1319	offset = 0;
1320	block = UPGT_EEPROM_BLOCK_SIZE;
1321	while (offset < UPGT_EEPROM_SIZE) {
1322		DPRINTF(sc, UPGT_DEBUG_FW,
1323		    "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1324
1325		data_cmd = upgt_getbuf(sc);
1326		if (data_cmd == NULL) {
1327			UPGT_UNLOCK(sc);
1328			return (ENOBUFS);
1329		}
1330
1331		/*
1332		 * Transmit the URB containing the CMD data.
1333		 */
1334		bzero(data_cmd->buf, MCLBYTES);
1335
1336		mem = (struct upgt_lmac_mem *)data_cmd->buf;
1337		mem->addr = htole32(sc->sc_memaddr_frame_start +
1338		    UPGT_MEMSIZE_FRAME_HEAD);
1339
1340		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1341		eeprom->header1.flags = 0;
1342		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1343		eeprom->header1.len = htole16((
1344		    sizeof(struct upgt_lmac_eeprom) -
1345		    sizeof(struct upgt_lmac_header)) + block);
1346
1347		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1348		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1349		eeprom->header2.flags = 0;
1350
1351		eeprom->offset = htole16(offset);
1352		eeprom->len = htole16(block);
1353
1354		data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1355
1356		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1357		    data_cmd->buflen - sizeof(*mem));
1358		upgt_bulk_tx(sc, data_cmd);
1359
1360		error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1361		if (error != 0) {
1362			device_printf(sc->sc_dev,
1363			    "timeout while waiting for EEPROM data\n");
1364			UPGT_UNLOCK(sc);
1365			return (EIO);
1366		}
1367
1368		offset += block;
1369		if (UPGT_EEPROM_SIZE - offset < block)
1370			block = UPGT_EEPROM_SIZE - offset;
1371	}
1372
1373	UPGT_UNLOCK(sc);
1374	return (0);
1375}
1376
1377/*
1378 * When a rx data came in the function returns a mbuf and a rssi values.
1379 */
1380static struct mbuf *
1381upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1382{
1383	struct mbuf *m = NULL;
1384	struct upgt_softc *sc = usbd_xfer_softc(xfer);
1385	struct upgt_lmac_header *header;
1386	struct upgt_lmac_eeprom *eeprom;
1387	uint8_t h1_type;
1388	uint16_t h2_type;
1389	int actlen, sumlen;
1390
1391	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1392
1393	UPGT_ASSERT_LOCKED(sc);
1394
1395	if (actlen < 1)
1396		return (NULL);
1397
1398	/* Check only at the very beginning.  */
1399	if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1400	    (memcmp(data->buf, "OK", 2) == 0)) {
1401		sc->sc_flags |= UPGT_FLAG_FWLOADED;
1402		wakeup_one(sc);
1403		return (NULL);
1404	}
1405
1406	if (actlen < UPGT_RX_MINSZ)
1407		return (NULL);
1408
1409	/*
1410	 * Check what type of frame came in.
1411	 */
1412	header = (struct upgt_lmac_header *)(data->buf + 4);
1413
1414	h1_type = header->header1.type;
1415	h2_type = le16toh(header->header2.type);
1416
1417	if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1418		eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1419		uint16_t eeprom_offset = le16toh(eeprom->offset);
1420		uint16_t eeprom_len = le16toh(eeprom->len);
1421
1422		DPRINTF(sc, UPGT_DEBUG_FW,
1423		    "received EEPROM block (offset=%d, len=%d)\n",
1424		    eeprom_offset, eeprom_len);
1425
1426		bcopy(data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1427			sc->sc_eeprom + eeprom_offset, eeprom_len);
1428
1429		/* EEPROM data has arrived in time, wakeup.  */
1430		wakeup(sc);
1431	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1432	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1433		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1434		    __func__);
1435		upgt_tx_done(sc, data->buf + 4);
1436	} else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1437	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1438		DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1439		    __func__);
1440		m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1441		    rssi);
1442	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1443	    h2_type == UPGT_H2_TYPE_STATS) {
1444		DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1445		    __func__);
1446		/* TODO: what could we do with the statistic data? */
1447	} else {
1448		/* ignore unknown frame types */
1449		DPRINTF(sc, UPGT_DEBUG_INTR,
1450		    "received unknown frame type 0x%02x\n",
1451		    header->header1.type);
1452	}
1453	return (m);
1454}
1455
1456/*
1457 * The firmware awaits a checksum for each frame we send to it.
1458 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1459 */
1460static uint32_t
1461upgt_chksum_le(const uint32_t *buf, size_t size)
1462{
1463	int i;
1464	uint32_t crc = 0;
1465
1466	for (i = 0; i < size; i += sizeof(uint32_t)) {
1467		crc = htole32(crc ^ *buf++);
1468		crc = htole32((crc >> 5) ^ (crc << 3));
1469	}
1470
1471	return (crc);
1472}
1473
1474static struct mbuf *
1475upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1476{
1477	struct ifnet *ifp = sc->sc_ifp;
1478	struct ieee80211com *ic = ifp->if_l2com;
1479	struct upgt_lmac_rx_desc *rxdesc;
1480	struct mbuf *m;
1481
1482	/*
1483	 * don't pass packets to the ieee80211 framework if the driver isn't
1484	 * RUNNING.
1485	 */
1486	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1487		return (NULL);
1488
1489	/* access RX packet descriptor */
1490	rxdesc = (struct upgt_lmac_rx_desc *)data;
1491
1492	/* create mbuf which is suitable for strict alignment archs */
1493	KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1494	    ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1495	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1496	if (m == NULL) {
1497		device_printf(sc->sc_dev, "could not create RX mbuf\n");
1498		return (NULL);
1499	}
1500	m_adj(m, ETHER_ALIGN);
1501	bcopy(rxdesc->data, mtod(m, char *), pkglen);
1502	/* trim FCS */
1503	m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1504	m->m_pkthdr.rcvif = ifp;
1505
1506	if (ieee80211_radiotap_active(ic)) {
1507		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1508
1509		tap->wr_flags = 0;
1510		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1511		tap->wr_antsignal = rxdesc->rssi;
1512	}
1513	ifp->if_ipackets++;
1514
1515	DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1516	*rssi = rxdesc->rssi;
1517	return (m);
1518}
1519
1520static uint8_t
1521upgt_rx_rate(struct upgt_softc *sc, const int rate)
1522{
1523	struct ifnet *ifp = sc->sc_ifp;
1524	struct ieee80211com *ic = ifp->if_l2com;
1525	static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1526	static const uint8_t ofdm_upgt2rate[12] =
1527	    { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1528
1529	if (ic->ic_curmode == IEEE80211_MODE_11B &&
1530	    !(rate < 0 || rate > 3))
1531		return cck_upgt2rate[rate & 0xf];
1532
1533	if (ic->ic_curmode == IEEE80211_MODE_11G &&
1534	    !(rate < 0 || rate > 11))
1535		return ofdm_upgt2rate[rate & 0xf];
1536
1537	return (0);
1538}
1539
1540static void
1541upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1542{
1543	struct ifnet *ifp = sc->sc_ifp;
1544	struct upgt_lmac_tx_done_desc *desc;
1545	int i, freed = 0;
1546
1547	UPGT_ASSERT_LOCKED(sc);
1548
1549	desc = (struct upgt_lmac_tx_done_desc *)data;
1550
1551	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1552		struct upgt_data *data_tx = &sc->sc_tx_data[i];
1553
1554		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1555			upgt_mem_free(sc, data_tx->addr);
1556			data_tx->ni = NULL;
1557			data_tx->addr = 0;
1558			data_tx->m = NULL;
1559			data_tx->use = 0;
1560
1561			DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1562			    "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1563			    le32toh(desc->header2.reqid),
1564			    le16toh(desc->status), le16toh(desc->rssi));
1565			DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1566			    le16toh(desc->seq));
1567
1568			freed++;
1569		}
1570	}
1571
1572	if (freed != 0) {
1573		sc->sc_tx_timer = 0;
1574		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1575		UPGT_UNLOCK(sc);
1576		upgt_start(ifp);
1577		UPGT_LOCK(sc);
1578	}
1579}
1580
1581static void
1582upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1583{
1584	int i;
1585
1586	for (i = 0; i < sc->sc_memory.pages; i++) {
1587		if (sc->sc_memory.page[i].addr == addr) {
1588			sc->sc_memory.page[i].used = 0;
1589			return;
1590		}
1591	}
1592
1593	device_printf(sc->sc_dev,
1594	    "could not free memory address 0x%08x\n", addr);
1595}
1596
1597static int
1598upgt_fw_load(struct upgt_softc *sc)
1599{
1600	const struct firmware *fw;
1601	struct upgt_data *data_cmd;
1602	struct upgt_fw_x2_header *x2;
1603	char start_fwload_cmd[] = { 0x3c, 0x0d };
1604	int error = 0, offset, bsize, n;
1605	uint32_t crc32;
1606
1607	fw = firmware_get(upgt_fwname);
1608	if (fw == NULL) {
1609		device_printf(sc->sc_dev, "could not read microcode %s\n",
1610		    upgt_fwname);
1611		return (EIO);
1612	}
1613
1614	UPGT_LOCK(sc);
1615
1616	/* send firmware start load command */
1617	data_cmd = upgt_getbuf(sc);
1618	if (data_cmd == NULL) {
1619		error = ENOBUFS;
1620		goto fail;
1621	}
1622	data_cmd->buflen = sizeof(start_fwload_cmd);
1623	bcopy(start_fwload_cmd, data_cmd->buf, data_cmd->buflen);
1624	upgt_bulk_tx(sc, data_cmd);
1625
1626	/* send X2 header */
1627	data_cmd = upgt_getbuf(sc);
1628	if (data_cmd == NULL) {
1629		error = ENOBUFS;
1630		goto fail;
1631	}
1632	data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1633	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1634	bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
1635	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1636	x2->len = htole32(fw->datasize);
1637	x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1638	    UPGT_X2_SIGNATURE_SIZE,
1639	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1640	    sizeof(uint32_t));
1641	upgt_bulk_tx(sc, data_cmd);
1642
1643	/* download firmware */
1644	for (offset = 0; offset < fw->datasize; offset += bsize) {
1645		if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1646			bsize = UPGT_FW_BLOCK_SIZE;
1647		else
1648			bsize = fw->datasize - offset;
1649
1650		data_cmd = upgt_getbuf(sc);
1651		if (data_cmd == NULL) {
1652			error = ENOBUFS;
1653			goto fail;
1654		}
1655		n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1656		    data_cmd->buf, bsize);
1657		data_cmd->buflen = bsize;
1658		upgt_bulk_tx(sc, data_cmd);
1659
1660		DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1661		    offset, n, bsize);
1662		bsize = n;
1663	}
1664	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1665
1666	/* load firmware */
1667	data_cmd = upgt_getbuf(sc);
1668	if (data_cmd == NULL) {
1669		error = ENOBUFS;
1670		goto fail;
1671	}
1672	crc32 = upgt_crc32_le(fw->data, fw->datasize);
1673	*((uint32_t *)(data_cmd->buf)    ) = crc32;
1674	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
1675	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
1676	data_cmd->buflen = 6;
1677	upgt_bulk_tx(sc, data_cmd);
1678
1679	/* waiting 'OK' response.  */
1680	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1681	error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1682	if (error != 0) {
1683		device_printf(sc->sc_dev, "firmware load failed\n");
1684		error = EIO;
1685	}
1686
1687	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1688fail:
1689	UPGT_UNLOCK(sc);
1690	firmware_put(fw, FIRMWARE_UNLOAD);
1691	return (error);
1692}
1693
1694static uint32_t
1695upgt_crc32_le(const void *buf, size_t size)
1696{
1697	uint32_t crc;
1698
1699	crc = ether_crc32_le(buf, size);
1700
1701	/* apply final XOR value as common for CRC-32 */
1702	crc = htole32(crc ^ 0xffffffffU);
1703
1704	return (crc);
1705}
1706
1707/*
1708 * While copying the version 2 firmware, we need to replace two characters:
1709 *
1710 * 0x7e -> 0x7d 0x5e
1711 * 0x7d -> 0x7d 0x5d
1712 */
1713static int
1714upgt_fw_copy(const uint8_t *src, char *dst, int size)
1715{
1716	int i, j;
1717
1718	for (i = 0, j = 0; i < size && j < size; i++) {
1719		switch (src[i]) {
1720		case 0x7e:
1721			dst[j] = 0x7d;
1722			j++;
1723			dst[j] = 0x5e;
1724			j++;
1725			break;
1726		case 0x7d:
1727			dst[j] = 0x7d;
1728			j++;
1729			dst[j] = 0x5d;
1730			j++;
1731			break;
1732		default:
1733			dst[j] = src[i];
1734			j++;
1735			break;
1736		}
1737	}
1738
1739	return (i);
1740}
1741
1742static int
1743upgt_mem_init(struct upgt_softc *sc)
1744{
1745	int i;
1746
1747	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1748		sc->sc_memory.page[i].used = 0;
1749
1750		if (i == 0) {
1751			/*
1752			 * The first memory page is always reserved for
1753			 * command data.
1754			 */
1755			sc->sc_memory.page[i].addr =
1756			    sc->sc_memaddr_frame_start + MCLBYTES;
1757		} else {
1758			sc->sc_memory.page[i].addr =
1759			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
1760		}
1761
1762		if (sc->sc_memory.page[i].addr + MCLBYTES >=
1763		    sc->sc_memaddr_frame_end)
1764			break;
1765
1766		DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1767		    i, sc->sc_memory.page[i].addr);
1768	}
1769
1770	sc->sc_memory.pages = i;
1771
1772	DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1773	return (0);
1774}
1775
1776static int
1777upgt_fw_verify(struct upgt_softc *sc)
1778{
1779	const struct firmware *fw;
1780	const struct upgt_fw_bra_option *bra_opt;
1781	const struct upgt_fw_bra_descr *descr;
1782	const uint8_t *p;
1783	const uint32_t *uc;
1784	uint32_t bra_option_type, bra_option_len;
1785	int offset, bra_end = 0, error = 0;
1786
1787	fw = firmware_get(upgt_fwname);
1788	if (fw == NULL) {
1789		device_printf(sc->sc_dev, "could not read microcode %s\n",
1790		    upgt_fwname);
1791		return EIO;
1792	}
1793
1794	/*
1795	 * Seek to beginning of Boot Record Area (BRA).
1796	 */
1797	for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1798		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1799		if (*uc == 0)
1800			break;
1801	}
1802	for (; offset < fw->datasize; offset += sizeof(*uc)) {
1803		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1804		if (*uc != 0)
1805			break;
1806	}
1807	if (offset == fw->datasize) {
1808		device_printf(sc->sc_dev,
1809		    "firmware Boot Record Area not found\n");
1810		error = EIO;
1811		goto fail;
1812	}
1813
1814	DPRINTF(sc, UPGT_DEBUG_FW,
1815	    "firmware Boot Record Area found at offset %d\n", offset);
1816
1817	/*
1818	 * Parse Boot Record Area (BRA) options.
1819	 */
1820	while (offset < fw->datasize && bra_end == 0) {
1821		/* get current BRA option */
1822		p = (const uint8_t *)fw->data + offset;
1823		bra_opt = (const struct upgt_fw_bra_option *)p;
1824		bra_option_type = le32toh(bra_opt->type);
1825		bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1826
1827		switch (bra_option_type) {
1828		case UPGT_BRA_TYPE_FW:
1829			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1830			    bra_option_len);
1831
1832			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1833				device_printf(sc->sc_dev,
1834				    "wrong UPGT_BRA_TYPE_FW len\n");
1835				error = EIO;
1836				goto fail;
1837			}
1838			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1839			    bra_option_len) == 0) {
1840				sc->sc_fw_type = UPGT_FWTYPE_LM86;
1841				break;
1842			}
1843			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1844			    bra_option_len) == 0) {
1845				sc->sc_fw_type = UPGT_FWTYPE_LM87;
1846				break;
1847			}
1848			device_printf(sc->sc_dev,
1849			    "unsupported firmware type\n");
1850			error = EIO;
1851			goto fail;
1852		case UPGT_BRA_TYPE_VERSION:
1853			DPRINTF(sc, UPGT_DEBUG_FW,
1854			    "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1855			break;
1856		case UPGT_BRA_TYPE_DEPIF:
1857			DPRINTF(sc, UPGT_DEBUG_FW,
1858			    "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1859			break;
1860		case UPGT_BRA_TYPE_EXPIF:
1861			DPRINTF(sc, UPGT_DEBUG_FW,
1862			    "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1863			break;
1864		case UPGT_BRA_TYPE_DESCR:
1865			DPRINTF(sc, UPGT_DEBUG_FW,
1866			    "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1867
1868			descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1869
1870			sc->sc_memaddr_frame_start =
1871			    le32toh(descr->memaddr_space_start);
1872			sc->sc_memaddr_frame_end =
1873			    le32toh(descr->memaddr_space_end);
1874
1875			DPRINTF(sc, UPGT_DEBUG_FW,
1876			    "memory address space start=0x%08x\n",
1877			    sc->sc_memaddr_frame_start);
1878			DPRINTF(sc, UPGT_DEBUG_FW,
1879			    "memory address space end=0x%08x\n",
1880			    sc->sc_memaddr_frame_end);
1881			break;
1882		case UPGT_BRA_TYPE_END:
1883			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1884			    bra_option_len);
1885			bra_end = 1;
1886			break;
1887		default:
1888			DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1889			    bra_option_len);
1890			error = EIO;
1891			goto fail;
1892		}
1893
1894		/* jump to next BRA option */
1895		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1896	}
1897
1898	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1899fail:
1900	firmware_put(fw, FIRMWARE_UNLOAD);
1901	return (error);
1902}
1903
1904static void
1905upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1906{
1907
1908	UPGT_ASSERT_LOCKED(sc);
1909
1910	STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1911	UPGT_STAT_INC(sc, st_tx_pending);
1912	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1913}
1914
1915static int
1916upgt_device_reset(struct upgt_softc *sc)
1917{
1918	struct upgt_data *data;
1919	char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1920
1921	UPGT_LOCK(sc);
1922
1923	data = upgt_getbuf(sc);
1924	if (data == NULL) {
1925		UPGT_UNLOCK(sc);
1926		return (ENOBUFS);
1927	}
1928	bcopy(init_cmd, data->buf, sizeof(init_cmd));
1929	data->buflen = sizeof(init_cmd);
1930	upgt_bulk_tx(sc, data);
1931	usb_pause_mtx(&sc->sc_mtx, 100);
1932
1933	UPGT_UNLOCK(sc);
1934	DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1935	return (0);
1936}
1937
1938static int
1939upgt_alloc_tx(struct upgt_softc *sc)
1940{
1941	int i;
1942
1943	STAILQ_INIT(&sc->sc_tx_active);
1944	STAILQ_INIT(&sc->sc_tx_inactive);
1945	STAILQ_INIT(&sc->sc_tx_pending);
1946
1947	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1948		struct upgt_data *data = &sc->sc_tx_data[i];
1949
1950		data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1951		if (data->buf == NULL) {
1952			device_printf(sc->sc_dev,
1953			    "could not allocate TX buffer\n");
1954			return (ENOMEM);
1955		}
1956		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1957		UPGT_STAT_INC(sc, st_tx_inactive);
1958	}
1959
1960	return (0);
1961}
1962
1963static int
1964upgt_alloc_rx(struct upgt_softc *sc)
1965{
1966	int i;
1967
1968	STAILQ_INIT(&sc->sc_rx_active);
1969	STAILQ_INIT(&sc->sc_rx_inactive);
1970
1971	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1972		struct upgt_data *data = &sc->sc_rx_data[i];
1973
1974		data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1975		if (data->buf == NULL) {
1976			device_printf(sc->sc_dev,
1977			    "could not allocate RX buffer\n");
1978			return (ENOMEM);
1979		}
1980		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1981	}
1982
1983	return (0);
1984}
1985
1986static int
1987upgt_detach(device_t dev)
1988{
1989	struct upgt_softc *sc = device_get_softc(dev);
1990	struct ifnet *ifp = sc->sc_ifp;
1991	struct ieee80211com *ic = ifp->if_l2com;
1992
1993	if (!device_is_attached(dev))
1994		return 0;
1995
1996	upgt_stop(sc);
1997
1998	callout_drain(&sc->sc_led_ch);
1999	callout_drain(&sc->sc_watchdog_ch);
2000
2001	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
2002	ieee80211_ifdetach(ic);
2003	upgt_free_rx(sc);
2004	upgt_free_tx(sc);
2005
2006	if_free(ifp);
2007	mtx_destroy(&sc->sc_mtx);
2008
2009	return (0);
2010}
2011
2012static void
2013upgt_free_rx(struct upgt_softc *sc)
2014{
2015	int i;
2016
2017	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2018		struct upgt_data *data = &sc->sc_rx_data[i];
2019
2020		free(data->buf, M_USBDEV);
2021		data->ni = NULL;
2022	}
2023}
2024
2025static void
2026upgt_free_tx(struct upgt_softc *sc)
2027{
2028	int i;
2029
2030	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2031		struct upgt_data *data = &sc->sc_tx_data[i];
2032
2033		free(data->buf, M_USBDEV);
2034		data->ni = NULL;
2035	}
2036}
2037
2038static void
2039upgt_abort_xfers_locked(struct upgt_softc *sc)
2040{
2041	int i;
2042
2043	UPGT_ASSERT_LOCKED(sc);
2044	/* abort any pending transfers */
2045	for (i = 0; i < UPGT_N_XFERS; i++)
2046		usbd_transfer_stop(sc->sc_xfer[i]);
2047}
2048
2049static void
2050upgt_abort_xfers(struct upgt_softc *sc)
2051{
2052
2053	UPGT_LOCK(sc);
2054	upgt_abort_xfers_locked(sc);
2055	UPGT_UNLOCK(sc);
2056}
2057
2058#define	UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2059	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2060
2061static void
2062upgt_sysctl_node(struct upgt_softc *sc)
2063{
2064	struct sysctl_ctx_list *ctx;
2065	struct sysctl_oid_list *child;
2066	struct sysctl_oid *tree;
2067	struct upgt_stat *stats;
2068
2069	stats = &sc->sc_stat;
2070	ctx = device_get_sysctl_ctx(sc->sc_dev);
2071	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2072
2073	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2074	    NULL, "UPGT statistics");
2075	child = SYSCTL_CHILDREN(tree);
2076	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2077	    &stats->st_tx_active, "Active numbers in TX queue");
2078	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2079	    &stats->st_tx_inactive, "Inactive numbers in TX queue");
2080	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2081	    &stats->st_tx_pending, "Pending numbers in TX queue");
2082}
2083
2084#undef UPGT_SYSCTL_STAT_ADD32
2085
2086static struct upgt_data *
2087_upgt_getbuf(struct upgt_softc *sc)
2088{
2089	struct upgt_data *bf;
2090
2091	bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2092	if (bf != NULL) {
2093		STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2094		UPGT_STAT_DEC(sc, st_tx_inactive);
2095	} else
2096		bf = NULL;
2097	if (bf == NULL)
2098		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2099		    "out of xmit buffers");
2100	return (bf);
2101}
2102
2103static struct upgt_data *
2104upgt_getbuf(struct upgt_softc *sc)
2105{
2106	struct upgt_data *bf;
2107
2108	UPGT_ASSERT_LOCKED(sc);
2109
2110	bf = _upgt_getbuf(sc);
2111	if (bf == NULL) {
2112		struct ifnet *ifp = sc->sc_ifp;
2113
2114		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2115		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2116	}
2117
2118	return (bf);
2119}
2120
2121static struct upgt_data *
2122upgt_gettxbuf(struct upgt_softc *sc)
2123{
2124	struct upgt_data *bf;
2125
2126	UPGT_ASSERT_LOCKED(sc);
2127
2128	bf = upgt_getbuf(sc);
2129	if (bf == NULL)
2130		return (NULL);
2131
2132	bf->addr = upgt_mem_alloc(sc);
2133	if (bf->addr == 0) {
2134		struct ifnet *ifp = sc->sc_ifp;
2135
2136		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2137		    __func__);
2138		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2139		UPGT_STAT_INC(sc, st_tx_inactive);
2140		if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2141			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2142		return (NULL);
2143	}
2144	return (bf);
2145}
2146
2147static int
2148upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2149    struct upgt_data *data)
2150{
2151	struct ieee80211vap *vap = ni->ni_vap;
2152	int error = 0, len;
2153	struct ieee80211_frame *wh;
2154	struct ieee80211_key *k;
2155	struct ifnet *ifp = sc->sc_ifp;
2156	struct upgt_lmac_mem *mem;
2157	struct upgt_lmac_tx_desc *txdesc;
2158
2159	UPGT_ASSERT_LOCKED(sc);
2160
2161	upgt_set_led(sc, UPGT_LED_BLINK);
2162
2163	/*
2164	 * Software crypto.
2165	 */
2166	wh = mtod(m, struct ieee80211_frame *);
2167	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2168		k = ieee80211_crypto_encap(ni, m);
2169		if (k == NULL) {
2170			device_printf(sc->sc_dev,
2171			    "ieee80211_crypto_encap returns NULL.\n");
2172			error = EIO;
2173			goto done;
2174		}
2175
2176		/* in case packet header moved, reset pointer */
2177		wh = mtod(m, struct ieee80211_frame *);
2178	}
2179
2180	/* Transmit the URB containing the TX data.  */
2181	bzero(data->buf, MCLBYTES);
2182	mem = (struct upgt_lmac_mem *)data->buf;
2183	mem->addr = htole32(data->addr);
2184	txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2185
2186	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2187	    IEEE80211_FC0_TYPE_MGT) {
2188		/* mgmt frames  */
2189		txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2190		/* always send mgmt frames at lowest rate (DS1) */
2191		memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2192	} else {
2193		/* data frames  */
2194		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2195		bcopy(sc->sc_cur_rateset, txdesc->rates, sizeof(txdesc->rates));
2196	}
2197	txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2198	txdesc->header1.len = htole16(m->m_pkthdr.len);
2199	txdesc->header2.reqid = htole32(data->addr);
2200	txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2201	txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2202	txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2203	txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2204
2205	if (ieee80211_radiotap_active_vap(vap)) {
2206		struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2207
2208		tap->wt_flags = 0;
2209		tap->wt_rate = 0;	/* XXX where to get from? */
2210
2211		ieee80211_radiotap_tx(vap, m);
2212	}
2213
2214	/* copy frame below our TX descriptor header */
2215	m_copydata(m, 0, m->m_pkthdr.len,
2216	    data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2217	/* calculate frame size */
2218	len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2219	/* we need to align the frame to a 4 byte boundary */
2220	len = (len + 3) & ~3;
2221	/* calculate frame checksum */
2222	mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2223	data->ni = ni;
2224	data->m = m;
2225	data->buflen = len;
2226
2227	DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2228	    __func__, len);
2229	KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2230
2231	upgt_bulk_tx(sc, data);
2232done:
2233	/*
2234	 * If we don't regulary read the device statistics, the RX queue
2235	 * will stall.  It's strange, but it works, so we keep reading
2236	 * the statistics here.  *shrug*
2237	 */
2238	if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2239		upgt_get_stats(sc);
2240
2241	return (error);
2242}
2243
2244static void
2245upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2246{
2247	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2248	struct ifnet *ifp = sc->sc_ifp;
2249	struct ieee80211com *ic = ifp->if_l2com;
2250	struct ieee80211_frame *wh;
2251	struct ieee80211_node *ni;
2252	struct mbuf *m = NULL;
2253	struct upgt_data *data;
2254	int8_t nf;
2255	int rssi = -1;
2256
2257	UPGT_ASSERT_LOCKED(sc);
2258
2259	switch (USB_GET_STATE(xfer)) {
2260	case USB_ST_TRANSFERRED:
2261		data = STAILQ_FIRST(&sc->sc_rx_active);
2262		if (data == NULL)
2263			goto setup;
2264		STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2265		m = upgt_rxeof(xfer, data, &rssi);
2266		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2267		/* FALLTHROUGH */
2268	case USB_ST_SETUP:
2269setup:
2270		data = STAILQ_FIRST(&sc->sc_rx_inactive);
2271		if (data == NULL)
2272			return;
2273		STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2274		STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2275		usbd_xfer_set_frame_data(xfer, 0, data->buf,
2276		    usbd_xfer_max_len(xfer));
2277		usbd_transfer_submit(xfer);
2278
2279		/*
2280		 * To avoid LOR we should unlock our private mutex here to call
2281		 * ieee80211_input() because here is at the end of a USB
2282		 * callback and safe to unlock.
2283		 */
2284		UPGT_UNLOCK(sc);
2285		if (m != NULL) {
2286			wh = mtod(m, struct ieee80211_frame *);
2287			ni = ieee80211_find_rxnode(ic,
2288			    (struct ieee80211_frame_min *)wh);
2289			nf = -95;	/* XXX */
2290			if (ni != NULL) {
2291				(void) ieee80211_input(ni, m, rssi, nf);
2292				/* node is no longer needed */
2293				ieee80211_free_node(ni);
2294			} else
2295				(void) ieee80211_input_all(ic, m, rssi, nf);
2296			m = NULL;
2297		}
2298		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2299		    !IFQ_IS_EMPTY(&ifp->if_snd))
2300			upgt_start(ifp);
2301		UPGT_LOCK(sc);
2302		break;
2303	default:
2304		/* needs it to the inactive queue due to a error.  */
2305		data = STAILQ_FIRST(&sc->sc_rx_active);
2306		if (data != NULL) {
2307			STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2308			STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2309		}
2310		if (error != USB_ERR_CANCELLED) {
2311			usbd_xfer_set_stall(xfer);
2312			ifp->if_ierrors++;
2313			goto setup;
2314		}
2315		break;
2316	}
2317}
2318
2319static void
2320upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2321{
2322	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2323	struct ifnet *ifp = sc->sc_ifp;
2324	struct upgt_data *data;
2325
2326	UPGT_ASSERT_LOCKED(sc);
2327	switch (USB_GET_STATE(xfer)) {
2328	case USB_ST_TRANSFERRED:
2329		data = STAILQ_FIRST(&sc->sc_tx_active);
2330		if (data == NULL)
2331			goto setup;
2332		STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2333		UPGT_STAT_DEC(sc, st_tx_active);
2334		upgt_txeof(xfer, data);
2335		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2336		UPGT_STAT_INC(sc, st_tx_inactive);
2337		/* FALLTHROUGH */
2338	case USB_ST_SETUP:
2339setup:
2340		data = STAILQ_FIRST(&sc->sc_tx_pending);
2341		if (data == NULL) {
2342			DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2343			    __func__);
2344			return;
2345		}
2346		STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2347		UPGT_STAT_DEC(sc, st_tx_pending);
2348		STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2349		UPGT_STAT_INC(sc, st_tx_active);
2350
2351		usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2352		usbd_transfer_submit(xfer);
2353		UPGT_UNLOCK(sc);
2354		upgt_start(ifp);
2355		UPGT_LOCK(sc);
2356		break;
2357	default:
2358		data = STAILQ_FIRST(&sc->sc_tx_active);
2359		if (data == NULL)
2360			goto setup;
2361		if (data->ni != NULL) {
2362			ieee80211_free_node(data->ni);
2363			data->ni = NULL;
2364			ifp->if_oerrors++;
2365		}
2366		if (error != USB_ERR_CANCELLED) {
2367			usbd_xfer_set_stall(xfer);
2368			goto setup;
2369		}
2370		break;
2371	}
2372}
2373
2374static device_method_t upgt_methods[] = {
2375        /* Device interface */
2376        DEVMETHOD(device_probe, upgt_match),
2377        DEVMETHOD(device_attach, upgt_attach),
2378        DEVMETHOD(device_detach, upgt_detach),
2379
2380	{ 0, 0 }
2381};
2382
2383static driver_t upgt_driver = {
2384        "upgt",
2385        upgt_methods,
2386        sizeof(struct upgt_softc)
2387};
2388
2389static devclass_t upgt_devclass;
2390
2391DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2392MODULE_VERSION(if_upgt, 1);
2393MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2394MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2395MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);
2396