safe.c revision 159226
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 159226 2006-06-04 14:14:35Z pjd $");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62
63#include <dev/pci/pcivar.h>
64#include <dev/pci/pcireg.h>
65
66#ifdef SAFE_RNDTEST
67#include <dev/rndtest/rndtest.h>
68#endif
69#include <dev/safe/safereg.h>
70#include <dev/safe/safevar.h>
71
72#ifndef bswap32
73#define	bswap32	NTOHL
74#endif
75
76/*
77 * Prototypes and count for the pci_device structure
78 */
79static	int safe_probe(device_t);
80static	int safe_attach(device_t);
81static	int safe_detach(device_t);
82static	int safe_suspend(device_t);
83static	int safe_resume(device_t);
84static	void safe_shutdown(device_t);
85
86static device_method_t safe_methods[] = {
87	/* Device interface */
88	DEVMETHOD(device_probe,		safe_probe),
89	DEVMETHOD(device_attach,	safe_attach),
90	DEVMETHOD(device_detach,	safe_detach),
91	DEVMETHOD(device_suspend,	safe_suspend),
92	DEVMETHOD(device_resume,	safe_resume),
93	DEVMETHOD(device_shutdown,	safe_shutdown),
94
95	/* bus interface */
96	DEVMETHOD(bus_print_child,	bus_generic_print_child),
97	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
98
99	{ 0, 0 }
100};
101static driver_t safe_driver = {
102	"safe",
103	safe_methods,
104	sizeof (struct safe_softc)
105};
106static devclass_t safe_devclass;
107
108DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
109MODULE_DEPEND(safe, crypto, 1, 1, 1);
110#ifdef SAFE_RNDTEST
111MODULE_DEPEND(safe, rndtest, 1, 1, 1);
112#endif
113
114static	void safe_intr(void *);
115static	int safe_newsession(void *, u_int32_t *, struct cryptoini *);
116static	int safe_freesession(void *, u_int64_t);
117static	int safe_process(void *, struct cryptop *, int);
118static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
119static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
120static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
121#ifndef SAFE_NO_RNG
122static	void safe_rng_init(struct safe_softc *);
123static	void safe_rng(void *);
124#endif /* SAFE_NO_RNG */
125static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
126	        struct safe_dma_alloc *, int);
127#define	safe_dma_sync(_dma, _flags) \
128	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
129static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
130static	int safe_dmamap_aligned(const struct safe_operand *);
131static	int safe_dmamap_uniform(const struct safe_operand *);
132
133static	void safe_reset_board(struct safe_softc *);
134static	void safe_init_board(struct safe_softc *);
135static	void safe_init_pciregs(device_t dev);
136static	void safe_cleanchip(struct safe_softc *);
137static	void safe_totalreset(struct safe_softc *);
138
139static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
140
141SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
142
143#ifdef SAFE_DEBUG
144static	void safe_dump_dmastatus(struct safe_softc *, const char *);
145static	void safe_dump_ringstate(struct safe_softc *, const char *);
146static	void safe_dump_intrstate(struct safe_softc *, const char *);
147static	void safe_dump_request(struct safe_softc *, const char *,
148		struct safe_ringentry *);
149
150static	struct safe_softc *safec;		/* for use by hw.safe.dump */
151
152static	int safe_debug = 0;
153SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
154	    0, "control debugging msgs");
155#define	DPRINTF(_x)	if (safe_debug) printf _x
156#else
157#define	DPRINTF(_x)
158#endif
159
160#define	READ_REG(sc,r) \
161	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
162
163#define WRITE_REG(sc,reg,val) \
164	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
165
166struct safe_stats safestats;
167SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
168	    safe_stats, "driver statistics");
169#ifndef SAFE_NO_RNG
170static	int safe_rnginterval = 1;		/* poll once a second */
171SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
172	    0, "RNG polling interval (secs)");
173static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
174SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
175	    0, "RNG polling buffer size (32-bit words)");
176static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
177SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
178	    0, "RNG max alarms before reset");
179#endif /* SAFE_NO_RNG */
180
181static int
182safe_probe(device_t dev)
183{
184	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
185	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
186		return (BUS_PROBE_DEFAULT);
187	return (ENXIO);
188}
189
190static const char*
191safe_partname(struct safe_softc *sc)
192{
193	/* XXX sprintf numbers when not decoded */
194	switch (pci_get_vendor(sc->sc_dev)) {
195	case PCI_VENDOR_SAFENET:
196		switch (pci_get_device(sc->sc_dev)) {
197		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
198		}
199		return "SafeNet unknown-part";
200	}
201	return "Unknown-vendor unknown-part";
202}
203
204#ifndef SAFE_NO_RNG
205static void
206default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
207{
208	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
209}
210#endif /* SAFE_NO_RNG */
211
212static int
213safe_attach(device_t dev)
214{
215	struct safe_softc *sc = device_get_softc(dev);
216	u_int32_t raddr;
217	u_int32_t cmd, i, devinfo;
218	int rid;
219
220	bzero(sc, sizeof (*sc));
221	sc->sc_dev = dev;
222
223	/* XXX handle power management */
224
225	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
226	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
227	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
228	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
229
230	if (!(cmd & PCIM_CMD_MEMEN)) {
231		device_printf(dev, "failed to enable memory mapping\n");
232		goto bad;
233	}
234
235	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
236		device_printf(dev, "failed to enable bus mastering\n");
237		goto bad;
238	}
239
240	/*
241	 * Setup memory-mapping of PCI registers.
242	 */
243	rid = BS_BAR;
244	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
245					   RF_ACTIVE);
246	if (sc->sc_sr == NULL) {
247		device_printf(dev, "cannot map register space\n");
248		goto bad;
249	}
250	sc->sc_st = rman_get_bustag(sc->sc_sr);
251	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
252
253	/*
254	 * Arrange interrupt line.
255	 */
256	rid = 0;
257	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
258					    RF_SHAREABLE|RF_ACTIVE);
259	if (sc->sc_irq == NULL) {
260		device_printf(dev, "could not map interrupt\n");
261		goto bad1;
262	}
263	/*
264	 * NB: Network code assumes we are blocked with splimp()
265	 *     so make sure the IRQ is mapped appropriately.
266	 */
267	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
268			   safe_intr, sc, &sc->sc_ih)) {
269		device_printf(dev, "could not establish interrupt\n");
270		goto bad2;
271	}
272
273	sc->sc_cid = crypto_get_driverid(0);
274	if (sc->sc_cid < 0) {
275		device_printf(dev, "could not get crypto driver id\n");
276		goto bad3;
277	}
278
279	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
280		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
281
282	/*
283	 * Setup DMA descriptor area.
284	 */
285	if (bus_dma_tag_create(NULL,			/* parent */
286			       1,			/* alignment */
287			       SAFE_DMA_BOUNDARY,	/* boundary */
288			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
289			       BUS_SPACE_MAXADDR,	/* highaddr */
290			       NULL, NULL,		/* filter, filterarg */
291			       SAFE_MAX_DMA,		/* maxsize */
292			       SAFE_MAX_PART,		/* nsegments */
293			       SAFE_MAX_SSIZE,		/* maxsegsize */
294			       BUS_DMA_ALLOCNOW,	/* flags */
295			       NULL, NULL,		/* locking */
296			       &sc->sc_srcdmat)) {
297		device_printf(dev, "cannot allocate DMA tag\n");
298		goto bad4;
299	}
300	if (bus_dma_tag_create(NULL,			/* parent */
301			       sizeof(u_int32_t),	/* alignment */
302			       SAFE_MAX_DSIZE,		/* boundary */
303			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
304			       BUS_SPACE_MAXADDR,	/* highaddr */
305			       NULL, NULL,		/* filter, filterarg */
306			       SAFE_MAX_DMA,		/* maxsize */
307			       SAFE_MAX_PART,		/* nsegments */
308			       SAFE_MAX_DSIZE,		/* maxsegsize */
309			       BUS_DMA_ALLOCNOW,	/* flags */
310			       NULL, NULL,		/* locking */
311			       &sc->sc_dstdmat)) {
312		device_printf(dev, "cannot allocate DMA tag\n");
313		goto bad4;
314	}
315
316	/*
317	 * Allocate packet engine descriptors.
318	 */
319	if (safe_dma_malloc(sc,
320	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
321	    &sc->sc_ringalloc, 0)) {
322		device_printf(dev, "cannot allocate PE descriptor ring\n");
323		bus_dma_tag_destroy(sc->sc_srcdmat);
324		goto bad4;
325	}
326	/*
327	 * Hookup the static portion of all our data structures.
328	 */
329	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
330	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
331	sc->sc_front = sc->sc_ring;
332	sc->sc_back = sc->sc_ring;
333	raddr = sc->sc_ringalloc.dma_paddr;
334	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
335	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
336		struct safe_ringentry *re = &sc->sc_ring[i];
337
338		re->re_desc.d_sa = raddr +
339			offsetof(struct safe_ringentry, re_sa);
340		re->re_sa.sa_staterec = raddr +
341			offsetof(struct safe_ringentry, re_sastate);
342
343		raddr += sizeof (struct safe_ringentry);
344	}
345	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
346		"packet engine ring", MTX_DEF);
347
348	/*
349	 * Allocate scatter and gather particle descriptors.
350	 */
351	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
352	    &sc->sc_spalloc, 0)) {
353		device_printf(dev, "cannot allocate source particle "
354			"descriptor ring\n");
355		mtx_destroy(&sc->sc_ringmtx);
356		safe_dma_free(sc, &sc->sc_ringalloc);
357		bus_dma_tag_destroy(sc->sc_srcdmat);
358		goto bad4;
359	}
360	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
361	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
362	sc->sc_spfree = sc->sc_spring;
363	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
364
365	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
366	    &sc->sc_dpalloc, 0)) {
367		device_printf(dev, "cannot allocate destination particle "
368			"descriptor ring\n");
369		mtx_destroy(&sc->sc_ringmtx);
370		safe_dma_free(sc, &sc->sc_spalloc);
371		safe_dma_free(sc, &sc->sc_ringalloc);
372		bus_dma_tag_destroy(sc->sc_dstdmat);
373		goto bad4;
374	}
375	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
376	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
377	sc->sc_dpfree = sc->sc_dpring;
378	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
379
380	device_printf(sc->sc_dev, "%s", safe_partname(sc));
381
382	devinfo = READ_REG(sc, SAFE_DEVINFO);
383	if (devinfo & SAFE_DEVINFO_RNG) {
384		sc->sc_flags |= SAFE_FLAGS_RNG;
385		printf(" rng");
386	}
387	if (devinfo & SAFE_DEVINFO_PKEY) {
388#if 0
389		printf(" key");
390		sc->sc_flags |= SAFE_FLAGS_KEY;
391		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
392			safe_kprocess, sc);
393		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
394			safe_kprocess, sc);
395#endif
396	}
397	if (devinfo & SAFE_DEVINFO_DES) {
398		printf(" des/3des");
399		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400			safe_newsession, safe_freesession, safe_process, sc);
401		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402			safe_newsession, safe_freesession, safe_process, sc);
403	}
404	if (devinfo & SAFE_DEVINFO_AES) {
405		printf(" aes");
406		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
407			safe_newsession, safe_freesession, safe_process, sc);
408	}
409	if (devinfo & SAFE_DEVINFO_MD5) {
410		printf(" md5");
411		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
412			safe_newsession, safe_freesession, safe_process, sc);
413	}
414	if (devinfo & SAFE_DEVINFO_SHA1) {
415		printf(" sha1");
416		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
417			safe_newsession, safe_freesession, safe_process, sc);
418	}
419	printf(" null");
420	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
421		safe_newsession, safe_freesession, safe_process, sc);
422	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
423		safe_newsession, safe_freesession, safe_process, sc);
424	/* XXX other supported algorithms */
425	printf("\n");
426
427	safe_reset_board(sc);		/* reset h/w */
428	safe_init_pciregs(dev);		/* init pci settings */
429	safe_init_board(sc);		/* init h/w */
430
431#ifndef SAFE_NO_RNG
432	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433#ifdef SAFE_RNDTEST
434		sc->sc_rndtest = rndtest_attach(dev);
435		if (sc->sc_rndtest)
436			sc->sc_harvest = rndtest_harvest;
437		else
438			sc->sc_harvest = default_harvest;
439#else
440		sc->sc_harvest = default_harvest;
441#endif
442		safe_rng_init(sc);
443
444		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446	}
447#endif /* SAFE_NO_RNG */
448#ifdef SAFE_DEBUG
449	safec = sc;			/* for use by hw.safe.dump */
450#endif
451	return (0);
452bad4:
453	crypto_unregister_all(sc->sc_cid);
454bad3:
455	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456bad2:
457	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458bad1:
459	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460bad:
461	return (ENXIO);
462}
463
464/*
465 * Detach a device that successfully probed.
466 */
467static int
468safe_detach(device_t dev)
469{
470	struct safe_softc *sc = device_get_softc(dev);
471
472	/* XXX wait/abort active ops */
473
474	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475
476	callout_stop(&sc->sc_rngto);
477
478	crypto_unregister_all(sc->sc_cid);
479
480#ifdef SAFE_RNDTEST
481	if (sc->sc_rndtest)
482		rndtest_detach(sc->sc_rndtest);
483#endif
484
485	safe_cleanchip(sc);
486	safe_dma_free(sc, &sc->sc_dpalloc);
487	safe_dma_free(sc, &sc->sc_spalloc);
488	mtx_destroy(&sc->sc_ringmtx);
489	safe_dma_free(sc, &sc->sc_ringalloc);
490
491	bus_generic_detach(dev);
492	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494
495	bus_dma_tag_destroy(sc->sc_srcdmat);
496	bus_dma_tag_destroy(sc->sc_dstdmat);
497	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498
499	return (0);
500}
501
502/*
503 * Stop all chip i/o so that the kernel's probe routines don't
504 * get confused by errant DMAs when rebooting.
505 */
506static void
507safe_shutdown(device_t dev)
508{
509#ifdef notyet
510	safe_stop(device_get_softc(dev));
511#endif
512}
513
514/*
515 * Device suspend routine.
516 */
517static int
518safe_suspend(device_t dev)
519{
520	struct safe_softc *sc = device_get_softc(dev);
521
522#ifdef notyet
523	/* XXX stop the device and save PCI settings */
524#endif
525	sc->sc_suspended = 1;
526
527	return (0);
528}
529
530static int
531safe_resume(device_t dev)
532{
533	struct safe_softc *sc = device_get_softc(dev);
534
535#ifdef notyet
536	/* XXX retore PCI settings and start the device */
537#endif
538	sc->sc_suspended = 0;
539	return (0);
540}
541
542/*
543 * SafeXcel Interrupt routine
544 */
545static void
546safe_intr(void *arg)
547{
548	struct safe_softc *sc = arg;
549	volatile u_int32_t stat;
550
551	stat = READ_REG(sc, SAFE_HM_STAT);
552	if (stat == 0)			/* shared irq, not for us */
553		return;
554
555	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
556
557	if ((stat & SAFE_INT_PE_DDONE)) {
558		/*
559		 * Descriptor(s) done; scan the ring and
560		 * process completed operations.
561		 */
562		mtx_lock(&sc->sc_ringmtx);
563		while (sc->sc_back != sc->sc_front) {
564			struct safe_ringentry *re = sc->sc_back;
565#ifdef SAFE_DEBUG
566			if (safe_debug) {
567				safe_dump_ringstate(sc, __func__);
568				safe_dump_request(sc, __func__, re);
569			}
570#endif
571			/*
572			 * safe_process marks ring entries that were allocated
573			 * but not used with a csr of zero.  This insures the
574			 * ring front pointer never needs to be set backwards
575			 * in the event that an entry is allocated but not used
576			 * because of a setup error.
577			 */
578			if (re->re_desc.d_csr != 0) {
579				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
580					break;
581				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
582					break;
583				sc->sc_nqchip--;
584				safe_callback(sc, re);
585			}
586			if (++(sc->sc_back) == sc->sc_ringtop)
587				sc->sc_back = sc->sc_ring;
588		}
589		mtx_unlock(&sc->sc_ringmtx);
590	}
591
592	/*
593	 * Check to see if we got any DMA Error
594	 */
595	if (stat & SAFE_INT_PE_ERROR) {
596		DPRINTF(("dmaerr dmastat %08x\n",
597			READ_REG(sc, SAFE_PE_DMASTAT)));
598		safestats.st_dmaerr++;
599		safe_totalreset(sc);
600#if 0
601		safe_feed(sc);
602#endif
603	}
604
605	if (sc->sc_needwakeup) {		/* XXX check high watermark */
606		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
607		DPRINTF(("%s: wakeup crypto %x\n", __func__,
608			sc->sc_needwakeup));
609		sc->sc_needwakeup &= ~wakeup;
610		crypto_unblock(sc->sc_cid, wakeup);
611	}
612}
613
614/*
615 * safe_feed() - post a request to chip
616 */
617static void
618safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
619{
620	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
621	if (re->re_dst_map != NULL)
622		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
623			BUS_DMASYNC_PREREAD);
624	/* XXX have no smaller granularity */
625	safe_dma_sync(&sc->sc_ringalloc,
626		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
627	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
628	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
629
630#ifdef SAFE_DEBUG
631	if (safe_debug) {
632		safe_dump_ringstate(sc, __func__);
633		safe_dump_request(sc, __func__, re);
634	}
635#endif
636	sc->sc_nqchip++;
637	if (sc->sc_nqchip > safestats.st_maxqchip)
638		safestats.st_maxqchip = sc->sc_nqchip;
639	/* poke h/w to check descriptor ring, any value can be written */
640	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
641}
642
643#define	N(a)	(sizeof(a) / sizeof (a[0]))
644static void
645safe_setup_enckey(struct safe_session *ses, caddr_t key)
646{
647	int i;
648
649	bcopy(key, ses->ses_key, ses->ses_klen / 8);
650
651	/* PE is little-endian, insure proper byte order */
652	for (i = 0; i < N(ses->ses_key); i++)
653		ses->ses_key[i] = htole32(ses->ses_key[i]);
654}
655
656static void
657safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
658{
659	MD5_CTX md5ctx;
660	SHA1_CTX sha1ctx;
661	int i;
662
663
664	for (i = 0; i < klen; i++)
665		key[i] ^= HMAC_IPAD_VAL;
666
667	if (algo == CRYPTO_MD5_HMAC) {
668		MD5Init(&md5ctx);
669		MD5Update(&md5ctx, key, klen);
670		MD5Update(&md5ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - klen);
671		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
672	} else {
673		SHA1Init(&sha1ctx);
674		SHA1Update(&sha1ctx, key, klen);
675		SHA1Update(&sha1ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - klen);
676		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
677	}
678
679	for (i = 0; i < klen; i++)
680		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
681
682	if (algo == CRYPTO_MD5_HMAC) {
683		MD5Init(&md5ctx);
684		MD5Update(&md5ctx, key, klen);
685		MD5Update(&md5ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - klen);
686		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
687	} else {
688		SHA1Init(&sha1ctx);
689		SHA1Update(&sha1ctx, key, klen);
690		SHA1Update(&sha1ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - klen);
691		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
692	}
693
694	for (i = 0; i < klen; i++)
695		key[i] ^= HMAC_OPAD_VAL;
696
697	/* PE is little-endian, insure proper byte order */
698	for (i = 0; i < N(ses->ses_hminner); i++) {
699		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
700		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
701	}
702}
703#undef N
704
705/*
706 * Allocate a new 'session' and return an encoded session id.  'sidp'
707 * contains our registration id, and should contain an encoded session
708 * id on successful allocation.
709 */
710static int
711safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
712{
713	struct cryptoini *c, *encini = NULL, *macini = NULL;
714	struct safe_softc *sc = arg;
715	struct safe_session *ses = NULL;
716	int sesn;
717
718	if (sidp == NULL || cri == NULL || sc == NULL)
719		return (EINVAL);
720
721	for (c = cri; c != NULL; c = c->cri_next) {
722		if (c->cri_alg == CRYPTO_MD5_HMAC ||
723		    c->cri_alg == CRYPTO_SHA1_HMAC ||
724		    c->cri_alg == CRYPTO_NULL_HMAC) {
725			if (macini)
726				return (EINVAL);
727			macini = c;
728		} else if (c->cri_alg == CRYPTO_DES_CBC ||
729		    c->cri_alg == CRYPTO_3DES_CBC ||
730		    c->cri_alg == CRYPTO_AES_CBC ||
731		    c->cri_alg == CRYPTO_NULL_CBC) {
732			if (encini)
733				return (EINVAL);
734			encini = c;
735		} else
736			return (EINVAL);
737	}
738	if (encini == NULL && macini == NULL)
739		return (EINVAL);
740	if (encini) {			/* validate key length */
741		switch (encini->cri_alg) {
742		case CRYPTO_DES_CBC:
743			if (encini->cri_klen != 64)
744				return (EINVAL);
745			break;
746		case CRYPTO_3DES_CBC:
747			if (encini->cri_klen != 192)
748				return (EINVAL);
749			break;
750		case CRYPTO_AES_CBC:
751			if (encini->cri_klen != 128 &&
752			    encini->cri_klen != 192 &&
753			    encini->cri_klen != 256)
754				return (EINVAL);
755			break;
756		}
757	}
758
759	if (sc->sc_sessions == NULL) {
760		ses = sc->sc_sessions = (struct safe_session *)malloc(
761		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
762		if (ses == NULL)
763			return (ENOMEM);
764		sesn = 0;
765		sc->sc_nsessions = 1;
766	} else {
767		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
768			if (sc->sc_sessions[sesn].ses_used == 0) {
769				ses = &sc->sc_sessions[sesn];
770				break;
771			}
772		}
773
774		if (ses == NULL) {
775			sesn = sc->sc_nsessions;
776			ses = (struct safe_session *)malloc((sesn + 1) *
777			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
778			if (ses == NULL)
779				return (ENOMEM);
780			bcopy(sc->sc_sessions, ses, sesn *
781			    sizeof(struct safe_session));
782			bzero(sc->sc_sessions, sesn *
783			    sizeof(struct safe_session));
784			free(sc->sc_sessions, M_DEVBUF);
785			sc->sc_sessions = ses;
786			ses = &sc->sc_sessions[sesn];
787			sc->sc_nsessions++;
788		}
789	}
790
791	bzero(ses, sizeof(struct safe_session));
792	ses->ses_used = 1;
793
794	if (encini) {
795		/* get an IV */
796		/* XXX may read fewer than requested */
797		read_random(ses->ses_iv, sizeof(ses->ses_iv));
798
799		ses->ses_klen = encini->cri_klen;
800		if (encini->cri_key != NULL)
801			safe_setup_enckey(ses, encini->cri_key);
802	}
803
804	if (macini) {
805		ses->ses_mlen = macini->cri_mlen;
806		if (ses->ses_mlen == 0) {
807			if (macini->cri_alg == CRYPTO_MD5_HMAC)
808				ses->ses_mlen = MD5_DIGEST_LENGTH;
809			else
810				ses->ses_mlen = SHA1_RESULTLEN;
811		}
812
813		if (macini->cri_key != NULL) {
814			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
815			    macini->cri_klen / 8);
816		}
817	}
818
819	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
820	return (0);
821}
822
823/*
824 * Deallocate a session.
825 */
826static int
827safe_freesession(void *arg, u_int64_t tid)
828{
829	struct safe_softc *sc = arg;
830	int session, ret;
831	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
832
833	if (sc == NULL)
834		return (EINVAL);
835
836	session = SAFE_SESSION(sid);
837	if (session < sc->sc_nsessions) {
838		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
839		ret = 0;
840	} else
841		ret = EINVAL;
842	return (ret);
843}
844
845static void
846safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
847{
848	struct safe_operand *op = arg;
849
850	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
851		(u_int) mapsize, nsegs, error));
852	if (error != 0)
853		return;
854	op->mapsize = mapsize;
855	op->nsegs = nsegs;
856	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
857}
858
859static int
860safe_process(void *arg, struct cryptop *crp, int hint)
861{
862	int err = 0, i, nicealign, uniform;
863	struct safe_softc *sc = arg;
864	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
865	int bypass, oplen, ivsize;
866	caddr_t iv;
867	int16_t coffset;
868	struct safe_session *ses;
869	struct safe_ringentry *re;
870	struct safe_sarec *sa;
871	struct safe_pdesc *pd;
872	u_int32_t cmd0, cmd1, staterec;
873
874	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
875		safestats.st_invalid++;
876		return (EINVAL);
877	}
878	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
879		safestats.st_badsession++;
880		return (EINVAL);
881	}
882
883	mtx_lock(&sc->sc_ringmtx);
884	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
885		safestats.st_ringfull++;
886		sc->sc_needwakeup |= CRYPTO_SYMQ;
887		mtx_unlock(&sc->sc_ringmtx);
888		return (ERESTART);
889	}
890	re = sc->sc_front;
891
892	staterec = re->re_sa.sa_staterec;	/* save */
893	/* NB: zero everything but the PE descriptor */
894	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
895	re->re_sa.sa_staterec = staterec;	/* restore */
896
897	re->re_crp = crp;
898	re->re_sesn = SAFE_SESSION(crp->crp_sid);
899
900	if (crp->crp_flags & CRYPTO_F_IMBUF) {
901		re->re_src_m = (struct mbuf *)crp->crp_buf;
902		re->re_dst_m = (struct mbuf *)crp->crp_buf;
903	} else if (crp->crp_flags & CRYPTO_F_IOV) {
904		re->re_src_io = (struct uio *)crp->crp_buf;
905		re->re_dst_io = (struct uio *)crp->crp_buf;
906	} else {
907		safestats.st_badflags++;
908		err = EINVAL;
909		goto errout;	/* XXX we don't handle contiguous blocks! */
910	}
911
912	sa = &re->re_sa;
913	ses = &sc->sc_sessions[re->re_sesn];
914
915	crd1 = crp->crp_desc;
916	if (crd1 == NULL) {
917		safestats.st_nodesc++;
918		err = EINVAL;
919		goto errout;
920	}
921	crd2 = crd1->crd_next;
922
923	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
924	cmd1 = 0;
925	if (crd2 == NULL) {
926		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
927		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
928		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
929			maccrd = crd1;
930			enccrd = NULL;
931			cmd0 |= SAFE_SA_CMD0_OP_HASH;
932		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
933		    crd1->crd_alg == CRYPTO_3DES_CBC ||
934		    crd1->crd_alg == CRYPTO_AES_CBC ||
935		    crd1->crd_alg == CRYPTO_NULL_CBC) {
936			maccrd = NULL;
937			enccrd = crd1;
938			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
939		} else {
940			safestats.st_badalg++;
941			err = EINVAL;
942			goto errout;
943		}
944	} else {
945		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
946		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
947		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
948		    (crd2->crd_alg == CRYPTO_DES_CBC ||
949			crd2->crd_alg == CRYPTO_3DES_CBC ||
950		        crd2->crd_alg == CRYPTO_AES_CBC ||
951		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
952		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
953			maccrd = crd1;
954			enccrd = crd2;
955		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
956		    crd1->crd_alg == CRYPTO_3DES_CBC ||
957		    crd1->crd_alg == CRYPTO_AES_CBC ||
958		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
959		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
960			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
961			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
962		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
963			enccrd = crd1;
964			maccrd = crd2;
965		} else {
966			safestats.st_badalg++;
967			err = EINVAL;
968			goto errout;
969		}
970		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
971	}
972
973	if (enccrd) {
974		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
975			safe_setup_enckey(ses, enccrd->crd_key);
976
977		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
978			cmd0 |= SAFE_SA_CMD0_DES;
979			cmd1 |= SAFE_SA_CMD1_CBC;
980			ivsize = 2*sizeof(u_int32_t);
981		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
982			cmd0 |= SAFE_SA_CMD0_3DES;
983			cmd1 |= SAFE_SA_CMD1_CBC;
984			ivsize = 2*sizeof(u_int32_t);
985		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
986			cmd0 |= SAFE_SA_CMD0_AES;
987			cmd1 |= SAFE_SA_CMD1_CBC;
988			if (ses->ses_klen == 128)
989			     cmd1 |=  SAFE_SA_CMD1_AES128;
990			else if (ses->ses_klen == 192)
991			     cmd1 |=  SAFE_SA_CMD1_AES192;
992			else
993			     cmd1 |=  SAFE_SA_CMD1_AES256;
994			ivsize = 4*sizeof(u_int32_t);
995		} else {
996			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
997			ivsize = 0;
998		}
999
1000		/*
1001		 * Setup encrypt/decrypt state.  When using basic ops
1002		 * we can't use an inline IV because hash/crypt offset
1003		 * must be from the end of the IV to the start of the
1004		 * crypt data and this leaves out the preceding header
1005		 * from the hash calculation.  Instead we place the IV
1006		 * in the state record and set the hash/crypt offset to
1007		 * copy both the header+IV.
1008		 */
1009		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1010			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1011
1012			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1013				iv = enccrd->crd_iv;
1014			else
1015				iv = (caddr_t) ses->ses_iv;
1016			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1017				if (crp->crp_flags & CRYPTO_F_IMBUF)
1018					m_copyback(re->re_src_m,
1019						enccrd->crd_inject, ivsize, iv);
1020				else if (crp->crp_flags & CRYPTO_F_IOV)
1021					cuio_copyback(re->re_src_io,
1022						enccrd->crd_inject, ivsize, iv);
1023			}
1024			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1025			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1026			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1027		} else {
1028			cmd0 |= SAFE_SA_CMD0_INBOUND;
1029
1030			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1031				bcopy(enccrd->crd_iv,
1032					re->re_sastate.sa_saved_iv, ivsize);
1033			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1034				m_copydata(re->re_src_m, enccrd->crd_inject,
1035					ivsize,
1036					(caddr_t)re->re_sastate.sa_saved_iv);
1037			else if (crp->crp_flags & CRYPTO_F_IOV)
1038				cuio_copydata(re->re_src_io, enccrd->crd_inject,
1039					ivsize,
1040					(caddr_t)re->re_sastate.sa_saved_iv);
1041			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1042		}
1043		/*
1044		 * For basic encryption use the zero pad algorithm.
1045		 * This pads results to an 8-byte boundary and
1046		 * suppresses padding verification for inbound (i.e.
1047		 * decrypt) operations.
1048		 *
1049		 * NB: Not sure if the 8-byte pad boundary is a problem.
1050		 */
1051		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1052
1053		/* XXX assert key bufs have the same size */
1054		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1055	}
1056
1057	if (maccrd) {
1058		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1059			safe_setup_mackey(ses, maccrd->crd_alg,
1060			    maccrd->crd_key, maccrd->crd_klen / 8);
1061		}
1062
1063		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1064			cmd0 |= SAFE_SA_CMD0_MD5;
1065			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1066		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1067			cmd0 |= SAFE_SA_CMD0_SHA1;
1068			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1069		} else {
1070			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1071		}
1072		/*
1073		 * Digest data is loaded from the SA and the hash
1074		 * result is saved to the state block where we
1075		 * retrieve it for return to the caller.
1076		 */
1077		/* XXX assert digest bufs have the same size */
1078		bcopy(ses->ses_hminner, sa->sa_indigest,
1079			sizeof(sa->sa_indigest));
1080		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1081			sizeof(sa->sa_outdigest));
1082
1083		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1084		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1085	}
1086
1087	if (enccrd && maccrd) {
1088		/*
1089		 * The offset from hash data to the start of
1090		 * crypt data is the difference in the skips.
1091		 */
1092		bypass = maccrd->crd_skip;
1093		coffset = enccrd->crd_skip - maccrd->crd_skip;
1094		if (coffset < 0) {
1095			DPRINTF(("%s: hash does not precede crypt; "
1096				"mac skip %u enc skip %u\n",
1097				__func__, maccrd->crd_skip, enccrd->crd_skip));
1098			safestats.st_skipmismatch++;
1099			err = EINVAL;
1100			goto errout;
1101		}
1102		oplen = enccrd->crd_skip + enccrd->crd_len;
1103		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1104			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1105				__func__, maccrd->crd_skip + maccrd->crd_len,
1106				oplen));
1107			safestats.st_lenmismatch++;
1108			err = EINVAL;
1109			goto errout;
1110		}
1111#ifdef SAFE_DEBUG
1112		if (safe_debug) {
1113			printf("mac: skip %d, len %d, inject %d\n",
1114			    maccrd->crd_skip, maccrd->crd_len,
1115			    maccrd->crd_inject);
1116			printf("enc: skip %d, len %d, inject %d\n",
1117			    enccrd->crd_skip, enccrd->crd_len,
1118			    enccrd->crd_inject);
1119			printf("bypass %d coffset %d oplen %d\n",
1120				bypass, coffset, oplen);
1121		}
1122#endif
1123		if (coffset & 3) {	/* offset must be 32-bit aligned */
1124			DPRINTF(("%s: coffset %u misaligned\n",
1125				__func__, coffset));
1126			safestats.st_coffmisaligned++;
1127			err = EINVAL;
1128			goto errout;
1129		}
1130		coffset >>= 2;
1131		if (coffset > 255) {	/* offset must be <256 dwords */
1132			DPRINTF(("%s: coffset %u too big\n",
1133				__func__, coffset));
1134			safestats.st_cofftoobig++;
1135			err = EINVAL;
1136			goto errout;
1137		}
1138		/*
1139		 * Tell the hardware to copy the header to the output.
1140		 * The header is defined as the data from the end of
1141		 * the bypass to the start of data to be encrypted.
1142		 * Typically this is the inline IV.  Note that you need
1143		 * to do this even if src+dst are the same; it appears
1144		 * that w/o this bit the crypted data is written
1145		 * immediately after the bypass data.
1146		 */
1147		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1148		/*
1149		 * Disable IP header mutable bit handling.  This is
1150		 * needed to get correct HMAC calculations.
1151		 */
1152		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1153	} else {
1154		if (enccrd) {
1155			bypass = enccrd->crd_skip;
1156			oplen = bypass + enccrd->crd_len;
1157		} else {
1158			bypass = maccrd->crd_skip;
1159			oplen = bypass + maccrd->crd_len;
1160		}
1161		coffset = 0;
1162	}
1163	/* XXX verify multiple of 4 when using s/g */
1164	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1165		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1166		safestats.st_bypasstoobig++;
1167		err = EINVAL;
1168		goto errout;
1169	}
1170
1171	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1172		safestats.st_nomap++;
1173		err = ENOMEM;
1174		goto errout;
1175	}
1176	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1177		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1178		    re->re_src_m, safe_op_cb,
1179		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1180			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1181			re->re_src_map = NULL;
1182			safestats.st_noload++;
1183			err = ENOMEM;
1184			goto errout;
1185		}
1186	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1187		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1188		    re->re_src_io, safe_op_cb,
1189		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1190			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1191			re->re_src_map = NULL;
1192			safestats.st_noload++;
1193			err = ENOMEM;
1194			goto errout;
1195		}
1196	}
1197	nicealign = safe_dmamap_aligned(&re->re_src);
1198	uniform = safe_dmamap_uniform(&re->re_src);
1199
1200	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1201		nicealign, uniform, re->re_src.nsegs));
1202	if (re->re_src.nsegs > 1) {
1203		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1204			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1205		for (i = 0; i < re->re_src_nsegs; i++) {
1206			/* NB: no need to check if there's space */
1207			pd = sc->sc_spfree;
1208			if (++(sc->sc_spfree) == sc->sc_springtop)
1209				sc->sc_spfree = sc->sc_spring;
1210
1211			KASSERT((pd->pd_flags&3) == 0 ||
1212				(pd->pd_flags&3) == SAFE_PD_DONE,
1213				("bogus source particle descriptor; flags %x",
1214				pd->pd_flags));
1215			pd->pd_addr = re->re_src_segs[i].ds_addr;
1216			pd->pd_size = re->re_src_segs[i].ds_len;
1217			pd->pd_flags = SAFE_PD_READY;
1218		}
1219		cmd0 |= SAFE_SA_CMD0_IGATHER;
1220	} else {
1221		/*
1222		 * No need for gather, reference the operand directly.
1223		 */
1224		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1225	}
1226
1227	if (enccrd == NULL && maccrd != NULL) {
1228		/*
1229		 * Hash op; no destination needed.
1230		 */
1231	} else {
1232		if (crp->crp_flags & CRYPTO_F_IOV) {
1233			if (!nicealign) {
1234				safestats.st_iovmisaligned++;
1235				err = EINVAL;
1236				goto errout;
1237			}
1238			if (uniform != 1) {
1239				/*
1240				 * Source is not suitable for direct use as
1241				 * the destination.  Create a new scatter/gather
1242				 * list based on the destination requirements
1243				 * and check if that's ok.
1244				 */
1245				if (bus_dmamap_create(sc->sc_dstdmat,
1246				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1247					safestats.st_nomap++;
1248					err = ENOMEM;
1249					goto errout;
1250				}
1251				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1252				    re->re_dst_map, re->re_dst_io,
1253				    safe_op_cb, &re->re_dst,
1254				    BUS_DMA_NOWAIT) != 0) {
1255					bus_dmamap_destroy(sc->sc_dstdmat,
1256						re->re_dst_map);
1257					re->re_dst_map = NULL;
1258					safestats.st_noload++;
1259					err = ENOMEM;
1260					goto errout;
1261				}
1262				uniform = safe_dmamap_uniform(&re->re_dst);
1263				if (!uniform) {
1264					/*
1265					 * There's no way to handle the DMA
1266					 * requirements with this uio.  We
1267					 * could create a separate DMA area for
1268					 * the result and then copy it back,
1269					 * but for now we just bail and return
1270					 * an error.  Note that uio requests
1271					 * > SAFE_MAX_DSIZE are handled because
1272					 * the DMA map and segment list for the
1273					 * destination wil result in a
1274					 * destination particle list that does
1275					 * the necessary scatter DMA.
1276					 */
1277					safestats.st_iovnotuniform++;
1278					err = EINVAL;
1279					goto errout;
1280				}
1281			} else
1282				re->re_dst = re->re_src;
1283		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1284			if (nicealign && uniform == 1) {
1285				/*
1286				 * Source layout is suitable for direct
1287				 * sharing of the DMA map and segment list.
1288				 */
1289				re->re_dst = re->re_src;
1290			} else if (nicealign && uniform == 2) {
1291				/*
1292				 * The source is properly aligned but requires a
1293				 * different particle list to handle DMA of the
1294				 * result.  Create a new map and do the load to
1295				 * create the segment list.  The particle
1296				 * descriptor setup code below will handle the
1297				 * rest.
1298				 */
1299				if (bus_dmamap_create(sc->sc_dstdmat,
1300				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1301					safestats.st_nomap++;
1302					err = ENOMEM;
1303					goto errout;
1304				}
1305				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1306				    re->re_dst_map, re->re_dst_m,
1307				    safe_op_cb, &re->re_dst,
1308				    BUS_DMA_NOWAIT) != 0) {
1309					bus_dmamap_destroy(sc->sc_dstdmat,
1310						re->re_dst_map);
1311					re->re_dst_map = NULL;
1312					safestats.st_noload++;
1313					err = ENOMEM;
1314					goto errout;
1315				}
1316			} else {		/* !(aligned and/or uniform) */
1317				int totlen, len;
1318				struct mbuf *m, *top, **mp;
1319
1320				/*
1321				 * DMA constraints require that we allocate a
1322				 * new mbuf chain for the destination.  We
1323				 * allocate an entire new set of mbufs of
1324				 * optimal/required size and then tell the
1325				 * hardware to copy any bits that are not
1326				 * created as a byproduct of the operation.
1327				 */
1328				if (!nicealign)
1329					safestats.st_unaligned++;
1330				if (!uniform)
1331					safestats.st_notuniform++;
1332				totlen = re->re_src_mapsize;
1333				if (re->re_src_m->m_flags & M_PKTHDR) {
1334					len = MHLEN;
1335					MGETHDR(m, M_DONTWAIT, MT_DATA);
1336					if (m && !m_dup_pkthdr(m, re->re_src_m,
1337					    M_DONTWAIT)) {
1338						m_free(m);
1339						m = NULL;
1340					}
1341				} else {
1342					len = MLEN;
1343					MGET(m, M_DONTWAIT, MT_DATA);
1344				}
1345				if (m == NULL) {
1346					safestats.st_nombuf++;
1347					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1348					goto errout;
1349				}
1350				if (totlen >= MINCLSIZE) {
1351					MCLGET(m, M_DONTWAIT);
1352					if ((m->m_flags & M_EXT) == 0) {
1353						m_free(m);
1354						safestats.st_nomcl++;
1355						err = sc->sc_nqchip ?
1356							ERESTART : ENOMEM;
1357						goto errout;
1358					}
1359					len = MCLBYTES;
1360				}
1361				m->m_len = len;
1362				top = NULL;
1363				mp = &top;
1364
1365				while (totlen > 0) {
1366					if (top) {
1367						MGET(m, M_DONTWAIT, MT_DATA);
1368						if (m == NULL) {
1369							m_freem(top);
1370							safestats.st_nombuf++;
1371							err = sc->sc_nqchip ?
1372							    ERESTART : ENOMEM;
1373							goto errout;
1374						}
1375						len = MLEN;
1376					}
1377					if (top && totlen >= MINCLSIZE) {
1378						MCLGET(m, M_DONTWAIT);
1379						if ((m->m_flags & M_EXT) == 0) {
1380							*mp = m;
1381							m_freem(top);
1382							safestats.st_nomcl++;
1383							err = sc->sc_nqchip ?
1384							    ERESTART : ENOMEM;
1385							goto errout;
1386						}
1387						len = MCLBYTES;
1388					}
1389					m->m_len = len = min(totlen, len);
1390					totlen -= len;
1391					*mp = m;
1392					mp = &m->m_next;
1393				}
1394				re->re_dst_m = top;
1395				if (bus_dmamap_create(sc->sc_dstdmat,
1396				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1397					safestats.st_nomap++;
1398					err = ENOMEM;
1399					goto errout;
1400				}
1401				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1402				    re->re_dst_map, re->re_dst_m,
1403				    safe_op_cb, &re->re_dst,
1404				    BUS_DMA_NOWAIT) != 0) {
1405					bus_dmamap_destroy(sc->sc_dstdmat,
1406					re->re_dst_map);
1407					re->re_dst_map = NULL;
1408					safestats.st_noload++;
1409					err = ENOMEM;
1410					goto errout;
1411				}
1412				if (re->re_src.mapsize > oplen) {
1413					/*
1414					 * There's data following what the
1415					 * hardware will copy for us.  If this
1416					 * isn't just the ICV (that's going to
1417					 * be written on completion), copy it
1418					 * to the new mbufs
1419					 */
1420					if (!(maccrd &&
1421					    (re->re_src.mapsize-oplen) == 12 &&
1422					    maccrd->crd_inject == oplen))
1423						safe_mcopy(re->re_src_m,
1424							   re->re_dst_m,
1425							   oplen);
1426					else
1427						safestats.st_noicvcopy++;
1428				}
1429			}
1430		} else {
1431			safestats.st_badflags++;
1432			err = EINVAL;
1433			goto errout;
1434		}
1435
1436		if (re->re_dst.nsegs > 1) {
1437			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1438			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1439			for (i = 0; i < re->re_dst_nsegs; i++) {
1440				pd = sc->sc_dpfree;
1441				KASSERT((pd->pd_flags&3) == 0 ||
1442					(pd->pd_flags&3) == SAFE_PD_DONE,
1443					("bogus dest particle descriptor; flags %x",
1444						pd->pd_flags));
1445				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1446					sc->sc_dpfree = sc->sc_dpring;
1447				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1448				pd->pd_flags = SAFE_PD_READY;
1449			}
1450			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1451		} else {
1452			/*
1453			 * No need for scatter, reference the operand directly.
1454			 */
1455			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1456		}
1457	}
1458
1459	/*
1460	 * All done with setup; fillin the SA command words
1461	 * and the packet engine descriptor.  The operation
1462	 * is now ready for submission to the hardware.
1463	 */
1464	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1465	sa->sa_cmd1 = cmd1
1466		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1467		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1468		    | SAFE_SA_CMD1_SRPCI
1469		    ;
1470	/*
1471	 * NB: the order of writes is important here.  In case the
1472	 * chip is scanning the ring because of an outstanding request
1473	 * it might nab this one too.  In that case we need to make
1474	 * sure the setup is complete before we write the length
1475	 * field of the descriptor as it signals the descriptor is
1476	 * ready for processing.
1477	 */
1478	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1479	if (maccrd)
1480		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1481	re->re_desc.d_len = oplen
1482			  | SAFE_PE_LEN_READY
1483			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1484			  ;
1485
1486	safestats.st_ipackets++;
1487	safestats.st_ibytes += oplen;
1488
1489	if (++(sc->sc_front) == sc->sc_ringtop)
1490		sc->sc_front = sc->sc_ring;
1491
1492	/* XXX honor batching */
1493	safe_feed(sc, re);
1494	mtx_unlock(&sc->sc_ringmtx);
1495	return (0);
1496
1497errout:
1498	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1499		m_freem(re->re_dst_m);
1500
1501	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1502		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1503		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1504	}
1505	if (re->re_src_map != NULL) {
1506		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1507		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1508	}
1509	mtx_unlock(&sc->sc_ringmtx);
1510	if (err != ERESTART) {
1511		crp->crp_etype = err;
1512		crypto_done(crp);
1513	} else {
1514		sc->sc_needwakeup |= CRYPTO_SYMQ;
1515	}
1516	return (err);
1517}
1518
1519static void
1520safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1521{
1522	struct cryptop *crp = (struct cryptop *)re->re_crp;
1523	struct cryptodesc *crd;
1524
1525	safestats.st_opackets++;
1526	safestats.st_obytes += re->re_dst.mapsize;
1527
1528	safe_dma_sync(&sc->sc_ringalloc,
1529		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1530	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1531		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1532			re->re_desc.d_csr,
1533			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1534		safestats.st_peoperr++;
1535		crp->crp_etype = EIO;		/* something more meaningful? */
1536	}
1537	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1538		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1539		    BUS_DMASYNC_POSTREAD);
1540		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1541		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1542	}
1543	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1544	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1545	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1546
1547	/*
1548	 * If result was written to a differet mbuf chain, swap
1549	 * it in as the return value and reclaim the original.
1550	 */
1551	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1552		m_freem(re->re_src_m);
1553		crp->crp_buf = (caddr_t)re->re_dst_m;
1554	}
1555
1556	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1557		/* copy out IV for future use */
1558		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1559			int ivsize;
1560
1561			if (crd->crd_alg == CRYPTO_DES_CBC ||
1562			    crd->crd_alg == CRYPTO_3DES_CBC) {
1563				ivsize = 2*sizeof(u_int32_t);
1564			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1565				ivsize = 4*sizeof(u_int32_t);
1566			} else
1567				continue;
1568			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1569				m_copydata((struct mbuf *)crp->crp_buf,
1570					crd->crd_skip + crd->crd_len - ivsize,
1571					ivsize,
1572					(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
1573			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1574				cuio_copydata((struct uio *)crp->crp_buf,
1575					crd->crd_skip + crd->crd_len - ivsize,
1576					ivsize,
1577					(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1578			}
1579			break;
1580		}
1581	}
1582
1583	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1584		/* copy out ICV result */
1585		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1586			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1587			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1588			    crd->crd_alg == CRYPTO_NULL_HMAC))
1589				continue;
1590			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1591				/*
1592				 * SHA-1 ICV's are byte-swapped; fix 'em up
1593				 * before copy them to their destination.
1594				 */
1595				bswap32(re->re_sastate.sa_saved_indigest[0]);
1596				bswap32(re->re_sastate.sa_saved_indigest[1]);
1597				bswap32(re->re_sastate.sa_saved_indigest[2]);
1598			}
1599			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1600				m_copyback((struct mbuf *)crp->crp_buf,
1601					crd->crd_inject,
1602					sc->sc_sessions[re->re_sesn].ses_mlen,
1603					(caddr_t)re->re_sastate.sa_saved_indigest);
1604			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1605				cuio_copyback((struct uio *)crp->crp_buf,
1606					crd->crd_inject,
1607					sc->sc_sessions[re->re_sesn].ses_mlen,
1608					(caddr_t)re->re_sastate.sa_saved_indigest);
1609			}
1610			break;
1611		}
1612	}
1613	crypto_done(crp);
1614}
1615
1616/*
1617 * Copy all data past offset from srcm to dstm.
1618 */
1619static void
1620safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1621{
1622	u_int j, dlen, slen;
1623	caddr_t dptr, sptr;
1624
1625	/*
1626	 * Advance src and dst to offset.
1627	 */
1628	j = offset;
1629	while (j >= 0) {
1630		if (srcm->m_len > j)
1631			break;
1632		j -= srcm->m_len;
1633		srcm = srcm->m_next;
1634		if (srcm == NULL)
1635			return;
1636	}
1637	sptr = mtod(srcm, caddr_t) + j;
1638	slen = srcm->m_len - j;
1639
1640	j = offset;
1641	while (j >= 0) {
1642		if (dstm->m_len > j)
1643			break;
1644		j -= dstm->m_len;
1645		dstm = dstm->m_next;
1646		if (dstm == NULL)
1647			return;
1648	}
1649	dptr = mtod(dstm, caddr_t) + j;
1650	dlen = dstm->m_len - j;
1651
1652	/*
1653	 * Copy everything that remains.
1654	 */
1655	for (;;) {
1656		j = min(slen, dlen);
1657		bcopy(sptr, dptr, j);
1658		if (slen == j) {
1659			srcm = srcm->m_next;
1660			if (srcm == NULL)
1661				return;
1662			sptr = srcm->m_data;
1663			slen = srcm->m_len;
1664		} else
1665			sptr += j, slen -= j;
1666		if (dlen == j) {
1667			dstm = dstm->m_next;
1668			if (dstm == NULL)
1669				return;
1670			dptr = dstm->m_data;
1671			dlen = dstm->m_len;
1672		} else
1673			dptr += j, dlen -= j;
1674	}
1675}
1676
1677#ifndef SAFE_NO_RNG
1678#define	SAFE_RNG_MAXWAIT	1000
1679
1680static void
1681safe_rng_init(struct safe_softc *sc)
1682{
1683	u_int32_t w, v;
1684	int i;
1685
1686	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1687	/* use default value according to the manual */
1688	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1689	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1690
1691	/*
1692	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1693	 * is brought out of reset the ready status flag does not
1694	 * work until the RNG has finished its internal initialization.
1695	 *
1696	 * So in order to determine the device is through its
1697	 * initialization we must read the data register, using the
1698	 * status reg in the read in case it is initialized.  Then read
1699	 * the data register until it changes from the first read.
1700	 * Once it changes read the data register until it changes
1701	 * again.  At this time the RNG is considered initialized.
1702	 * This could take between 750ms - 1000ms in time.
1703	 */
1704	i = 0;
1705	w = READ_REG(sc, SAFE_RNG_OUT);
1706	do {
1707		v = READ_REG(sc, SAFE_RNG_OUT);
1708		if (v != w) {
1709			w = v;
1710			break;
1711		}
1712		DELAY(10);
1713	} while (++i < SAFE_RNG_MAXWAIT);
1714
1715	/* Wait Until data changes again */
1716	i = 0;
1717	do {
1718		v = READ_REG(sc, SAFE_RNG_OUT);
1719		if (v != w)
1720			break;
1721		DELAY(10);
1722	} while (++i < SAFE_RNG_MAXWAIT);
1723}
1724
1725static __inline void
1726safe_rng_disable_short_cycle(struct safe_softc *sc)
1727{
1728	WRITE_REG(sc, SAFE_RNG_CTRL,
1729		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1730}
1731
1732static __inline void
1733safe_rng_enable_short_cycle(struct safe_softc *sc)
1734{
1735	WRITE_REG(sc, SAFE_RNG_CTRL,
1736		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1737}
1738
1739static __inline u_int32_t
1740safe_rng_read(struct safe_softc *sc)
1741{
1742	int i;
1743
1744	i = 0;
1745	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1746		;
1747	return READ_REG(sc, SAFE_RNG_OUT);
1748}
1749
1750static void
1751safe_rng(void *arg)
1752{
1753	struct safe_softc *sc = arg;
1754	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1755	u_int maxwords;
1756	int i;
1757
1758	safestats.st_rng++;
1759	/*
1760	 * Fetch the next block of data.
1761	 */
1762	maxwords = safe_rngbufsize;
1763	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1764		maxwords = SAFE_RNG_MAXBUFSIZ;
1765retry:
1766	for (i = 0; i < maxwords; i++)
1767		buf[i] = safe_rng_read(sc);
1768	/*
1769	 * Check the comparator alarm count and reset the h/w if
1770	 * it exceeds our threshold.  This guards against the
1771	 * hardware oscillators resonating with external signals.
1772	 */
1773	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1774		u_int32_t freq_inc, w;
1775
1776		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1777			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1778		safestats.st_rngalarm++;
1779		safe_rng_enable_short_cycle(sc);
1780		freq_inc = 18;
1781		for (i = 0; i < 64; i++) {
1782			w = READ_REG(sc, SAFE_RNG_CNFG);
1783			freq_inc = ((w + freq_inc) & 0x3fL);
1784			w = ((w & ~0x3fL) | freq_inc);
1785			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1786
1787			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1788
1789			(void) safe_rng_read(sc);
1790			DELAY(25);
1791
1792			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1793				safe_rng_disable_short_cycle(sc);
1794				goto retry;
1795			}
1796			freq_inc = 1;
1797		}
1798		safe_rng_disable_short_cycle(sc);
1799	} else
1800		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1801
1802	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1803	callout_reset(&sc->sc_rngto,
1804		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1805}
1806#endif /* SAFE_NO_RNG */
1807
1808static void
1809safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1810{
1811	bus_addr_t *paddr = (bus_addr_t*) arg;
1812	*paddr = segs->ds_addr;
1813}
1814
1815static int
1816safe_dma_malloc(
1817	struct safe_softc *sc,
1818	bus_size_t size,
1819	struct safe_dma_alloc *dma,
1820	int mapflags
1821)
1822{
1823	int r;
1824
1825	r = bus_dma_tag_create(NULL,			/* parent */
1826			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1827			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1828			       BUS_SPACE_MAXADDR,	/* highaddr */
1829			       NULL, NULL,		/* filter, filterarg */
1830			       size,			/* maxsize */
1831			       1,			/* nsegments */
1832			       size,			/* maxsegsize */
1833			       BUS_DMA_ALLOCNOW,	/* flags */
1834			       NULL, NULL,		/* locking */
1835			       &dma->dma_tag);
1836	if (r != 0) {
1837		device_printf(sc->sc_dev, "safe_dma_malloc: "
1838			"bus_dma_tag_create failed; error %u\n", r);
1839		goto fail_0;
1840	}
1841
1842	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1843	if (r != 0) {
1844		device_printf(sc->sc_dev, "safe_dma_malloc: "
1845			"bus_dmamap_create failed; error %u\n", r);
1846		goto fail_1;
1847	}
1848
1849	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1850			     BUS_DMA_NOWAIT, &dma->dma_map);
1851	if (r != 0) {
1852		device_printf(sc->sc_dev, "safe_dma_malloc: "
1853			"bus_dmammem_alloc failed; size %zu, error %u\n",
1854			size, r);
1855		goto fail_2;
1856	}
1857
1858	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1859		            size,
1860			    safe_dmamap_cb,
1861			    &dma->dma_paddr,
1862			    mapflags | BUS_DMA_NOWAIT);
1863	if (r != 0) {
1864		device_printf(sc->sc_dev, "safe_dma_malloc: "
1865			"bus_dmamap_load failed; error %u\n", r);
1866		goto fail_3;
1867	}
1868
1869	dma->dma_size = size;
1870	return (0);
1871
1872fail_3:
1873	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1874fail_2:
1875	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1876fail_1:
1877	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1878	bus_dma_tag_destroy(dma->dma_tag);
1879fail_0:
1880	dma->dma_map = NULL;
1881	dma->dma_tag = NULL;
1882	return (r);
1883}
1884
1885static void
1886safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1887{
1888	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1889	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1890	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1891	bus_dma_tag_destroy(dma->dma_tag);
1892}
1893
1894/*
1895 * Resets the board.  Values in the regesters are left as is
1896 * from the reset (i.e. initial values are assigned elsewhere).
1897 */
1898static void
1899safe_reset_board(struct safe_softc *sc)
1900{
1901	u_int32_t v;
1902	/*
1903	 * Reset the device.  The manual says no delay
1904	 * is needed between marking and clearing reset.
1905	 */
1906	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1907		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1908		 SAFE_PE_DMACFG_SGRESET);
1909	WRITE_REG(sc, SAFE_PE_DMACFG, v
1910				    | SAFE_PE_DMACFG_PERESET
1911				    | SAFE_PE_DMACFG_PDRRESET
1912				    | SAFE_PE_DMACFG_SGRESET);
1913	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1914}
1915
1916/*
1917 * Initialize registers we need to touch only once.
1918 */
1919static void
1920safe_init_board(struct safe_softc *sc)
1921{
1922	u_int32_t v, dwords;
1923
1924	v = READ_REG(sc, SAFE_PE_DMACFG);;
1925	v &=~ SAFE_PE_DMACFG_PEMODE;
1926	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1927	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1928	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1929	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1930	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1931	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1932	  ;
1933	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1934#if 0
1935	/* XXX select byte swap based on host byte order */
1936	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1937#endif
1938	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1939		/*
1940		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1941		 * "target mode transfers" done while the chip is DMA'ing
1942		 * >1020 bytes cause the hardware to lockup.  To avoid this
1943		 * we reduce the max PCI transfer size and use small source
1944		 * particle descriptors (<= 256 bytes).
1945		 */
1946		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1947		device_printf(sc->sc_dev,
1948			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1949			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1950			SAFE_REV_MAJ(sc->sc_chiprev),
1951			SAFE_REV_MIN(sc->sc_chiprev));
1952	}
1953
1954	/* NB: operands+results are overlaid */
1955	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1956	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1957	/*
1958	 * Configure ring entry size and number of items in the ring.
1959	 */
1960	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1961		("PE ring entry not 32-bit aligned!"));
1962	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1963	WRITE_REG(sc, SAFE_PE_RINGCFG,
1964		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1965	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1966
1967	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1968	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1969	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1970		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1971	/*
1972	 * NB: destination particles are fixed size.  We use
1973	 *     an mbuf cluster and require all results go to
1974	 *     clusters or smaller.
1975	 */
1976	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1977
1978	/* it's now safe to enable PE mode, do it */
1979	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1980
1981	/*
1982	 * Configure hardware to use level-triggered interrupts and
1983	 * to interrupt after each descriptor is processed.
1984	 */
1985	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1986	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1987	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1988}
1989
1990/*
1991 * Init PCI registers
1992 */
1993static void
1994safe_init_pciregs(device_t dev)
1995{
1996}
1997
1998/*
1999 * Clean up after a chip crash.
2000 * It is assumed that the caller in splimp()
2001 */
2002static void
2003safe_cleanchip(struct safe_softc *sc)
2004{
2005
2006	if (sc->sc_nqchip != 0) {
2007		struct safe_ringentry *re = sc->sc_back;
2008
2009		while (re != sc->sc_front) {
2010			if (re->re_desc.d_csr != 0)
2011				safe_free_entry(sc, re);
2012			if (++re == sc->sc_ringtop)
2013				re = sc->sc_ring;
2014		}
2015		sc->sc_back = re;
2016		sc->sc_nqchip = 0;
2017	}
2018}
2019
2020/*
2021 * free a safe_q
2022 * It is assumed that the caller is within splimp().
2023 */
2024static int
2025safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2026{
2027	struct cryptop *crp;
2028
2029	/*
2030	 * Free header MCR
2031	 */
2032	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2033		m_freem(re->re_dst_m);
2034
2035	crp = (struct cryptop *)re->re_crp;
2036
2037	re->re_desc.d_csr = 0;
2038
2039	crp->crp_etype = EFAULT;
2040	crypto_done(crp);
2041	return(0);
2042}
2043
2044/*
2045 * Routine to reset the chip and clean up.
2046 * It is assumed that the caller is in splimp()
2047 */
2048static void
2049safe_totalreset(struct safe_softc *sc)
2050{
2051	safe_reset_board(sc);
2052	safe_init_board(sc);
2053	safe_cleanchip(sc);
2054}
2055
2056/*
2057 * Is the operand suitable aligned for direct DMA.  Each
2058 * segment must be aligned on a 32-bit boundary and all
2059 * but the last segment must be a multiple of 4 bytes.
2060 */
2061static int
2062safe_dmamap_aligned(const struct safe_operand *op)
2063{
2064	int i;
2065
2066	for (i = 0; i < op->nsegs; i++) {
2067		if (op->segs[i].ds_addr & 3)
2068			return (0);
2069		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2070			return (0);
2071	}
2072	return (1);
2073}
2074
2075/*
2076 * Is the operand suitable for direct DMA as the destination
2077 * of an operation.  The hardware requires that each ``particle''
2078 * but the last in an operation result have the same size.  We
2079 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2080 * 0 if some segment is not a multiple of of this size, 1 if all
2081 * segments are exactly this size, or 2 if segments are at worst
2082 * a multple of this size.
2083 */
2084static int
2085safe_dmamap_uniform(const struct safe_operand *op)
2086{
2087	int result = 1;
2088
2089	if (op->nsegs > 0) {
2090		int i;
2091
2092		for (i = 0; i < op->nsegs-1; i++) {
2093			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2094				return (0);
2095			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2096				result = 2;
2097		}
2098	}
2099	return (result);
2100}
2101
2102#ifdef SAFE_DEBUG
2103static void
2104safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2105{
2106	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2107		, tag
2108		, READ_REG(sc, SAFE_DMA_ENDIAN)
2109		, READ_REG(sc, SAFE_DMA_SRCADDR)
2110		, READ_REG(sc, SAFE_DMA_DSTADDR)
2111		, READ_REG(sc, SAFE_DMA_STAT)
2112	);
2113}
2114
2115static void
2116safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2117{
2118	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2119		, tag
2120		, READ_REG(sc, SAFE_HI_CFG)
2121		, READ_REG(sc, SAFE_HI_MASK)
2122		, READ_REG(sc, SAFE_HI_DESC_CNT)
2123		, READ_REG(sc, SAFE_HU_STAT)
2124		, READ_REG(sc, SAFE_HM_STAT)
2125	);
2126}
2127
2128static void
2129safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2130{
2131	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2132
2133	/* NB: assume caller has lock on ring */
2134	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2135		tag,
2136		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2137		(unsigned long)(sc->sc_back - sc->sc_ring),
2138		(unsigned long)(sc->sc_front - sc->sc_ring));
2139}
2140
2141static void
2142safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2143{
2144	int ix, nsegs;
2145
2146	ix = re - sc->sc_ring;
2147	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2148		, tag
2149		, re, ix
2150		, re->re_desc.d_csr
2151		, re->re_desc.d_src
2152		, re->re_desc.d_dst
2153		, re->re_desc.d_sa
2154		, re->re_desc.d_len
2155	);
2156	if (re->re_src.nsegs > 1) {
2157		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2158			sizeof(struct safe_pdesc);
2159		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2160			printf(" spd[%u] %p: %p size %u flags %x"
2161				, ix, &sc->sc_spring[ix]
2162				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2163				, sc->sc_spring[ix].pd_size
2164				, sc->sc_spring[ix].pd_flags
2165			);
2166			if (sc->sc_spring[ix].pd_size == 0)
2167				printf(" (zero!)");
2168			printf("\n");
2169			if (++ix == SAFE_TOTAL_SPART)
2170				ix = 0;
2171		}
2172	}
2173	if (re->re_dst.nsegs > 1) {
2174		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2175			sizeof(struct safe_pdesc);
2176		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2177			printf(" dpd[%u] %p: %p flags %x\n"
2178				, ix, &sc->sc_dpring[ix]
2179				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2180				, sc->sc_dpring[ix].pd_flags
2181			);
2182			if (++ix == SAFE_TOTAL_DPART)
2183				ix = 0;
2184		}
2185	}
2186	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2187		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2188	printf("sa: key %x %x %x %x %x %x %x %x\n"
2189		, re->re_sa.sa_key[0]
2190		, re->re_sa.sa_key[1]
2191		, re->re_sa.sa_key[2]
2192		, re->re_sa.sa_key[3]
2193		, re->re_sa.sa_key[4]
2194		, re->re_sa.sa_key[5]
2195		, re->re_sa.sa_key[6]
2196		, re->re_sa.sa_key[7]
2197	);
2198	printf("sa: indigest %x %x %x %x %x\n"
2199		, re->re_sa.sa_indigest[0]
2200		, re->re_sa.sa_indigest[1]
2201		, re->re_sa.sa_indigest[2]
2202		, re->re_sa.sa_indigest[3]
2203		, re->re_sa.sa_indigest[4]
2204	);
2205	printf("sa: outdigest %x %x %x %x %x\n"
2206		, re->re_sa.sa_outdigest[0]
2207		, re->re_sa.sa_outdigest[1]
2208		, re->re_sa.sa_outdigest[2]
2209		, re->re_sa.sa_outdigest[3]
2210		, re->re_sa.sa_outdigest[4]
2211	);
2212	printf("sr: iv %x %x %x %x\n"
2213		, re->re_sastate.sa_saved_iv[0]
2214		, re->re_sastate.sa_saved_iv[1]
2215		, re->re_sastate.sa_saved_iv[2]
2216		, re->re_sastate.sa_saved_iv[3]
2217	);
2218	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2219		, re->re_sastate.sa_saved_hashbc
2220		, re->re_sastate.sa_saved_indigest[0]
2221		, re->re_sastate.sa_saved_indigest[1]
2222		, re->re_sastate.sa_saved_indigest[2]
2223		, re->re_sastate.sa_saved_indigest[3]
2224		, re->re_sastate.sa_saved_indigest[4]
2225	);
2226}
2227
2228static void
2229safe_dump_ring(struct safe_softc *sc, const char *tag)
2230{
2231	mtx_lock(&sc->sc_ringmtx);
2232	printf("\nSafeNet Ring State:\n");
2233	safe_dump_intrstate(sc, tag);
2234	safe_dump_dmastatus(sc, tag);
2235	safe_dump_ringstate(sc, tag);
2236	if (sc->sc_nqchip) {
2237		struct safe_ringentry *re = sc->sc_back;
2238		do {
2239			safe_dump_request(sc, tag, re);
2240			if (++re == sc->sc_ringtop)
2241				re = sc->sc_ring;
2242		} while (re != sc->sc_front);
2243	}
2244	mtx_unlock(&sc->sc_ringmtx);
2245}
2246
2247static int
2248sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2249{
2250	char dmode[64];
2251	int error;
2252
2253	strncpy(dmode, "", sizeof(dmode) - 1);
2254	dmode[sizeof(dmode) - 1] = '\0';
2255	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2256
2257	if (error == 0 && req->newptr != NULL) {
2258		struct safe_softc *sc = safec;
2259
2260		if (!sc)
2261			return EINVAL;
2262		if (strncmp(dmode, "dma", 3) == 0)
2263			safe_dump_dmastatus(sc, "safe0");
2264		else if (strncmp(dmode, "int", 3) == 0)
2265			safe_dump_intrstate(sc, "safe0");
2266		else if (strncmp(dmode, "ring", 4) == 0)
2267			safe_dump_ring(sc, "safe0");
2268		else
2269			return EINVAL;
2270	}
2271	return error;
2272}
2273SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2274	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2275#endif /* SAFE_DEBUG */
2276