safe.c revision 159233
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 159233 2006-06-04 15:00:52Z pjd $");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62
63#include <dev/pci/pcivar.h>
64#include <dev/pci/pcireg.h>
65
66#ifdef SAFE_RNDTEST
67#include <dev/rndtest/rndtest.h>
68#endif
69#include <dev/safe/safereg.h>
70#include <dev/safe/safevar.h>
71
72#ifndef bswap32
73#define	bswap32	NTOHL
74#endif
75
76/*
77 * Prototypes and count for the pci_device structure
78 */
79static	int safe_probe(device_t);
80static	int safe_attach(device_t);
81static	int safe_detach(device_t);
82static	int safe_suspend(device_t);
83static	int safe_resume(device_t);
84static	void safe_shutdown(device_t);
85
86static device_method_t safe_methods[] = {
87	/* Device interface */
88	DEVMETHOD(device_probe,		safe_probe),
89	DEVMETHOD(device_attach,	safe_attach),
90	DEVMETHOD(device_detach,	safe_detach),
91	DEVMETHOD(device_suspend,	safe_suspend),
92	DEVMETHOD(device_resume,	safe_resume),
93	DEVMETHOD(device_shutdown,	safe_shutdown),
94
95	/* bus interface */
96	DEVMETHOD(bus_print_child,	bus_generic_print_child),
97	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
98
99	{ 0, 0 }
100};
101static driver_t safe_driver = {
102	"safe",
103	safe_methods,
104	sizeof (struct safe_softc)
105};
106static devclass_t safe_devclass;
107
108DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
109MODULE_DEPEND(safe, crypto, 1, 1, 1);
110#ifdef SAFE_RNDTEST
111MODULE_DEPEND(safe, rndtest, 1, 1, 1);
112#endif
113
114static	void safe_intr(void *);
115static	int safe_newsession(void *, u_int32_t *, struct cryptoini *);
116static	int safe_freesession(void *, u_int64_t);
117static	int safe_process(void *, struct cryptop *, int);
118static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
119static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
120static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
121#ifndef SAFE_NO_RNG
122static	void safe_rng_init(struct safe_softc *);
123static	void safe_rng(void *);
124#endif /* SAFE_NO_RNG */
125static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
126	        struct safe_dma_alloc *, int);
127#define	safe_dma_sync(_dma, _flags) \
128	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
129static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
130static	int safe_dmamap_aligned(const struct safe_operand *);
131static	int safe_dmamap_uniform(const struct safe_operand *);
132
133static	void safe_reset_board(struct safe_softc *);
134static	void safe_init_board(struct safe_softc *);
135static	void safe_init_pciregs(device_t dev);
136static	void safe_cleanchip(struct safe_softc *);
137static	void safe_totalreset(struct safe_softc *);
138
139static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
140
141SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
142
143#ifdef SAFE_DEBUG
144static	void safe_dump_dmastatus(struct safe_softc *, const char *);
145static	void safe_dump_ringstate(struct safe_softc *, const char *);
146static	void safe_dump_intrstate(struct safe_softc *, const char *);
147static	void safe_dump_request(struct safe_softc *, const char *,
148		struct safe_ringentry *);
149
150static	struct safe_softc *safec;		/* for use by hw.safe.dump */
151
152static	int safe_debug = 0;
153SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
154	    0, "control debugging msgs");
155#define	DPRINTF(_x)	if (safe_debug) printf _x
156#else
157#define	DPRINTF(_x)
158#endif
159
160#define	READ_REG(sc,r) \
161	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
162
163#define WRITE_REG(sc,reg,val) \
164	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
165
166struct safe_stats safestats;
167SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
168	    safe_stats, "driver statistics");
169#ifndef SAFE_NO_RNG
170static	int safe_rnginterval = 1;		/* poll once a second */
171SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
172	    0, "RNG polling interval (secs)");
173static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
174SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
175	    0, "RNG polling buffer size (32-bit words)");
176static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
177SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
178	    0, "RNG max alarms before reset");
179#endif /* SAFE_NO_RNG */
180
181static int
182safe_probe(device_t dev)
183{
184	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
185	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
186		return (BUS_PROBE_DEFAULT);
187	return (ENXIO);
188}
189
190static const char*
191safe_partname(struct safe_softc *sc)
192{
193	/* XXX sprintf numbers when not decoded */
194	switch (pci_get_vendor(sc->sc_dev)) {
195	case PCI_VENDOR_SAFENET:
196		switch (pci_get_device(sc->sc_dev)) {
197		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
198		}
199		return "SafeNet unknown-part";
200	}
201	return "Unknown-vendor unknown-part";
202}
203
204#ifndef SAFE_NO_RNG
205static void
206default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
207{
208	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
209}
210#endif /* SAFE_NO_RNG */
211
212static int
213safe_attach(device_t dev)
214{
215	struct safe_softc *sc = device_get_softc(dev);
216	u_int32_t raddr;
217	u_int32_t cmd, i, devinfo;
218	int rid;
219
220	bzero(sc, sizeof (*sc));
221	sc->sc_dev = dev;
222
223	/* XXX handle power management */
224
225	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
226	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
227	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
228	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
229
230	if (!(cmd & PCIM_CMD_MEMEN)) {
231		device_printf(dev, "failed to enable memory mapping\n");
232		goto bad;
233	}
234
235	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
236		device_printf(dev, "failed to enable bus mastering\n");
237		goto bad;
238	}
239
240	/*
241	 * Setup memory-mapping of PCI registers.
242	 */
243	rid = BS_BAR;
244	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
245					   RF_ACTIVE);
246	if (sc->sc_sr == NULL) {
247		device_printf(dev, "cannot map register space\n");
248		goto bad;
249	}
250	sc->sc_st = rman_get_bustag(sc->sc_sr);
251	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
252
253	/*
254	 * Arrange interrupt line.
255	 */
256	rid = 0;
257	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
258					    RF_SHAREABLE|RF_ACTIVE);
259	if (sc->sc_irq == NULL) {
260		device_printf(dev, "could not map interrupt\n");
261		goto bad1;
262	}
263	/*
264	 * NB: Network code assumes we are blocked with splimp()
265	 *     so make sure the IRQ is mapped appropriately.
266	 */
267	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
268			   safe_intr, sc, &sc->sc_ih)) {
269		device_printf(dev, "could not establish interrupt\n");
270		goto bad2;
271	}
272
273	sc->sc_cid = crypto_get_driverid(0);
274	if (sc->sc_cid < 0) {
275		device_printf(dev, "could not get crypto driver id\n");
276		goto bad3;
277	}
278
279	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
280		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
281
282	/*
283	 * Setup DMA descriptor area.
284	 */
285	if (bus_dma_tag_create(NULL,			/* parent */
286			       1,			/* alignment */
287			       SAFE_DMA_BOUNDARY,	/* boundary */
288			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
289			       BUS_SPACE_MAXADDR,	/* highaddr */
290			       NULL, NULL,		/* filter, filterarg */
291			       SAFE_MAX_DMA,		/* maxsize */
292			       SAFE_MAX_PART,		/* nsegments */
293			       SAFE_MAX_SSIZE,		/* maxsegsize */
294			       BUS_DMA_ALLOCNOW,	/* flags */
295			       NULL, NULL,		/* locking */
296			       &sc->sc_srcdmat)) {
297		device_printf(dev, "cannot allocate DMA tag\n");
298		goto bad4;
299	}
300	if (bus_dma_tag_create(NULL,			/* parent */
301			       sizeof(u_int32_t),	/* alignment */
302			       SAFE_MAX_DSIZE,		/* boundary */
303			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
304			       BUS_SPACE_MAXADDR,	/* highaddr */
305			       NULL, NULL,		/* filter, filterarg */
306			       SAFE_MAX_DMA,		/* maxsize */
307			       SAFE_MAX_PART,		/* nsegments */
308			       SAFE_MAX_DSIZE,		/* maxsegsize */
309			       BUS_DMA_ALLOCNOW,	/* flags */
310			       NULL, NULL,		/* locking */
311			       &sc->sc_dstdmat)) {
312		device_printf(dev, "cannot allocate DMA tag\n");
313		goto bad4;
314	}
315
316	/*
317	 * Allocate packet engine descriptors.
318	 */
319	if (safe_dma_malloc(sc,
320	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
321	    &sc->sc_ringalloc, 0)) {
322		device_printf(dev, "cannot allocate PE descriptor ring\n");
323		bus_dma_tag_destroy(sc->sc_srcdmat);
324		goto bad4;
325	}
326	/*
327	 * Hookup the static portion of all our data structures.
328	 */
329	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
330	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
331	sc->sc_front = sc->sc_ring;
332	sc->sc_back = sc->sc_ring;
333	raddr = sc->sc_ringalloc.dma_paddr;
334	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
335	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
336		struct safe_ringentry *re = &sc->sc_ring[i];
337
338		re->re_desc.d_sa = raddr +
339			offsetof(struct safe_ringentry, re_sa);
340		re->re_sa.sa_staterec = raddr +
341			offsetof(struct safe_ringentry, re_sastate);
342
343		raddr += sizeof (struct safe_ringentry);
344	}
345	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
346		"packet engine ring", MTX_DEF);
347
348	/*
349	 * Allocate scatter and gather particle descriptors.
350	 */
351	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
352	    &sc->sc_spalloc, 0)) {
353		device_printf(dev, "cannot allocate source particle "
354			"descriptor ring\n");
355		mtx_destroy(&sc->sc_ringmtx);
356		safe_dma_free(sc, &sc->sc_ringalloc);
357		bus_dma_tag_destroy(sc->sc_srcdmat);
358		goto bad4;
359	}
360	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
361	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
362	sc->sc_spfree = sc->sc_spring;
363	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
364
365	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
366	    &sc->sc_dpalloc, 0)) {
367		device_printf(dev, "cannot allocate destination particle "
368			"descriptor ring\n");
369		mtx_destroy(&sc->sc_ringmtx);
370		safe_dma_free(sc, &sc->sc_spalloc);
371		safe_dma_free(sc, &sc->sc_ringalloc);
372		bus_dma_tag_destroy(sc->sc_dstdmat);
373		goto bad4;
374	}
375	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
376	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
377	sc->sc_dpfree = sc->sc_dpring;
378	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
379
380	device_printf(sc->sc_dev, "%s", safe_partname(sc));
381
382	devinfo = READ_REG(sc, SAFE_DEVINFO);
383	if (devinfo & SAFE_DEVINFO_RNG) {
384		sc->sc_flags |= SAFE_FLAGS_RNG;
385		printf(" rng");
386	}
387	if (devinfo & SAFE_DEVINFO_PKEY) {
388#if 0
389		printf(" key");
390		sc->sc_flags |= SAFE_FLAGS_KEY;
391		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
392			safe_kprocess, sc);
393		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
394			safe_kprocess, sc);
395#endif
396	}
397	if (devinfo & SAFE_DEVINFO_DES) {
398		printf(" des/3des");
399		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400			safe_newsession, safe_freesession, safe_process, sc);
401		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402			safe_newsession, safe_freesession, safe_process, sc);
403	}
404	if (devinfo & SAFE_DEVINFO_AES) {
405		printf(" aes");
406		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
407			safe_newsession, safe_freesession, safe_process, sc);
408	}
409	if (devinfo & SAFE_DEVINFO_MD5) {
410		printf(" md5");
411		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
412			safe_newsession, safe_freesession, safe_process, sc);
413	}
414	if (devinfo & SAFE_DEVINFO_SHA1) {
415		printf(" sha1");
416		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
417			safe_newsession, safe_freesession, safe_process, sc);
418	}
419	printf(" null");
420	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
421		safe_newsession, safe_freesession, safe_process, sc);
422	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
423		safe_newsession, safe_freesession, safe_process, sc);
424	/* XXX other supported algorithms */
425	printf("\n");
426
427	safe_reset_board(sc);		/* reset h/w */
428	safe_init_pciregs(dev);		/* init pci settings */
429	safe_init_board(sc);		/* init h/w */
430
431#ifndef SAFE_NO_RNG
432	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433#ifdef SAFE_RNDTEST
434		sc->sc_rndtest = rndtest_attach(dev);
435		if (sc->sc_rndtest)
436			sc->sc_harvest = rndtest_harvest;
437		else
438			sc->sc_harvest = default_harvest;
439#else
440		sc->sc_harvest = default_harvest;
441#endif
442		safe_rng_init(sc);
443
444		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446	}
447#endif /* SAFE_NO_RNG */
448#ifdef SAFE_DEBUG
449	safec = sc;			/* for use by hw.safe.dump */
450#endif
451	return (0);
452bad4:
453	crypto_unregister_all(sc->sc_cid);
454bad3:
455	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456bad2:
457	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458bad1:
459	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460bad:
461	return (ENXIO);
462}
463
464/*
465 * Detach a device that successfully probed.
466 */
467static int
468safe_detach(device_t dev)
469{
470	struct safe_softc *sc = device_get_softc(dev);
471
472	/* XXX wait/abort active ops */
473
474	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475
476	callout_stop(&sc->sc_rngto);
477
478	crypto_unregister_all(sc->sc_cid);
479
480#ifdef SAFE_RNDTEST
481	if (sc->sc_rndtest)
482		rndtest_detach(sc->sc_rndtest);
483#endif
484
485	safe_cleanchip(sc);
486	safe_dma_free(sc, &sc->sc_dpalloc);
487	safe_dma_free(sc, &sc->sc_spalloc);
488	mtx_destroy(&sc->sc_ringmtx);
489	safe_dma_free(sc, &sc->sc_ringalloc);
490
491	bus_generic_detach(dev);
492	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494
495	bus_dma_tag_destroy(sc->sc_srcdmat);
496	bus_dma_tag_destroy(sc->sc_dstdmat);
497	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498
499	return (0);
500}
501
502/*
503 * Stop all chip i/o so that the kernel's probe routines don't
504 * get confused by errant DMAs when rebooting.
505 */
506static void
507safe_shutdown(device_t dev)
508{
509#ifdef notyet
510	safe_stop(device_get_softc(dev));
511#endif
512}
513
514/*
515 * Device suspend routine.
516 */
517static int
518safe_suspend(device_t dev)
519{
520	struct safe_softc *sc = device_get_softc(dev);
521
522#ifdef notyet
523	/* XXX stop the device and save PCI settings */
524#endif
525	sc->sc_suspended = 1;
526
527	return (0);
528}
529
530static int
531safe_resume(device_t dev)
532{
533	struct safe_softc *sc = device_get_softc(dev);
534
535#ifdef notyet
536	/* XXX retore PCI settings and start the device */
537#endif
538	sc->sc_suspended = 0;
539	return (0);
540}
541
542/*
543 * SafeXcel Interrupt routine
544 */
545static void
546safe_intr(void *arg)
547{
548	struct safe_softc *sc = arg;
549	volatile u_int32_t stat;
550
551	stat = READ_REG(sc, SAFE_HM_STAT);
552	if (stat == 0)			/* shared irq, not for us */
553		return;
554
555	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
556
557	if ((stat & SAFE_INT_PE_DDONE)) {
558		/*
559		 * Descriptor(s) done; scan the ring and
560		 * process completed operations.
561		 */
562		mtx_lock(&sc->sc_ringmtx);
563		while (sc->sc_back != sc->sc_front) {
564			struct safe_ringentry *re = sc->sc_back;
565#ifdef SAFE_DEBUG
566			if (safe_debug) {
567				safe_dump_ringstate(sc, __func__);
568				safe_dump_request(sc, __func__, re);
569			}
570#endif
571			/*
572			 * safe_process marks ring entries that were allocated
573			 * but not used with a csr of zero.  This insures the
574			 * ring front pointer never needs to be set backwards
575			 * in the event that an entry is allocated but not used
576			 * because of a setup error.
577			 */
578			if (re->re_desc.d_csr != 0) {
579				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
580					break;
581				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
582					break;
583				sc->sc_nqchip--;
584				safe_callback(sc, re);
585			}
586			if (++(sc->sc_back) == sc->sc_ringtop)
587				sc->sc_back = sc->sc_ring;
588		}
589		mtx_unlock(&sc->sc_ringmtx);
590	}
591
592	/*
593	 * Check to see if we got any DMA Error
594	 */
595	if (stat & SAFE_INT_PE_ERROR) {
596		DPRINTF(("dmaerr dmastat %08x\n",
597			READ_REG(sc, SAFE_PE_DMASTAT)));
598		safestats.st_dmaerr++;
599		safe_totalreset(sc);
600#if 0
601		safe_feed(sc);
602#endif
603	}
604
605	if (sc->sc_needwakeup) {		/* XXX check high watermark */
606		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
607		DPRINTF(("%s: wakeup crypto %x\n", __func__,
608			sc->sc_needwakeup));
609		sc->sc_needwakeup &= ~wakeup;
610		crypto_unblock(sc->sc_cid, wakeup);
611	}
612}
613
614/*
615 * safe_feed() - post a request to chip
616 */
617static void
618safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
619{
620	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
621	if (re->re_dst_map != NULL)
622		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
623			BUS_DMASYNC_PREREAD);
624	/* XXX have no smaller granularity */
625	safe_dma_sync(&sc->sc_ringalloc,
626		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
627	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
628	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
629
630#ifdef SAFE_DEBUG
631	if (safe_debug) {
632		safe_dump_ringstate(sc, __func__);
633		safe_dump_request(sc, __func__, re);
634	}
635#endif
636	sc->sc_nqchip++;
637	if (sc->sc_nqchip > safestats.st_maxqchip)
638		safestats.st_maxqchip = sc->sc_nqchip;
639	/* poke h/w to check descriptor ring, any value can be written */
640	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
641}
642
643#define	N(a)	(sizeof(a) / sizeof (a[0]))
644static void
645safe_setup_enckey(struct safe_session *ses, caddr_t key)
646{
647	int i;
648
649	bcopy(key, ses->ses_key, ses->ses_klen / 8);
650
651	/* PE is little-endian, insure proper byte order */
652	for (i = 0; i < N(ses->ses_key); i++)
653		ses->ses_key[i] = htole32(ses->ses_key[i]);
654}
655
656static void
657safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
658{
659	MD5_CTX md5ctx;
660	SHA1_CTX sha1ctx;
661	int i;
662
663
664	for (i = 0; i < klen; i++)
665		key[i] ^= HMAC_IPAD_VAL;
666
667	if (algo == CRYPTO_MD5_HMAC) {
668		MD5Init(&md5ctx);
669		MD5Update(&md5ctx, key, klen);
670		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
671		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
672	} else {
673		SHA1Init(&sha1ctx);
674		SHA1Update(&sha1ctx, key, klen);
675		SHA1Update(&sha1ctx, hmac_ipad_buffer,
676		    SHA1_HMAC_BLOCK_LEN - klen);
677		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
678	}
679
680	for (i = 0; i < klen; i++)
681		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
682
683	if (algo == CRYPTO_MD5_HMAC) {
684		MD5Init(&md5ctx);
685		MD5Update(&md5ctx, key, klen);
686		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
687		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
688	} else {
689		SHA1Init(&sha1ctx);
690		SHA1Update(&sha1ctx, key, klen);
691		SHA1Update(&sha1ctx, hmac_opad_buffer,
692		    SHA1_HMAC_BLOCK_LEN - klen);
693		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
694	}
695
696	for (i = 0; i < klen; i++)
697		key[i] ^= HMAC_OPAD_VAL;
698
699	/* PE is little-endian, insure proper byte order */
700	for (i = 0; i < N(ses->ses_hminner); i++) {
701		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
702		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
703	}
704}
705#undef N
706
707/*
708 * Allocate a new 'session' and return an encoded session id.  'sidp'
709 * contains our registration id, and should contain an encoded session
710 * id on successful allocation.
711 */
712static int
713safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
714{
715	struct cryptoini *c, *encini = NULL, *macini = NULL;
716	struct safe_softc *sc = arg;
717	struct safe_session *ses = NULL;
718	int sesn;
719
720	if (sidp == NULL || cri == NULL || sc == NULL)
721		return (EINVAL);
722
723	for (c = cri; c != NULL; c = c->cri_next) {
724		if (c->cri_alg == CRYPTO_MD5_HMAC ||
725		    c->cri_alg == CRYPTO_SHA1_HMAC ||
726		    c->cri_alg == CRYPTO_NULL_HMAC) {
727			if (macini)
728				return (EINVAL);
729			macini = c;
730		} else if (c->cri_alg == CRYPTO_DES_CBC ||
731		    c->cri_alg == CRYPTO_3DES_CBC ||
732		    c->cri_alg == CRYPTO_AES_CBC ||
733		    c->cri_alg == CRYPTO_NULL_CBC) {
734			if (encini)
735				return (EINVAL);
736			encini = c;
737		} else
738			return (EINVAL);
739	}
740	if (encini == NULL && macini == NULL)
741		return (EINVAL);
742	if (encini) {			/* validate key length */
743		switch (encini->cri_alg) {
744		case CRYPTO_DES_CBC:
745			if (encini->cri_klen != 64)
746				return (EINVAL);
747			break;
748		case CRYPTO_3DES_CBC:
749			if (encini->cri_klen != 192)
750				return (EINVAL);
751			break;
752		case CRYPTO_AES_CBC:
753			if (encini->cri_klen != 128 &&
754			    encini->cri_klen != 192 &&
755			    encini->cri_klen != 256)
756				return (EINVAL);
757			break;
758		}
759	}
760
761	if (sc->sc_sessions == NULL) {
762		ses = sc->sc_sessions = (struct safe_session *)malloc(
763		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
764		if (ses == NULL)
765			return (ENOMEM);
766		sesn = 0;
767		sc->sc_nsessions = 1;
768	} else {
769		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
770			if (sc->sc_sessions[sesn].ses_used == 0) {
771				ses = &sc->sc_sessions[sesn];
772				break;
773			}
774		}
775
776		if (ses == NULL) {
777			sesn = sc->sc_nsessions;
778			ses = (struct safe_session *)malloc((sesn + 1) *
779			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
780			if (ses == NULL)
781				return (ENOMEM);
782			bcopy(sc->sc_sessions, ses, sesn *
783			    sizeof(struct safe_session));
784			bzero(sc->sc_sessions, sesn *
785			    sizeof(struct safe_session));
786			free(sc->sc_sessions, M_DEVBUF);
787			sc->sc_sessions = ses;
788			ses = &sc->sc_sessions[sesn];
789			sc->sc_nsessions++;
790		}
791	}
792
793	bzero(ses, sizeof(struct safe_session));
794	ses->ses_used = 1;
795
796	if (encini) {
797		/* get an IV */
798		/* XXX may read fewer than requested */
799		read_random(ses->ses_iv, sizeof(ses->ses_iv));
800
801		ses->ses_klen = encini->cri_klen;
802		if (encini->cri_key != NULL)
803			safe_setup_enckey(ses, encini->cri_key);
804	}
805
806	if (macini) {
807		ses->ses_mlen = macini->cri_mlen;
808		if (ses->ses_mlen == 0) {
809			if (macini->cri_alg == CRYPTO_MD5_HMAC)
810				ses->ses_mlen = MD5_HASH_LEN;
811			else
812				ses->ses_mlen = SHA1_HASH_LEN;
813		}
814
815		if (macini->cri_key != NULL) {
816			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
817			    macini->cri_klen / 8);
818		}
819	}
820
821	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
822	return (0);
823}
824
825/*
826 * Deallocate a session.
827 */
828static int
829safe_freesession(void *arg, u_int64_t tid)
830{
831	struct safe_softc *sc = arg;
832	int session, ret;
833	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
834
835	if (sc == NULL)
836		return (EINVAL);
837
838	session = SAFE_SESSION(sid);
839	if (session < sc->sc_nsessions) {
840		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
841		ret = 0;
842	} else
843		ret = EINVAL;
844	return (ret);
845}
846
847static void
848safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
849{
850	struct safe_operand *op = arg;
851
852	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
853		(u_int) mapsize, nsegs, error));
854	if (error != 0)
855		return;
856	op->mapsize = mapsize;
857	op->nsegs = nsegs;
858	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
859}
860
861static int
862safe_process(void *arg, struct cryptop *crp, int hint)
863{
864	int err = 0, i, nicealign, uniform;
865	struct safe_softc *sc = arg;
866	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
867	int bypass, oplen, ivsize;
868	caddr_t iv;
869	int16_t coffset;
870	struct safe_session *ses;
871	struct safe_ringentry *re;
872	struct safe_sarec *sa;
873	struct safe_pdesc *pd;
874	u_int32_t cmd0, cmd1, staterec;
875
876	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
877		safestats.st_invalid++;
878		return (EINVAL);
879	}
880	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
881		safestats.st_badsession++;
882		return (EINVAL);
883	}
884
885	mtx_lock(&sc->sc_ringmtx);
886	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
887		safestats.st_ringfull++;
888		sc->sc_needwakeup |= CRYPTO_SYMQ;
889		mtx_unlock(&sc->sc_ringmtx);
890		return (ERESTART);
891	}
892	re = sc->sc_front;
893
894	staterec = re->re_sa.sa_staterec;	/* save */
895	/* NB: zero everything but the PE descriptor */
896	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
897	re->re_sa.sa_staterec = staterec;	/* restore */
898
899	re->re_crp = crp;
900	re->re_sesn = SAFE_SESSION(crp->crp_sid);
901
902	if (crp->crp_flags & CRYPTO_F_IMBUF) {
903		re->re_src_m = (struct mbuf *)crp->crp_buf;
904		re->re_dst_m = (struct mbuf *)crp->crp_buf;
905	} else if (crp->crp_flags & CRYPTO_F_IOV) {
906		re->re_src_io = (struct uio *)crp->crp_buf;
907		re->re_dst_io = (struct uio *)crp->crp_buf;
908	} else {
909		safestats.st_badflags++;
910		err = EINVAL;
911		goto errout;	/* XXX we don't handle contiguous blocks! */
912	}
913
914	sa = &re->re_sa;
915	ses = &sc->sc_sessions[re->re_sesn];
916
917	crd1 = crp->crp_desc;
918	if (crd1 == NULL) {
919		safestats.st_nodesc++;
920		err = EINVAL;
921		goto errout;
922	}
923	crd2 = crd1->crd_next;
924
925	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
926	cmd1 = 0;
927	if (crd2 == NULL) {
928		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
929		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
930		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
931			maccrd = crd1;
932			enccrd = NULL;
933			cmd0 |= SAFE_SA_CMD0_OP_HASH;
934		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
935		    crd1->crd_alg == CRYPTO_3DES_CBC ||
936		    crd1->crd_alg == CRYPTO_AES_CBC ||
937		    crd1->crd_alg == CRYPTO_NULL_CBC) {
938			maccrd = NULL;
939			enccrd = crd1;
940			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
941		} else {
942			safestats.st_badalg++;
943			err = EINVAL;
944			goto errout;
945		}
946	} else {
947		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
948		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
949		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
950		    (crd2->crd_alg == CRYPTO_DES_CBC ||
951			crd2->crd_alg == CRYPTO_3DES_CBC ||
952		        crd2->crd_alg == CRYPTO_AES_CBC ||
953		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
954		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
955			maccrd = crd1;
956			enccrd = crd2;
957		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
958		    crd1->crd_alg == CRYPTO_3DES_CBC ||
959		    crd1->crd_alg == CRYPTO_AES_CBC ||
960		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
961		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
962			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
963			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
964		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
965			enccrd = crd1;
966			maccrd = crd2;
967		} else {
968			safestats.st_badalg++;
969			err = EINVAL;
970			goto errout;
971		}
972		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
973	}
974
975	if (enccrd) {
976		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
977			safe_setup_enckey(ses, enccrd->crd_key);
978
979		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
980			cmd0 |= SAFE_SA_CMD0_DES;
981			cmd1 |= SAFE_SA_CMD1_CBC;
982			ivsize = 2*sizeof(u_int32_t);
983		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
984			cmd0 |= SAFE_SA_CMD0_3DES;
985			cmd1 |= SAFE_SA_CMD1_CBC;
986			ivsize = 2*sizeof(u_int32_t);
987		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
988			cmd0 |= SAFE_SA_CMD0_AES;
989			cmd1 |= SAFE_SA_CMD1_CBC;
990			if (ses->ses_klen == 128)
991			     cmd1 |=  SAFE_SA_CMD1_AES128;
992			else if (ses->ses_klen == 192)
993			     cmd1 |=  SAFE_SA_CMD1_AES192;
994			else
995			     cmd1 |=  SAFE_SA_CMD1_AES256;
996			ivsize = 4*sizeof(u_int32_t);
997		} else {
998			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
999			ivsize = 0;
1000		}
1001
1002		/*
1003		 * Setup encrypt/decrypt state.  When using basic ops
1004		 * we can't use an inline IV because hash/crypt offset
1005		 * must be from the end of the IV to the start of the
1006		 * crypt data and this leaves out the preceding header
1007		 * from the hash calculation.  Instead we place the IV
1008		 * in the state record and set the hash/crypt offset to
1009		 * copy both the header+IV.
1010		 */
1011		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1012			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1013
1014			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1015				iv = enccrd->crd_iv;
1016			else
1017				iv = (caddr_t) ses->ses_iv;
1018			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1019				if (crp->crp_flags & CRYPTO_F_IMBUF)
1020					m_copyback(re->re_src_m,
1021						enccrd->crd_inject, ivsize, iv);
1022				else if (crp->crp_flags & CRYPTO_F_IOV)
1023					cuio_copyback(re->re_src_io,
1024						enccrd->crd_inject, ivsize, iv);
1025			}
1026			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1027			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1028			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1029		} else {
1030			cmd0 |= SAFE_SA_CMD0_INBOUND;
1031
1032			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1033				bcopy(enccrd->crd_iv,
1034					re->re_sastate.sa_saved_iv, ivsize);
1035			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1036				m_copydata(re->re_src_m, enccrd->crd_inject,
1037					ivsize,
1038					(caddr_t)re->re_sastate.sa_saved_iv);
1039			else if (crp->crp_flags & CRYPTO_F_IOV)
1040				cuio_copydata(re->re_src_io, enccrd->crd_inject,
1041					ivsize,
1042					(caddr_t)re->re_sastate.sa_saved_iv);
1043			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1044		}
1045		/*
1046		 * For basic encryption use the zero pad algorithm.
1047		 * This pads results to an 8-byte boundary and
1048		 * suppresses padding verification for inbound (i.e.
1049		 * decrypt) operations.
1050		 *
1051		 * NB: Not sure if the 8-byte pad boundary is a problem.
1052		 */
1053		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1054
1055		/* XXX assert key bufs have the same size */
1056		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1057	}
1058
1059	if (maccrd) {
1060		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1061			safe_setup_mackey(ses, maccrd->crd_alg,
1062			    maccrd->crd_key, maccrd->crd_klen / 8);
1063		}
1064
1065		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1066			cmd0 |= SAFE_SA_CMD0_MD5;
1067			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1068		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1069			cmd0 |= SAFE_SA_CMD0_SHA1;
1070			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1071		} else {
1072			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1073		}
1074		/*
1075		 * Digest data is loaded from the SA and the hash
1076		 * result is saved to the state block where we
1077		 * retrieve it for return to the caller.
1078		 */
1079		/* XXX assert digest bufs have the same size */
1080		bcopy(ses->ses_hminner, sa->sa_indigest,
1081			sizeof(sa->sa_indigest));
1082		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1083			sizeof(sa->sa_outdigest));
1084
1085		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1086		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1087	}
1088
1089	if (enccrd && maccrd) {
1090		/*
1091		 * The offset from hash data to the start of
1092		 * crypt data is the difference in the skips.
1093		 */
1094		bypass = maccrd->crd_skip;
1095		coffset = enccrd->crd_skip - maccrd->crd_skip;
1096		if (coffset < 0) {
1097			DPRINTF(("%s: hash does not precede crypt; "
1098				"mac skip %u enc skip %u\n",
1099				__func__, maccrd->crd_skip, enccrd->crd_skip));
1100			safestats.st_skipmismatch++;
1101			err = EINVAL;
1102			goto errout;
1103		}
1104		oplen = enccrd->crd_skip + enccrd->crd_len;
1105		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1106			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1107				__func__, maccrd->crd_skip + maccrd->crd_len,
1108				oplen));
1109			safestats.st_lenmismatch++;
1110			err = EINVAL;
1111			goto errout;
1112		}
1113#ifdef SAFE_DEBUG
1114		if (safe_debug) {
1115			printf("mac: skip %d, len %d, inject %d\n",
1116			    maccrd->crd_skip, maccrd->crd_len,
1117			    maccrd->crd_inject);
1118			printf("enc: skip %d, len %d, inject %d\n",
1119			    enccrd->crd_skip, enccrd->crd_len,
1120			    enccrd->crd_inject);
1121			printf("bypass %d coffset %d oplen %d\n",
1122				bypass, coffset, oplen);
1123		}
1124#endif
1125		if (coffset & 3) {	/* offset must be 32-bit aligned */
1126			DPRINTF(("%s: coffset %u misaligned\n",
1127				__func__, coffset));
1128			safestats.st_coffmisaligned++;
1129			err = EINVAL;
1130			goto errout;
1131		}
1132		coffset >>= 2;
1133		if (coffset > 255) {	/* offset must be <256 dwords */
1134			DPRINTF(("%s: coffset %u too big\n",
1135				__func__, coffset));
1136			safestats.st_cofftoobig++;
1137			err = EINVAL;
1138			goto errout;
1139		}
1140		/*
1141		 * Tell the hardware to copy the header to the output.
1142		 * The header is defined as the data from the end of
1143		 * the bypass to the start of data to be encrypted.
1144		 * Typically this is the inline IV.  Note that you need
1145		 * to do this even if src+dst are the same; it appears
1146		 * that w/o this bit the crypted data is written
1147		 * immediately after the bypass data.
1148		 */
1149		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1150		/*
1151		 * Disable IP header mutable bit handling.  This is
1152		 * needed to get correct HMAC calculations.
1153		 */
1154		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1155	} else {
1156		if (enccrd) {
1157			bypass = enccrd->crd_skip;
1158			oplen = bypass + enccrd->crd_len;
1159		} else {
1160			bypass = maccrd->crd_skip;
1161			oplen = bypass + maccrd->crd_len;
1162		}
1163		coffset = 0;
1164	}
1165	/* XXX verify multiple of 4 when using s/g */
1166	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1167		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1168		safestats.st_bypasstoobig++;
1169		err = EINVAL;
1170		goto errout;
1171	}
1172
1173	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1174		safestats.st_nomap++;
1175		err = ENOMEM;
1176		goto errout;
1177	}
1178	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1179		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1180		    re->re_src_m, safe_op_cb,
1181		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1182			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1183			re->re_src_map = NULL;
1184			safestats.st_noload++;
1185			err = ENOMEM;
1186			goto errout;
1187		}
1188	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1189		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1190		    re->re_src_io, safe_op_cb,
1191		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1192			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1193			re->re_src_map = NULL;
1194			safestats.st_noload++;
1195			err = ENOMEM;
1196			goto errout;
1197		}
1198	}
1199	nicealign = safe_dmamap_aligned(&re->re_src);
1200	uniform = safe_dmamap_uniform(&re->re_src);
1201
1202	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1203		nicealign, uniform, re->re_src.nsegs));
1204	if (re->re_src.nsegs > 1) {
1205		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1206			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1207		for (i = 0; i < re->re_src_nsegs; i++) {
1208			/* NB: no need to check if there's space */
1209			pd = sc->sc_spfree;
1210			if (++(sc->sc_spfree) == sc->sc_springtop)
1211				sc->sc_spfree = sc->sc_spring;
1212
1213			KASSERT((pd->pd_flags&3) == 0 ||
1214				(pd->pd_flags&3) == SAFE_PD_DONE,
1215				("bogus source particle descriptor; flags %x",
1216				pd->pd_flags));
1217			pd->pd_addr = re->re_src_segs[i].ds_addr;
1218			pd->pd_size = re->re_src_segs[i].ds_len;
1219			pd->pd_flags = SAFE_PD_READY;
1220		}
1221		cmd0 |= SAFE_SA_CMD0_IGATHER;
1222	} else {
1223		/*
1224		 * No need for gather, reference the operand directly.
1225		 */
1226		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1227	}
1228
1229	if (enccrd == NULL && maccrd != NULL) {
1230		/*
1231		 * Hash op; no destination needed.
1232		 */
1233	} else {
1234		if (crp->crp_flags & CRYPTO_F_IOV) {
1235			if (!nicealign) {
1236				safestats.st_iovmisaligned++;
1237				err = EINVAL;
1238				goto errout;
1239			}
1240			if (uniform != 1) {
1241				/*
1242				 * Source is not suitable for direct use as
1243				 * the destination.  Create a new scatter/gather
1244				 * list based on the destination requirements
1245				 * and check if that's ok.
1246				 */
1247				if (bus_dmamap_create(sc->sc_dstdmat,
1248				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1249					safestats.st_nomap++;
1250					err = ENOMEM;
1251					goto errout;
1252				}
1253				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1254				    re->re_dst_map, re->re_dst_io,
1255				    safe_op_cb, &re->re_dst,
1256				    BUS_DMA_NOWAIT) != 0) {
1257					bus_dmamap_destroy(sc->sc_dstdmat,
1258						re->re_dst_map);
1259					re->re_dst_map = NULL;
1260					safestats.st_noload++;
1261					err = ENOMEM;
1262					goto errout;
1263				}
1264				uniform = safe_dmamap_uniform(&re->re_dst);
1265				if (!uniform) {
1266					/*
1267					 * There's no way to handle the DMA
1268					 * requirements with this uio.  We
1269					 * could create a separate DMA area for
1270					 * the result and then copy it back,
1271					 * but for now we just bail and return
1272					 * an error.  Note that uio requests
1273					 * > SAFE_MAX_DSIZE are handled because
1274					 * the DMA map and segment list for the
1275					 * destination wil result in a
1276					 * destination particle list that does
1277					 * the necessary scatter DMA.
1278					 */
1279					safestats.st_iovnotuniform++;
1280					err = EINVAL;
1281					goto errout;
1282				}
1283			} else
1284				re->re_dst = re->re_src;
1285		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1286			if (nicealign && uniform == 1) {
1287				/*
1288				 * Source layout is suitable for direct
1289				 * sharing of the DMA map and segment list.
1290				 */
1291				re->re_dst = re->re_src;
1292			} else if (nicealign && uniform == 2) {
1293				/*
1294				 * The source is properly aligned but requires a
1295				 * different particle list to handle DMA of the
1296				 * result.  Create a new map and do the load to
1297				 * create the segment list.  The particle
1298				 * descriptor setup code below will handle the
1299				 * rest.
1300				 */
1301				if (bus_dmamap_create(sc->sc_dstdmat,
1302				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1303					safestats.st_nomap++;
1304					err = ENOMEM;
1305					goto errout;
1306				}
1307				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1308				    re->re_dst_map, re->re_dst_m,
1309				    safe_op_cb, &re->re_dst,
1310				    BUS_DMA_NOWAIT) != 0) {
1311					bus_dmamap_destroy(sc->sc_dstdmat,
1312						re->re_dst_map);
1313					re->re_dst_map = NULL;
1314					safestats.st_noload++;
1315					err = ENOMEM;
1316					goto errout;
1317				}
1318			} else {		/* !(aligned and/or uniform) */
1319				int totlen, len;
1320				struct mbuf *m, *top, **mp;
1321
1322				/*
1323				 * DMA constraints require that we allocate a
1324				 * new mbuf chain for the destination.  We
1325				 * allocate an entire new set of mbufs of
1326				 * optimal/required size and then tell the
1327				 * hardware to copy any bits that are not
1328				 * created as a byproduct of the operation.
1329				 */
1330				if (!nicealign)
1331					safestats.st_unaligned++;
1332				if (!uniform)
1333					safestats.st_notuniform++;
1334				totlen = re->re_src_mapsize;
1335				if (re->re_src_m->m_flags & M_PKTHDR) {
1336					len = MHLEN;
1337					MGETHDR(m, M_DONTWAIT, MT_DATA);
1338					if (m && !m_dup_pkthdr(m, re->re_src_m,
1339					    M_DONTWAIT)) {
1340						m_free(m);
1341						m = NULL;
1342					}
1343				} else {
1344					len = MLEN;
1345					MGET(m, M_DONTWAIT, MT_DATA);
1346				}
1347				if (m == NULL) {
1348					safestats.st_nombuf++;
1349					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1350					goto errout;
1351				}
1352				if (totlen >= MINCLSIZE) {
1353					MCLGET(m, M_DONTWAIT);
1354					if ((m->m_flags & M_EXT) == 0) {
1355						m_free(m);
1356						safestats.st_nomcl++;
1357						err = sc->sc_nqchip ?
1358							ERESTART : ENOMEM;
1359						goto errout;
1360					}
1361					len = MCLBYTES;
1362				}
1363				m->m_len = len;
1364				top = NULL;
1365				mp = &top;
1366
1367				while (totlen > 0) {
1368					if (top) {
1369						MGET(m, M_DONTWAIT, MT_DATA);
1370						if (m == NULL) {
1371							m_freem(top);
1372							safestats.st_nombuf++;
1373							err = sc->sc_nqchip ?
1374							    ERESTART : ENOMEM;
1375							goto errout;
1376						}
1377						len = MLEN;
1378					}
1379					if (top && totlen >= MINCLSIZE) {
1380						MCLGET(m, M_DONTWAIT);
1381						if ((m->m_flags & M_EXT) == 0) {
1382							*mp = m;
1383							m_freem(top);
1384							safestats.st_nomcl++;
1385							err = sc->sc_nqchip ?
1386							    ERESTART : ENOMEM;
1387							goto errout;
1388						}
1389						len = MCLBYTES;
1390					}
1391					m->m_len = len = min(totlen, len);
1392					totlen -= len;
1393					*mp = m;
1394					mp = &m->m_next;
1395				}
1396				re->re_dst_m = top;
1397				if (bus_dmamap_create(sc->sc_dstdmat,
1398				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1399					safestats.st_nomap++;
1400					err = ENOMEM;
1401					goto errout;
1402				}
1403				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1404				    re->re_dst_map, re->re_dst_m,
1405				    safe_op_cb, &re->re_dst,
1406				    BUS_DMA_NOWAIT) != 0) {
1407					bus_dmamap_destroy(sc->sc_dstdmat,
1408					re->re_dst_map);
1409					re->re_dst_map = NULL;
1410					safestats.st_noload++;
1411					err = ENOMEM;
1412					goto errout;
1413				}
1414				if (re->re_src.mapsize > oplen) {
1415					/*
1416					 * There's data following what the
1417					 * hardware will copy for us.  If this
1418					 * isn't just the ICV (that's going to
1419					 * be written on completion), copy it
1420					 * to the new mbufs
1421					 */
1422					if (!(maccrd &&
1423					    (re->re_src.mapsize-oplen) == 12 &&
1424					    maccrd->crd_inject == oplen))
1425						safe_mcopy(re->re_src_m,
1426							   re->re_dst_m,
1427							   oplen);
1428					else
1429						safestats.st_noicvcopy++;
1430				}
1431			}
1432		} else {
1433			safestats.st_badflags++;
1434			err = EINVAL;
1435			goto errout;
1436		}
1437
1438		if (re->re_dst.nsegs > 1) {
1439			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1440			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1441			for (i = 0; i < re->re_dst_nsegs; i++) {
1442				pd = sc->sc_dpfree;
1443				KASSERT((pd->pd_flags&3) == 0 ||
1444					(pd->pd_flags&3) == SAFE_PD_DONE,
1445					("bogus dest particle descriptor; flags %x",
1446						pd->pd_flags));
1447				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1448					sc->sc_dpfree = sc->sc_dpring;
1449				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1450				pd->pd_flags = SAFE_PD_READY;
1451			}
1452			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1453		} else {
1454			/*
1455			 * No need for scatter, reference the operand directly.
1456			 */
1457			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1458		}
1459	}
1460
1461	/*
1462	 * All done with setup; fillin the SA command words
1463	 * and the packet engine descriptor.  The operation
1464	 * is now ready for submission to the hardware.
1465	 */
1466	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1467	sa->sa_cmd1 = cmd1
1468		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1469		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1470		    | SAFE_SA_CMD1_SRPCI
1471		    ;
1472	/*
1473	 * NB: the order of writes is important here.  In case the
1474	 * chip is scanning the ring because of an outstanding request
1475	 * it might nab this one too.  In that case we need to make
1476	 * sure the setup is complete before we write the length
1477	 * field of the descriptor as it signals the descriptor is
1478	 * ready for processing.
1479	 */
1480	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1481	if (maccrd)
1482		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1483	re->re_desc.d_len = oplen
1484			  | SAFE_PE_LEN_READY
1485			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1486			  ;
1487
1488	safestats.st_ipackets++;
1489	safestats.st_ibytes += oplen;
1490
1491	if (++(sc->sc_front) == sc->sc_ringtop)
1492		sc->sc_front = sc->sc_ring;
1493
1494	/* XXX honor batching */
1495	safe_feed(sc, re);
1496	mtx_unlock(&sc->sc_ringmtx);
1497	return (0);
1498
1499errout:
1500	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1501		m_freem(re->re_dst_m);
1502
1503	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1504		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1505		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1506	}
1507	if (re->re_src_map != NULL) {
1508		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1509		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1510	}
1511	mtx_unlock(&sc->sc_ringmtx);
1512	if (err != ERESTART) {
1513		crp->crp_etype = err;
1514		crypto_done(crp);
1515	} else {
1516		sc->sc_needwakeup |= CRYPTO_SYMQ;
1517	}
1518	return (err);
1519}
1520
1521static void
1522safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1523{
1524	struct cryptop *crp = (struct cryptop *)re->re_crp;
1525	struct cryptodesc *crd;
1526
1527	safestats.st_opackets++;
1528	safestats.st_obytes += re->re_dst.mapsize;
1529
1530	safe_dma_sync(&sc->sc_ringalloc,
1531		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1532	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1533		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1534			re->re_desc.d_csr,
1535			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1536		safestats.st_peoperr++;
1537		crp->crp_etype = EIO;		/* something more meaningful? */
1538	}
1539	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1540		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1541		    BUS_DMASYNC_POSTREAD);
1542		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1543		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1544	}
1545	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1546	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1547	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1548
1549	/*
1550	 * If result was written to a differet mbuf chain, swap
1551	 * it in as the return value and reclaim the original.
1552	 */
1553	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1554		m_freem(re->re_src_m);
1555		crp->crp_buf = (caddr_t)re->re_dst_m;
1556	}
1557
1558	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1559		/* copy out IV for future use */
1560		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1561			int ivsize;
1562
1563			if (crd->crd_alg == CRYPTO_DES_CBC ||
1564			    crd->crd_alg == CRYPTO_3DES_CBC) {
1565				ivsize = 2*sizeof(u_int32_t);
1566			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1567				ivsize = 4*sizeof(u_int32_t);
1568			} else
1569				continue;
1570			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1571				m_copydata((struct mbuf *)crp->crp_buf,
1572					crd->crd_skip + crd->crd_len - ivsize,
1573					ivsize,
1574					(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
1575			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1576				cuio_copydata((struct uio *)crp->crp_buf,
1577					crd->crd_skip + crd->crd_len - ivsize,
1578					ivsize,
1579					(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1580			}
1581			break;
1582		}
1583	}
1584
1585	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1586		/* copy out ICV result */
1587		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1588			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1589			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1590			    crd->crd_alg == CRYPTO_NULL_HMAC))
1591				continue;
1592			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1593				/*
1594				 * SHA-1 ICV's are byte-swapped; fix 'em up
1595				 * before copy them to their destination.
1596				 */
1597				bswap32(re->re_sastate.sa_saved_indigest[0]);
1598				bswap32(re->re_sastate.sa_saved_indigest[1]);
1599				bswap32(re->re_sastate.sa_saved_indigest[2]);
1600			}
1601			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1602				m_copyback((struct mbuf *)crp->crp_buf,
1603					crd->crd_inject,
1604					sc->sc_sessions[re->re_sesn].ses_mlen,
1605					(caddr_t)re->re_sastate.sa_saved_indigest);
1606			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1607				cuio_copyback((struct uio *)crp->crp_buf,
1608					crd->crd_inject,
1609					sc->sc_sessions[re->re_sesn].ses_mlen,
1610					(caddr_t)re->re_sastate.sa_saved_indigest);
1611			}
1612			break;
1613		}
1614	}
1615	crypto_done(crp);
1616}
1617
1618/*
1619 * Copy all data past offset from srcm to dstm.
1620 */
1621static void
1622safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1623{
1624	u_int j, dlen, slen;
1625	caddr_t dptr, sptr;
1626
1627	/*
1628	 * Advance src and dst to offset.
1629	 */
1630	j = offset;
1631	while (j >= 0) {
1632		if (srcm->m_len > j)
1633			break;
1634		j -= srcm->m_len;
1635		srcm = srcm->m_next;
1636		if (srcm == NULL)
1637			return;
1638	}
1639	sptr = mtod(srcm, caddr_t) + j;
1640	slen = srcm->m_len - j;
1641
1642	j = offset;
1643	while (j >= 0) {
1644		if (dstm->m_len > j)
1645			break;
1646		j -= dstm->m_len;
1647		dstm = dstm->m_next;
1648		if (dstm == NULL)
1649			return;
1650	}
1651	dptr = mtod(dstm, caddr_t) + j;
1652	dlen = dstm->m_len - j;
1653
1654	/*
1655	 * Copy everything that remains.
1656	 */
1657	for (;;) {
1658		j = min(slen, dlen);
1659		bcopy(sptr, dptr, j);
1660		if (slen == j) {
1661			srcm = srcm->m_next;
1662			if (srcm == NULL)
1663				return;
1664			sptr = srcm->m_data;
1665			slen = srcm->m_len;
1666		} else
1667			sptr += j, slen -= j;
1668		if (dlen == j) {
1669			dstm = dstm->m_next;
1670			if (dstm == NULL)
1671				return;
1672			dptr = dstm->m_data;
1673			dlen = dstm->m_len;
1674		} else
1675			dptr += j, dlen -= j;
1676	}
1677}
1678
1679#ifndef SAFE_NO_RNG
1680#define	SAFE_RNG_MAXWAIT	1000
1681
1682static void
1683safe_rng_init(struct safe_softc *sc)
1684{
1685	u_int32_t w, v;
1686	int i;
1687
1688	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1689	/* use default value according to the manual */
1690	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1691	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1692
1693	/*
1694	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1695	 * is brought out of reset the ready status flag does not
1696	 * work until the RNG has finished its internal initialization.
1697	 *
1698	 * So in order to determine the device is through its
1699	 * initialization we must read the data register, using the
1700	 * status reg in the read in case it is initialized.  Then read
1701	 * the data register until it changes from the first read.
1702	 * Once it changes read the data register until it changes
1703	 * again.  At this time the RNG is considered initialized.
1704	 * This could take between 750ms - 1000ms in time.
1705	 */
1706	i = 0;
1707	w = READ_REG(sc, SAFE_RNG_OUT);
1708	do {
1709		v = READ_REG(sc, SAFE_RNG_OUT);
1710		if (v != w) {
1711			w = v;
1712			break;
1713		}
1714		DELAY(10);
1715	} while (++i < SAFE_RNG_MAXWAIT);
1716
1717	/* Wait Until data changes again */
1718	i = 0;
1719	do {
1720		v = READ_REG(sc, SAFE_RNG_OUT);
1721		if (v != w)
1722			break;
1723		DELAY(10);
1724	} while (++i < SAFE_RNG_MAXWAIT);
1725}
1726
1727static __inline void
1728safe_rng_disable_short_cycle(struct safe_softc *sc)
1729{
1730	WRITE_REG(sc, SAFE_RNG_CTRL,
1731		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1732}
1733
1734static __inline void
1735safe_rng_enable_short_cycle(struct safe_softc *sc)
1736{
1737	WRITE_REG(sc, SAFE_RNG_CTRL,
1738		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1739}
1740
1741static __inline u_int32_t
1742safe_rng_read(struct safe_softc *sc)
1743{
1744	int i;
1745
1746	i = 0;
1747	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1748		;
1749	return READ_REG(sc, SAFE_RNG_OUT);
1750}
1751
1752static void
1753safe_rng(void *arg)
1754{
1755	struct safe_softc *sc = arg;
1756	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1757	u_int maxwords;
1758	int i;
1759
1760	safestats.st_rng++;
1761	/*
1762	 * Fetch the next block of data.
1763	 */
1764	maxwords = safe_rngbufsize;
1765	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1766		maxwords = SAFE_RNG_MAXBUFSIZ;
1767retry:
1768	for (i = 0; i < maxwords; i++)
1769		buf[i] = safe_rng_read(sc);
1770	/*
1771	 * Check the comparator alarm count and reset the h/w if
1772	 * it exceeds our threshold.  This guards against the
1773	 * hardware oscillators resonating with external signals.
1774	 */
1775	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1776		u_int32_t freq_inc, w;
1777
1778		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1779			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1780		safestats.st_rngalarm++;
1781		safe_rng_enable_short_cycle(sc);
1782		freq_inc = 18;
1783		for (i = 0; i < 64; i++) {
1784			w = READ_REG(sc, SAFE_RNG_CNFG);
1785			freq_inc = ((w + freq_inc) & 0x3fL);
1786			w = ((w & ~0x3fL) | freq_inc);
1787			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1788
1789			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1790
1791			(void) safe_rng_read(sc);
1792			DELAY(25);
1793
1794			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1795				safe_rng_disable_short_cycle(sc);
1796				goto retry;
1797			}
1798			freq_inc = 1;
1799		}
1800		safe_rng_disable_short_cycle(sc);
1801	} else
1802		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1803
1804	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1805	callout_reset(&sc->sc_rngto,
1806		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1807}
1808#endif /* SAFE_NO_RNG */
1809
1810static void
1811safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1812{
1813	bus_addr_t *paddr = (bus_addr_t*) arg;
1814	*paddr = segs->ds_addr;
1815}
1816
1817static int
1818safe_dma_malloc(
1819	struct safe_softc *sc,
1820	bus_size_t size,
1821	struct safe_dma_alloc *dma,
1822	int mapflags
1823)
1824{
1825	int r;
1826
1827	r = bus_dma_tag_create(NULL,			/* parent */
1828			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1829			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1830			       BUS_SPACE_MAXADDR,	/* highaddr */
1831			       NULL, NULL,		/* filter, filterarg */
1832			       size,			/* maxsize */
1833			       1,			/* nsegments */
1834			       size,			/* maxsegsize */
1835			       BUS_DMA_ALLOCNOW,	/* flags */
1836			       NULL, NULL,		/* locking */
1837			       &dma->dma_tag);
1838	if (r != 0) {
1839		device_printf(sc->sc_dev, "safe_dma_malloc: "
1840			"bus_dma_tag_create failed; error %u\n", r);
1841		goto fail_0;
1842	}
1843
1844	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1845	if (r != 0) {
1846		device_printf(sc->sc_dev, "safe_dma_malloc: "
1847			"bus_dmamap_create failed; error %u\n", r);
1848		goto fail_1;
1849	}
1850
1851	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1852			     BUS_DMA_NOWAIT, &dma->dma_map);
1853	if (r != 0) {
1854		device_printf(sc->sc_dev, "safe_dma_malloc: "
1855			"bus_dmammem_alloc failed; size %zu, error %u\n",
1856			size, r);
1857		goto fail_2;
1858	}
1859
1860	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1861		            size,
1862			    safe_dmamap_cb,
1863			    &dma->dma_paddr,
1864			    mapflags | BUS_DMA_NOWAIT);
1865	if (r != 0) {
1866		device_printf(sc->sc_dev, "safe_dma_malloc: "
1867			"bus_dmamap_load failed; error %u\n", r);
1868		goto fail_3;
1869	}
1870
1871	dma->dma_size = size;
1872	return (0);
1873
1874fail_3:
1875	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1876fail_2:
1877	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1878fail_1:
1879	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1880	bus_dma_tag_destroy(dma->dma_tag);
1881fail_0:
1882	dma->dma_map = NULL;
1883	dma->dma_tag = NULL;
1884	return (r);
1885}
1886
1887static void
1888safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1889{
1890	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1891	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1892	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1893	bus_dma_tag_destroy(dma->dma_tag);
1894}
1895
1896/*
1897 * Resets the board.  Values in the regesters are left as is
1898 * from the reset (i.e. initial values are assigned elsewhere).
1899 */
1900static void
1901safe_reset_board(struct safe_softc *sc)
1902{
1903	u_int32_t v;
1904	/*
1905	 * Reset the device.  The manual says no delay
1906	 * is needed between marking and clearing reset.
1907	 */
1908	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1909		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1910		 SAFE_PE_DMACFG_SGRESET);
1911	WRITE_REG(sc, SAFE_PE_DMACFG, v
1912				    | SAFE_PE_DMACFG_PERESET
1913				    | SAFE_PE_DMACFG_PDRRESET
1914				    | SAFE_PE_DMACFG_SGRESET);
1915	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1916}
1917
1918/*
1919 * Initialize registers we need to touch only once.
1920 */
1921static void
1922safe_init_board(struct safe_softc *sc)
1923{
1924	u_int32_t v, dwords;
1925
1926	v = READ_REG(sc, SAFE_PE_DMACFG);;
1927	v &=~ SAFE_PE_DMACFG_PEMODE;
1928	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1929	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1930	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1931	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1932	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1933	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1934	  ;
1935	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1936#if 0
1937	/* XXX select byte swap based on host byte order */
1938	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1939#endif
1940	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1941		/*
1942		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1943		 * "target mode transfers" done while the chip is DMA'ing
1944		 * >1020 bytes cause the hardware to lockup.  To avoid this
1945		 * we reduce the max PCI transfer size and use small source
1946		 * particle descriptors (<= 256 bytes).
1947		 */
1948		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1949		device_printf(sc->sc_dev,
1950			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1951			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1952			SAFE_REV_MAJ(sc->sc_chiprev),
1953			SAFE_REV_MIN(sc->sc_chiprev));
1954	}
1955
1956	/* NB: operands+results are overlaid */
1957	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1958	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1959	/*
1960	 * Configure ring entry size and number of items in the ring.
1961	 */
1962	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1963		("PE ring entry not 32-bit aligned!"));
1964	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1965	WRITE_REG(sc, SAFE_PE_RINGCFG,
1966		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1967	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1968
1969	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1970	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1971	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1972		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1973	/*
1974	 * NB: destination particles are fixed size.  We use
1975	 *     an mbuf cluster and require all results go to
1976	 *     clusters or smaller.
1977	 */
1978	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1979
1980	/* it's now safe to enable PE mode, do it */
1981	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1982
1983	/*
1984	 * Configure hardware to use level-triggered interrupts and
1985	 * to interrupt after each descriptor is processed.
1986	 */
1987	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1988	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1989	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1990}
1991
1992/*
1993 * Init PCI registers
1994 */
1995static void
1996safe_init_pciregs(device_t dev)
1997{
1998}
1999
2000/*
2001 * Clean up after a chip crash.
2002 * It is assumed that the caller in splimp()
2003 */
2004static void
2005safe_cleanchip(struct safe_softc *sc)
2006{
2007
2008	if (sc->sc_nqchip != 0) {
2009		struct safe_ringentry *re = sc->sc_back;
2010
2011		while (re != sc->sc_front) {
2012			if (re->re_desc.d_csr != 0)
2013				safe_free_entry(sc, re);
2014			if (++re == sc->sc_ringtop)
2015				re = sc->sc_ring;
2016		}
2017		sc->sc_back = re;
2018		sc->sc_nqchip = 0;
2019	}
2020}
2021
2022/*
2023 * free a safe_q
2024 * It is assumed that the caller is within splimp().
2025 */
2026static int
2027safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2028{
2029	struct cryptop *crp;
2030
2031	/*
2032	 * Free header MCR
2033	 */
2034	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2035		m_freem(re->re_dst_m);
2036
2037	crp = (struct cryptop *)re->re_crp;
2038
2039	re->re_desc.d_csr = 0;
2040
2041	crp->crp_etype = EFAULT;
2042	crypto_done(crp);
2043	return(0);
2044}
2045
2046/*
2047 * Routine to reset the chip and clean up.
2048 * It is assumed that the caller is in splimp()
2049 */
2050static void
2051safe_totalreset(struct safe_softc *sc)
2052{
2053	safe_reset_board(sc);
2054	safe_init_board(sc);
2055	safe_cleanchip(sc);
2056}
2057
2058/*
2059 * Is the operand suitable aligned for direct DMA.  Each
2060 * segment must be aligned on a 32-bit boundary and all
2061 * but the last segment must be a multiple of 4 bytes.
2062 */
2063static int
2064safe_dmamap_aligned(const struct safe_operand *op)
2065{
2066	int i;
2067
2068	for (i = 0; i < op->nsegs; i++) {
2069		if (op->segs[i].ds_addr & 3)
2070			return (0);
2071		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2072			return (0);
2073	}
2074	return (1);
2075}
2076
2077/*
2078 * Is the operand suitable for direct DMA as the destination
2079 * of an operation.  The hardware requires that each ``particle''
2080 * but the last in an operation result have the same size.  We
2081 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2082 * 0 if some segment is not a multiple of of this size, 1 if all
2083 * segments are exactly this size, or 2 if segments are at worst
2084 * a multple of this size.
2085 */
2086static int
2087safe_dmamap_uniform(const struct safe_operand *op)
2088{
2089	int result = 1;
2090
2091	if (op->nsegs > 0) {
2092		int i;
2093
2094		for (i = 0; i < op->nsegs-1; i++) {
2095			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2096				return (0);
2097			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2098				result = 2;
2099		}
2100	}
2101	return (result);
2102}
2103
2104#ifdef SAFE_DEBUG
2105static void
2106safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2107{
2108	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2109		, tag
2110		, READ_REG(sc, SAFE_DMA_ENDIAN)
2111		, READ_REG(sc, SAFE_DMA_SRCADDR)
2112		, READ_REG(sc, SAFE_DMA_DSTADDR)
2113		, READ_REG(sc, SAFE_DMA_STAT)
2114	);
2115}
2116
2117static void
2118safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2119{
2120	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2121		, tag
2122		, READ_REG(sc, SAFE_HI_CFG)
2123		, READ_REG(sc, SAFE_HI_MASK)
2124		, READ_REG(sc, SAFE_HI_DESC_CNT)
2125		, READ_REG(sc, SAFE_HU_STAT)
2126		, READ_REG(sc, SAFE_HM_STAT)
2127	);
2128}
2129
2130static void
2131safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2132{
2133	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2134
2135	/* NB: assume caller has lock on ring */
2136	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2137		tag,
2138		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2139		(unsigned long)(sc->sc_back - sc->sc_ring),
2140		(unsigned long)(sc->sc_front - sc->sc_ring));
2141}
2142
2143static void
2144safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2145{
2146	int ix, nsegs;
2147
2148	ix = re - sc->sc_ring;
2149	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2150		, tag
2151		, re, ix
2152		, re->re_desc.d_csr
2153		, re->re_desc.d_src
2154		, re->re_desc.d_dst
2155		, re->re_desc.d_sa
2156		, re->re_desc.d_len
2157	);
2158	if (re->re_src.nsegs > 1) {
2159		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2160			sizeof(struct safe_pdesc);
2161		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2162			printf(" spd[%u] %p: %p size %u flags %x"
2163				, ix, &sc->sc_spring[ix]
2164				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2165				, sc->sc_spring[ix].pd_size
2166				, sc->sc_spring[ix].pd_flags
2167			);
2168			if (sc->sc_spring[ix].pd_size == 0)
2169				printf(" (zero!)");
2170			printf("\n");
2171			if (++ix == SAFE_TOTAL_SPART)
2172				ix = 0;
2173		}
2174	}
2175	if (re->re_dst.nsegs > 1) {
2176		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2177			sizeof(struct safe_pdesc);
2178		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2179			printf(" dpd[%u] %p: %p flags %x\n"
2180				, ix, &sc->sc_dpring[ix]
2181				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2182				, sc->sc_dpring[ix].pd_flags
2183			);
2184			if (++ix == SAFE_TOTAL_DPART)
2185				ix = 0;
2186		}
2187	}
2188	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2189		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2190	printf("sa: key %x %x %x %x %x %x %x %x\n"
2191		, re->re_sa.sa_key[0]
2192		, re->re_sa.sa_key[1]
2193		, re->re_sa.sa_key[2]
2194		, re->re_sa.sa_key[3]
2195		, re->re_sa.sa_key[4]
2196		, re->re_sa.sa_key[5]
2197		, re->re_sa.sa_key[6]
2198		, re->re_sa.sa_key[7]
2199	);
2200	printf("sa: indigest %x %x %x %x %x\n"
2201		, re->re_sa.sa_indigest[0]
2202		, re->re_sa.sa_indigest[1]
2203		, re->re_sa.sa_indigest[2]
2204		, re->re_sa.sa_indigest[3]
2205		, re->re_sa.sa_indigest[4]
2206	);
2207	printf("sa: outdigest %x %x %x %x %x\n"
2208		, re->re_sa.sa_outdigest[0]
2209		, re->re_sa.sa_outdigest[1]
2210		, re->re_sa.sa_outdigest[2]
2211		, re->re_sa.sa_outdigest[3]
2212		, re->re_sa.sa_outdigest[4]
2213	);
2214	printf("sr: iv %x %x %x %x\n"
2215		, re->re_sastate.sa_saved_iv[0]
2216		, re->re_sastate.sa_saved_iv[1]
2217		, re->re_sastate.sa_saved_iv[2]
2218		, re->re_sastate.sa_saved_iv[3]
2219	);
2220	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2221		, re->re_sastate.sa_saved_hashbc
2222		, re->re_sastate.sa_saved_indigest[0]
2223		, re->re_sastate.sa_saved_indigest[1]
2224		, re->re_sastate.sa_saved_indigest[2]
2225		, re->re_sastate.sa_saved_indigest[3]
2226		, re->re_sastate.sa_saved_indigest[4]
2227	);
2228}
2229
2230static void
2231safe_dump_ring(struct safe_softc *sc, const char *tag)
2232{
2233	mtx_lock(&sc->sc_ringmtx);
2234	printf("\nSafeNet Ring State:\n");
2235	safe_dump_intrstate(sc, tag);
2236	safe_dump_dmastatus(sc, tag);
2237	safe_dump_ringstate(sc, tag);
2238	if (sc->sc_nqchip) {
2239		struct safe_ringentry *re = sc->sc_back;
2240		do {
2241			safe_dump_request(sc, tag, re);
2242			if (++re == sc->sc_ringtop)
2243				re = sc->sc_ring;
2244		} while (re != sc->sc_front);
2245	}
2246	mtx_unlock(&sc->sc_ringmtx);
2247}
2248
2249static int
2250sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2251{
2252	char dmode[64];
2253	int error;
2254
2255	strncpy(dmode, "", sizeof(dmode) - 1);
2256	dmode[sizeof(dmode) - 1] = '\0';
2257	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2258
2259	if (error == 0 && req->newptr != NULL) {
2260		struct safe_softc *sc = safec;
2261
2262		if (!sc)
2263			return EINVAL;
2264		if (strncmp(dmode, "dma", 3) == 0)
2265			safe_dump_dmastatus(sc, "safe0");
2266		else if (strncmp(dmode, "int", 3) == 0)
2267			safe_dump_intrstate(sc, "safe0");
2268		else if (strncmp(dmode, "ring", 4) == 0)
2269			safe_dump_ring(sc, "safe0");
2270		else
2271			return EINVAL;
2272	}
2273	return error;
2274}
2275SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2276	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2277#endif /* SAFE_DEBUG */
2278