if_rl.c revision 152315
1/*-
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_rl.c 152315 2005-11-11 16:04:59Z ru $");
35
36/*
37 * RealTek 8129/8139 PCI NIC driver
38 *
39 * Supports several extremely cheap PCI 10/100 adapters based on
40 * the RealTek chipset. Datasheets can be obtained from
41 * www.realtek.com.tw.
42 *
43 * Written by Bill Paul <wpaul@ctr.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47/*
48 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49 * probably the worst PCI ethernet controller ever made, with the possible
50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51 * DMA, but it has a terrible interface that nullifies any performance
52 * gains that bus-master DMA usually offers.
53 *
54 * For transmission, the chip offers a series of four TX descriptor
55 * registers. Each transmit frame must be in a contiguous buffer, aligned
56 * on a longword (32-bit) boundary. This means we almost always have to
57 * do mbuf copies in order to transmit a frame, except in the unlikely
58 * case where a) the packet fits into a single mbuf, and b) the packet
59 * is 32-bit aligned within the mbuf's data area. The presence of only
60 * four descriptor registers means that we can never have more than four
61 * packets queued for transmission at any one time.
62 *
63 * Reception is not much better. The driver has to allocate a single large
64 * buffer area (up to 64K in size) into which the chip will DMA received
65 * frames. Because we don't know where within this region received packets
66 * will begin or end, we have no choice but to copy data from the buffer
67 * area into mbufs in order to pass the packets up to the higher protocol
68 * levels.
69 *
70 * It's impossible given this rotten design to really achieve decent
71 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72 * some equally overmuscled CPU to drive it.
73 *
74 * On the bright side, the 8139 does have a built-in PHY, although
75 * rather than using an MDIO serial interface like most other NICs, the
76 * PHY registers are directly accessible through the 8139's register
77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78 * filter.
79 *
80 * The 8129 chip is an older version of the 8139 that uses an external PHY
81 * chip. The 8129 has a serial MDIO interface for accessing the MII where
82 * the 8139 lets you directly access the on-board PHY registers. We need
83 * to select which interface to use depending on the chip type.
84 */
85
86#ifdef HAVE_KERNEL_OPTION_HEADERS
87#include "opt_device_polling.h"
88#endif
89
90#include <sys/param.h>
91#include <sys/endian.h>
92#include <sys/systm.h>
93#include <sys/sockio.h>
94#include <sys/mbuf.h>
95#include <sys/malloc.h>
96#include <sys/kernel.h>
97#include <sys/module.h>
98#include <sys/socket.h>
99
100#include <net/if.h>
101#include <net/if_arp.h>
102#include <net/ethernet.h>
103#include <net/if_dl.h>
104#include <net/if_media.h>
105#include <net/if_types.h>
106
107#include <net/bpf.h>
108
109#include <machine/bus.h>
110#include <machine/resource.h>
111#include <sys/bus.h>
112#include <sys/rman.h>
113
114#include <dev/mii/mii.h>
115#include <dev/mii/miivar.h>
116
117#include <dev/pci/pcireg.h>
118#include <dev/pci/pcivar.h>
119
120MODULE_DEPEND(rl, pci, 1, 1, 1);
121MODULE_DEPEND(rl, ether, 1, 1, 1);
122MODULE_DEPEND(rl, miibus, 1, 1, 1);
123
124/* "device miibus" required.  See GENERIC if you get errors here. */
125#include "miibus_if.h"
126
127/*
128 * Default to using PIO access for this driver. On SMP systems,
129 * there appear to be problems with memory mapped mode: it looks like
130 * doing too many memory mapped access back to back in rapid succession
131 * can hang the bus. I'm inclined to blame this on crummy design/construction
132 * on the part of RealTek. Memory mapped mode does appear to work on
133 * uniprocessor systems though.
134 */
135#define RL_USEIOSPACE
136
137#include <pci/if_rlreg.h>
138
139/*
140 * Various supported device vendors/types and their names.
141 */
142static struct rl_type rl_devs[] = {
143	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
144		"RealTek 8129 10/100BaseTX" },
145	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
146		"RealTek 8139 10/100BaseTX" },
147	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
148		"RealTek 8139 10/100BaseTX CardBus" },
149	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
150		"RealTek 8100 10/100BaseTX" },
151	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
152		"Accton MPX 5030/5038 10/100BaseTX" },
153	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
154		"Delta Electronics 8139 10/100BaseTX" },
155	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
156		"Addtron Technolgy 8139 10/100BaseTX" },
157	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
158		"D-Link DFE-530TX+ 10/100BaseTX" },
159	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
160		"D-Link DFE-690TXD 10/100BaseTX" },
161	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
162		"Nortel Networks 10/100BaseTX" },
163	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
164		"Corega FEther CB-TXD" },
165	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
166		"Corega FEtherII CB-TXD" },
167	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
168		"Peppercon AG ROL-F" },
169	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
170		"Planex FNW-3800-TX" },
171	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
172		"Compaq HNE-300" },
173	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
174		"LevelOne FPC-0106TX" },
175	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
176		"Edimax EP-4103DL CardBus" },
177	{ 0, 0, 0, NULL }
178};
179
180static int rl_attach(device_t);
181static int rl_detach(device_t);
182static void rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
183static void rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
184static void rl_eeprom_putbyte(struct rl_softc *, int);
185static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
186static int rl_encap(struct rl_softc *, struct mbuf * );
187static int rl_list_tx_init(struct rl_softc *);
188static int rl_ifmedia_upd(struct ifnet *);
189static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
190static int rl_ioctl(struct ifnet *, u_long, caddr_t);
191static void rl_intr(void *);
192static void rl_init(void *);
193static void rl_init_locked(struct rl_softc *sc);
194static void rl_mii_send(struct rl_softc *, uint32_t, int);
195static void rl_mii_sync(struct rl_softc *);
196static int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
197static int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
198static int rl_miibus_readreg(device_t, int, int);
199static void rl_miibus_statchg(device_t);
200static int rl_miibus_writereg(device_t, int, int, int);
201#ifdef DEVICE_POLLING
202static void rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
203static void rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
204#endif
205static int rl_probe(device_t);
206static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
207static void rl_reset(struct rl_softc *);
208static int rl_resume(device_t);
209static void rl_rxeof(struct rl_softc *);
210static void rl_setmulti(struct rl_softc *);
211static void rl_shutdown(device_t);
212static void rl_start(struct ifnet *);
213static void rl_start_locked(struct ifnet *);
214static void rl_stop(struct rl_softc *);
215static int rl_suspend(device_t);
216static void rl_tick(void *);
217static void rl_txeof(struct rl_softc *);
218static void rl_watchdog(struct ifnet *);
219
220#ifdef RL_USEIOSPACE
221#define RL_RES			SYS_RES_IOPORT
222#define RL_RID			RL_PCI_LOIO
223#else
224#define RL_RES			SYS_RES_MEMORY
225#define RL_RID			RL_PCI_LOMEM
226#endif
227
228static device_method_t rl_methods[] = {
229	/* Device interface */
230	DEVMETHOD(device_probe,		rl_probe),
231	DEVMETHOD(device_attach,	rl_attach),
232	DEVMETHOD(device_detach,	rl_detach),
233	DEVMETHOD(device_suspend,	rl_suspend),
234	DEVMETHOD(device_resume,	rl_resume),
235	DEVMETHOD(device_shutdown,	rl_shutdown),
236
237	/* bus interface */
238	DEVMETHOD(bus_print_child,	bus_generic_print_child),
239	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
240
241	/* MII interface */
242	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
243	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
244	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
245
246	{ 0, 0 }
247};
248
249static driver_t rl_driver = {
250	"rl",
251	rl_methods,
252	sizeof(struct rl_softc)
253};
254
255static devclass_t rl_devclass;
256
257DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
258DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
259DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
260
261#define EE_SET(x)					\
262	CSR_WRITE_1(sc, RL_EECMD,			\
263		CSR_READ_1(sc, RL_EECMD) | x)
264
265#define EE_CLR(x)					\
266	CSR_WRITE_1(sc, RL_EECMD,			\
267		CSR_READ_1(sc, RL_EECMD) & ~x)
268
269static void
270rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
271{
272	struct rl_softc *sc = arg;
273
274	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
275}
276
277static void
278rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
279{
280	struct rl_softc *sc = arg;
281
282	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
283}
284
285/*
286 * Send a read command and address to the EEPROM, check for ACK.
287 */
288static void
289rl_eeprom_putbyte(struct rl_softc *sc, int addr)
290{
291	register int		d, i;
292
293	d = addr | sc->rl_eecmd_read;
294
295	/*
296	 * Feed in each bit and strobe the clock.
297	 */
298	for (i = 0x400; i; i >>= 1) {
299		if (d & i) {
300			EE_SET(RL_EE_DATAIN);
301		} else {
302			EE_CLR(RL_EE_DATAIN);
303		}
304		DELAY(100);
305		EE_SET(RL_EE_CLK);
306		DELAY(150);
307		EE_CLR(RL_EE_CLK);
308		DELAY(100);
309	}
310}
311
312/*
313 * Read a word of data stored in the EEPROM at address 'addr.'
314 */
315static void
316rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
317{
318	register int		i;
319	uint16_t		word = 0;
320
321	/* Enter EEPROM access mode. */
322	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
323
324	/*
325	 * Send address of word we want to read.
326	 */
327	rl_eeprom_putbyte(sc, addr);
328
329	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
330
331	/*
332	 * Start reading bits from EEPROM.
333	 */
334	for (i = 0x8000; i; i >>= 1) {
335		EE_SET(RL_EE_CLK);
336		DELAY(100);
337		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
338			word |= i;
339		EE_CLR(RL_EE_CLK);
340		DELAY(100);
341	}
342
343	/* Turn off EEPROM access mode. */
344	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
345
346	*dest = word;
347}
348
349/*
350 * Read a sequence of words from the EEPROM.
351 */
352static void
353rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
354{
355	int			i;
356	uint16_t		word = 0, *ptr;
357
358	for (i = 0; i < cnt; i++) {
359		rl_eeprom_getword(sc, off + i, &word);
360		ptr = (uint16_t *)(dest + (i * 2));
361		if (swap)
362			*ptr = ntohs(word);
363		else
364			*ptr = word;
365	}
366}
367
368/*
369 * MII access routines are provided for the 8129, which
370 * doesn't have a built-in PHY. For the 8139, we fake things
371 * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
372 * direct access PHY registers.
373 */
374#define MII_SET(x)					\
375	CSR_WRITE_1(sc, RL_MII,				\
376		CSR_READ_1(sc, RL_MII) | (x))
377
378#define MII_CLR(x)					\
379	CSR_WRITE_1(sc, RL_MII,				\
380		CSR_READ_1(sc, RL_MII) & ~(x))
381
382/*
383 * Sync the PHYs by setting data bit and strobing the clock 32 times.
384 */
385static void
386rl_mii_sync(struct rl_softc *sc)
387{
388	register int		i;
389
390	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
391
392	for (i = 0; i < 32; i++) {
393		MII_SET(RL_MII_CLK);
394		DELAY(1);
395		MII_CLR(RL_MII_CLK);
396		DELAY(1);
397	}
398}
399
400/*
401 * Clock a series of bits through the MII.
402 */
403static void
404rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
405{
406	int			i;
407
408	MII_CLR(RL_MII_CLK);
409
410	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
411		if (bits & i) {
412			MII_SET(RL_MII_DATAOUT);
413		} else {
414			MII_CLR(RL_MII_DATAOUT);
415		}
416		DELAY(1);
417		MII_CLR(RL_MII_CLK);
418		DELAY(1);
419		MII_SET(RL_MII_CLK);
420	}
421}
422
423/*
424 * Read an PHY register through the MII.
425 */
426static int
427rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
428{
429	int			i, ack;
430
431	/* Set up frame for RX. */
432	frame->mii_stdelim = RL_MII_STARTDELIM;
433	frame->mii_opcode = RL_MII_READOP;
434	frame->mii_turnaround = 0;
435	frame->mii_data = 0;
436
437	CSR_WRITE_2(sc, RL_MII, 0);
438
439	/* Turn on data xmit. */
440	MII_SET(RL_MII_DIR);
441
442	rl_mii_sync(sc);
443
444	/* Send command/address info. */
445	rl_mii_send(sc, frame->mii_stdelim, 2);
446	rl_mii_send(sc, frame->mii_opcode, 2);
447	rl_mii_send(sc, frame->mii_phyaddr, 5);
448	rl_mii_send(sc, frame->mii_regaddr, 5);
449
450	/* Idle bit */
451	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
452	DELAY(1);
453	MII_SET(RL_MII_CLK);
454	DELAY(1);
455
456	/* Turn off xmit. */
457	MII_CLR(RL_MII_DIR);
458
459	/* Check for ack */
460	MII_CLR(RL_MII_CLK);
461	DELAY(1);
462	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
463	MII_SET(RL_MII_CLK);
464	DELAY(1);
465
466	/*
467	 * Now try reading data bits. If the ack failed, we still
468	 * need to clock through 16 cycles to keep the PHY(s) in sync.
469	 */
470	if (ack) {
471		for(i = 0; i < 16; i++) {
472			MII_CLR(RL_MII_CLK);
473			DELAY(1);
474			MII_SET(RL_MII_CLK);
475			DELAY(1);
476		}
477		goto fail;
478	}
479
480	for (i = 0x8000; i; i >>= 1) {
481		MII_CLR(RL_MII_CLK);
482		DELAY(1);
483		if (!ack) {
484			if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
485				frame->mii_data |= i;
486			DELAY(1);
487		}
488		MII_SET(RL_MII_CLK);
489		DELAY(1);
490	}
491
492fail:
493	MII_CLR(RL_MII_CLK);
494	DELAY(1);
495	MII_SET(RL_MII_CLK);
496	DELAY(1);
497
498	return (ack ? 1 : 0);
499}
500
501/*
502 * Write to a PHY register through the MII.
503 */
504static int
505rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
506{
507
508	/* Set up frame for TX. */
509	frame->mii_stdelim = RL_MII_STARTDELIM;
510	frame->mii_opcode = RL_MII_WRITEOP;
511	frame->mii_turnaround = RL_MII_TURNAROUND;
512
513	/* Turn on data output. */
514	MII_SET(RL_MII_DIR);
515
516	rl_mii_sync(sc);
517
518	rl_mii_send(sc, frame->mii_stdelim, 2);
519	rl_mii_send(sc, frame->mii_opcode, 2);
520	rl_mii_send(sc, frame->mii_phyaddr, 5);
521	rl_mii_send(sc, frame->mii_regaddr, 5);
522	rl_mii_send(sc, frame->mii_turnaround, 2);
523	rl_mii_send(sc, frame->mii_data, 16);
524
525	/* Idle bit. */
526	MII_SET(RL_MII_CLK);
527	DELAY(1);
528	MII_CLR(RL_MII_CLK);
529	DELAY(1);
530
531	/* Turn off xmit. */
532	MII_CLR(RL_MII_DIR);
533
534	return (0);
535}
536
537static int
538rl_miibus_readreg(device_t dev, int phy, int reg)
539{
540	struct rl_softc		*sc;
541	struct rl_mii_frame	frame;
542	uint16_t		rval = 0;
543	uint16_t		rl8139_reg = 0;
544
545	sc = device_get_softc(dev);
546
547	if (sc->rl_type == RL_8139) {
548		/* Pretend the internal PHY is only at address 0 */
549		if (phy) {
550			return (0);
551		}
552		switch (reg) {
553		case MII_BMCR:
554			rl8139_reg = RL_BMCR;
555			break;
556		case MII_BMSR:
557			rl8139_reg = RL_BMSR;
558			break;
559		case MII_ANAR:
560			rl8139_reg = RL_ANAR;
561			break;
562		case MII_ANER:
563			rl8139_reg = RL_ANER;
564			break;
565		case MII_ANLPAR:
566			rl8139_reg = RL_LPAR;
567			break;
568		case MII_PHYIDR1:
569		case MII_PHYIDR2:
570			return (0);
571		/*
572		 * Allow the rlphy driver to read the media status
573		 * register. If we have a link partner which does not
574		 * support NWAY, this is the register which will tell
575		 * us the results of parallel detection.
576		 */
577		case RL_MEDIASTAT:
578			rval = CSR_READ_1(sc, RL_MEDIASTAT);
579			return (rval);
580		default:
581			if_printf(sc->rl_ifp, "bad phy register\n");
582			return (0);
583		}
584		rval = CSR_READ_2(sc, rl8139_reg);
585		return (rval);
586	}
587
588	bzero((char *)&frame, sizeof(frame));
589	frame.mii_phyaddr = phy;
590	frame.mii_regaddr = reg;
591	rl_mii_readreg(sc, &frame);
592
593	return (frame.mii_data);
594}
595
596static int
597rl_miibus_writereg(device_t dev, int phy, int reg, int data)
598{
599	struct rl_softc		*sc;
600	struct rl_mii_frame	frame;
601	uint16_t		rl8139_reg = 0;
602
603	sc = device_get_softc(dev);
604
605	if (sc->rl_type == RL_8139) {
606		/* Pretend the internal PHY is only at address 0 */
607		if (phy) {
608			return (0);
609		}
610		switch (reg) {
611		case MII_BMCR:
612			rl8139_reg = RL_BMCR;
613			break;
614		case MII_BMSR:
615			rl8139_reg = RL_BMSR;
616			break;
617		case MII_ANAR:
618			rl8139_reg = RL_ANAR;
619			break;
620		case MII_ANER:
621			rl8139_reg = RL_ANER;
622			break;
623		case MII_ANLPAR:
624			rl8139_reg = RL_LPAR;
625			break;
626		case MII_PHYIDR1:
627		case MII_PHYIDR2:
628			return (0);
629			break;
630		default:
631			if_printf(sc->rl_ifp, "bad phy register\n");
632			return (0);
633		}
634		CSR_WRITE_2(sc, rl8139_reg, data);
635		return (0);
636	}
637
638	bzero((char *)&frame, sizeof(frame));
639	frame.mii_phyaddr = phy;
640	frame.mii_regaddr = reg;
641	frame.mii_data = data;
642	rl_mii_writereg(sc, &frame);
643
644	return (0);
645}
646
647static void
648rl_miibus_statchg(device_t dev)
649{
650}
651
652/*
653 * Program the 64-bit multicast hash filter.
654 */
655static void
656rl_setmulti(struct rl_softc *sc)
657{
658	struct ifnet		*ifp = sc->rl_ifp;
659	int			h = 0;
660	uint32_t		hashes[2] = { 0, 0 };
661	struct ifmultiaddr	*ifma;
662	uint32_t		rxfilt;
663	int			mcnt = 0;
664
665	RL_LOCK_ASSERT(sc);
666
667	rxfilt = CSR_READ_4(sc, RL_RXCFG);
668
669	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
670		rxfilt |= RL_RXCFG_RX_MULTI;
671		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
672		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
673		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
674		return;
675	}
676
677	/* first, zot all the existing hash bits */
678	CSR_WRITE_4(sc, RL_MAR0, 0);
679	CSR_WRITE_4(sc, RL_MAR4, 0);
680
681	/* now program new ones */
682	IF_ADDR_LOCK(ifp);
683	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
684		if (ifma->ifma_addr->sa_family != AF_LINK)
685			continue;
686		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
687		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
688		if (h < 32)
689			hashes[0] |= (1 << h);
690		else
691			hashes[1] |= (1 << (h - 32));
692		mcnt++;
693	}
694	IF_ADDR_UNLOCK(ifp);
695
696	if (mcnt)
697		rxfilt |= RL_RXCFG_RX_MULTI;
698	else
699		rxfilt &= ~RL_RXCFG_RX_MULTI;
700
701	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
702	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
703	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
704}
705
706static void
707rl_reset(struct rl_softc *sc)
708{
709	register int		i;
710
711	RL_LOCK_ASSERT(sc);
712
713	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
714
715	for (i = 0; i < RL_TIMEOUT; i++) {
716		DELAY(10);
717		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
718			break;
719	}
720	if (i == RL_TIMEOUT)
721		if_printf(sc->rl_ifp, "reset never completed!\n");
722}
723
724/*
725 * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
726 * IDs against our list and return a device name if we find a match.
727 */
728static int
729rl_probe(device_t dev)
730{
731	struct rl_softc		*sc;
732	struct rl_type		*t = rl_devs;
733	int			rid;
734	uint32_t		hwrev;
735
736	sc = device_get_softc(dev);
737
738	while (t->rl_name != NULL) {
739		if ((pci_get_vendor(dev) == t->rl_vid) &&
740		    (pci_get_device(dev) == t->rl_did)) {
741			/*
742			 * Temporarily map the I/O space
743			 * so we can read the chip ID register.
744			 */
745			rid = RL_RID;
746			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
747			    RF_ACTIVE);
748			if (sc->rl_res == NULL) {
749				device_printf(dev,
750				    "couldn't map ports/memory\n");
751				return (ENXIO);
752			}
753			sc->rl_btag = rman_get_bustag(sc->rl_res);
754			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
755
756			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
757			bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
758
759			/* Don't attach to 8139C+ or 8169/8110 chips. */
760			if (hwrev == RL_HWREV_8139CPLUS ||
761			    (hwrev == RL_HWREV_8169 &&
762			    t->rl_did == RT_DEVICEID_8169) ||
763			    hwrev == RL_HWREV_8169S ||
764			    hwrev == RL_HWREV_8110S) {
765				t++;
766				continue;
767			}
768
769			device_set_desc(dev, t->rl_name);
770			return (BUS_PROBE_DEFAULT);
771		}
772		t++;
773	}
774
775	return (ENXIO);
776}
777
778/*
779 * Attach the interface. Allocate softc structures, do ifmedia
780 * setup and ethernet/BPF attach.
781 */
782static int
783rl_attach(device_t dev)
784{
785	uint8_t			eaddr[ETHER_ADDR_LEN];
786	uint16_t		as[3];
787	struct ifnet		*ifp;
788	struct rl_softc		*sc;
789	struct rl_type		*t;
790	int			error = 0, i, rid;
791	int			unit;
792	uint16_t		rl_did = 0;
793
794	sc = device_get_softc(dev);
795	unit = device_get_unit(dev);
796
797	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
798	    MTX_DEF);
799	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
800
801	pci_enable_busmaster(dev);
802
803	/* Map control/status registers. */
804	rid = RL_RID;
805	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
806
807	if (sc->rl_res == NULL) {
808		device_printf(dev, "couldn't map ports/memory\n");
809		error = ENXIO;
810		goto fail;
811	}
812
813#ifdef notdef
814	/*
815	 * Detect the Realtek 8139B. For some reason, this chip is very
816	 * unstable when left to autoselect the media
817	 * The best workaround is to set the device to the required
818	 * media type or to set it to the 10 Meg speed.
819	 */
820	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
821		device_printf(dev,
822"Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
823#endif
824
825	sc->rl_btag = rman_get_bustag(sc->rl_res);
826	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
827
828	/* Allocate interrupt */
829	rid = 0;
830	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
831	    RF_SHAREABLE | RF_ACTIVE);
832
833	if (sc->rl_irq == NULL) {
834		device_printf(dev, "couldn't map interrupt\n");
835		error = ENXIO;
836		goto fail;
837	}
838
839	/*
840	 * Reset the adapter. Only take the lock here as it's needed in
841	 * order to call rl_reset().
842	 */
843	RL_LOCK(sc);
844	rl_reset(sc);
845	RL_UNLOCK(sc);
846
847	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
848	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
849	if (rl_did != 0x8129)
850		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
851
852	/*
853	 * Get station address from the EEPROM.
854	 */
855	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
856	for (i = 0; i < 3; i++) {
857		eaddr[(i * 2) + 0] = as[i] & 0xff;
858		eaddr[(i * 2) + 1] = as[i] >> 8;
859	}
860
861	/*
862	 * Now read the exact device type from the EEPROM to find
863	 * out if it's an 8129 or 8139.
864	 */
865	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
866
867	t = rl_devs;
868	sc->rl_type = 0;
869	while(t->rl_name != NULL) {
870		if (rl_did == t->rl_did) {
871			sc->rl_type = t->rl_basetype;
872			break;
873		}
874		t++;
875	}
876
877	if (sc->rl_type == 0) {
878		device_printf(dev, "unknown device ID: %x\n", rl_did);
879		error = ENXIO;
880		goto fail;
881	}
882
883	/*
884	 * Allocate the parent bus DMA tag appropriate for PCI.
885	 */
886#define RL_NSEG_NEW 32
887	error = bus_dma_tag_create(NULL,	/* parent */
888			1, 0,			/* alignment, boundary */
889			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
890			BUS_SPACE_MAXADDR,	/* highaddr */
891			NULL, NULL,		/* filter, filterarg */
892			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
893			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
894			BUS_DMA_ALLOCNOW,	/* flags */
895			NULL, NULL,		/* lockfunc, lockarg */
896			&sc->rl_parent_tag);
897	if (error)
898		goto fail;
899
900	/*
901	 * Now allocate a tag for the DMA descriptor lists.
902	 * All of our lists are allocated as a contiguous block
903	 * of memory.
904	 */
905	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
906			1, 0,			/* alignment, boundary */
907			BUS_SPACE_MAXADDR,	/* lowaddr */
908			BUS_SPACE_MAXADDR,	/* highaddr */
909			NULL, NULL,		/* filter, filterarg */
910			RL_RXBUFLEN + 1518, 1,	/* maxsize,nsegments */
911			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
912			BUS_DMA_ALLOCNOW,		/* flags */
913			NULL, NULL,		/* lockfunc, lockarg */
914			&sc->rl_tag);
915	if (error)
916		goto fail;
917
918	/*
919	 * Now allocate a chunk of DMA-able memory based on the
920	 * tag we just created.
921	 */
922	error = bus_dmamem_alloc(sc->rl_tag,
923	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
924	    &sc->rl_cdata.rl_rx_dmamap);
925	if (error) {
926		device_printf(dev, "no memory for list buffers!\n");
927		bus_dma_tag_destroy(sc->rl_tag);
928		sc->rl_tag = NULL;
929		goto fail;
930	}
931
932	/* Leave a few bytes before the start of the RX ring buffer. */
933	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
934	sc->rl_cdata.rl_rx_buf += sizeof(uint64_t);
935
936	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
937	if (ifp == NULL) {
938		device_printf(dev, "can not if_alloc()\n");
939		error = ENOSPC;
940		goto fail;
941	}
942
943	/* Do MII setup */
944	if (mii_phy_probe(dev, &sc->rl_miibus,
945	    rl_ifmedia_upd, rl_ifmedia_sts)) {
946		device_printf(dev, "MII without any phy!\n");
947		error = ENXIO;
948		goto fail;
949	}
950
951	ifp->if_softc = sc;
952	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
953	ifp->if_mtu = ETHERMTU;
954	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
955	ifp->if_ioctl = rl_ioctl;
956	ifp->if_start = rl_start;
957	ifp->if_watchdog = rl_watchdog;
958	ifp->if_init = rl_init;
959	ifp->if_baudrate = 10000000;
960	ifp->if_capabilities = IFCAP_VLAN_MTU;
961	ifp->if_capenable = ifp->if_capabilities;
962#ifdef DEVICE_POLLING
963	ifp->if_capabilities |= IFCAP_POLLING;
964#endif
965	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
966	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
967	IFQ_SET_READY(&ifp->if_snd);
968
969	/*
970	 * Call MI attach routine.
971	 */
972	ether_ifattach(ifp, eaddr);
973
974	/* Hook interrupt last to avoid having to lock softc */
975	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
976	    rl_intr, sc, &sc->rl_intrhand);
977	if (error) {
978		if_printf(ifp, "couldn't set up irq\n");
979		ether_ifdetach(ifp);
980	}
981
982fail:
983	if (error)
984		rl_detach(dev);
985
986	return (error);
987}
988
989/*
990 * Shutdown hardware and free up resources. This can be called any
991 * time after the mutex has been initialized. It is called in both
992 * the error case in attach and the normal detach case so it needs
993 * to be careful about only freeing resources that have actually been
994 * allocated.
995 */
996static int
997rl_detach(device_t dev)
998{
999	struct rl_softc		*sc;
1000	struct ifnet		*ifp;
1001
1002	sc = device_get_softc(dev);
1003	ifp = sc->rl_ifp;
1004
1005	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1006
1007#ifdef DEVICE_POLLING
1008	if (ifp->if_capenable & IFCAP_POLLING)
1009		ether_poll_deregister(ifp);
1010#endif
1011	/* These should only be active if attach succeeded */
1012	if (device_is_attached(dev)) {
1013		RL_LOCK(sc);
1014		rl_stop(sc);
1015		RL_UNLOCK(sc);
1016		callout_drain(&sc->rl_stat_callout);
1017		ether_ifdetach(ifp);
1018	}
1019#if 0
1020	sc->suspended = 1;
1021#endif
1022	if (sc->rl_miibus)
1023		device_delete_child(dev, sc->rl_miibus);
1024	bus_generic_detach(dev);
1025
1026	if (sc->rl_intrhand)
1027		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1028	if (sc->rl_irq)
1029		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1030	if (sc->rl_res)
1031		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1032
1033	if (ifp)
1034		if_free(ifp);
1035
1036	if (sc->rl_tag) {
1037		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1038		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
1039		    sc->rl_cdata.rl_rx_dmamap);
1040		bus_dma_tag_destroy(sc->rl_tag);
1041	}
1042	if (sc->rl_parent_tag)
1043		bus_dma_tag_destroy(sc->rl_parent_tag);
1044
1045	mtx_destroy(&sc->rl_mtx);
1046
1047	return (0);
1048}
1049
1050/*
1051 * Initialize the transmit descriptors.
1052 */
1053static int
1054rl_list_tx_init(struct rl_softc *sc)
1055{
1056	struct rl_chain_data	*cd;
1057	int			i;
1058
1059	RL_LOCK_ASSERT(sc);
1060
1061	cd = &sc->rl_cdata;
1062	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1063		cd->rl_tx_chain[i] = NULL;
1064		CSR_WRITE_4(sc,
1065		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1066	}
1067
1068	sc->rl_cdata.cur_tx = 0;
1069	sc->rl_cdata.last_tx = 0;
1070
1071	return (0);
1072}
1073
1074/*
1075 * A frame has been uploaded: pass the resulting mbuf chain up to
1076 * the higher level protocols.
1077 *
1078 * You know there's something wrong with a PCI bus-master chip design
1079 * when you have to use m_devget().
1080 *
1081 * The receive operation is badly documented in the datasheet, so I'll
1082 * attempt to document it here. The driver provides a buffer area and
1083 * places its base address in the RX buffer start address register.
1084 * The chip then begins copying frames into the RX buffer. Each frame
1085 * is preceded by a 32-bit RX status word which specifies the length
1086 * of the frame and certain other status bits. Each frame (starting with
1087 * the status word) is also 32-bit aligned. The frame length is in the
1088 * first 16 bits of the status word; the lower 15 bits correspond with
1089 * the 'rx status register' mentioned in the datasheet.
1090 *
1091 * Note: to make the Alpha happy, the frame payload needs to be aligned
1092 * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1093 * as the offset argument to m_devget().
1094 */
1095static void
1096rl_rxeof(struct rl_softc *sc)
1097{
1098	struct mbuf		*m;
1099	struct ifnet		*ifp = sc->rl_ifp;
1100	uint8_t			*rxbufpos;
1101	int			total_len = 0;
1102	int			wrap = 0;
1103	uint32_t		rxstat;
1104	uint16_t		cur_rx;
1105	uint16_t		limit;
1106	uint16_t		max_bytes, rx_bytes = 0;
1107
1108	RL_LOCK_ASSERT(sc);
1109
1110	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1111	    BUS_DMASYNC_POSTREAD);
1112
1113	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1114
1115	/* Do not try to read past this point. */
1116	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1117
1118	if (limit < cur_rx)
1119		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1120	else
1121		max_bytes = limit - cur_rx;
1122
1123	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1124#ifdef DEVICE_POLLING
1125		if (ifp->if_capenable & IFCAP_POLLING) {
1126			if (sc->rxcycles <= 0)
1127				break;
1128			sc->rxcycles--;
1129		}
1130#endif
1131		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1132		rxstat = le32toh(*(uint32_t *)rxbufpos);
1133
1134		/*
1135		 * Here's a totally undocumented fact for you. When the
1136		 * RealTek chip is in the process of copying a packet into
1137		 * RAM for you, the length will be 0xfff0. If you spot a
1138		 * packet header with this value, you need to stop. The
1139		 * datasheet makes absolutely no mention of this and
1140		 * RealTek should be shot for this.
1141		 */
1142		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1143			break;
1144
1145		if (!(rxstat & RL_RXSTAT_RXOK)) {
1146			ifp->if_ierrors++;
1147			rl_init_locked(sc);
1148			return;
1149		}
1150
1151		/* No errors; receive the packet. */
1152		total_len = rxstat >> 16;
1153		rx_bytes += total_len + 4;
1154
1155		/*
1156		 * XXX The RealTek chip includes the CRC with every
1157		 * received frame, and there's no way to turn this
1158		 * behavior off (at least, I can't find anything in
1159		 * the manual that explains how to do it) so we have
1160		 * to trim off the CRC manually.
1161		 */
1162		total_len -= ETHER_CRC_LEN;
1163
1164		/*
1165		 * Avoid trying to read more bytes than we know
1166		 * the chip has prepared for us.
1167		 */
1168		if (rx_bytes > max_bytes)
1169			break;
1170
1171		rxbufpos = sc->rl_cdata.rl_rx_buf +
1172			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1173		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1174			rxbufpos = sc->rl_cdata.rl_rx_buf;
1175
1176		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1177		if (total_len > wrap) {
1178			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1179			    NULL);
1180			if (m == NULL) {
1181				ifp->if_ierrors++;
1182			} else {
1183				m_copyback(m, wrap, total_len - wrap,
1184					sc->rl_cdata.rl_rx_buf);
1185			}
1186			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1187		} else {
1188			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1189			    NULL);
1190			if (m == NULL)
1191				ifp->if_ierrors++;
1192			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1193		}
1194
1195		/* Round up to 32-bit boundary. */
1196		cur_rx = (cur_rx + 3) & ~3;
1197		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1198
1199		if (m == NULL)
1200			continue;
1201
1202		ifp->if_ipackets++;
1203		RL_UNLOCK(sc);
1204		(*ifp->if_input)(ifp, m);
1205		RL_LOCK(sc);
1206	}
1207}
1208
1209/*
1210 * A frame was downloaded to the chip. It's safe for us to clean up
1211 * the list buffers.
1212 */
1213static void
1214rl_txeof(struct rl_softc *sc)
1215{
1216	struct ifnet		*ifp = sc->rl_ifp;
1217	uint32_t		txstat;
1218
1219	RL_LOCK_ASSERT(sc);
1220
1221	/*
1222	 * Go through our tx list and free mbufs for those
1223	 * frames that have been uploaded.
1224	 */
1225	do {
1226		if (RL_LAST_TXMBUF(sc) == NULL)
1227			break;
1228		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1229		if (!(txstat & (RL_TXSTAT_TX_OK|
1230		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1231			break;
1232
1233		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1234
1235		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1236		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1237		m_freem(RL_LAST_TXMBUF(sc));
1238		RL_LAST_TXMBUF(sc) = NULL;
1239		/*
1240		 * If there was a transmit underrun, bump the TX threshold.
1241		 * Make sure not to overflow the 63 * 32byte we can address
1242		 * with the 6 available bit.
1243		 */
1244		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1245		    (sc->rl_txthresh < 2016))
1246			sc->rl_txthresh += 32;
1247		if (txstat & RL_TXSTAT_TX_OK)
1248			ifp->if_opackets++;
1249		else {
1250			int			oldthresh;
1251			ifp->if_oerrors++;
1252			if ((txstat & RL_TXSTAT_TXABRT) ||
1253			    (txstat & RL_TXSTAT_OUTOFWIN))
1254				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1255			oldthresh = sc->rl_txthresh;
1256			/* error recovery */
1257			rl_reset(sc);
1258			rl_init_locked(sc);
1259			/* restore original threshold */
1260			sc->rl_txthresh = oldthresh;
1261			return;
1262		}
1263		RL_INC(sc->rl_cdata.last_tx);
1264		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1265	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1266
1267	if (RL_LAST_TXMBUF(sc) == NULL)
1268		ifp->if_timer = 0;
1269	else if (ifp->if_timer == 0)
1270		ifp->if_timer = 5;
1271}
1272
1273static void
1274rl_tick(void *xsc)
1275{
1276	struct rl_softc		*sc = xsc;
1277	struct mii_data		*mii;
1278
1279	RL_LOCK_ASSERT(sc);
1280	mii = device_get_softc(sc->rl_miibus);
1281	mii_tick(mii);
1282
1283	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1284}
1285
1286#ifdef DEVICE_POLLING
1287static void
1288rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1289{
1290	struct rl_softc *sc = ifp->if_softc;
1291
1292	RL_LOCK(sc);
1293	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1294		rl_poll_locked(ifp, cmd, count);
1295	RL_UNLOCK(sc);
1296}
1297
1298static void
1299rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1300{
1301	struct rl_softc *sc = ifp->if_softc;
1302
1303	RL_LOCK_ASSERT(sc);
1304
1305	sc->rxcycles = count;
1306	rl_rxeof(sc);
1307	rl_txeof(sc);
1308
1309	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1310		rl_start_locked(ifp);
1311
1312	if (cmd == POLL_AND_CHECK_STATUS) {
1313		uint16_t	status;
1314
1315		/* We should also check the status register. */
1316		status = CSR_READ_2(sc, RL_ISR);
1317		if (status == 0xffff)
1318			return;
1319		if (status != 0)
1320			CSR_WRITE_2(sc, RL_ISR, status);
1321
1322		/* XXX We should check behaviour on receiver stalls. */
1323
1324		if (status & RL_ISR_SYSTEM_ERR) {
1325			rl_reset(sc);
1326			rl_init_locked(sc);
1327		}
1328	}
1329}
1330#endif /* DEVICE_POLLING */
1331
1332static void
1333rl_intr(void *arg)
1334{
1335	struct rl_softc		*sc = arg;
1336	struct ifnet		*ifp = sc->rl_ifp;
1337	uint16_t		status;
1338
1339	RL_LOCK(sc);
1340
1341	if (sc->suspended)
1342		goto done_locked;
1343
1344#ifdef DEVICE_POLLING
1345	if  (ifp->if_capenable & IFCAP_POLLING)
1346		goto done_locked;
1347#endif
1348
1349	for (;;) {
1350		status = CSR_READ_2(sc, RL_ISR);
1351		/* If the card has gone away, the read returns 0xffff. */
1352		if (status == 0xffff)
1353			break;
1354		if (status != 0)
1355			CSR_WRITE_2(sc, RL_ISR, status);
1356		if ((status & RL_INTRS) == 0)
1357			break;
1358		if (status & RL_ISR_RX_OK)
1359			rl_rxeof(sc);
1360		if (status & RL_ISR_RX_ERR)
1361			rl_rxeof(sc);
1362		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1363			rl_txeof(sc);
1364		if (status & RL_ISR_SYSTEM_ERR) {
1365			rl_reset(sc);
1366			rl_init_locked(sc);
1367		}
1368	}
1369
1370	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1371		rl_start_locked(ifp);
1372
1373done_locked:
1374	RL_UNLOCK(sc);
1375}
1376
1377/*
1378 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1379 * pointers to the fragment pointers.
1380 */
1381static int
1382rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1383{
1384	struct mbuf		*m_new = NULL;
1385
1386	RL_LOCK_ASSERT(sc);
1387
1388	/*
1389	 * The RealTek is brain damaged and wants longword-aligned
1390	 * TX buffers, plus we can only have one fragment buffer
1391	 * per packet. We have to copy pretty much all the time.
1392	 */
1393	m_new = m_defrag(m_head, M_DONTWAIT);
1394
1395	if (m_new == NULL) {
1396		m_freem(m_head);
1397		return (1);
1398	}
1399	m_head = m_new;
1400
1401	/* Pad frames to at least 60 bytes. */
1402	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1403		/*
1404		 * Make security concious people happy: zero out the
1405		 * bytes in the pad area, since we don't know what
1406		 * this mbuf cluster buffer's previous user might
1407		 * have left in it.
1408		 */
1409		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1410		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1411		m_head->m_pkthdr.len +=
1412		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1413		m_head->m_len = m_head->m_pkthdr.len;
1414	}
1415
1416	RL_CUR_TXMBUF(sc) = m_head;
1417
1418	return (0);
1419}
1420
1421/*
1422 * Main transmit routine.
1423 */
1424static void
1425rl_start(struct ifnet *ifp)
1426{
1427	struct rl_softc		*sc = ifp->if_softc;
1428
1429	RL_LOCK(sc);
1430	rl_start_locked(ifp);
1431	RL_UNLOCK(sc);
1432}
1433
1434static void
1435rl_start_locked(struct ifnet *ifp)
1436{
1437	struct rl_softc		*sc = ifp->if_softc;
1438	struct mbuf		*m_head = NULL;
1439
1440	RL_LOCK_ASSERT(sc);
1441
1442	while (RL_CUR_TXMBUF(sc) == NULL) {
1443
1444		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1445
1446		if (m_head == NULL)
1447			break;
1448
1449		if (rl_encap(sc, m_head))
1450			break;
1451
1452		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1453		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1454
1455		/* Transmit the frame. */
1456		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1457		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1458		    mtod(RL_CUR_TXMBUF(sc), void *),
1459		    RL_CUR_TXMBUF(sc)->m_pkthdr.len, rl_dma_map_txbuf, sc, 0);
1460		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1461		    BUS_DMASYNC_PREREAD);
1462		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1463		    RL_TXTHRESH(sc->rl_txthresh) |
1464		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1465
1466		RL_INC(sc->rl_cdata.cur_tx);
1467
1468		/* Set a timeout in case the chip goes out to lunch. */
1469		ifp->if_timer = 5;
1470	}
1471
1472	/*
1473	 * We broke out of the loop because all our TX slots are
1474	 * full. Mark the NIC as busy until it drains some of the
1475	 * packets from the queue.
1476	 */
1477	if (RL_CUR_TXMBUF(sc) != NULL)
1478		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1479}
1480
1481static void
1482rl_init(void *xsc)
1483{
1484	struct rl_softc		*sc = xsc;
1485
1486	RL_LOCK(sc);
1487	rl_init_locked(sc);
1488	RL_UNLOCK(sc);
1489}
1490
1491static void
1492rl_init_locked(struct rl_softc *sc)
1493{
1494	struct ifnet		*ifp = sc->rl_ifp;
1495	struct mii_data		*mii;
1496	uint32_t		rxcfg = 0;
1497
1498	RL_LOCK_ASSERT(sc);
1499
1500	mii = device_get_softc(sc->rl_miibus);
1501
1502	/*
1503	 * Cancel pending I/O and free all RX/TX buffers.
1504	 */
1505	rl_stop(sc);
1506
1507	/*
1508	 * Init our MAC address.  Even though the chipset
1509	 * documentation doesn't mention it, we need to enter "Config
1510	 * register write enable" mode to modify the ID registers.
1511	 */
1512	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1513	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1514	    *(uint32_t *)(&IF_LLADDR(sc->rl_ifp)[0]));
1515	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1516	    *(uint32_t *)(&IF_LLADDR(sc->rl_ifp)[4]));
1517	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1518
1519	/* Init the RX buffer pointer register. */
1520	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1521	    sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf, sc, 0);
1522	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1523	    BUS_DMASYNC_PREWRITE);
1524
1525	/* Init TX descriptors. */
1526	rl_list_tx_init(sc);
1527
1528	/*
1529	 * Enable transmit and receive.
1530	 */
1531	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1532
1533	/*
1534	 * Set the initial TX and RX configuration.
1535	 */
1536	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1537	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1538
1539	/* Set the individual bit to receive frames for this host only. */
1540	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1541	rxcfg |= RL_RXCFG_RX_INDIV;
1542
1543	/* If we want promiscuous mode, set the allframes bit. */
1544	if (ifp->if_flags & IFF_PROMISC) {
1545		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1546		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1547	} else {
1548		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1549		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1550	}
1551
1552	/* Set capture broadcast bit to capture broadcast frames. */
1553	if (ifp->if_flags & IFF_BROADCAST) {
1554		rxcfg |= RL_RXCFG_RX_BROAD;
1555		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1556	} else {
1557		rxcfg &= ~RL_RXCFG_RX_BROAD;
1558		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1559	}
1560
1561	/* Program the multicast filter, if necessary. */
1562	rl_setmulti(sc);
1563
1564#ifdef DEVICE_POLLING
1565	/* Disable interrupts if we are polling. */
1566	if (ifp->if_capenable & IFCAP_POLLING)
1567		CSR_WRITE_2(sc, RL_IMR, 0);
1568	else
1569#endif
1570	/* Enable interrupts. */
1571	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1572
1573	/* Set initial TX threshold */
1574	sc->rl_txthresh = RL_TX_THRESH_INIT;
1575
1576	/* Start RX/TX process. */
1577	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1578
1579	/* Enable receiver and transmitter. */
1580	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1581
1582	mii_mediachg(mii);
1583
1584	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1585
1586	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1587	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1588
1589	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1590}
1591
1592/*
1593 * Set media options.
1594 */
1595static int
1596rl_ifmedia_upd(struct ifnet *ifp)
1597{
1598	struct rl_softc		*sc = ifp->if_softc;
1599	struct mii_data		*mii;
1600
1601	mii = device_get_softc(sc->rl_miibus);
1602
1603	RL_LOCK(sc);
1604	mii_mediachg(mii);
1605	RL_UNLOCK(sc);
1606
1607	return (0);
1608}
1609
1610/*
1611 * Report current media status.
1612 */
1613static void
1614rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1615{
1616	struct rl_softc		*sc = ifp->if_softc;
1617	struct mii_data		*mii;
1618
1619	mii = device_get_softc(sc->rl_miibus);
1620
1621	RL_LOCK(sc);
1622	mii_pollstat(mii);
1623	RL_UNLOCK(sc);
1624	ifmr->ifm_active = mii->mii_media_active;
1625	ifmr->ifm_status = mii->mii_media_status;
1626}
1627
1628static int
1629rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1630{
1631	struct ifreq		*ifr = (struct ifreq *)data;
1632	struct mii_data		*mii;
1633	struct rl_softc		*sc = ifp->if_softc;
1634	int			error = 0;
1635
1636	switch (command) {
1637	case SIOCSIFFLAGS:
1638		RL_LOCK(sc);
1639		if (ifp->if_flags & IFF_UP) {
1640			rl_init_locked(sc);
1641		} else {
1642			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1643				rl_stop(sc);
1644		}
1645		RL_UNLOCK(sc);
1646		error = 0;
1647		break;
1648	case SIOCADDMULTI:
1649	case SIOCDELMULTI:
1650		RL_LOCK(sc);
1651		rl_setmulti(sc);
1652		RL_UNLOCK(sc);
1653		error = 0;
1654		break;
1655	case SIOCGIFMEDIA:
1656	case SIOCSIFMEDIA:
1657		mii = device_get_softc(sc->rl_miibus);
1658		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1659		break;
1660	case SIOCSIFCAP:
1661#ifdef DEVICE_POLLING
1662		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1663		    !(ifp->if_capenable & IFCAP_POLLING)) {
1664			error = ether_poll_register(rl_poll, ifp);
1665			if (error)
1666				return(error);
1667			RL_LOCK(sc);
1668			/* Disable interrupts */
1669			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1670			ifp->if_capenable |= IFCAP_POLLING;
1671			RL_UNLOCK(sc);
1672			return (error);
1673
1674		}
1675		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1676		    ifp->if_capenable & IFCAP_POLLING) {
1677			error = ether_poll_deregister(ifp);
1678			/* Enable interrupts. */
1679			RL_LOCK(sc);
1680			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1681			ifp->if_capenable &= ~IFCAP_POLLING;
1682			RL_UNLOCK(sc);
1683			return (error);
1684		}
1685#endif /* DEVICE_POLLING */
1686		break;
1687	default:
1688		error = ether_ioctl(ifp, command, data);
1689		break;
1690	}
1691
1692	return (error);
1693}
1694
1695static void
1696rl_watchdog(struct ifnet *ifp)
1697{
1698	struct rl_softc		*sc = ifp->if_softc;
1699
1700	RL_LOCK(sc);
1701
1702	if_printf(ifp, "watchdog timeout\n");
1703	ifp->if_oerrors++;
1704
1705	rl_txeof(sc);
1706	rl_rxeof(sc);
1707	rl_init_locked(sc);
1708
1709	RL_UNLOCK(sc);
1710}
1711
1712/*
1713 * Stop the adapter and free any mbufs allocated to the
1714 * RX and TX lists.
1715 */
1716static void
1717rl_stop(struct rl_softc *sc)
1718{
1719	register int		i;
1720	struct ifnet		*ifp = sc->rl_ifp;
1721
1722	RL_LOCK_ASSERT(sc);
1723
1724	ifp->if_timer = 0;
1725	callout_stop(&sc->rl_stat_callout);
1726	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1727
1728	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1729	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1730	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1731
1732	/*
1733	 * Free the TX list buffers.
1734	 */
1735	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1736		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1737			bus_dmamap_unload(sc->rl_tag,
1738			    sc->rl_cdata.rl_tx_dmamap[i]);
1739			bus_dmamap_destroy(sc->rl_tag,
1740			    sc->rl_cdata.rl_tx_dmamap[i]);
1741			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1742			sc->rl_cdata.rl_tx_chain[i] = NULL;
1743			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1744			    0x0000000);
1745		}
1746	}
1747}
1748
1749/*
1750 * Device suspend routine.  Stop the interface and save some PCI
1751 * settings in case the BIOS doesn't restore them properly on
1752 * resume.
1753 */
1754static int
1755rl_suspend(device_t dev)
1756{
1757	struct rl_softc		*sc;
1758
1759	sc = device_get_softc(dev);
1760
1761	RL_LOCK(sc);
1762	rl_stop(sc);
1763	sc->suspended = 1;
1764	RL_UNLOCK(sc);
1765
1766	return (0);
1767}
1768
1769/*
1770 * Device resume routine.  Restore some PCI settings in case the BIOS
1771 * doesn't, re-enable busmastering, and restart the interface if
1772 * appropriate.
1773 */
1774static int
1775rl_resume(device_t dev)
1776{
1777	struct rl_softc		*sc;
1778	struct ifnet		*ifp;
1779
1780	sc = device_get_softc(dev);
1781	ifp = sc->rl_ifp;
1782
1783	RL_LOCK(sc);
1784
1785	/* reinitialize interface if necessary */
1786	if (ifp->if_flags & IFF_UP)
1787		rl_init_locked(sc);
1788
1789	sc->suspended = 0;
1790
1791	RL_UNLOCK(sc);
1792
1793	return (0);
1794}
1795
1796/*
1797 * Stop all chip I/O so that the kernel's probe routines don't
1798 * get confused by errant DMAs when rebooting.
1799 */
1800static void
1801rl_shutdown(device_t dev)
1802{
1803	struct rl_softc		*sc;
1804
1805	sc = device_get_softc(dev);
1806
1807	RL_LOCK(sc);
1808	rl_stop(sc);
1809	RL_UNLOCK(sc);
1810}
1811