if_rl.c revision 150789
1/*-
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_rl.c 150789 2005-10-01 18:56:19Z glebius $");
35
36/*
37 * RealTek 8129/8139 PCI NIC driver
38 *
39 * Supports several extremely cheap PCI 10/100 adapters based on
40 * the RealTek chipset. Datasheets can be obtained from
41 * www.realtek.com.tw.
42 *
43 * Written by Bill Paul <wpaul@ctr.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47/*
48 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49 * probably the worst PCI ethernet controller ever made, with the possible
50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51 * DMA, but it has a terrible interface that nullifies any performance
52 * gains that bus-master DMA usually offers.
53 *
54 * For transmission, the chip offers a series of four TX descriptor
55 * registers. Each transmit frame must be in a contiguous buffer, aligned
56 * on a longword (32-bit) boundary. This means we almost always have to
57 * do mbuf copies in order to transmit a frame, except in the unlikely
58 * case where a) the packet fits into a single mbuf, and b) the packet
59 * is 32-bit aligned within the mbuf's data area. The presence of only
60 * four descriptor registers means that we can never have more than four
61 * packets queued for transmission at any one time.
62 *
63 * Reception is not much better. The driver has to allocate a single large
64 * buffer area (up to 64K in size) into which the chip will DMA received
65 * frames. Because we don't know where within this region received packets
66 * will begin or end, we have no choice but to copy data from the buffer
67 * area into mbufs in order to pass the packets up to the higher protocol
68 * levels.
69 *
70 * It's impossible given this rotten design to really achieve decent
71 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72 * some equally overmuscled CPU to drive it.
73 *
74 * On the bright side, the 8139 does have a built-in PHY, although
75 * rather than using an MDIO serial interface like most other NICs, the
76 * PHY registers are directly accessible through the 8139's register
77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78 * filter.
79 *
80 * The 8129 chip is an older version of the 8139 that uses an external PHY
81 * chip. The 8129 has a serial MDIO interface for accessing the MII where
82 * the 8139 lets you directly access the on-board PHY registers. We need
83 * to select which interface to use depending on the chip type.
84 */
85
86#include <sys/param.h>
87#include <sys/endian.h>
88#include <sys/systm.h>
89#include <sys/sockio.h>
90#include <sys/mbuf.h>
91#include <sys/malloc.h>
92#include <sys/kernel.h>
93#include <sys/module.h>
94#include <sys/socket.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102
103#include <net/bpf.h>
104
105#include <machine/bus.h>
106#include <machine/resource.h>
107#include <sys/bus.h>
108#include <sys/rman.h>
109
110#include <dev/mii/mii.h>
111#include <dev/mii/miivar.h>
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116MODULE_DEPEND(rl, pci, 1, 1, 1);
117MODULE_DEPEND(rl, ether, 1, 1, 1);
118MODULE_DEPEND(rl, miibus, 1, 1, 1);
119
120/* "controller miibus0" required.  See GENERIC if you get errors here. */
121#include "miibus_if.h"
122
123/*
124 * Default to using PIO access for this driver. On SMP systems,
125 * there appear to be problems with memory mapped mode: it looks like
126 * doing too many memory mapped access back to back in rapid succession
127 * can hang the bus. I'm inclined to blame this on crummy design/construction
128 * on the part of RealTek. Memory mapped mode does appear to work on
129 * uniprocessor systems though.
130 */
131#define RL_USEIOSPACE
132
133#include <pci/if_rlreg.h>
134
135/*
136 * Various supported device vendors/types and their names.
137 */
138static struct rl_type rl_devs[] = {
139	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
140		"RealTek 8129 10/100BaseTX" },
141	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
142		"RealTek 8139 10/100BaseTX" },
143	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
144		"RealTek 8139 10/100BaseTX CardBus" },
145	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
146		"RealTek 8100 10/100BaseTX" },
147	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
148		"Accton MPX 5030/5038 10/100BaseTX" },
149	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
150		"Delta Electronics 8139 10/100BaseTX" },
151	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
152		"Addtron Technolgy 8139 10/100BaseTX" },
153	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
154		"D-Link DFE-530TX+ 10/100BaseTX" },
155	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
156		"D-Link DFE-690TXD 10/100BaseTX" },
157	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
158		"Nortel Networks 10/100BaseTX" },
159	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
160		"Corega FEther CB-TXD" },
161	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
162		"Corega FEtherII CB-TXD" },
163	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
164		"Peppercon AG ROL-F" },
165	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
166		"Planex FNW-3800-TX" },
167	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
168		"Compaq HNE-300" },
169	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
170		"LevelOne FPC-0106TX" },
171	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
172		"Edimax EP-4103DL CardBus" },
173	{ 0, 0, 0, NULL }
174};
175
176static int rl_attach(device_t);
177static int rl_detach(device_t);
178static void rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
179static void rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
180static void rl_eeprom_putbyte(struct rl_softc *, int);
181static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
182static int rl_encap(struct rl_softc *, struct mbuf * );
183static int rl_list_tx_init(struct rl_softc *);
184static int rl_ifmedia_upd(struct ifnet *);
185static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
186static int rl_ioctl(struct ifnet *, u_long, caddr_t);
187static void rl_intr(void *);
188static void rl_init(void *);
189static void rl_init_locked(struct rl_softc *sc);
190static void rl_mii_send(struct rl_softc *, uint32_t, int);
191static void rl_mii_sync(struct rl_softc *);
192static int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
193static int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
194static int rl_miibus_readreg(device_t, int, int);
195static void rl_miibus_statchg(device_t);
196static int rl_miibus_writereg(device_t, int, int, int);
197#ifdef DEVICE_POLLING
198static void rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
199static void rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
200#endif
201static int rl_probe(device_t);
202static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
203static void rl_reset(struct rl_softc *);
204static int rl_resume(device_t);
205static void rl_rxeof(struct rl_softc *);
206static void rl_setmulti(struct rl_softc *);
207static void rl_shutdown(device_t);
208static void rl_start(struct ifnet *);
209static void rl_start_locked(struct ifnet *);
210static void rl_stop(struct rl_softc *);
211static int rl_suspend(device_t);
212static void rl_tick(void *);
213static void rl_txeof(struct rl_softc *);
214static void rl_watchdog(struct ifnet *);
215
216#ifdef RL_USEIOSPACE
217#define RL_RES			SYS_RES_IOPORT
218#define RL_RID			RL_PCI_LOIO
219#else
220#define RL_RES			SYS_RES_MEMORY
221#define RL_RID			RL_PCI_LOMEM
222#endif
223
224static device_method_t rl_methods[] = {
225	/* Device interface */
226	DEVMETHOD(device_probe,		rl_probe),
227	DEVMETHOD(device_attach,	rl_attach),
228	DEVMETHOD(device_detach,	rl_detach),
229	DEVMETHOD(device_suspend,	rl_suspend),
230	DEVMETHOD(device_resume,	rl_resume),
231	DEVMETHOD(device_shutdown,	rl_shutdown),
232
233	/* bus interface */
234	DEVMETHOD(bus_print_child,	bus_generic_print_child),
235	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
236
237	/* MII interface */
238	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
239	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
240	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
241
242	{ 0, 0 }
243};
244
245static driver_t rl_driver = {
246	"rl",
247	rl_methods,
248	sizeof(struct rl_softc)
249};
250
251static devclass_t rl_devclass;
252
253DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
254DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
255DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
256
257#define EE_SET(x)					\
258	CSR_WRITE_1(sc, RL_EECMD,			\
259		CSR_READ_1(sc, RL_EECMD) | x)
260
261#define EE_CLR(x)					\
262	CSR_WRITE_1(sc, RL_EECMD,			\
263		CSR_READ_1(sc, RL_EECMD) & ~x)
264
265static void
266rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
267{
268	struct rl_softc *sc = arg;
269
270	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
271}
272
273static void
274rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
275{
276	struct rl_softc *sc = arg;
277
278	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
279}
280
281/*
282 * Send a read command and address to the EEPROM, check for ACK.
283 */
284static void
285rl_eeprom_putbyte(struct rl_softc *sc, int addr)
286{
287	register int		d, i;
288
289	d = addr | sc->rl_eecmd_read;
290
291	/*
292	 * Feed in each bit and strobe the clock.
293	 */
294	for (i = 0x400; i; i >>= 1) {
295		if (d & i) {
296			EE_SET(RL_EE_DATAIN);
297		} else {
298			EE_CLR(RL_EE_DATAIN);
299		}
300		DELAY(100);
301		EE_SET(RL_EE_CLK);
302		DELAY(150);
303		EE_CLR(RL_EE_CLK);
304		DELAY(100);
305	}
306}
307
308/*
309 * Read a word of data stored in the EEPROM at address 'addr.'
310 */
311static void
312rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
313{
314	register int		i;
315	uint16_t		word = 0;
316
317	/* Enter EEPROM access mode. */
318	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
319
320	/*
321	 * Send address of word we want to read.
322	 */
323	rl_eeprom_putbyte(sc, addr);
324
325	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
326
327	/*
328	 * Start reading bits from EEPROM.
329	 */
330	for (i = 0x8000; i; i >>= 1) {
331		EE_SET(RL_EE_CLK);
332		DELAY(100);
333		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
334			word |= i;
335		EE_CLR(RL_EE_CLK);
336		DELAY(100);
337	}
338
339	/* Turn off EEPROM access mode. */
340	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
341
342	*dest = word;
343}
344
345/*
346 * Read a sequence of words from the EEPROM.
347 */
348static void
349rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
350{
351	int			i;
352	uint16_t		word = 0, *ptr;
353
354	for (i = 0; i < cnt; i++) {
355		rl_eeprom_getword(sc, off + i, &word);
356		ptr = (uint16_t *)(dest + (i * 2));
357		if (swap)
358			*ptr = ntohs(word);
359		else
360			*ptr = word;
361	}
362}
363
364/*
365 * MII access routines are provided for the 8129, which
366 * doesn't have a built-in PHY. For the 8139, we fake things
367 * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
368 * direct access PHY registers.
369 */
370#define MII_SET(x)					\
371	CSR_WRITE_1(sc, RL_MII,				\
372		CSR_READ_1(sc, RL_MII) | (x))
373
374#define MII_CLR(x)					\
375	CSR_WRITE_1(sc, RL_MII,				\
376		CSR_READ_1(sc, RL_MII) & ~(x))
377
378/*
379 * Sync the PHYs by setting data bit and strobing the clock 32 times.
380 */
381static void
382rl_mii_sync(struct rl_softc *sc)
383{
384	register int		i;
385
386	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
387
388	for (i = 0; i < 32; i++) {
389		MII_SET(RL_MII_CLK);
390		DELAY(1);
391		MII_CLR(RL_MII_CLK);
392		DELAY(1);
393	}
394}
395
396/*
397 * Clock a series of bits through the MII.
398 */
399static void
400rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
401{
402	int			i;
403
404	MII_CLR(RL_MII_CLK);
405
406	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
407		if (bits & i) {
408			MII_SET(RL_MII_DATAOUT);
409		} else {
410			MII_CLR(RL_MII_DATAOUT);
411		}
412		DELAY(1);
413		MII_CLR(RL_MII_CLK);
414		DELAY(1);
415		MII_SET(RL_MII_CLK);
416	}
417}
418
419/*
420 * Read an PHY register through the MII.
421 */
422static int
423rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
424{
425	int			i, ack;
426
427	/* Set up frame for RX. */
428	frame->mii_stdelim = RL_MII_STARTDELIM;
429	frame->mii_opcode = RL_MII_READOP;
430	frame->mii_turnaround = 0;
431	frame->mii_data = 0;
432
433	CSR_WRITE_2(sc, RL_MII, 0);
434
435	/* Turn on data xmit. */
436	MII_SET(RL_MII_DIR);
437
438	rl_mii_sync(sc);
439
440	/* Send command/address info. */
441	rl_mii_send(sc, frame->mii_stdelim, 2);
442	rl_mii_send(sc, frame->mii_opcode, 2);
443	rl_mii_send(sc, frame->mii_phyaddr, 5);
444	rl_mii_send(sc, frame->mii_regaddr, 5);
445
446	/* Idle bit */
447	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
448	DELAY(1);
449	MII_SET(RL_MII_CLK);
450	DELAY(1);
451
452	/* Turn off xmit. */
453	MII_CLR(RL_MII_DIR);
454
455	/* Check for ack */
456	MII_CLR(RL_MII_CLK);
457	DELAY(1);
458	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
459	MII_SET(RL_MII_CLK);
460	DELAY(1);
461
462	/*
463	 * Now try reading data bits. If the ack failed, we still
464	 * need to clock through 16 cycles to keep the PHY(s) in sync.
465	 */
466	if (ack) {
467		for(i = 0; i < 16; i++) {
468			MII_CLR(RL_MII_CLK);
469			DELAY(1);
470			MII_SET(RL_MII_CLK);
471			DELAY(1);
472		}
473		goto fail;
474	}
475
476	for (i = 0x8000; i; i >>= 1) {
477		MII_CLR(RL_MII_CLK);
478		DELAY(1);
479		if (!ack) {
480			if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
481				frame->mii_data |= i;
482			DELAY(1);
483		}
484		MII_SET(RL_MII_CLK);
485		DELAY(1);
486	}
487
488fail:
489	MII_CLR(RL_MII_CLK);
490	DELAY(1);
491	MII_SET(RL_MII_CLK);
492	DELAY(1);
493
494	return (ack ? 1 : 0);
495}
496
497/*
498 * Write to a PHY register through the MII.
499 */
500static int
501rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
502{
503
504	/* Set up frame for TX. */
505	frame->mii_stdelim = RL_MII_STARTDELIM;
506	frame->mii_opcode = RL_MII_WRITEOP;
507	frame->mii_turnaround = RL_MII_TURNAROUND;
508
509	/* Turn on data output. */
510	MII_SET(RL_MII_DIR);
511
512	rl_mii_sync(sc);
513
514	rl_mii_send(sc, frame->mii_stdelim, 2);
515	rl_mii_send(sc, frame->mii_opcode, 2);
516	rl_mii_send(sc, frame->mii_phyaddr, 5);
517	rl_mii_send(sc, frame->mii_regaddr, 5);
518	rl_mii_send(sc, frame->mii_turnaround, 2);
519	rl_mii_send(sc, frame->mii_data, 16);
520
521	/* Idle bit. */
522	MII_SET(RL_MII_CLK);
523	DELAY(1);
524	MII_CLR(RL_MII_CLK);
525	DELAY(1);
526
527	/* Turn off xmit. */
528	MII_CLR(RL_MII_DIR);
529
530	return (0);
531}
532
533static int
534rl_miibus_readreg(device_t dev, int phy, int reg)
535{
536	struct rl_softc		*sc;
537	struct rl_mii_frame	frame;
538	uint16_t		rval = 0;
539	uint16_t		rl8139_reg = 0;
540
541	sc = device_get_softc(dev);
542
543	if (sc->rl_type == RL_8139) {
544		/* Pretend the internal PHY is only at address 0 */
545		if (phy) {
546			return (0);
547		}
548		switch (reg) {
549		case MII_BMCR:
550			rl8139_reg = RL_BMCR;
551			break;
552		case MII_BMSR:
553			rl8139_reg = RL_BMSR;
554			break;
555		case MII_ANAR:
556			rl8139_reg = RL_ANAR;
557			break;
558		case MII_ANER:
559			rl8139_reg = RL_ANER;
560			break;
561		case MII_ANLPAR:
562			rl8139_reg = RL_LPAR;
563			break;
564		case MII_PHYIDR1:
565		case MII_PHYIDR2:
566			return (0);
567		/*
568		 * Allow the rlphy driver to read the media status
569		 * register. If we have a link partner which does not
570		 * support NWAY, this is the register which will tell
571		 * us the results of parallel detection.
572		 */
573		case RL_MEDIASTAT:
574			rval = CSR_READ_1(sc, RL_MEDIASTAT);
575			return (rval);
576		default:
577			if_printf(sc->rl_ifp, "bad phy register\n");
578			return (0);
579		}
580		rval = CSR_READ_2(sc, rl8139_reg);
581		return (rval);
582	}
583
584	bzero((char *)&frame, sizeof(frame));
585	frame.mii_phyaddr = phy;
586	frame.mii_regaddr = reg;
587	rl_mii_readreg(sc, &frame);
588
589	return (frame.mii_data);
590}
591
592static int
593rl_miibus_writereg(device_t dev, int phy, int reg, int data)
594{
595	struct rl_softc		*sc;
596	struct rl_mii_frame	frame;
597	uint16_t		rl8139_reg = 0;
598
599	sc = device_get_softc(dev);
600
601	if (sc->rl_type == RL_8139) {
602		/* Pretend the internal PHY is only at address 0 */
603		if (phy) {
604			return (0);
605		}
606		switch (reg) {
607		case MII_BMCR:
608			rl8139_reg = RL_BMCR;
609			break;
610		case MII_BMSR:
611			rl8139_reg = RL_BMSR;
612			break;
613		case MII_ANAR:
614			rl8139_reg = RL_ANAR;
615			break;
616		case MII_ANER:
617			rl8139_reg = RL_ANER;
618			break;
619		case MII_ANLPAR:
620			rl8139_reg = RL_LPAR;
621			break;
622		case MII_PHYIDR1:
623		case MII_PHYIDR2:
624			return (0);
625			break;
626		default:
627			if_printf(sc->rl_ifp, "bad phy register\n");
628			return (0);
629		}
630		CSR_WRITE_2(sc, rl8139_reg, data);
631		return (0);
632	}
633
634	bzero((char *)&frame, sizeof(frame));
635	frame.mii_phyaddr = phy;
636	frame.mii_regaddr = reg;
637	frame.mii_data = data;
638	rl_mii_writereg(sc, &frame);
639
640	return (0);
641}
642
643static void
644rl_miibus_statchg(device_t dev)
645{
646}
647
648/*
649 * Program the 64-bit multicast hash filter.
650 */
651static void
652rl_setmulti(struct rl_softc *sc)
653{
654	struct ifnet		*ifp = sc->rl_ifp;
655	int			h = 0;
656	uint32_t		hashes[2] = { 0, 0 };
657	struct ifmultiaddr	*ifma;
658	uint32_t		rxfilt;
659	int			mcnt = 0;
660
661	RL_LOCK_ASSERT(sc);
662
663	rxfilt = CSR_READ_4(sc, RL_RXCFG);
664
665	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
666		rxfilt |= RL_RXCFG_RX_MULTI;
667		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
668		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
669		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
670		return;
671	}
672
673	/* first, zot all the existing hash bits */
674	CSR_WRITE_4(sc, RL_MAR0, 0);
675	CSR_WRITE_4(sc, RL_MAR4, 0);
676
677	/* now program new ones */
678	IF_ADDR_LOCK(ifp);
679	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
680		if (ifma->ifma_addr->sa_family != AF_LINK)
681			continue;
682		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
683		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
684		if (h < 32)
685			hashes[0] |= (1 << h);
686		else
687			hashes[1] |= (1 << (h - 32));
688		mcnt++;
689	}
690	IF_ADDR_UNLOCK(ifp);
691
692	if (mcnt)
693		rxfilt |= RL_RXCFG_RX_MULTI;
694	else
695		rxfilt &= ~RL_RXCFG_RX_MULTI;
696
697	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
698	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
699	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
700}
701
702static void
703rl_reset(struct rl_softc *sc)
704{
705	register int		i;
706
707	RL_LOCK_ASSERT(sc);
708
709	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
710
711	for (i = 0; i < RL_TIMEOUT; i++) {
712		DELAY(10);
713		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
714			break;
715	}
716	if (i == RL_TIMEOUT)
717		if_printf(sc->rl_ifp, "reset never completed!\n");
718}
719
720/*
721 * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
722 * IDs against our list and return a device name if we find a match.
723 */
724static int
725rl_probe(device_t dev)
726{
727	struct rl_softc		*sc;
728	struct rl_type		*t = rl_devs;
729	int			rid;
730	uint32_t		hwrev;
731
732	sc = device_get_softc(dev);
733
734	while (t->rl_name != NULL) {
735		if ((pci_get_vendor(dev) == t->rl_vid) &&
736		    (pci_get_device(dev) == t->rl_did)) {
737			/*
738			 * Temporarily map the I/O space
739			 * so we can read the chip ID register.
740			 */
741			rid = RL_RID;
742			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
743			    RF_ACTIVE);
744			if (sc->rl_res == NULL) {
745				device_printf(dev,
746				    "couldn't map ports/memory\n");
747				return (ENXIO);
748			}
749			sc->rl_btag = rman_get_bustag(sc->rl_res);
750			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
751
752			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
753			bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
754
755			/* Don't attach to 8139C+ or 8169/8110 chips. */
756			if (hwrev == RL_HWREV_8139CPLUS ||
757			    (hwrev == RL_HWREV_8169 &&
758			    t->rl_did == RT_DEVICEID_8169) ||
759			    hwrev == RL_HWREV_8169S ||
760			    hwrev == RL_HWREV_8110S) {
761				t++;
762				continue;
763			}
764
765			device_set_desc(dev, t->rl_name);
766			return (BUS_PROBE_DEFAULT);
767		}
768		t++;
769	}
770
771	return (ENXIO);
772}
773
774/*
775 * Attach the interface. Allocate softc structures, do ifmedia
776 * setup and ethernet/BPF attach.
777 */
778static int
779rl_attach(device_t dev)
780{
781	uint8_t			eaddr[ETHER_ADDR_LEN];
782	uint16_t		as[3];
783	struct ifnet		*ifp;
784	struct rl_softc		*sc;
785	struct rl_type		*t;
786	int			error = 0, i, rid;
787	int			unit;
788	uint16_t		rl_did = 0;
789
790	sc = device_get_softc(dev);
791	unit = device_get_unit(dev);
792
793	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
794	    MTX_DEF);
795	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
796
797	pci_enable_busmaster(dev);
798
799	/* Map control/status registers. */
800	rid = RL_RID;
801	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
802
803	if (sc->rl_res == NULL) {
804		device_printf(dev, "couldn't map ports/memory\n");
805		error = ENXIO;
806		goto fail;
807	}
808
809#ifdef notdef
810	/*
811	 * Detect the Realtek 8139B. For some reason, this chip is very
812	 * unstable when left to autoselect the media
813	 * The best workaround is to set the device to the required
814	 * media type or to set it to the 10 Meg speed.
815	 */
816	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
817		device_printf(dev,
818"Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
819#endif
820
821	sc->rl_btag = rman_get_bustag(sc->rl_res);
822	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
823
824	/* Allocate interrupt */
825	rid = 0;
826	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
827	    RF_SHAREABLE | RF_ACTIVE);
828
829	if (sc->rl_irq == NULL) {
830		device_printf(dev, "couldn't map interrupt\n");
831		error = ENXIO;
832		goto fail;
833	}
834
835	/*
836	 * Reset the adapter. Only take the lock here as it's needed in
837	 * order to call rl_reset().
838	 */
839	RL_LOCK(sc);
840	rl_reset(sc);
841	RL_UNLOCK(sc);
842
843	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
844	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
845	if (rl_did != 0x8129)
846		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
847
848	/*
849	 * Get station address from the EEPROM.
850	 */
851	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
852	for (i = 0; i < 3; i++) {
853		eaddr[(i * 2) + 0] = as[i] & 0xff;
854		eaddr[(i * 2) + 1] = as[i] >> 8;
855	}
856
857	/*
858	 * Now read the exact device type from the EEPROM to find
859	 * out if it's an 8129 or 8139.
860	 */
861	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
862
863	t = rl_devs;
864	sc->rl_type = 0;
865	while(t->rl_name != NULL) {
866		if (rl_did == t->rl_did) {
867			sc->rl_type = t->rl_basetype;
868			break;
869		}
870		t++;
871	}
872
873	if (sc->rl_type == 0) {
874		device_printf(dev, "unknown device ID: %x\n", rl_did);
875		error = ENXIO;
876		goto fail;
877	}
878
879	/*
880	 * Allocate the parent bus DMA tag appropriate for PCI.
881	 */
882#define RL_NSEG_NEW 32
883	error = bus_dma_tag_create(NULL,	/* parent */
884			1, 0,			/* alignment, boundary */
885			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
886			BUS_SPACE_MAXADDR,	/* highaddr */
887			NULL, NULL,		/* filter, filterarg */
888			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
889			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
890			BUS_DMA_ALLOCNOW,	/* flags */
891			NULL, NULL,		/* lockfunc, lockarg */
892			&sc->rl_parent_tag);
893	if (error)
894		goto fail;
895
896	/*
897	 * Now allocate a tag for the DMA descriptor lists.
898	 * All of our lists are allocated as a contiguous block
899	 * of memory.
900	 */
901	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
902			1, 0,			/* alignment, boundary */
903			BUS_SPACE_MAXADDR,	/* lowaddr */
904			BUS_SPACE_MAXADDR,	/* highaddr */
905			NULL, NULL,		/* filter, filterarg */
906			RL_RXBUFLEN + 1518, 1,	/* maxsize,nsegments */
907			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
908			BUS_DMA_ALLOCNOW,		/* flags */
909			NULL, NULL,		/* lockfunc, lockarg */
910			&sc->rl_tag);
911	if (error)
912		goto fail;
913
914	/*
915	 * Now allocate a chunk of DMA-able memory based on the
916	 * tag we just created.
917	 */
918	error = bus_dmamem_alloc(sc->rl_tag,
919	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
920	    &sc->rl_cdata.rl_rx_dmamap);
921	if (error) {
922		device_printf(dev, "no memory for list buffers!\n");
923		bus_dma_tag_destroy(sc->rl_tag);
924		sc->rl_tag = NULL;
925		goto fail;
926	}
927
928	/* Leave a few bytes before the start of the RX ring buffer. */
929	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
930	sc->rl_cdata.rl_rx_buf += sizeof(uint64_t);
931
932	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
933	if (ifp == NULL) {
934		device_printf(dev, "can not if_alloc()\n");
935		error = ENOSPC;
936		goto fail;
937	}
938
939	/* Do MII setup */
940	if (mii_phy_probe(dev, &sc->rl_miibus,
941	    rl_ifmedia_upd, rl_ifmedia_sts)) {
942		device_printf(dev, "MII without any phy!\n");
943		error = ENXIO;
944		goto fail;
945	}
946
947	ifp->if_softc = sc;
948	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
949	ifp->if_mtu = ETHERMTU;
950	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
951	ifp->if_ioctl = rl_ioctl;
952	ifp->if_start = rl_start;
953	ifp->if_watchdog = rl_watchdog;
954	ifp->if_init = rl_init;
955	ifp->if_baudrate = 10000000;
956	ifp->if_capabilities = IFCAP_VLAN_MTU;
957	ifp->if_capenable = ifp->if_capabilities;
958#ifdef DEVICE_POLLING
959	ifp->if_capabilities |= IFCAP_POLLING;
960#endif
961	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
962	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
963	IFQ_SET_READY(&ifp->if_snd);
964
965	/*
966	 * Call MI attach routine.
967	 */
968	ether_ifattach(ifp, eaddr);
969
970	/* Hook interrupt last to avoid having to lock softc */
971	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
972	    rl_intr, sc, &sc->rl_intrhand);
973	if (error) {
974		if_printf(ifp, "couldn't set up irq\n");
975		ether_ifdetach(ifp);
976	}
977
978fail:
979	if (error)
980		rl_detach(dev);
981
982	return (error);
983}
984
985/*
986 * Shutdown hardware and free up resources. This can be called any
987 * time after the mutex has been initialized. It is called in both
988 * the error case in attach and the normal detach case so it needs
989 * to be careful about only freeing resources that have actually been
990 * allocated.
991 */
992static int
993rl_detach(device_t dev)
994{
995	struct rl_softc		*sc;
996	struct ifnet		*ifp;
997
998	sc = device_get_softc(dev);
999	ifp = sc->rl_ifp;
1000
1001	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1002
1003#ifdef DEVICE_POLLING
1004	if (ifp->if_capenable & IFCAP_POLLING)
1005		ether_poll_deregister(ifp);
1006#endif
1007	/* These should only be active if attach succeeded */
1008	if (device_is_attached(dev)) {
1009		RL_LOCK(sc);
1010		rl_stop(sc);
1011		RL_UNLOCK(sc);
1012		callout_drain(&sc->rl_stat_callout);
1013		ether_ifdetach(ifp);
1014	}
1015#if 0
1016	sc->suspended = 1;
1017#endif
1018	if (ifp)
1019		if_free(ifp);
1020	if (sc->rl_miibus)
1021		device_delete_child(dev, sc->rl_miibus);
1022	bus_generic_detach(dev);
1023
1024	if (sc->rl_intrhand)
1025		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1026	if (sc->rl_irq)
1027		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1028	if (sc->rl_res)
1029		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1030
1031	if (sc->rl_tag) {
1032		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1033		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
1034		    sc->rl_cdata.rl_rx_dmamap);
1035		bus_dma_tag_destroy(sc->rl_tag);
1036	}
1037	if (sc->rl_parent_tag)
1038		bus_dma_tag_destroy(sc->rl_parent_tag);
1039
1040	mtx_destroy(&sc->rl_mtx);
1041
1042	return (0);
1043}
1044
1045/*
1046 * Initialize the transmit descriptors.
1047 */
1048static int
1049rl_list_tx_init(struct rl_softc *sc)
1050{
1051	struct rl_chain_data	*cd;
1052	int			i;
1053
1054	RL_LOCK_ASSERT(sc);
1055
1056	cd = &sc->rl_cdata;
1057	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1058		cd->rl_tx_chain[i] = NULL;
1059		CSR_WRITE_4(sc,
1060		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1061	}
1062
1063	sc->rl_cdata.cur_tx = 0;
1064	sc->rl_cdata.last_tx = 0;
1065
1066	return (0);
1067}
1068
1069/*
1070 * A frame has been uploaded: pass the resulting mbuf chain up to
1071 * the higher level protocols.
1072 *
1073 * You know there's something wrong with a PCI bus-master chip design
1074 * when you have to use m_devget().
1075 *
1076 * The receive operation is badly documented in the datasheet, so I'll
1077 * attempt to document it here. The driver provides a buffer area and
1078 * places its base address in the RX buffer start address register.
1079 * The chip then begins copying frames into the RX buffer. Each frame
1080 * is preceded by a 32-bit RX status word which specifies the length
1081 * of the frame and certain other status bits. Each frame (starting with
1082 * the status word) is also 32-bit aligned. The frame length is in the
1083 * first 16 bits of the status word; the lower 15 bits correspond with
1084 * the 'rx status register' mentioned in the datasheet.
1085 *
1086 * Note: to make the Alpha happy, the frame payload needs to be aligned
1087 * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1088 * as the offset argument to m_devget().
1089 */
1090static void
1091rl_rxeof(struct rl_softc *sc)
1092{
1093	struct mbuf		*m;
1094	struct ifnet		*ifp = sc->rl_ifp;
1095	uint8_t			*rxbufpos;
1096	int			total_len = 0;
1097	int			wrap = 0;
1098	uint32_t		rxstat;
1099	uint16_t		cur_rx;
1100	uint16_t		limit;
1101	uint16_t		max_bytes, rx_bytes = 0;
1102
1103	RL_LOCK_ASSERT(sc);
1104
1105	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1106	    BUS_DMASYNC_POSTREAD);
1107
1108	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1109
1110	/* Do not try to read past this point. */
1111	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1112
1113	if (limit < cur_rx)
1114		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1115	else
1116		max_bytes = limit - cur_rx;
1117
1118	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1119#ifdef DEVICE_POLLING
1120		if (ifp->if_capenable & IFCAP_POLLING) {
1121			if (sc->rxcycles <= 0)
1122				break;
1123			sc->rxcycles--;
1124		}
1125#endif
1126		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1127		rxstat = le32toh(*(uint32_t *)rxbufpos);
1128
1129		/*
1130		 * Here's a totally undocumented fact for you. When the
1131		 * RealTek chip is in the process of copying a packet into
1132		 * RAM for you, the length will be 0xfff0. If you spot a
1133		 * packet header with this value, you need to stop. The
1134		 * datasheet makes absolutely no mention of this and
1135		 * RealTek should be shot for this.
1136		 */
1137		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1138			break;
1139
1140		if (!(rxstat & RL_RXSTAT_RXOK)) {
1141			ifp->if_ierrors++;
1142			rl_init_locked(sc);
1143			return;
1144		}
1145
1146		/* No errors; receive the packet. */
1147		total_len = rxstat >> 16;
1148		rx_bytes += total_len + 4;
1149
1150		/*
1151		 * XXX The RealTek chip includes the CRC with every
1152		 * received frame, and there's no way to turn this
1153		 * behavior off (at least, I can't find anything in
1154		 * the manual that explains how to do it) so we have
1155		 * to trim off the CRC manually.
1156		 */
1157		total_len -= ETHER_CRC_LEN;
1158
1159		/*
1160		 * Avoid trying to read more bytes than we know
1161		 * the chip has prepared for us.
1162		 */
1163		if (rx_bytes > max_bytes)
1164			break;
1165
1166		rxbufpos = sc->rl_cdata.rl_rx_buf +
1167			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1168		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1169			rxbufpos = sc->rl_cdata.rl_rx_buf;
1170
1171		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1172		if (total_len > wrap) {
1173			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1174			    NULL);
1175			if (m == NULL) {
1176				ifp->if_ierrors++;
1177			} else {
1178				m_copyback(m, wrap, total_len - wrap,
1179					sc->rl_cdata.rl_rx_buf);
1180			}
1181			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1182		} else {
1183			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1184			    NULL);
1185			if (m == NULL)
1186				ifp->if_ierrors++;
1187			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1188		}
1189
1190		/* Round up to 32-bit boundary. */
1191		cur_rx = (cur_rx + 3) & ~3;
1192		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1193
1194		if (m == NULL)
1195			continue;
1196
1197		ifp->if_ipackets++;
1198		RL_UNLOCK(sc);
1199		(*ifp->if_input)(ifp, m);
1200		RL_LOCK(sc);
1201	}
1202}
1203
1204/*
1205 * A frame was downloaded to the chip. It's safe for us to clean up
1206 * the list buffers.
1207 */
1208static void
1209rl_txeof(struct rl_softc *sc)
1210{
1211	struct ifnet		*ifp = sc->rl_ifp;
1212	uint32_t		txstat;
1213
1214	RL_LOCK_ASSERT(sc);
1215
1216	/*
1217	 * Go through our tx list and free mbufs for those
1218	 * frames that have been uploaded.
1219	 */
1220	do {
1221		if (RL_LAST_TXMBUF(sc) == NULL)
1222			break;
1223		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1224		if (!(txstat & (RL_TXSTAT_TX_OK|
1225		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1226			break;
1227
1228		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1229
1230		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1231		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1232		m_freem(RL_LAST_TXMBUF(sc));
1233		RL_LAST_TXMBUF(sc) = NULL;
1234		/*
1235		 * If there was a transmit underrun, bump the TX threshold.
1236		 * Make sure not to overflow the 63 * 32byte we can address
1237		 * with the 6 available bit.
1238		 */
1239		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1240		    (sc->rl_txthresh < 2016))
1241			sc->rl_txthresh += 32;
1242		if (txstat & RL_TXSTAT_TX_OK)
1243			ifp->if_opackets++;
1244		else {
1245			int			oldthresh;
1246			ifp->if_oerrors++;
1247			if ((txstat & RL_TXSTAT_TXABRT) ||
1248			    (txstat & RL_TXSTAT_OUTOFWIN))
1249				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1250			oldthresh = sc->rl_txthresh;
1251			/* error recovery */
1252			rl_reset(sc);
1253			rl_init_locked(sc);
1254			/* restore original threshold */
1255			sc->rl_txthresh = oldthresh;
1256			return;
1257		}
1258		RL_INC(sc->rl_cdata.last_tx);
1259		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1260	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1261
1262	if (RL_LAST_TXMBUF(sc) == NULL)
1263		ifp->if_timer = 0;
1264	else if (ifp->if_timer == 0)
1265		ifp->if_timer = 5;
1266}
1267
1268static void
1269rl_tick(void *xsc)
1270{
1271	struct rl_softc		*sc = xsc;
1272	struct mii_data		*mii;
1273
1274	RL_LOCK_ASSERT(sc);
1275	mii = device_get_softc(sc->rl_miibus);
1276	mii_tick(mii);
1277
1278	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1279}
1280
1281#ifdef DEVICE_POLLING
1282static void
1283rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1284{
1285	struct rl_softc *sc = ifp->if_softc;
1286
1287	RL_LOCK(sc);
1288	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1289		rl_poll_locked(ifp, cmd, count);
1290	RL_UNLOCK(sc);
1291}
1292
1293static void
1294rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1295{
1296	struct rl_softc *sc = ifp->if_softc;
1297
1298	RL_LOCK_ASSERT(sc);
1299
1300	sc->rxcycles = count;
1301	rl_rxeof(sc);
1302	rl_txeof(sc);
1303
1304	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1305		rl_start_locked(ifp);
1306
1307	if (cmd == POLL_AND_CHECK_STATUS) {
1308		uint16_t	status;
1309
1310		/* We should also check the status register. */
1311		status = CSR_READ_2(sc, RL_ISR);
1312		if (status == 0xffff)
1313			return;
1314		if (status != 0)
1315			CSR_WRITE_2(sc, RL_ISR, status);
1316
1317		/* XXX We should check behaviour on receiver stalls. */
1318
1319		if (status & RL_ISR_SYSTEM_ERR) {
1320			rl_reset(sc);
1321			rl_init_locked(sc);
1322		}
1323	}
1324}
1325#endif /* DEVICE_POLLING */
1326
1327static void
1328rl_intr(void *arg)
1329{
1330	struct rl_softc		*sc = arg;
1331	struct ifnet		*ifp = sc->rl_ifp;
1332	uint16_t		status;
1333
1334	RL_LOCK(sc);
1335
1336	if (sc->suspended)
1337		goto done_locked;
1338
1339#ifdef DEVICE_POLLING
1340	if  (ifp->if_capenable & IFCAP_POLLING)
1341		goto done_locked;
1342#endif
1343
1344	for (;;) {
1345		status = CSR_READ_2(sc, RL_ISR);
1346		/* If the card has gone away, the read returns 0xffff. */
1347		if (status == 0xffff)
1348			break;
1349		if (status != 0)
1350			CSR_WRITE_2(sc, RL_ISR, status);
1351		if ((status & RL_INTRS) == 0)
1352			break;
1353		if (status & RL_ISR_RX_OK)
1354			rl_rxeof(sc);
1355		if (status & RL_ISR_RX_ERR)
1356			rl_rxeof(sc);
1357		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1358			rl_txeof(sc);
1359		if (status & RL_ISR_SYSTEM_ERR) {
1360			rl_reset(sc);
1361			rl_init_locked(sc);
1362		}
1363	}
1364
1365	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1366		rl_start_locked(ifp);
1367
1368done_locked:
1369	RL_UNLOCK(sc);
1370}
1371
1372/*
1373 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1374 * pointers to the fragment pointers.
1375 */
1376static int
1377rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1378{
1379	struct mbuf		*m_new = NULL;
1380
1381	RL_LOCK_ASSERT(sc);
1382
1383	/*
1384	 * The RealTek is brain damaged and wants longword-aligned
1385	 * TX buffers, plus we can only have one fragment buffer
1386	 * per packet. We have to copy pretty much all the time.
1387	 */
1388	m_new = m_defrag(m_head, M_DONTWAIT);
1389
1390	if (m_new == NULL) {
1391		m_freem(m_head);
1392		return (1);
1393	}
1394	m_head = m_new;
1395
1396	/* Pad frames to at least 60 bytes. */
1397	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1398		/*
1399		 * Make security concious people happy: zero out the
1400		 * bytes in the pad area, since we don't know what
1401		 * this mbuf cluster buffer's previous user might
1402		 * have left in it.
1403		 */
1404		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1405		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1406		m_head->m_pkthdr.len +=
1407		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1408		m_head->m_len = m_head->m_pkthdr.len;
1409	}
1410
1411	RL_CUR_TXMBUF(sc) = m_head;
1412
1413	return (0);
1414}
1415
1416/*
1417 * Main transmit routine.
1418 */
1419static void
1420rl_start(struct ifnet *ifp)
1421{
1422	struct rl_softc		*sc = ifp->if_softc;
1423
1424	RL_LOCK(sc);
1425	rl_start_locked(ifp);
1426	RL_UNLOCK(sc);
1427}
1428
1429static void
1430rl_start_locked(struct ifnet *ifp)
1431{
1432	struct rl_softc		*sc = ifp->if_softc;
1433	struct mbuf		*m_head = NULL;
1434
1435	RL_LOCK_ASSERT(sc);
1436
1437	while (RL_CUR_TXMBUF(sc) == NULL) {
1438
1439		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1440
1441		if (m_head == NULL)
1442			break;
1443
1444		if (rl_encap(sc, m_head))
1445			break;
1446
1447		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1448		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1449
1450		/* Transmit the frame. */
1451		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1452		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1453		    mtod(RL_CUR_TXMBUF(sc), void *),
1454		    RL_CUR_TXMBUF(sc)->m_pkthdr.len, rl_dma_map_txbuf, sc, 0);
1455		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1456		    BUS_DMASYNC_PREREAD);
1457		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1458		    RL_TXTHRESH(sc->rl_txthresh) |
1459		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1460
1461		RL_INC(sc->rl_cdata.cur_tx);
1462
1463		/* Set a timeout in case the chip goes out to lunch. */
1464		ifp->if_timer = 5;
1465	}
1466
1467	/*
1468	 * We broke out of the loop because all our TX slots are
1469	 * full. Mark the NIC as busy until it drains some of the
1470	 * packets from the queue.
1471	 */
1472	if (RL_CUR_TXMBUF(sc) != NULL)
1473		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1474}
1475
1476static void
1477rl_init(void *xsc)
1478{
1479	struct rl_softc		*sc = xsc;
1480
1481	RL_LOCK(sc);
1482	rl_init_locked(sc);
1483	RL_UNLOCK(sc);
1484}
1485
1486static void
1487rl_init_locked(struct rl_softc *sc)
1488{
1489	struct ifnet		*ifp = sc->rl_ifp;
1490	struct mii_data		*mii;
1491	uint32_t		rxcfg = 0;
1492
1493	RL_LOCK_ASSERT(sc);
1494
1495	mii = device_get_softc(sc->rl_miibus);
1496
1497	/*
1498	 * Cancel pending I/O and free all RX/TX buffers.
1499	 */
1500	rl_stop(sc);
1501
1502	/*
1503	 * Init our MAC address.  Even though the chipset
1504	 * documentation doesn't mention it, we need to enter "Config
1505	 * register write enable" mode to modify the ID registers.
1506	 */
1507	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1508	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1509	    *(uint32_t *)(&IFP2ENADDR(sc->rl_ifp)[0]));
1510	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1511	    *(uint32_t *)(&IFP2ENADDR(sc->rl_ifp)[4]));
1512	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1513
1514	/* Init the RX buffer pointer register. */
1515	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1516	    sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf, sc, 0);
1517	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1518	    BUS_DMASYNC_PREWRITE);
1519
1520	/* Init TX descriptors. */
1521	rl_list_tx_init(sc);
1522
1523	/*
1524	 * Enable transmit and receive.
1525	 */
1526	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1527
1528	/*
1529	 * Set the initial TX and RX configuration.
1530	 */
1531	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1532	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1533
1534	/* Set the individual bit to receive frames for this host only. */
1535	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1536	rxcfg |= RL_RXCFG_RX_INDIV;
1537
1538	/* If we want promiscuous mode, set the allframes bit. */
1539	if (ifp->if_flags & IFF_PROMISC) {
1540		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1541		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1542	} else {
1543		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1544		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1545	}
1546
1547	/* Set capture broadcast bit to capture broadcast frames. */
1548	if (ifp->if_flags & IFF_BROADCAST) {
1549		rxcfg |= RL_RXCFG_RX_BROAD;
1550		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1551	} else {
1552		rxcfg &= ~RL_RXCFG_RX_BROAD;
1553		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1554	}
1555
1556	/* Program the multicast filter, if necessary. */
1557	rl_setmulti(sc);
1558
1559#ifdef DEVICE_POLLING
1560	/* Disable interrupts if we are polling. */
1561	if (ifp->if_capenable & IFCAP_POLLING)
1562		CSR_WRITE_2(sc, RL_IMR, 0);
1563	else
1564#endif
1565	/* Enable interrupts. */
1566	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1567
1568	/* Set initial TX threshold */
1569	sc->rl_txthresh = RL_TX_THRESH_INIT;
1570
1571	/* Start RX/TX process. */
1572	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1573
1574	/* Enable receiver and transmitter. */
1575	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1576
1577	mii_mediachg(mii);
1578
1579	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1580
1581	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1582	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1583
1584	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1585}
1586
1587/*
1588 * Set media options.
1589 */
1590static int
1591rl_ifmedia_upd(struct ifnet *ifp)
1592{
1593	struct rl_softc		*sc = ifp->if_softc;
1594	struct mii_data		*mii;
1595
1596	mii = device_get_softc(sc->rl_miibus);
1597
1598	RL_LOCK(sc);
1599	mii_mediachg(mii);
1600	RL_UNLOCK(sc);
1601
1602	return (0);
1603}
1604
1605/*
1606 * Report current media status.
1607 */
1608static void
1609rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1610{
1611	struct rl_softc		*sc = ifp->if_softc;
1612	struct mii_data		*mii;
1613
1614	mii = device_get_softc(sc->rl_miibus);
1615
1616	RL_LOCK(sc);
1617	mii_pollstat(mii);
1618	RL_UNLOCK(sc);
1619	ifmr->ifm_active = mii->mii_media_active;
1620	ifmr->ifm_status = mii->mii_media_status;
1621}
1622
1623static int
1624rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1625{
1626	struct ifreq		*ifr = (struct ifreq *)data;
1627	struct mii_data		*mii;
1628	struct rl_softc		*sc = ifp->if_softc;
1629	int			error = 0;
1630
1631	switch (command) {
1632	case SIOCSIFFLAGS:
1633		RL_LOCK(sc);
1634		if (ifp->if_flags & IFF_UP) {
1635			rl_init_locked(sc);
1636		} else {
1637			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1638				rl_stop(sc);
1639		}
1640		RL_UNLOCK(sc);
1641		error = 0;
1642		break;
1643	case SIOCADDMULTI:
1644	case SIOCDELMULTI:
1645		RL_LOCK(sc);
1646		rl_setmulti(sc);
1647		RL_UNLOCK(sc);
1648		error = 0;
1649		break;
1650	case SIOCGIFMEDIA:
1651	case SIOCSIFMEDIA:
1652		mii = device_get_softc(sc->rl_miibus);
1653		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1654		break;
1655	case SIOCSIFCAP:
1656#ifdef DEVICE_POLLING
1657		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1658		    !(ifp->if_capenable & IFCAP_POLLING)) {
1659			error = ether_poll_register(rl_poll, ifp);
1660			if (error)
1661				return(error);
1662			RL_LOCK(sc);
1663			/* Disable interrupts */
1664			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1665			ifp->if_capenable |= IFCAP_POLLING;
1666			RL_UNLOCK(sc);
1667			return (error);
1668
1669		}
1670		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1671		    ifp->if_capenable & IFCAP_POLLING) {
1672			error = ether_poll_deregister(ifp);
1673			/* Enable interrupts. */
1674			RL_LOCK(sc);
1675			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1676			ifp->if_capenable &= ~IFCAP_POLLING;
1677			RL_UNLOCK(sc);
1678			return (error);
1679		}
1680#endif /* DEVICE_POLLING */
1681		break;
1682	default:
1683		error = ether_ioctl(ifp, command, data);
1684		break;
1685	}
1686
1687	return (error);
1688}
1689
1690static void
1691rl_watchdog(struct ifnet *ifp)
1692{
1693	struct rl_softc		*sc = ifp->if_softc;
1694
1695	RL_LOCK(sc);
1696
1697	if_printf(ifp, "watchdog timeout\n");
1698	ifp->if_oerrors++;
1699
1700	rl_txeof(sc);
1701	rl_rxeof(sc);
1702	rl_init_locked(sc);
1703
1704	RL_UNLOCK(sc);
1705}
1706
1707/*
1708 * Stop the adapter and free any mbufs allocated to the
1709 * RX and TX lists.
1710 */
1711static void
1712rl_stop(struct rl_softc *sc)
1713{
1714	register int		i;
1715	struct ifnet		*ifp = sc->rl_ifp;
1716
1717	RL_LOCK_ASSERT(sc);
1718
1719	ifp->if_timer = 0;
1720	callout_stop(&sc->rl_stat_callout);
1721	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1722
1723	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1724	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1725	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1726
1727	/*
1728	 * Free the TX list buffers.
1729	 */
1730	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1731		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1732			bus_dmamap_unload(sc->rl_tag,
1733			    sc->rl_cdata.rl_tx_dmamap[i]);
1734			bus_dmamap_destroy(sc->rl_tag,
1735			    sc->rl_cdata.rl_tx_dmamap[i]);
1736			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1737			sc->rl_cdata.rl_tx_chain[i] = NULL;
1738			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1739			    0x0000000);
1740		}
1741	}
1742}
1743
1744/*
1745 * Device suspend routine.  Stop the interface and save some PCI
1746 * settings in case the BIOS doesn't restore them properly on
1747 * resume.
1748 */
1749static int
1750rl_suspend(device_t dev)
1751{
1752	struct rl_softc		*sc;
1753
1754	sc = device_get_softc(dev);
1755
1756	RL_LOCK(sc);
1757	rl_stop(sc);
1758	sc->suspended = 1;
1759	RL_UNLOCK(sc);
1760
1761	return (0);
1762}
1763
1764/*
1765 * Device resume routine.  Restore some PCI settings in case the BIOS
1766 * doesn't, re-enable busmastering, and restart the interface if
1767 * appropriate.
1768 */
1769static int
1770rl_resume(device_t dev)
1771{
1772	struct rl_softc		*sc;
1773	struct ifnet		*ifp;
1774
1775	sc = device_get_softc(dev);
1776	ifp = sc->rl_ifp;
1777
1778	RL_LOCK(sc);
1779
1780	/* reinitialize interface if necessary */
1781	if (ifp->if_flags & IFF_UP)
1782		rl_init_locked(sc);
1783
1784	sc->suspended = 0;
1785
1786	RL_UNLOCK(sc);
1787
1788	return (0);
1789}
1790
1791/*
1792 * Stop all chip I/O so that the kernel's probe routines don't
1793 * get confused by errant DMAs when rebooting.
1794 */
1795static void
1796rl_shutdown(device_t dev)
1797{
1798	struct rl_softc		*sc;
1799
1800	sc = device_get_softc(dev);
1801
1802	RL_LOCK(sc);
1803	rl_stop(sc);
1804	RL_UNLOCK(sc);
1805}
1806