if_lge.c revision 95673
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * $FreeBSD: head/sys/dev/lge/if_lge.c 95673 2002-04-28 20:34:20Z phk $
34 */
35
36/*
37 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
38 * documentation not available, but ask me nicely.
39 *
40 * Written by Bill Paul <william.paul@windriver.com>
41 * Wind River Systems
42 */
43
44/*
45 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
46 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
47 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
48 * are three supported methods for data transfer between host and
49 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
50 * Propulsion Technology (tm) DMA. The latter mechanism is a form
51 * of double buffer DMA where the packet data is copied to a
52 * pre-allocated DMA buffer who's physical address has been loaded
53 * into a table at device initialization time. The rationale is that
54 * the virtual to physical address translation needed for normal
55 * scatter/gather DMA is more expensive than the data copy needed
56 * for double buffering. This may be true in Windows NT and the like,
57 * but it isn't true for us, at least on the x86 arch. This driver
58 * uses the scatter/gather I/O method for both TX and RX.
59 *
60 * The LXT1001 only supports TCP/IP checksum offload on receive.
61 * Also, the VLAN tagging is done using a 16-entry table which allows
62 * the chip to perform hardware filtering based on VLAN tags. Sadly,
63 * our vlan support doesn't currently play well with this kind of
64 * hardware support.
65 *
66 * Special thanks to:
67 * - Jeff James at Intel, for arranging to have the LXT1001 manual
68 *   released (at long last)
69 * - Beny Chen at D-Link, for actually sending it to me
70 * - Brad Short and Keith Alexis at SMC, for sending me sample
71 *   SMC9462SX and SMC9462TX adapters for testing
72 * - Paul Saab at Y!, for not killing me (though it remains to be seen
73 *   if in fact he did me much of a favor)
74 */
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/sockio.h>
79#include <sys/mbuf.h>
80#include <sys/malloc.h>
81#include <sys/kernel.h>
82#include <sys/socket.h>
83
84#include <net/if.h>
85#include <net/if_arp.h>
86#include <net/ethernet.h>
87#include <net/if_dl.h>
88#include <net/if_media.h>
89
90#include <net/bpf.h>
91
92#include <vm/vm.h>              /* for vtophys */
93#include <vm/pmap.h>            /* for vtophys */
94#include <machine/clock.h>      /* for DELAY */
95#include <machine/bus_pio.h>
96#include <machine/bus_memio.h>
97#include <machine/bus.h>
98#include <machine/resource.h>
99#include <sys/bus.h>
100#include <sys/rman.h>
101
102#include <dev/mii/mii.h>
103#include <dev/mii/miivar.h>
104
105#include <pci/pcireg.h>
106#include <pci/pcivar.h>
107
108#define LGE_USEIOSPACE
109
110#include <dev/lge/if_lgereg.h>
111
112/* "controller miibus0" required.  See GENERIC if you get errors here. */
113#include "miibus_if.h"
114
115#ifndef lint
116static const char rcsid[] =
117  "$FreeBSD: head/sys/dev/lge/if_lge.c 95673 2002-04-28 20:34:20Z phk $";
118#endif
119
120/*
121 * Various supported device vendors/types and their names.
122 */
123static struct lge_type lge_devs[] = {
124	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
125	{ 0, 0, NULL }
126};
127
128static int lge_probe		(device_t);
129static int lge_attach		(device_t);
130static int lge_detach		(device_t);
131
132static int lge_alloc_jumbo_mem	(struct lge_softc *);
133static void lge_free_jumbo_mem	(struct lge_softc *);
134static void *lge_jalloc		(struct lge_softc *);
135static void lge_jfree		(caddr_t, void *);
136
137static int lge_newbuf		(struct lge_softc *,
138					struct lge_rx_desc *,
139					struct mbuf *);
140static int lge_encap		(struct lge_softc *,
141					struct mbuf *, u_int32_t *);
142static void lge_rxeof		(struct lge_softc *, int);
143static void lge_rxeoc		(struct lge_softc *);
144static void lge_txeof		(struct lge_softc *);
145static void lge_intr		(void *);
146static void lge_tick		(void *);
147static void lge_start		(struct ifnet *);
148static int lge_ioctl		(struct ifnet *, u_long, caddr_t);
149static void lge_init		(void *);
150static void lge_stop		(struct lge_softc *);
151static void lge_watchdog		(struct ifnet *);
152static void lge_shutdown		(device_t);
153static int lge_ifmedia_upd	(struct ifnet *);
154static void lge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
155
156static void lge_eeprom_getword	(struct lge_softc *, int, u_int16_t *);
157static void lge_read_eeprom	(struct lge_softc *, caddr_t, int, int, int);
158
159static int lge_miibus_readreg	(device_t, int, int);
160static int lge_miibus_writereg	(device_t, int, int, int);
161static void lge_miibus_statchg	(device_t);
162
163static void lge_setmulti	(struct lge_softc *);
164static u_int32_t lge_crc	(struct lge_softc *, caddr_t);
165static void lge_reset		(struct lge_softc *);
166static int lge_list_rx_init	(struct lge_softc *);
167static int lge_list_tx_init	(struct lge_softc *);
168
169#ifdef LGE_USEIOSPACE
170#define LGE_RES			SYS_RES_IOPORT
171#define LGE_RID			LGE_PCI_LOIO
172#else
173#define LGE_RES			SYS_RES_MEMORY
174#define LGE_RID			LGE_PCI_LOMEM
175#endif
176
177static device_method_t lge_methods[] = {
178	/* Device interface */
179	DEVMETHOD(device_probe,		lge_probe),
180	DEVMETHOD(device_attach,	lge_attach),
181	DEVMETHOD(device_detach,	lge_detach),
182	DEVMETHOD(device_shutdown,	lge_shutdown),
183
184	/* bus interface */
185	DEVMETHOD(bus_print_child,	bus_generic_print_child),
186	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
187
188	/* MII interface */
189	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
190	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
191	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
192
193	{ 0, 0 }
194};
195
196static driver_t lge_driver = {
197	"lge",
198	lge_methods,
199	sizeof(struct lge_softc)
200};
201
202static devclass_t lge_devclass;
203
204DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
205DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
206
207#define LGE_SETBIT(sc, reg, x)				\
208	CSR_WRITE_4(sc, reg,				\
209		CSR_READ_4(sc, reg) | (x))
210
211#define LGE_CLRBIT(sc, reg, x)				\
212	CSR_WRITE_4(sc, reg,				\
213		CSR_READ_4(sc, reg) & ~(x))
214
215#define SIO_SET(x)					\
216	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
217
218#define SIO_CLR(x)					\
219	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
220
221/*
222 * Read a word of data stored in the EEPROM at address 'addr.'
223 */
224static void lge_eeprom_getword(sc, addr, dest)
225	struct lge_softc	*sc;
226	int			addr;
227	u_int16_t		*dest;
228{
229	register int		i;
230	u_int32_t		val;
231
232	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
233	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
234
235	for (i = 0; i < LGE_TIMEOUT; i++)
236		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
237			break;
238
239	if (i == LGE_TIMEOUT) {
240		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
241		return;
242	}
243
244	val = CSR_READ_4(sc, LGE_EEDATA);
245
246	if (addr & 1)
247		*dest = (val >> 16) & 0xFFFF;
248	else
249		*dest = val & 0xFFFF;
250
251	return;
252}
253
254/*
255 * Read a sequence of words from the EEPROM.
256 */
257static void lge_read_eeprom(sc, dest, off, cnt, swap)
258	struct lge_softc	*sc;
259	caddr_t			dest;
260	int			off;
261	int			cnt;
262	int			swap;
263{
264	int			i;
265	u_int16_t		word = 0, *ptr;
266
267	for (i = 0; i < cnt; i++) {
268		lge_eeprom_getword(sc, off + i, &word);
269		ptr = (u_int16_t *)(dest + (i * 2));
270		if (swap)
271			*ptr = ntohs(word);
272		else
273			*ptr = word;
274	}
275
276	return;
277}
278
279static int lge_miibus_readreg(dev, phy, reg)
280	device_t		dev;
281	int			phy, reg;
282{
283	struct lge_softc	*sc;
284	int			i;
285
286	sc = device_get_softc(dev);
287
288	/*
289	 * If we have a non-PCS PHY, pretend that the internal
290	 * autoneg stuff at PHY address 0 isn't there so that
291	 * the miibus code will find only the GMII PHY.
292	 */
293	if (sc->lge_pcs == 0 && phy == 0)
294		return(0);
295
296	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
297
298	for (i = 0; i < LGE_TIMEOUT; i++)
299		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
300			break;
301
302	if (i == LGE_TIMEOUT) {
303		printf("lge%d: PHY read timed out\n", sc->lge_unit);
304		return(0);
305	}
306
307	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
308}
309
310static int lge_miibus_writereg(dev, phy, reg, data)
311	device_t		dev;
312	int			phy, reg, data;
313{
314	struct lge_softc	*sc;
315	int			i;
316
317	sc = device_get_softc(dev);
318
319	CSR_WRITE_4(sc, LGE_GMIICTL,
320	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
321
322	for (i = 0; i < LGE_TIMEOUT; i++)
323		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
324			break;
325
326	if (i == LGE_TIMEOUT) {
327		printf("lge%d: PHY write timed out\n", sc->lge_unit);
328		return(0);
329	}
330
331	return(0);
332}
333
334static void lge_miibus_statchg(dev)
335	device_t		dev;
336{
337	struct lge_softc	*sc;
338	struct mii_data		*mii;
339
340	sc = device_get_softc(dev);
341	mii = device_get_softc(sc->lge_miibus);
342
343	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
344	switch (IFM_SUBTYPE(mii->mii_media_active)) {
345	case IFM_1000_T:
346	case IFM_1000_SX:
347		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
348		break;
349	case IFM_100_TX:
350		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
351		break;
352	case IFM_10_T:
353		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
354		break;
355	default:
356		/*
357		 * Choose something, even if it's wrong. Clearing
358		 * all the bits will hose autoneg on the internal
359		 * PHY.
360		 */
361		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
362		break;
363	}
364
365	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
366		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
367	} else {
368		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
369	}
370
371	return;
372}
373
374static u_int32_t lge_crc(sc, addr)
375	struct lge_softc	*sc;
376	caddr_t			addr;
377{
378	u_int32_t		crc, carry;
379	int			i, j;
380	u_int8_t		c;
381
382	/* Compute CRC for the address value. */
383	crc = 0xFFFFFFFF; /* initial value */
384
385	for (i = 0; i < 6; i++) {
386		c = *(addr + i);
387		for (j = 0; j < 8; j++) {
388			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
389			crc <<= 1;
390			c >>= 1;
391			if (carry)
392				crc = (crc ^ 0x04c11db6) | carry;
393		}
394	}
395
396	/*
397	 * return the filter bit position
398	 */
399	return((crc >> 26) & 0x0000003F);
400}
401
402static void lge_setmulti(sc)
403	struct lge_softc	*sc;
404{
405	struct ifnet		*ifp;
406	struct ifmultiaddr	*ifma;
407	u_int32_t		h = 0, hashes[2] = { 0, 0 };
408
409	ifp = &sc->arpcom.ac_if;
410
411	/* Make sure multicast hash table is enabled. */
412	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
413
414	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
415		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
416		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
417		return;
418	}
419
420	/* first, zot all the existing hash bits */
421	CSR_WRITE_4(sc, LGE_MAR0, 0);
422	CSR_WRITE_4(sc, LGE_MAR1, 0);
423
424	/* now program new ones */
425	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
426		if (ifma->ifma_addr->sa_family != AF_LINK)
427			continue;
428		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
429		if (h < 32)
430			hashes[0] |= (1 << h);
431		else
432			hashes[1] |= (1 << (h - 32));
433	}
434
435	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
436	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
437
438	return;
439}
440
441static void lge_reset(sc)
442	struct lge_softc	*sc;
443{
444	register int		i;
445
446	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
447
448	for (i = 0; i < LGE_TIMEOUT; i++) {
449		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
450			break;
451	}
452
453	if (i == LGE_TIMEOUT)
454		printf("lge%d: reset never completed\n", sc->lge_unit);
455
456	/* Wait a little while for the chip to get its brains in order. */
457	DELAY(1000);
458
459        return;
460}
461
462/*
463 * Probe for a Level 1 chip. Check the PCI vendor and device
464 * IDs against our list and return a device name if we find a match.
465 */
466static int lge_probe(dev)
467	device_t		dev;
468{
469	struct lge_type		*t;
470
471	t = lge_devs;
472
473	while(t->lge_name != NULL) {
474		if ((pci_get_vendor(dev) == t->lge_vid) &&
475		    (pci_get_device(dev) == t->lge_did)) {
476			device_set_desc(dev, t->lge_name);
477			return(0);
478		}
479		t++;
480	}
481
482	return(ENXIO);
483}
484
485/*
486 * Attach the interface. Allocate softc structures, do ifmedia
487 * setup and ethernet/BPF attach.
488 */
489static int lge_attach(dev)
490	device_t		dev;
491{
492	int			s;
493	u_char			eaddr[ETHER_ADDR_LEN];
494	u_int32_t		command;
495	struct lge_softc	*sc;
496	struct ifnet		*ifp;
497	int			unit, error = 0, rid;
498
499	s = splimp();
500
501	sc = device_get_softc(dev);
502	unit = device_get_unit(dev);
503	bzero(sc, sizeof(struct lge_softc));
504
505	/*
506	 * Handle power management nonsense.
507	 */
508	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
509		u_int32_t		iobase, membase, irq;
510
511		/* Save important PCI config data. */
512		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
513		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
514		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
515
516		/* Reset the power state. */
517		printf("lge%d: chip is in D%d power mode "
518		    "-- setting to D0\n", unit,
519		    pci_get_powerstate(dev));
520		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
521
522		/* Restore PCI config data. */
523		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
524		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
525		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
526	}
527
528	/*
529	 * Map control/status registers.
530	 */
531	pci_enable_busmaster(dev);
532	pci_enable_io(dev, SYS_RES_IOPORT);
533	pci_enable_io(dev, SYS_RES_MEMORY);
534	command = pci_read_config(dev, PCIR_COMMAND, 4);
535
536#ifdef LGE_USEIOSPACE
537	if (!(command & PCIM_CMD_PORTEN)) {
538		printf("lge%d: failed to enable I/O ports!\n", unit);
539		error = ENXIO;;
540		goto fail;
541	}
542#else
543	if (!(command & PCIM_CMD_MEMEN)) {
544		printf("lge%d: failed to enable memory mapping!\n", unit);
545		error = ENXIO;;
546		goto fail;
547	}
548#endif
549
550	rid = LGE_RID;
551	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
552	    0, ~0, 1, RF_ACTIVE);
553
554	if (sc->lge_res == NULL) {
555		printf("lge%d: couldn't map ports/memory\n", unit);
556		error = ENXIO;
557		goto fail;
558	}
559
560	sc->lge_btag = rman_get_bustag(sc->lge_res);
561	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
562
563	/* Allocate interrupt */
564	rid = 0;
565	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
566	    RF_SHAREABLE | RF_ACTIVE);
567
568	if (sc->lge_irq == NULL) {
569		printf("lge%d: couldn't map interrupt\n", unit);
570		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
571		error = ENXIO;
572		goto fail;
573	}
574
575	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
576	    lge_intr, sc, &sc->lge_intrhand);
577
578	if (error) {
579		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
580		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
581		printf("lge%d: couldn't set up irq\n", unit);
582		goto fail;
583	}
584
585	/* Reset the adapter. */
586	lge_reset(sc);
587
588	/*
589	 * Get station address from the EEPROM.
590	 */
591	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
592	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
593	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
594
595	/*
596	 * A Level 1 chip was detected. Inform the world.
597	 */
598	printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":");
599
600	sc->lge_unit = unit;
601	callout_handle_init(&sc->lge_stat_ch);
602	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
603
604	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
605	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606
607	if (sc->lge_ldata == NULL) {
608		printf("lge%d: no memory for list buffers!\n", unit);
609		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
610		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
611		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
612		error = ENXIO;
613		goto fail;
614	}
615	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
616
617	/* Try to allocate memory for jumbo buffers. */
618	if (lge_alloc_jumbo_mem(sc)) {
619		printf("lge%d: jumbo buffer allocation failed\n",
620                    sc->lge_unit);
621		contigfree(sc->lge_ldata,
622		    sizeof(struct lge_list_data), M_DEVBUF);
623		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
624		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
625		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
626		error = ENXIO;
627		goto fail;
628	}
629
630	ifp = &sc->arpcom.ac_if;
631	ifp->if_softc = sc;
632	ifp->if_unit = unit;
633	ifp->if_name = "lge";
634	ifp->if_mtu = ETHERMTU;
635	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636	ifp->if_ioctl = lge_ioctl;
637	ifp->if_output = ether_output;
638	ifp->if_start = lge_start;
639	ifp->if_watchdog = lge_watchdog;
640	ifp->if_init = lge_init;
641	ifp->if_baudrate = 1000000000;
642	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
643	ifp->if_capabilities = IFCAP_RXCSUM;
644	ifp->if_capenable = ifp->if_capabilities;
645
646	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
647		sc->lge_pcs = 1;
648	else
649		sc->lge_pcs = 0;
650
651	/*
652	 * Do MII setup.
653	 */
654	if (mii_phy_probe(dev, &sc->lge_miibus,
655	    lge_ifmedia_upd, lge_ifmedia_sts)) {
656		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
657		contigfree(sc->lge_ldata,
658		    sizeof(struct lge_list_data), M_DEVBUF);
659		lge_free_jumbo_mem(sc);
660		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
661		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
662		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
663		error = ENXIO;
664		goto fail;
665	}
666
667	/*
668	 * Call MI attach routine.
669	 */
670	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
671	callout_handle_init(&sc->lge_stat_ch);
672
673fail:
674	splx(s);
675	return(error);
676}
677
678static int lge_detach(dev)
679	device_t		dev;
680{
681	struct lge_softc	*sc;
682	struct ifnet		*ifp;
683	int			s;
684
685	s = splimp();
686
687	sc = device_get_softc(dev);
688	ifp = &sc->arpcom.ac_if;
689
690	lge_reset(sc);
691	lge_stop(sc);
692	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
693
694	bus_generic_detach(dev);
695	device_delete_child(dev, sc->lge_miibus);
696
697	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
698	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
699	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
700
701	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
702	lge_free_jumbo_mem(sc);
703
704	splx(s);
705
706	return(0);
707}
708
709/*
710 * Initialize the transmit descriptors.
711 */
712static int lge_list_tx_init(sc)
713	struct lge_softc	*sc;
714{
715	struct lge_list_data	*ld;
716	struct lge_ring_data	*cd;
717	int			i;
718
719	cd = &sc->lge_cdata;
720	ld = sc->lge_ldata;
721	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
722		ld->lge_tx_list[i].lge_mbuf = NULL;
723		ld->lge_tx_list[i].lge_ctl = 0;
724	}
725
726	cd->lge_tx_prod = cd->lge_tx_cons = 0;
727
728	return(0);
729}
730
731
732/*
733 * Initialize the RX descriptors and allocate mbufs for them. Note that
734 * we arralge the descriptors in a closed ring, so that the last descriptor
735 * points back to the first.
736 */
737static int lge_list_rx_init(sc)
738	struct lge_softc	*sc;
739{
740	struct lge_list_data	*ld;
741	struct lge_ring_data	*cd;
742	int			i;
743
744	ld = sc->lge_ldata;
745	cd = &sc->lge_cdata;
746
747	cd->lge_rx_prod = cd->lge_rx_cons = 0;
748
749	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
750
751	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
752		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
753			break;
754		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
755			return(ENOBUFS);
756	}
757
758	/* Clear possible 'rx command queue empty' interrupt. */
759	CSR_READ_4(sc, LGE_ISR);
760
761	return(0);
762}
763
764/*
765 * Initialize an RX descriptor and attach an MBUF cluster.
766 */
767static int lge_newbuf(sc, c, m)
768	struct lge_softc	*sc;
769	struct lge_rx_desc	*c;
770	struct mbuf		*m;
771{
772	struct mbuf		*m_new = NULL;
773	caddr_t			*buf = NULL;
774
775	if (m == NULL) {
776		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
777		if (m_new == NULL) {
778			printf("lge%d: no memory for rx list "
779			    "-- packet dropped!\n", sc->lge_unit);
780			return(ENOBUFS);
781		}
782
783		/* Allocate the jumbo buffer */
784		buf = lge_jalloc(sc);
785		if (buf == NULL) {
786#ifdef LGE_VERBOSE
787			printf("lge%d: jumbo allocation failed "
788			    "-- packet dropped!\n", sc->lge_unit);
789#endif
790			m_freem(m_new);
791			return(ENOBUFS);
792		}
793		/* Attach the buffer to the mbuf */
794		m_new->m_data = (void *)buf;
795		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
796		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
797		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
798	} else {
799		m_new = m;
800		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
801		m_new->m_data = m_new->m_ext.ext_buf;
802	}
803
804	/*
805	 * Adjust alignment so packet payload begins on a
806	 * longword boundary. Mandatory for Alpha, useful on
807	 * x86 too.
808	*/
809	m_adj(m_new, ETHER_ALIGN);
810
811	c->lge_mbuf = m_new;
812	c->lge_fragptr_hi = 0;
813	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
814	c->lge_fraglen = m_new->m_len;
815	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
816	c->lge_sts = 0;
817
818	/*
819	 * Put this buffer in the RX command FIFO. To do this,
820	 * we just write the physical address of the descriptor
821	 * into the RX descriptor address registers. Note that
822	 * there are two registers, one high DWORD and one low
823	 * DWORD, which lets us specify a 64-bit address if
824	 * desired. We only use a 32-bit address for now.
825	 * Writing to the low DWORD register is what actually
826	 * causes the command to be issued, so we do that
827	 * last.
828	 */
829	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
830	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
831
832	return(0);
833}
834
835static int lge_alloc_jumbo_mem(sc)
836	struct lge_softc	*sc;
837{
838	caddr_t			ptr;
839	register int		i;
840	struct lge_jpool_entry   *entry;
841
842	/* Grab a big chunk o' storage. */
843	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
844	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
845
846	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
847		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
848		return(ENOBUFS);
849	}
850
851	SLIST_INIT(&sc->lge_jfree_listhead);
852	SLIST_INIT(&sc->lge_jinuse_listhead);
853
854	/*
855	 * Now divide it up into 9K pieces and save the addresses
856	 * in an array.
857	 */
858	ptr = sc->lge_cdata.lge_jumbo_buf;
859	for (i = 0; i < LGE_JSLOTS; i++) {
860		sc->lge_cdata.lge_jslots[i] = ptr;
861		ptr += LGE_JLEN;
862		entry = malloc(sizeof(struct lge_jpool_entry),
863		    M_DEVBUF, M_NOWAIT);
864		if (entry == NULL) {
865			printf("lge%d: no memory for jumbo "
866			    "buffer queue!\n", sc->lge_unit);
867			return(ENOBUFS);
868		}
869		entry->slot = i;
870		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
871		    entry, jpool_entries);
872	}
873
874	return(0);
875}
876
877static void lge_free_jumbo_mem(sc)
878	struct lge_softc	*sc;
879{
880	int			i;
881	struct lge_jpool_entry	*entry;
882
883	for (i = 0; i < LGE_JSLOTS; i++) {
884		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
885		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
886		free(entry, M_DEVBUF);
887	}
888
889	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
890
891	return;
892}
893
894/*
895 * Allocate a jumbo buffer.
896 */
897static void *lge_jalloc(sc)
898	struct lge_softc	*sc;
899{
900	struct lge_jpool_entry   *entry;
901
902	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
903
904	if (entry == NULL) {
905#ifdef LGE_VERBOSE
906		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
907#endif
908		return(NULL);
909	}
910
911	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
912	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
913	return(sc->lge_cdata.lge_jslots[entry->slot]);
914}
915
916/*
917 * Release a jumbo buffer.
918 */
919static void lge_jfree(buf, args)
920	caddr_t			buf;
921	void			*args;
922{
923	struct lge_softc	*sc;
924	int		        i;
925	struct lge_jpool_entry   *entry;
926
927	/* Extract the softc struct pointer. */
928	sc = args;
929
930	if (sc == NULL)
931		panic("lge_jfree: can't find softc pointer!");
932
933	/* calculate the slot this buffer belongs to */
934	i = ((vm_offset_t)buf
935	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
936
937	if ((i < 0) || (i >= LGE_JSLOTS))
938		panic("lge_jfree: asked to free buffer that we don't manage!");
939
940	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
941	if (entry == NULL)
942		panic("lge_jfree: buffer not in use!");
943	entry->slot = i;
944	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
945	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
946
947	return;
948}
949
950/*
951 * A frame has been uploaded: pass the resulting mbuf chain up to
952 * the higher level protocols.
953 */
954static void lge_rxeof(sc, cnt)
955	struct lge_softc	*sc;
956	int			cnt;
957{
958        struct ether_header	*eh;
959        struct mbuf		*m;
960        struct ifnet		*ifp;
961	struct lge_rx_desc	*cur_rx;
962	int			c, i, total_len = 0;
963	u_int32_t		rxsts, rxctl;
964
965	ifp = &sc->arpcom.ac_if;
966
967	/* Find out how many frames were processed. */
968	c = cnt;
969	i = sc->lge_cdata.lge_rx_cons;
970
971	/* Suck them in. */
972	while(c) {
973		struct mbuf		*m0 = NULL;
974
975		cur_rx = &sc->lge_ldata->lge_rx_list[i];
976		rxctl = cur_rx->lge_ctl;
977		rxsts = cur_rx->lge_sts;
978		m = cur_rx->lge_mbuf;
979		cur_rx->lge_mbuf = NULL;
980		total_len = LGE_RXBYTES(cur_rx);
981		LGE_INC(i, LGE_RX_LIST_CNT);
982		c--;
983
984		/*
985		 * If an error occurs, update stats, clear the
986		 * status word and leave the mbuf cluster in place:
987		 * it should simply get re-used next time this descriptor
988	 	 * comes up in the ring.
989		 */
990		if (rxctl & LGE_RXCTL_ERRMASK) {
991			ifp->if_ierrors++;
992			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
993			continue;
994		}
995
996		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
997			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
998			    ifp, NULL);
999			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1000			if (m0 == NULL) {
1001				printf("lge%d: no receive buffers "
1002				    "available -- packet dropped!\n",
1003				    sc->lge_unit);
1004				ifp->if_ierrors++;
1005				continue;
1006			}
1007			m = m0;
1008		} else {
1009			m->m_pkthdr.rcvif = ifp;
1010			m->m_pkthdr.len = m->m_len = total_len;
1011		}
1012
1013		ifp->if_ipackets++;
1014		eh = mtod(m, struct ether_header *);
1015
1016		/* Remove header from mbuf and pass it on. */
1017		m_adj(m, sizeof(struct ether_header));
1018
1019		/* Do IP checksum checking. */
1020		if (rxsts & LGE_RXSTS_ISIP)
1021			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1022		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1023			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1024		if ((rxsts & LGE_RXSTS_ISTCP &&
1025		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1026		    (rxsts & LGE_RXSTS_ISUDP &&
1027		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1028			m->m_pkthdr.csum_flags |=
1029			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1030			m->m_pkthdr.csum_data = 0xffff;
1031		}
1032
1033		ether_input(ifp, eh, m);
1034	}
1035
1036	sc->lge_cdata.lge_rx_cons = i;
1037
1038	return;
1039}
1040
1041void lge_rxeoc(sc)
1042	struct lge_softc	*sc;
1043{
1044	struct ifnet		*ifp;
1045
1046	ifp = &sc->arpcom.ac_if;
1047	ifp->if_flags &= ~IFF_RUNNING;
1048	lge_init(sc);
1049	return;
1050}
1051
1052/*
1053 * A frame was downloaded to the chip. It's safe for us to clean up
1054 * the list buffers.
1055 */
1056
1057static void lge_txeof(sc)
1058	struct lge_softc	*sc;
1059{
1060	struct lge_tx_desc	*cur_tx = NULL;
1061	struct ifnet		*ifp;
1062	u_int32_t		idx, txdone;
1063
1064	ifp = &sc->arpcom.ac_if;
1065
1066	/* Clear the timeout timer. */
1067	ifp->if_timer = 0;
1068
1069	/*
1070	 * Go through our tx list and free mbufs for those
1071	 * frames that have been transmitted.
1072	 */
1073	idx = sc->lge_cdata.lge_tx_cons;
1074	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1075
1076	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1077		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1078
1079		ifp->if_opackets++;
1080		if (cur_tx->lge_mbuf != NULL) {
1081			m_freem(cur_tx->lge_mbuf);
1082			cur_tx->lge_mbuf = NULL;
1083		}
1084		cur_tx->lge_ctl = 0;
1085
1086		txdone--;
1087		LGE_INC(idx, LGE_TX_LIST_CNT);
1088		ifp->if_timer = 0;
1089	}
1090
1091	sc->lge_cdata.lge_tx_cons = idx;
1092
1093	if (cur_tx != NULL)
1094		ifp->if_flags &= ~IFF_OACTIVE;
1095
1096	return;
1097}
1098
1099static void lge_tick(xsc)
1100	void			*xsc;
1101{
1102	struct lge_softc	*sc;
1103	struct mii_data		*mii;
1104	struct ifnet		*ifp;
1105	int			s;
1106
1107	s = splimp();
1108
1109	sc = xsc;
1110	ifp = &sc->arpcom.ac_if;
1111
1112	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1113	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1114	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1115	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1116
1117	if (!sc->lge_link) {
1118		mii = device_get_softc(sc->lge_miibus);
1119		mii_tick(mii);
1120		if (mii->mii_media_status & IFM_ACTIVE &&
1121		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1122			sc->lge_link++;
1123			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1124			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1125				printf("lge%d: gigabit link up\n",
1126				    sc->lge_unit);
1127			if (ifp->if_snd.ifq_head != NULL)
1128				lge_start(ifp);
1129		}
1130	}
1131
1132	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1133
1134	splx(s);
1135
1136	return;
1137}
1138
1139static void lge_intr(arg)
1140	void			*arg;
1141{
1142	struct lge_softc	*sc;
1143	struct ifnet		*ifp;
1144	u_int32_t		status;
1145
1146	sc = arg;
1147	ifp = &sc->arpcom.ac_if;
1148
1149	/* Supress unwanted interrupts */
1150	if (!(ifp->if_flags & IFF_UP)) {
1151		lge_stop(sc);
1152		return;
1153	}
1154
1155	for (;;) {
1156		/*
1157		 * Reading the ISR register clears all interrupts, and
1158		 * clears the 'interrupts enabled' bit in the IMR
1159		 * register.
1160		 */
1161		status = CSR_READ_4(sc, LGE_ISR);
1162
1163		if ((status & LGE_INTRS) == 0)
1164			break;
1165
1166		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1167			lge_txeof(sc);
1168
1169		if (status & LGE_ISR_RXDMA_DONE)
1170			lge_rxeof(sc, LGE_RX_DMACNT(status));
1171
1172		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1173			lge_rxeoc(sc);
1174
1175		if (status & LGE_ISR_PHY_INTR) {
1176			sc->lge_link = 0;
1177			untimeout(lge_tick, sc, sc->lge_stat_ch);
1178			lge_tick(sc);
1179		}
1180	}
1181
1182	/* Re-enable interrupts. */
1183	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1184
1185	if (ifp->if_snd.ifq_head != NULL)
1186		lge_start(ifp);
1187
1188	return;
1189}
1190
1191/*
1192 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1193 * pointers to the fragment pointers.
1194 */
1195static int lge_encap(sc, m_head, txidx)
1196	struct lge_softc	*sc;
1197	struct mbuf		*m_head;
1198	u_int32_t		*txidx;
1199{
1200	struct lge_frag		*f = NULL;
1201	struct lge_tx_desc	*cur_tx;
1202	struct mbuf		*m;
1203	int			frag = 0, tot_len = 0;
1204
1205	/*
1206 	 * Start packing the mbufs in this chain into
1207	 * the fragment pointers. Stop when we run out
1208 	 * of fragments or hit the end of the mbuf chain.
1209	 */
1210	m = m_head;
1211	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1212	frag = 0;
1213
1214	for (m = m_head; m != NULL; m = m->m_next) {
1215		if (m->m_len != 0) {
1216			tot_len += m->m_len;
1217			f = &cur_tx->lge_frags[frag];
1218			f->lge_fraglen = m->m_len;
1219			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1220			f->lge_fragptr_hi = 0;
1221			frag++;
1222		}
1223	}
1224
1225	if (m != NULL)
1226		return(ENOBUFS);
1227
1228	cur_tx->lge_mbuf = m_head;
1229	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1230	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1231
1232	/* Queue for transmit */
1233	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1234
1235	return(0);
1236}
1237
1238/*
1239 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1240 * to the mbuf data regions directly in the transmit lists. We also save a
1241 * copy of the pointers since the transmit list fragment pointers are
1242 * physical addresses.
1243 */
1244
1245static void lge_start(ifp)
1246	struct ifnet		*ifp;
1247{
1248	struct lge_softc	*sc;
1249	struct mbuf		*m_head = NULL;
1250	u_int32_t		idx;
1251
1252	sc = ifp->if_softc;
1253
1254	if (!sc->lge_link)
1255		return;
1256
1257	idx = sc->lge_cdata.lge_tx_prod;
1258
1259	if (ifp->if_flags & IFF_OACTIVE)
1260		return;
1261
1262	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1263		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1264			break;
1265
1266		IF_DEQUEUE(&ifp->if_snd, m_head);
1267		if (m_head == NULL)
1268			break;
1269
1270		if (lge_encap(sc, m_head, &idx)) {
1271			IF_PREPEND(&ifp->if_snd, m_head);
1272			ifp->if_flags |= IFF_OACTIVE;
1273			break;
1274		}
1275
1276		/*
1277		 * If there's a BPF listener, bounce a copy of this frame
1278		 * to him.
1279		 */
1280		if (ifp->if_bpf)
1281			bpf_mtap(ifp, m_head);
1282	}
1283
1284	sc->lge_cdata.lge_tx_prod = idx;
1285
1286	/*
1287	 * Set a timeout in case the chip goes out to lunch.
1288	 */
1289	ifp->if_timer = 5;
1290
1291	return;
1292}
1293
1294static void lge_init(xsc)
1295	void			*xsc;
1296{
1297	struct lge_softc	*sc = xsc;
1298	struct ifnet		*ifp = &sc->arpcom.ac_if;
1299	struct mii_data		*mii;
1300	int			s;
1301
1302	if (ifp->if_flags & IFF_RUNNING)
1303		return;
1304
1305	s = splimp();
1306
1307	/*
1308	 * Cancel pending I/O and free all RX/TX buffers.
1309	 */
1310	lge_stop(sc);
1311	lge_reset(sc);
1312
1313	mii = device_get_softc(sc->lge_miibus);
1314
1315	/* Set MAC address */
1316	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1317	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1318
1319	/* Init circular RX list. */
1320	if (lge_list_rx_init(sc) == ENOBUFS) {
1321		printf("lge%d: initialization failed: no "
1322		    "memory for rx buffers\n", sc->lge_unit);
1323		lge_stop(sc);
1324		(void)splx(s);
1325		return;
1326	}
1327
1328	/*
1329	 * Init tx descriptors.
1330	 */
1331	lge_list_tx_init(sc);
1332
1333	/* Set initial value for MODE1 register. */
1334	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1335	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1336	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1337	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1338
1339	 /* If we want promiscuous mode, set the allframes bit. */
1340	if (ifp->if_flags & IFF_PROMISC) {
1341		CSR_WRITE_4(sc, LGE_MODE1,
1342		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1343	} else {
1344		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1345	}
1346
1347	/*
1348	 * Set the capture broadcast bit to capture broadcast frames.
1349	 */
1350	if (ifp->if_flags & IFF_BROADCAST) {
1351		CSR_WRITE_4(sc, LGE_MODE1,
1352		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1353	} else {
1354		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1355	}
1356
1357	/* Packet padding workaround? */
1358	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1359
1360	/* No error frames */
1361	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1362
1363	/* Receive large frames */
1364	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1365
1366	/* Workaround: disable RX/TX flow control */
1367	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1368	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1369
1370	/* Make sure to strip CRC from received frames */
1371	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1372
1373	/* Turn off magic packet mode */
1374	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1375
1376	/* Turn off all VLAN stuff */
1377	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1378	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1379
1380	/* Workarond: FIFO overflow */
1381	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1382	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1383
1384	/*
1385	 * Load the multicast filter.
1386	 */
1387	lge_setmulti(sc);
1388
1389	/*
1390	 * Enable hardware checksum validation for all received IPv4
1391	 * packets, do not reject packets with bad checksums.
1392	 */
1393	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1394	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1395	    LGE_MODE2_RX_ERRCSUM);
1396
1397	/*
1398	 * Enable the delivery of PHY interrupts based on
1399	 * link/speed/duplex status chalges.
1400	 */
1401	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1402
1403	/* Enable receiver and transmitter. */
1404	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1405	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1406
1407	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1408	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1409
1410	/*
1411	 * Enable interrupts.
1412	 */
1413	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1414	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1415
1416	lge_ifmedia_upd(ifp);
1417
1418	ifp->if_flags |= IFF_RUNNING;
1419	ifp->if_flags &= ~IFF_OACTIVE;
1420
1421	(void)splx(s);
1422
1423	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1424
1425	return;
1426}
1427
1428/*
1429 * Set media options.
1430 */
1431static int lge_ifmedia_upd(ifp)
1432	struct ifnet		*ifp;
1433{
1434	struct lge_softc	*sc;
1435	struct mii_data		*mii;
1436
1437	sc = ifp->if_softc;
1438
1439	mii = device_get_softc(sc->lge_miibus);
1440	sc->lge_link = 0;
1441	if (mii->mii_instance) {
1442		struct mii_softc	*miisc;
1443		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1444		    miisc = LIST_NEXT(miisc, mii_list))
1445			mii_phy_reset(miisc);
1446	}
1447	mii_mediachg(mii);
1448
1449	return(0);
1450}
1451
1452/*
1453 * Report current media status.
1454 */
1455static void lge_ifmedia_sts(ifp, ifmr)
1456	struct ifnet		*ifp;
1457	struct ifmediareq	*ifmr;
1458{
1459	struct lge_softc	*sc;
1460	struct mii_data		*mii;
1461
1462	sc = ifp->if_softc;
1463
1464	mii = device_get_softc(sc->lge_miibus);
1465	mii_pollstat(mii);
1466	ifmr->ifm_active = mii->mii_media_active;
1467	ifmr->ifm_status = mii->mii_media_status;
1468
1469	return;
1470}
1471
1472static int lge_ioctl(ifp, command, data)
1473	struct ifnet		*ifp;
1474	u_long			command;
1475	caddr_t			data;
1476{
1477	struct lge_softc	*sc = ifp->if_softc;
1478	struct ifreq		*ifr = (struct ifreq *) data;
1479	struct mii_data		*mii;
1480	int			s, error = 0;
1481
1482	s = splimp();
1483
1484	switch(command) {
1485	case SIOCSIFADDR:
1486	case SIOCGIFADDR:
1487		error = ether_ioctl(ifp, command, data);
1488		break;
1489	case SIOCSIFMTU:
1490		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1491			error = EINVAL;
1492		else
1493			ifp->if_mtu = ifr->ifr_mtu;
1494		break;
1495	case SIOCSIFFLAGS:
1496		if (ifp->if_flags & IFF_UP) {
1497			if (ifp->if_flags & IFF_RUNNING &&
1498			    ifp->if_flags & IFF_PROMISC &&
1499			    !(sc->lge_if_flags & IFF_PROMISC)) {
1500				CSR_WRITE_4(sc, LGE_MODE1,
1501				    LGE_MODE1_SETRST_CTL1|
1502				    LGE_MODE1_RX_PROMISC);
1503			} else if (ifp->if_flags & IFF_RUNNING &&
1504			    !(ifp->if_flags & IFF_PROMISC) &&
1505			    sc->lge_if_flags & IFF_PROMISC) {
1506				CSR_WRITE_4(sc, LGE_MODE1,
1507				    LGE_MODE1_RX_PROMISC);
1508			} else {
1509				ifp->if_flags &= ~IFF_RUNNING;
1510				lge_init(sc);
1511			}
1512		} else {
1513			if (ifp->if_flags & IFF_RUNNING)
1514				lge_stop(sc);
1515		}
1516		sc->lge_if_flags = ifp->if_flags;
1517		error = 0;
1518		break;
1519	case SIOCADDMULTI:
1520	case SIOCDELMULTI:
1521		lge_setmulti(sc);
1522		error = 0;
1523		break;
1524	case SIOCGIFMEDIA:
1525	case SIOCSIFMEDIA:
1526		mii = device_get_softc(sc->lge_miibus);
1527		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1528		break;
1529	default:
1530		error = EINVAL;
1531		break;
1532	}
1533
1534	(void)splx(s);
1535
1536	return(error);
1537}
1538
1539static void lge_watchdog(ifp)
1540	struct ifnet		*ifp;
1541{
1542	struct lge_softc	*sc;
1543
1544	sc = ifp->if_softc;
1545
1546	ifp->if_oerrors++;
1547	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1548
1549	lge_stop(sc);
1550	lge_reset(sc);
1551	ifp->if_flags &= ~IFF_RUNNING;
1552	lge_init(sc);
1553
1554	if (ifp->if_snd.ifq_head != NULL)
1555		lge_start(ifp);
1556
1557	return;
1558}
1559
1560/*
1561 * Stop the adapter and free any mbufs allocated to the
1562 * RX and TX lists.
1563 */
1564static void lge_stop(sc)
1565	struct lge_softc	*sc;
1566{
1567	register int		i;
1568	struct ifnet		*ifp;
1569
1570	ifp = &sc->arpcom.ac_if;
1571	ifp->if_timer = 0;
1572	untimeout(lge_tick, sc, sc->lge_stat_ch);
1573	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1574
1575	/* Disable receiver and transmitter. */
1576	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1577	sc->lge_link = 0;
1578
1579	/*
1580	 * Free data in the RX lists.
1581	 */
1582	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1583		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1584			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1585			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1586		}
1587	}
1588	bzero((char *)&sc->lge_ldata->lge_rx_list,
1589		sizeof(sc->lge_ldata->lge_rx_list));
1590
1591	/*
1592	 * Free the TX list buffers.
1593	 */
1594	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1595		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1596			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1597			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1598		}
1599	}
1600
1601	bzero((char *)&sc->lge_ldata->lge_tx_list,
1602		sizeof(sc->lge_ldata->lge_tx_list));
1603
1604	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1605
1606	return;
1607}
1608
1609/*
1610 * Stop all chip I/O so that the kernel's probe routines don't
1611 * get confused by errant DMAs when rebooting.
1612 */
1613static void lge_shutdown(dev)
1614	device_t		dev;
1615{
1616	struct lge_softc	*sc;
1617
1618	sc = device_get_softc(dev);
1619
1620	lge_reset(sc);
1621	lge_stop(sc);
1622
1623	return;
1624}
1625