if_lge.c revision 268529
118334Speter/*-
218334Speter * Copyright (c) 2001 Wind River Systems
318334Speter * Copyright (c) 1997, 1998, 1999, 2000, 2001
418334Speter *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
518334Speter *
618334Speter * Redistribution and use in source and binary forms, with or without
718334Speter * modification, are permitted provided that the following conditions
818334Speter * are met:
918334Speter * 1. Redistributions of source code must retain the above copyright
1018334Speter *    notice, this list of conditions and the following disclaimer.
1118334Speter * 2. Redistributions in binary form must reproduce the above copyright
1218334Speter *    notice, this list of conditions and the following disclaimer in the
1318334Speter *    documentation and/or other materials provided with the distribution.
1418334Speter * 3. All advertising materials mentioning features or use of this software
1518334Speter *    must display the following acknowledgement:
1618334Speter *	This product includes software developed by Bill Paul.
1718334Speter * 4. Neither the name of the author nor the names of any co-contributors
1818334Speter *    may be used to endorse or promote products derived from this software
1918334Speter *    without specific prior written permission.
2018334Speter *
2118334Speter * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
2218334Speter * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2318334Speter * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2418334Speter * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
2518334Speter * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2618334Speter * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2718334Speter * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2818334Speter * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
2918334Speter * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
3018334Speter * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
3118334Speter * THE POSSIBILITY OF SUCH DAMAGE.
3218334Speter */
3318334Speter
3418334Speter#include <sys/cdefs.h>
3518334Speter__FBSDID("$FreeBSD: head/sys/dev/lge/if_lge.c 268529 2014-07-11 13:58:48Z glebius $");
3618334Speter
3718334Speter/*
3818334Speter * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
3918334Speter * documentation not available, but ask me nicely.
4018334Speter *
4118334Speter * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
4218334Speter * It's a 64-bit PCI part that supports TCP/IP checksum offload,
4318334Speter * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
4418334Speter * are three supported methods for data transfer between host and
4518334Speter * NIC: programmed I/O, traditional scatter/gather DMA and Packet
4618334Speter * Propulsion Technology (tm) DMA. The latter mechanism is a form
4718334Speter * of double buffer DMA where the packet data is copied to a
4818334Speter * pre-allocated DMA buffer who's physical address has been loaded
4918334Speter * into a table at device initialization time. The rationale is that
5018334Speter * the virtual to physical address translation needed for normal
5118334Speter * scatter/gather DMA is more expensive than the data copy needed
5218334Speter * for double buffering. This may be true in Windows NT and the like,
5318334Speter * but it isn't true for us, at least on the x86 arch. This driver
5418334Speter * uses the scatter/gather I/O method for both TX and RX.
5518334Speter *
5618334Speter * The LXT1001 only supports TCP/IP checksum offload on receive.
5718334Speter * Also, the VLAN tagging is done using a 16-entry table which allows
5818334Speter * the chip to perform hardware filtering based on VLAN tags. Sadly,
5918334Speter * our vlan support doesn't currently play well with this kind of
6018334Speter * hardware support.
6118334Speter *
6218334Speter * Special thanks to:
6318334Speter * - Jeff James at Intel, for arranging to have the LXT1001 manual
6418334Speter *   released (at long last)
6518334Speter * - Beny Chen at D-Link, for actually sending it to me
6618334Speter * - Brad Short and Keith Alexis at SMC, for sending me sample
6718334Speter *   SMC9462SX and SMC9462TX adapters for testing
6818334Speter * - Paul Saab at Y!, for not killing me (though it remains to be seen
6918334Speter *   if in fact he did me much of a favor)
7018334Speter */
7118334Speter
7218334Speter#include <sys/param.h>
7318334Speter#include <sys/systm.h>
7418334Speter#include <sys/sockio.h>
7518334Speter#include <sys/mbuf.h>
7618334Speter#include <sys/malloc.h>
7718334Speter#include <sys/kernel.h>
7818334Speter#include <sys/module.h>
7918334Speter#include <sys/socket.h>
8018334Speter
8118334Speter#include <net/if.h>
8218334Speter#include <net/if_var.h>
8318334Speter#include <net/if_arp.h>
8418334Speter#include <net/ethernet.h>
8518334Speter#include <net/if_dl.h>
8618334Speter#include <net/if_media.h>
8718334Speter#include <net/if_types.h>
8818334Speter
8918334Speter#include <net/bpf.h>
9018334Speter
9118334Speter#include <vm/vm.h>              /* for vtophys */
9218334Speter#include <vm/pmap.h>            /* for vtophys */
9318334Speter#include <machine/bus.h>
9418334Speter#include <machine/resource.h>
9518334Speter#include <sys/bus.h>
9618334Speter#include <sys/rman.h>
9718334Speter
9818334Speter#include <dev/mii/mii.h>
9918334Speter#include <dev/mii/miivar.h>
10018334Speter
10118334Speter#include <dev/pci/pcireg.h>
10218334Speter#include <dev/pci/pcivar.h>
10318334Speter
10418334Speter#define LGE_USEIOSPACE
10518334Speter
10618334Speter#include <dev/lge/if_lgereg.h>
10718334Speter
10818334Speter/* "device miibus" required.  See GENERIC if you get errors here. */
10918334Speter#include "miibus_if.h"
11018334Speter
11118334Speter/*
11218334Speter * Various supported device vendors/types and their names.
11318334Speter */
11418334Speterstatic const struct lge_type lge_devs[] = {
11518334Speter	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
11618334Speter	{ 0, 0, NULL }
11718334Speter};
11818334Speter
11918334Speterstatic int lge_probe(device_t);
12018334Speterstatic int lge_attach(device_t);
12118334Speterstatic int lge_detach(device_t);
12218334Speter
12318334Speterstatic int lge_alloc_jumbo_mem(struct lge_softc *);
12418334Speterstatic void lge_free_jumbo_mem(struct lge_softc *);
12518334Speterstatic void *lge_jalloc(struct lge_softc *);
12618334Speterstatic void lge_jfree(struct mbuf *, void *, void *);
12718334Speter
12818334Speterstatic int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
12918334Speterstatic int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
13018334Speterstatic void lge_rxeof(struct lge_softc *, int);
13118334Speterstatic void lge_rxeoc(struct lge_softc *);
13218334Speterstatic void lge_txeof(struct lge_softc *);
13318334Speterstatic void lge_intr(void *);
13418334Speterstatic void lge_tick(void *);
13518334Speterstatic void lge_start(struct ifnet *);
13618334Speterstatic void lge_start_locked(struct ifnet *);
13718334Speterstatic int lge_ioctl(struct ifnet *, u_long, caddr_t);
13818334Speterstatic void lge_init(void *);
13918334Speterstatic void lge_init_locked(struct lge_softc *);
14018334Speterstatic void lge_stop(struct lge_softc *);
14118334Speterstatic void lge_watchdog(struct lge_softc *);
14218334Speterstatic int lge_shutdown(device_t);
14318334Speterstatic int lge_ifmedia_upd(struct ifnet *);
14418334Speterstatic void lge_ifmedia_upd_locked(struct ifnet *);
14518334Speterstatic void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
14618334Speter
14718334Speterstatic void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
14818334Speterstatic void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
14918334Speter
15018334Speterstatic int lge_miibus_readreg(device_t, int, int);
15118334Speterstatic int lge_miibus_writereg(device_t, int, int, int);
15218334Speterstatic void lge_miibus_statchg(device_t);
15318334Speter
15418334Speterstatic void lge_setmulti(struct lge_softc *);
15518334Speterstatic void lge_reset(struct lge_softc *);
15618334Speterstatic int lge_list_rx_init(struct lge_softc *);
15718334Speterstatic int lge_list_tx_init(struct lge_softc *);
15818334Speter
15918334Speter#ifdef LGE_USEIOSPACE
16018334Speter#define LGE_RES			SYS_RES_IOPORT
16118334Speter#define LGE_RID			LGE_PCI_LOIO
16218334Speter#else
16318334Speter#define LGE_RES			SYS_RES_MEMORY
16418334Speter#define LGE_RID			LGE_PCI_LOMEM
16518334Speter#endif
16618334Speter
16718334Speterstatic device_method_t lge_methods[] = {
16818334Speter	/* Device interface */
16918334Speter	DEVMETHOD(device_probe,		lge_probe),
17018334Speter	DEVMETHOD(device_attach,	lge_attach),
17118334Speter	DEVMETHOD(device_detach,	lge_detach),
17218334Speter	DEVMETHOD(device_shutdown,	lge_shutdown),
17318334Speter
17418334Speter	/* MII interface */
17518334Speter	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
17618334Speter	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
17718334Speter	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
17818334Speter
17918334Speter	DEVMETHOD_END
18018334Speter};
18118334Speter
18218334Speterstatic driver_t lge_driver = {
18318334Speter	"lge",
18418334Speter	lge_methods,
18518334Speter	sizeof(struct lge_softc)
18618334Speter};
18718334Speter
18818334Speterstatic devclass_t lge_devclass;
18918334Speter
19018334SpeterDRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
19118334SpeterDRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
19218334SpeterMODULE_DEPEND(lge, pci, 1, 1, 1);
19318334SpeterMODULE_DEPEND(lge, ether, 1, 1, 1);
19418334SpeterMODULE_DEPEND(lge, miibus, 1, 1, 1);
19518334Speter
19618334Speter#define LGE_SETBIT(sc, reg, x)				\
19718334Speter	CSR_WRITE_4(sc, reg,				\
19818334Speter		CSR_READ_4(sc, reg) | (x))
19918334Speter
20018334Speter#define LGE_CLRBIT(sc, reg, x)				\
20118334Speter	CSR_WRITE_4(sc, reg,				\
20218334Speter		CSR_READ_4(sc, reg) & ~(x))
20318334Speter
20418334Speter#define SIO_SET(x)					\
20518334Speter	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
20618334Speter
20718334Speter#define SIO_CLR(x)					\
20818334Speter	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
20918334Speter
21018334Speter/*
21118334Speter * Read a word of data stored in the EEPROM at address 'addr.'
21218334Speter */
21318334Speterstatic void
21418334Speterlge_eeprom_getword(sc, addr, dest)
21518334Speter	struct lge_softc	*sc;
21618334Speter	int			addr;
21718334Speter	u_int16_t		*dest;
21818334Speter{
21918334Speter	register int		i;
22018334Speter	u_int32_t		val;
22118334Speter
22218334Speter	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
22318334Speter	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
22418334Speter
22518334Speter	for (i = 0; i < LGE_TIMEOUT; i++)
22618334Speter		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
22718334Speter			break;
22818334Speter
22918334Speter	if (i == LGE_TIMEOUT) {
23018334Speter		device_printf(sc->lge_dev, "EEPROM read timed out\n");
23118334Speter		return;
23218334Speter	}
23318334Speter
23418334Speter	val = CSR_READ_4(sc, LGE_EEDATA);
23518334Speter
23618334Speter	if (addr & 1)
23718334Speter		*dest = (val >> 16) & 0xFFFF;
23818334Speter	else
23918334Speter		*dest = val & 0xFFFF;
24018334Speter
24118334Speter	return;
24218334Speter}
24318334Speter
24418334Speter/*
24518334Speter * Read a sequence of words from the EEPROM.
24618334Speter */
24718334Speterstatic void
24818334Speterlge_read_eeprom(sc, dest, off, cnt, swap)
24918334Speter	struct lge_softc	*sc;
25018334Speter	caddr_t			dest;
25118334Speter	int			off;
25218334Speter	int			cnt;
25318334Speter	int			swap;
25418334Speter{
25518334Speter	int			i;
25618334Speter	u_int16_t		word = 0, *ptr;
25718334Speter
25818334Speter	for (i = 0; i < cnt; i++) {
25918334Speter		lge_eeprom_getword(sc, off + i, &word);
26018334Speter		ptr = (u_int16_t *)(dest + (i * 2));
26118334Speter		if (swap)
26218334Speter			*ptr = ntohs(word);
26318334Speter		else
26418334Speter			*ptr = word;
26518334Speter	}
26618334Speter
26718334Speter	return;
26818334Speter}
26918334Speter
27018334Speterstatic int
27118334Speterlge_miibus_readreg(dev, phy, reg)
27218334Speter	device_t		dev;
27318334Speter	int			phy, reg;
27418334Speter{
27518334Speter	struct lge_softc	*sc;
27618334Speter	int			i;
27718334Speter
27818334Speter	sc = device_get_softc(dev);
27918334Speter
28018334Speter	/*
28118334Speter	 * If we have a non-PCS PHY, pretend that the internal
28218334Speter	 * autoneg stuff at PHY address 0 isn't there so that
28318334Speter	 * the miibus code will find only the GMII PHY.
28418334Speter	 */
28518334Speter	if (sc->lge_pcs == 0 && phy == 0)
28618334Speter		return(0);
28718334Speter
28818334Speter	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
28918334Speter
29018334Speter	for (i = 0; i < LGE_TIMEOUT; i++)
29118334Speter		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
29218334Speter			break;
29318334Speter
29418334Speter	if (i == LGE_TIMEOUT) {
29518334Speter		device_printf(sc->lge_dev, "PHY read timed out\n");
29618334Speter		return(0);
29718334Speter	}
29818334Speter
29918334Speter	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
30018334Speter}
30118334Speter
30218334Speterstatic int
30318334Speterlge_miibus_writereg(dev, phy, reg, data)
30418334Speter	device_t		dev;
30518334Speter	int			phy, reg, data;
30618334Speter{
30718334Speter	struct lge_softc	*sc;
30818334Speter	int			i;
30918334Speter
31018334Speter	sc = device_get_softc(dev);
31118334Speter
31218334Speter	CSR_WRITE_4(sc, LGE_GMIICTL,
31318334Speter	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
31418334Speter
31518334Speter	for (i = 0; i < LGE_TIMEOUT; i++)
31618334Speter		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
31718334Speter			break;
31818334Speter
31918334Speter	if (i == LGE_TIMEOUT) {
32018334Speter		device_printf(sc->lge_dev, "PHY write timed out\n");
32118334Speter		return(0);
32218334Speter	}
32318334Speter
32418334Speter	return(0);
325}
326
327static void
328lge_miibus_statchg(dev)
329	device_t		dev;
330{
331	struct lge_softc	*sc;
332	struct mii_data		*mii;
333
334	sc = device_get_softc(dev);
335	mii = device_get_softc(sc->lge_miibus);
336
337	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
338	switch (IFM_SUBTYPE(mii->mii_media_active)) {
339	case IFM_1000_T:
340	case IFM_1000_SX:
341		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
342		break;
343	case IFM_100_TX:
344		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
345		break;
346	case IFM_10_T:
347		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
348		break;
349	default:
350		/*
351		 * Choose something, even if it's wrong. Clearing
352		 * all the bits will hose autoneg on the internal
353		 * PHY.
354		 */
355		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
356		break;
357	}
358
359	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
360		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
361	} else {
362		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
363	}
364
365	return;
366}
367
368static void
369lge_setmulti(sc)
370	struct lge_softc	*sc;
371{
372	struct ifnet		*ifp;
373	struct ifmultiaddr	*ifma;
374	u_int32_t		h = 0, hashes[2] = { 0, 0 };
375
376	ifp = sc->lge_ifp;
377	LGE_LOCK_ASSERT(sc);
378
379	/* Make sure multicast hash table is enabled. */
380	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
381
382	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
383		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
384		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
385		return;
386	}
387
388	/* first, zot all the existing hash bits */
389	CSR_WRITE_4(sc, LGE_MAR0, 0);
390	CSR_WRITE_4(sc, LGE_MAR1, 0);
391
392	/* now program new ones */
393	if_maddr_rlock(ifp);
394	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
395		if (ifma->ifma_addr->sa_family != AF_LINK)
396			continue;
397		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
398		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
399		if (h < 32)
400			hashes[0] |= (1 << h);
401		else
402			hashes[1] |= (1 << (h - 32));
403	}
404	if_maddr_runlock(ifp);
405
406	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
407	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
408
409	return;
410}
411
412static void
413lge_reset(sc)
414	struct lge_softc	*sc;
415{
416	register int		i;
417
418	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
419
420	for (i = 0; i < LGE_TIMEOUT; i++) {
421		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
422			break;
423	}
424
425	if (i == LGE_TIMEOUT)
426		device_printf(sc->lge_dev, "reset never completed\n");
427
428	/* Wait a little while for the chip to get its brains in order. */
429	DELAY(1000);
430
431        return;
432}
433
434/*
435 * Probe for a Level 1 chip. Check the PCI vendor and device
436 * IDs against our list and return a device name if we find a match.
437 */
438static int
439lge_probe(dev)
440	device_t		dev;
441{
442	const struct lge_type	*t;
443
444	t = lge_devs;
445
446	while(t->lge_name != NULL) {
447		if ((pci_get_vendor(dev) == t->lge_vid) &&
448		    (pci_get_device(dev) == t->lge_did)) {
449			device_set_desc(dev, t->lge_name);
450			return(BUS_PROBE_DEFAULT);
451		}
452		t++;
453	}
454
455	return(ENXIO);
456}
457
458/*
459 * Attach the interface. Allocate softc structures, do ifmedia
460 * setup and ethernet/BPF attach.
461 */
462static int
463lge_attach(dev)
464	device_t		dev;
465{
466	u_char			eaddr[ETHER_ADDR_LEN];
467	struct lge_softc	*sc;
468	struct ifnet		*ifp = NULL;
469	int			error = 0, rid;
470
471	sc = device_get_softc(dev);
472	sc->lge_dev = dev;
473
474	mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
475	    MTX_DEF);
476	callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
477
478	/*
479	 * Map control/status registers.
480	 */
481	pci_enable_busmaster(dev);
482
483	rid = LGE_RID;
484	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
485
486	if (sc->lge_res == NULL) {
487		device_printf(dev, "couldn't map ports/memory\n");
488		error = ENXIO;
489		goto fail;
490	}
491
492	sc->lge_btag = rman_get_bustag(sc->lge_res);
493	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
494
495	/* Allocate interrupt */
496	rid = 0;
497	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
498	    RF_SHAREABLE | RF_ACTIVE);
499
500	if (sc->lge_irq == NULL) {
501		device_printf(dev, "couldn't map interrupt\n");
502		error = ENXIO;
503		goto fail;
504	}
505
506	/* Reset the adapter. */
507	lge_reset(sc);
508
509	/*
510	 * Get station address from the EEPROM.
511	 */
512	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
513	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
514	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
515
516	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
517	    M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
518
519	if (sc->lge_ldata == NULL) {
520		device_printf(dev, "no memory for list buffers!\n");
521		error = ENXIO;
522		goto fail;
523	}
524
525	/* Try to allocate memory for jumbo buffers. */
526	if (lge_alloc_jumbo_mem(sc)) {
527		device_printf(dev, "jumbo buffer allocation failed\n");
528		error = ENXIO;
529		goto fail;
530	}
531
532	ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
533	if (ifp == NULL) {
534		device_printf(dev, "can not if_alloc()\n");
535		error = ENOSPC;
536		goto fail;
537	}
538	ifp->if_softc = sc;
539	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
540	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
541	ifp->if_ioctl = lge_ioctl;
542	ifp->if_start = lge_start;
543	ifp->if_init = lge_init;
544	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
545	ifp->if_capabilities = IFCAP_RXCSUM;
546	ifp->if_capenable = ifp->if_capabilities;
547
548	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
549		sc->lge_pcs = 1;
550	else
551		sc->lge_pcs = 0;
552
553	/*
554	 * Do MII setup.
555	 */
556	error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd,
557	    lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
558	if (error != 0) {
559		device_printf(dev, "attaching PHYs failed\n");
560		goto fail;
561	}
562
563	/*
564	 * Call MI attach routine.
565	 */
566	ether_ifattach(ifp, eaddr);
567
568	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
569	    NULL, lge_intr, sc, &sc->lge_intrhand);
570
571	if (error) {
572		ether_ifdetach(ifp);
573		device_printf(dev, "couldn't set up irq\n");
574		goto fail;
575	}
576	return (0);
577
578fail:
579	lge_free_jumbo_mem(sc);
580	if (sc->lge_ldata)
581		contigfree(sc->lge_ldata,
582		    sizeof(struct lge_list_data), M_DEVBUF);
583	if (ifp)
584		if_free(ifp);
585	if (sc->lge_irq)
586		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
587	if (sc->lge_res)
588		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
589	mtx_destroy(&sc->lge_mtx);
590	return(error);
591}
592
593static int
594lge_detach(dev)
595	device_t		dev;
596{
597	struct lge_softc	*sc;
598	struct ifnet		*ifp;
599
600	sc = device_get_softc(dev);
601	ifp = sc->lge_ifp;
602
603	LGE_LOCK(sc);
604	lge_reset(sc);
605	lge_stop(sc);
606	LGE_UNLOCK(sc);
607	callout_drain(&sc->lge_stat_callout);
608	ether_ifdetach(ifp);
609
610	bus_generic_detach(dev);
611	device_delete_child(dev, sc->lge_miibus);
612
613	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
614	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
615	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
616
617	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
618	if_free(ifp);
619	lge_free_jumbo_mem(sc);
620	mtx_destroy(&sc->lge_mtx);
621
622	return(0);
623}
624
625/*
626 * Initialize the transmit descriptors.
627 */
628static int
629lge_list_tx_init(sc)
630	struct lge_softc	*sc;
631{
632	struct lge_list_data	*ld;
633	struct lge_ring_data	*cd;
634	int			i;
635
636	cd = &sc->lge_cdata;
637	ld = sc->lge_ldata;
638	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
639		ld->lge_tx_list[i].lge_mbuf = NULL;
640		ld->lge_tx_list[i].lge_ctl = 0;
641	}
642
643	cd->lge_tx_prod = cd->lge_tx_cons = 0;
644
645	return(0);
646}
647
648
649/*
650 * Initialize the RX descriptors and allocate mbufs for them. Note that
651 * we arralge the descriptors in a closed ring, so that the last descriptor
652 * points back to the first.
653 */
654static int
655lge_list_rx_init(sc)
656	struct lge_softc	*sc;
657{
658	struct lge_list_data	*ld;
659	struct lge_ring_data	*cd;
660	int			i;
661
662	ld = sc->lge_ldata;
663	cd = &sc->lge_cdata;
664
665	cd->lge_rx_prod = cd->lge_rx_cons = 0;
666
667	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
668
669	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
670		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
671			break;
672		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
673			return(ENOBUFS);
674	}
675
676	/* Clear possible 'rx command queue empty' interrupt. */
677	CSR_READ_4(sc, LGE_ISR);
678
679	return(0);
680}
681
682/*
683 * Initialize an RX descriptor and attach an MBUF cluster.
684 */
685static int
686lge_newbuf(sc, c, m)
687	struct lge_softc	*sc;
688	struct lge_rx_desc	*c;
689	struct mbuf		*m;
690{
691	struct mbuf		*m_new = NULL;
692	caddr_t			*buf = NULL;
693
694	if (m == NULL) {
695		MGETHDR(m_new, M_NOWAIT, MT_DATA);
696		if (m_new == NULL) {
697			device_printf(sc->lge_dev, "no memory for rx list "
698			    "-- packet dropped!\n");
699			return(ENOBUFS);
700		}
701
702		/* Allocate the jumbo buffer */
703		buf = lge_jalloc(sc);
704		if (buf == NULL) {
705#ifdef LGE_VERBOSE
706			device_printf(sc->lge_dev, "jumbo allocation failed "
707			    "-- packet dropped!\n");
708#endif
709			m_freem(m_new);
710			return(ENOBUFS);
711		}
712		/* Attach the buffer to the mbuf */
713		m_new->m_data = (void *)buf;
714		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
715		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
716		    buf, (struct lge_softc *)sc, 0, EXT_NET_DRV);
717	} else {
718		m_new = m;
719		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
720		m_new->m_data = m_new->m_ext.ext_buf;
721	}
722
723	/*
724	 * Adjust alignment so packet payload begins on a
725	 * longword boundary. Mandatory for Alpha, useful on
726	 * x86 too.
727	*/
728	m_adj(m_new, ETHER_ALIGN);
729
730	c->lge_mbuf = m_new;
731	c->lge_fragptr_hi = 0;
732	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
733	c->lge_fraglen = m_new->m_len;
734	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
735	c->lge_sts = 0;
736
737	/*
738	 * Put this buffer in the RX command FIFO. To do this,
739	 * we just write the physical address of the descriptor
740	 * into the RX descriptor address registers. Note that
741	 * there are two registers, one high DWORD and one low
742	 * DWORD, which lets us specify a 64-bit address if
743	 * desired. We only use a 32-bit address for now.
744	 * Writing to the low DWORD register is what actually
745	 * causes the command to be issued, so we do that
746	 * last.
747	 */
748	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
749	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
750
751	return(0);
752}
753
754static int
755lge_alloc_jumbo_mem(sc)
756	struct lge_softc	*sc;
757{
758	caddr_t			ptr;
759	register int		i;
760	struct lge_jpool_entry   *entry;
761
762	/* Grab a big chunk o' storage. */
763	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
764	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
765
766	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
767		device_printf(sc->lge_dev, "no memory for jumbo buffers!\n");
768		return(ENOBUFS);
769	}
770
771	SLIST_INIT(&sc->lge_jfree_listhead);
772	SLIST_INIT(&sc->lge_jinuse_listhead);
773
774	/*
775	 * Now divide it up into 9K pieces and save the addresses
776	 * in an array.
777	 */
778	ptr = sc->lge_cdata.lge_jumbo_buf;
779	for (i = 0; i < LGE_JSLOTS; i++) {
780		sc->lge_cdata.lge_jslots[i] = ptr;
781		ptr += LGE_JLEN;
782		entry = malloc(sizeof(struct lge_jpool_entry),
783		    M_DEVBUF, M_NOWAIT);
784		if (entry == NULL) {
785			device_printf(sc->lge_dev, "no memory for jumbo "
786			    "buffer queue!\n");
787			return(ENOBUFS);
788		}
789		entry->slot = i;
790		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
791		    entry, jpool_entries);
792	}
793
794	return(0);
795}
796
797static void
798lge_free_jumbo_mem(sc)
799	struct lge_softc	*sc;
800{
801	struct lge_jpool_entry	*entry;
802
803	if (sc->lge_cdata.lge_jumbo_buf == NULL)
804		return;
805
806	while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) {
807		device_printf(sc->lge_dev,
808		    "asked to free buffer that is in use!\n");
809		SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
810		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry,
811		    jpool_entries);
812	}
813	while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) {
814		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
815		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
816		free(entry, M_DEVBUF);
817	}
818
819	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
820
821	return;
822}
823
824/*
825 * Allocate a jumbo buffer.
826 */
827static void *
828lge_jalloc(sc)
829	struct lge_softc	*sc;
830{
831	struct lge_jpool_entry   *entry;
832
833	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
834
835	if (entry == NULL) {
836#ifdef LGE_VERBOSE
837		device_printf(sc->lge_dev, "no free jumbo buffers\n");
838#endif
839		return(NULL);
840	}
841
842	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
843	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
844	return(sc->lge_cdata.lge_jslots[entry->slot]);
845}
846
847/*
848 * Release a jumbo buffer.
849 */
850static void
851lge_jfree(struct mbuf *m, void *buf, void *args)
852{
853	struct lge_softc	*sc;
854	int		        i;
855	struct lge_jpool_entry   *entry;
856
857	/* Extract the softc struct pointer. */
858	sc = args;
859
860	if (sc == NULL)
861		panic("lge_jfree: can't find softc pointer!");
862
863	/* calculate the slot this buffer belongs to */
864	i = ((vm_offset_t)buf
865	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
866
867	if ((i < 0) || (i >= LGE_JSLOTS))
868		panic("lge_jfree: asked to free buffer that we don't manage!");
869
870	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
871	if (entry == NULL)
872		panic("lge_jfree: buffer not in use!");
873	entry->slot = i;
874	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
875	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
876}
877
878/*
879 * A frame has been uploaded: pass the resulting mbuf chain up to
880 * the higher level protocols.
881 */
882static void
883lge_rxeof(sc, cnt)
884	struct lge_softc	*sc;
885	int			cnt;
886{
887        struct mbuf		*m;
888        struct ifnet		*ifp;
889	struct lge_rx_desc	*cur_rx;
890	int			c, i, total_len = 0;
891	u_int32_t		rxsts, rxctl;
892
893	ifp = sc->lge_ifp;
894
895	/* Find out how many frames were processed. */
896	c = cnt;
897	i = sc->lge_cdata.lge_rx_cons;
898
899	/* Suck them in. */
900	while(c) {
901		struct mbuf		*m0 = NULL;
902
903		cur_rx = &sc->lge_ldata->lge_rx_list[i];
904		rxctl = cur_rx->lge_ctl;
905		rxsts = cur_rx->lge_sts;
906		m = cur_rx->lge_mbuf;
907		cur_rx->lge_mbuf = NULL;
908		total_len = LGE_RXBYTES(cur_rx);
909		LGE_INC(i, LGE_RX_LIST_CNT);
910		c--;
911
912		/*
913		 * If an error occurs, update stats, clear the
914		 * status word and leave the mbuf cluster in place:
915		 * it should simply get re-used next time this descriptor
916	 	 * comes up in the ring.
917		 */
918		if (rxctl & LGE_RXCTL_ERRMASK) {
919			ifp->if_ierrors++;
920			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
921			continue;
922		}
923
924		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
925			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
926			    ifp, NULL);
927			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
928			if (m0 == NULL) {
929				device_printf(sc->lge_dev, "no receive buffers "
930				    "available -- packet dropped!\n");
931				ifp->if_ierrors++;
932				continue;
933			}
934			m = m0;
935		} else {
936			m->m_pkthdr.rcvif = ifp;
937			m->m_pkthdr.len = m->m_len = total_len;
938		}
939
940		ifp->if_ipackets++;
941
942		/* Do IP checksum checking. */
943		if (rxsts & LGE_RXSTS_ISIP)
944			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
945		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
946			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
947		if ((rxsts & LGE_RXSTS_ISTCP &&
948		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
949		    (rxsts & LGE_RXSTS_ISUDP &&
950		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
951			m->m_pkthdr.csum_flags |=
952			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
953			m->m_pkthdr.csum_data = 0xffff;
954		}
955
956		LGE_UNLOCK(sc);
957		(*ifp->if_input)(ifp, m);
958		LGE_LOCK(sc);
959	}
960
961	sc->lge_cdata.lge_rx_cons = i;
962
963	return;
964}
965
966static void
967lge_rxeoc(sc)
968	struct lge_softc	*sc;
969{
970	struct ifnet		*ifp;
971
972	ifp = sc->lge_ifp;
973	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
974	lge_init_locked(sc);
975	return;
976}
977
978/*
979 * A frame was downloaded to the chip. It's safe for us to clean up
980 * the list buffers.
981 */
982
983static void
984lge_txeof(sc)
985	struct lge_softc	*sc;
986{
987	struct lge_tx_desc	*cur_tx = NULL;
988	struct ifnet		*ifp;
989	u_int32_t		idx, txdone;
990
991	ifp = sc->lge_ifp;
992
993	/* Clear the timeout timer. */
994	sc->lge_timer = 0;
995
996	/*
997	 * Go through our tx list and free mbufs for those
998	 * frames that have been transmitted.
999	 */
1000	idx = sc->lge_cdata.lge_tx_cons;
1001	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1002
1003	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1004		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1005
1006		ifp->if_opackets++;
1007		if (cur_tx->lge_mbuf != NULL) {
1008			m_freem(cur_tx->lge_mbuf);
1009			cur_tx->lge_mbuf = NULL;
1010		}
1011		cur_tx->lge_ctl = 0;
1012
1013		txdone--;
1014		LGE_INC(idx, LGE_TX_LIST_CNT);
1015		sc->lge_timer = 0;
1016	}
1017
1018	sc->lge_cdata.lge_tx_cons = idx;
1019
1020	if (cur_tx != NULL)
1021		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1022
1023	return;
1024}
1025
1026static void
1027lge_tick(xsc)
1028	void			*xsc;
1029{
1030	struct lge_softc	*sc;
1031	struct mii_data		*mii;
1032	struct ifnet		*ifp;
1033
1034	sc = xsc;
1035	ifp = sc->lge_ifp;
1036	LGE_LOCK_ASSERT(sc);
1037
1038	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1039	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1040	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1041	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1042
1043	if (!sc->lge_link) {
1044		mii = device_get_softc(sc->lge_miibus);
1045		mii_tick(mii);
1046		if (mii->mii_media_status & IFM_ACTIVE &&
1047		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1048			sc->lge_link++;
1049			if (bootverbose &&
1050		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1051			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1052				device_printf(sc->lge_dev, "gigabit link up\n");
1053			if (ifp->if_snd.ifq_head != NULL)
1054				lge_start_locked(ifp);
1055		}
1056	}
1057
1058	if (sc->lge_timer != 0 && --sc->lge_timer == 0)
1059		lge_watchdog(sc);
1060	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1061
1062	return;
1063}
1064
1065static void
1066lge_intr(arg)
1067	void			*arg;
1068{
1069	struct lge_softc	*sc;
1070	struct ifnet		*ifp;
1071	u_int32_t		status;
1072
1073	sc = arg;
1074	ifp = sc->lge_ifp;
1075	LGE_LOCK(sc);
1076
1077	/* Supress unwanted interrupts */
1078	if (!(ifp->if_flags & IFF_UP)) {
1079		lge_stop(sc);
1080		LGE_UNLOCK(sc);
1081		return;
1082	}
1083
1084	for (;;) {
1085		/*
1086		 * Reading the ISR register clears all interrupts, and
1087		 * clears the 'interrupts enabled' bit in the IMR
1088		 * register.
1089		 */
1090		status = CSR_READ_4(sc, LGE_ISR);
1091
1092		if ((status & LGE_INTRS) == 0)
1093			break;
1094
1095		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1096			lge_txeof(sc);
1097
1098		if (status & LGE_ISR_RXDMA_DONE)
1099			lge_rxeof(sc, LGE_RX_DMACNT(status));
1100
1101		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1102			lge_rxeoc(sc);
1103
1104		if (status & LGE_ISR_PHY_INTR) {
1105			sc->lge_link = 0;
1106			callout_stop(&sc->lge_stat_callout);
1107			lge_tick(sc);
1108		}
1109	}
1110
1111	/* Re-enable interrupts. */
1112	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1113
1114	if (ifp->if_snd.ifq_head != NULL)
1115		lge_start_locked(ifp);
1116
1117	LGE_UNLOCK(sc);
1118	return;
1119}
1120
1121/*
1122 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1123 * pointers to the fragment pointers.
1124 */
1125static int
1126lge_encap(sc, m_head, txidx)
1127	struct lge_softc	*sc;
1128	struct mbuf		*m_head;
1129	u_int32_t		*txidx;
1130{
1131	struct lge_frag		*f = NULL;
1132	struct lge_tx_desc	*cur_tx;
1133	struct mbuf		*m;
1134	int			frag = 0, tot_len = 0;
1135
1136	/*
1137 	 * Start packing the mbufs in this chain into
1138	 * the fragment pointers. Stop when we run out
1139 	 * of fragments or hit the end of the mbuf chain.
1140	 */
1141	m = m_head;
1142	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1143	frag = 0;
1144
1145	for (m = m_head; m != NULL; m = m->m_next) {
1146		if (m->m_len != 0) {
1147			tot_len += m->m_len;
1148			f = &cur_tx->lge_frags[frag];
1149			f->lge_fraglen = m->m_len;
1150			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1151			f->lge_fragptr_hi = 0;
1152			frag++;
1153		}
1154	}
1155
1156	if (m != NULL)
1157		return(ENOBUFS);
1158
1159	cur_tx->lge_mbuf = m_head;
1160	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1161	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1162
1163	/* Queue for transmit */
1164	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1165
1166	return(0);
1167}
1168
1169/*
1170 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1171 * to the mbuf data regions directly in the transmit lists. We also save a
1172 * copy of the pointers since the transmit list fragment pointers are
1173 * physical addresses.
1174 */
1175
1176static void
1177lge_start(ifp)
1178	struct ifnet		*ifp;
1179{
1180	struct lge_softc	*sc;
1181
1182	sc = ifp->if_softc;
1183	LGE_LOCK(sc);
1184	lge_start_locked(ifp);
1185	LGE_UNLOCK(sc);
1186}
1187
1188static void
1189lge_start_locked(ifp)
1190	struct ifnet		*ifp;
1191{
1192	struct lge_softc	*sc;
1193	struct mbuf		*m_head = NULL;
1194	u_int32_t		idx;
1195
1196	sc = ifp->if_softc;
1197
1198	if (!sc->lge_link)
1199		return;
1200
1201	idx = sc->lge_cdata.lge_tx_prod;
1202
1203	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1204		return;
1205
1206	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1207		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1208			break;
1209
1210		IF_DEQUEUE(&ifp->if_snd, m_head);
1211		if (m_head == NULL)
1212			break;
1213
1214		if (lge_encap(sc, m_head, &idx)) {
1215			IF_PREPEND(&ifp->if_snd, m_head);
1216			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1217			break;
1218		}
1219
1220		/*
1221		 * If there's a BPF listener, bounce a copy of this frame
1222		 * to him.
1223		 */
1224		BPF_MTAP(ifp, m_head);
1225	}
1226
1227	sc->lge_cdata.lge_tx_prod = idx;
1228
1229	/*
1230	 * Set a timeout in case the chip goes out to lunch.
1231	 */
1232	sc->lge_timer = 5;
1233
1234	return;
1235}
1236
1237static void
1238lge_init(xsc)
1239	void			*xsc;
1240{
1241	struct lge_softc	*sc = xsc;
1242
1243	LGE_LOCK(sc);
1244	lge_init_locked(sc);
1245	LGE_UNLOCK(sc);
1246}
1247
1248static void
1249lge_init_locked(sc)
1250	struct lge_softc	*sc;
1251{
1252	struct ifnet		*ifp = sc->lge_ifp;
1253
1254	LGE_LOCK_ASSERT(sc);
1255	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1256		return;
1257
1258	/*
1259	 * Cancel pending I/O and free all RX/TX buffers.
1260	 */
1261	lge_stop(sc);
1262	lge_reset(sc);
1263
1264	/* Set MAC address */
1265	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
1266	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
1267
1268	/* Init circular RX list. */
1269	if (lge_list_rx_init(sc) == ENOBUFS) {
1270		device_printf(sc->lge_dev, "initialization failed: no "
1271		    "memory for rx buffers\n");
1272		lge_stop(sc);
1273		return;
1274	}
1275
1276	/*
1277	 * Init tx descriptors.
1278	 */
1279	lge_list_tx_init(sc);
1280
1281	/* Set initial value for MODE1 register. */
1282	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1283	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1284	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1285	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1286
1287	 /* If we want promiscuous mode, set the allframes bit. */
1288	if (ifp->if_flags & IFF_PROMISC) {
1289		CSR_WRITE_4(sc, LGE_MODE1,
1290		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1291	} else {
1292		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1293	}
1294
1295	/*
1296	 * Set the capture broadcast bit to capture broadcast frames.
1297	 */
1298	if (ifp->if_flags & IFF_BROADCAST) {
1299		CSR_WRITE_4(sc, LGE_MODE1,
1300		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1301	} else {
1302		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1303	}
1304
1305	/* Packet padding workaround? */
1306	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1307
1308	/* No error frames */
1309	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1310
1311	/* Receive large frames */
1312	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1313
1314	/* Workaround: disable RX/TX flow control */
1315	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1316	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1317
1318	/* Make sure to strip CRC from received frames */
1319	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1320
1321	/* Turn off magic packet mode */
1322	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1323
1324	/* Turn off all VLAN stuff */
1325	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1326	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1327
1328	/* Workarond: FIFO overflow */
1329	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1330	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1331
1332	/*
1333	 * Load the multicast filter.
1334	 */
1335	lge_setmulti(sc);
1336
1337	/*
1338	 * Enable hardware checksum validation for all received IPv4
1339	 * packets, do not reject packets with bad checksums.
1340	 */
1341	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1342	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1343	    LGE_MODE2_RX_ERRCSUM);
1344
1345	/*
1346	 * Enable the delivery of PHY interrupts based on
1347	 * link/speed/duplex status chalges.
1348	 */
1349	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1350
1351	/* Enable receiver and transmitter. */
1352	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1353	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1354
1355	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1356	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1357
1358	/*
1359	 * Enable interrupts.
1360	 */
1361	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1362	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1363
1364	lge_ifmedia_upd_locked(ifp);
1365
1366	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1367	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1368
1369	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1370
1371	return;
1372}
1373
1374/*
1375 * Set media options.
1376 */
1377static int
1378lge_ifmedia_upd(ifp)
1379	struct ifnet		*ifp;
1380{
1381	struct lge_softc	*sc;
1382
1383	sc = ifp->if_softc;
1384	LGE_LOCK(sc);
1385	lge_ifmedia_upd_locked(ifp);
1386	LGE_UNLOCK(sc);
1387
1388	return(0);
1389}
1390
1391static void
1392lge_ifmedia_upd_locked(ifp)
1393	struct ifnet		*ifp;
1394{
1395	struct lge_softc	*sc;
1396	struct mii_data		*mii;
1397	struct mii_softc	*miisc;
1398
1399	sc = ifp->if_softc;
1400
1401	LGE_LOCK_ASSERT(sc);
1402	mii = device_get_softc(sc->lge_miibus);
1403	sc->lge_link = 0;
1404	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1405		PHY_RESET(miisc);
1406	mii_mediachg(mii);
1407}
1408
1409/*
1410 * Report current media status.
1411 */
1412static void
1413lge_ifmedia_sts(ifp, ifmr)
1414	struct ifnet		*ifp;
1415	struct ifmediareq	*ifmr;
1416{
1417	struct lge_softc	*sc;
1418	struct mii_data		*mii;
1419
1420	sc = ifp->if_softc;
1421
1422	LGE_LOCK(sc);
1423	mii = device_get_softc(sc->lge_miibus);
1424	mii_pollstat(mii);
1425	ifmr->ifm_active = mii->mii_media_active;
1426	ifmr->ifm_status = mii->mii_media_status;
1427	LGE_UNLOCK(sc);
1428
1429	return;
1430}
1431
1432static int
1433lge_ioctl(ifp, command, data)
1434	struct ifnet		*ifp;
1435	u_long			command;
1436	caddr_t			data;
1437{
1438	struct lge_softc	*sc = ifp->if_softc;
1439	struct ifreq		*ifr = (struct ifreq *) data;
1440	struct mii_data		*mii;
1441	int			error = 0;
1442
1443	switch(command) {
1444	case SIOCSIFMTU:
1445		LGE_LOCK(sc);
1446		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1447			error = EINVAL;
1448		else
1449			ifp->if_mtu = ifr->ifr_mtu;
1450		LGE_UNLOCK(sc);
1451		break;
1452	case SIOCSIFFLAGS:
1453		LGE_LOCK(sc);
1454		if (ifp->if_flags & IFF_UP) {
1455			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1456			    ifp->if_flags & IFF_PROMISC &&
1457			    !(sc->lge_if_flags & IFF_PROMISC)) {
1458				CSR_WRITE_4(sc, LGE_MODE1,
1459				    LGE_MODE1_SETRST_CTL1|
1460				    LGE_MODE1_RX_PROMISC);
1461			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1462			    !(ifp->if_flags & IFF_PROMISC) &&
1463			    sc->lge_if_flags & IFF_PROMISC) {
1464				CSR_WRITE_4(sc, LGE_MODE1,
1465				    LGE_MODE1_RX_PROMISC);
1466			} else {
1467				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1468				lge_init_locked(sc);
1469			}
1470		} else {
1471			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1472				lge_stop(sc);
1473		}
1474		sc->lge_if_flags = ifp->if_flags;
1475		LGE_UNLOCK(sc);
1476		error = 0;
1477		break;
1478	case SIOCADDMULTI:
1479	case SIOCDELMULTI:
1480		LGE_LOCK(sc);
1481		lge_setmulti(sc);
1482		LGE_UNLOCK(sc);
1483		error = 0;
1484		break;
1485	case SIOCGIFMEDIA:
1486	case SIOCSIFMEDIA:
1487		mii = device_get_softc(sc->lge_miibus);
1488		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1489		break;
1490	default:
1491		error = ether_ioctl(ifp, command, data);
1492		break;
1493	}
1494
1495	return(error);
1496}
1497
1498static void
1499lge_watchdog(sc)
1500	struct lge_softc	*sc;
1501{
1502	struct ifnet		*ifp;
1503
1504	LGE_LOCK_ASSERT(sc);
1505	ifp = sc->lge_ifp;
1506
1507	ifp->if_oerrors++;
1508	if_printf(ifp, "watchdog timeout\n");
1509
1510	lge_stop(sc);
1511	lge_reset(sc);
1512	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1513	lge_init_locked(sc);
1514
1515	if (ifp->if_snd.ifq_head != NULL)
1516		lge_start_locked(ifp);
1517}
1518
1519/*
1520 * Stop the adapter and free any mbufs allocated to the
1521 * RX and TX lists.
1522 */
1523static void
1524lge_stop(sc)
1525	struct lge_softc	*sc;
1526{
1527	register int		i;
1528	struct ifnet		*ifp;
1529
1530	LGE_LOCK_ASSERT(sc);
1531	ifp = sc->lge_ifp;
1532	sc->lge_timer = 0;
1533	callout_stop(&sc->lge_stat_callout);
1534	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1535
1536	/* Disable receiver and transmitter. */
1537	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1538	sc->lge_link = 0;
1539
1540	/*
1541	 * Free data in the RX lists.
1542	 */
1543	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1544		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1545			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1546			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1547		}
1548	}
1549	bzero((char *)&sc->lge_ldata->lge_rx_list,
1550		sizeof(sc->lge_ldata->lge_rx_list));
1551
1552	/*
1553	 * Free the TX list buffers.
1554	 */
1555	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1556		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1557			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1558			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1559		}
1560	}
1561
1562	bzero((char *)&sc->lge_ldata->lge_tx_list,
1563		sizeof(sc->lge_ldata->lge_tx_list));
1564
1565	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1566
1567	return;
1568}
1569
1570/*
1571 * Stop all chip I/O so that the kernel's probe routines don't
1572 * get confused by errant DMAs when rebooting.
1573 */
1574static int
1575lge_shutdown(dev)
1576	device_t		dev;
1577{
1578	struct lge_softc	*sc;
1579
1580	sc = device_get_softc(dev);
1581
1582	LGE_LOCK(sc);
1583	lge_reset(sc);
1584	lge_stop(sc);
1585	LGE_UNLOCK(sc);
1586
1587	return (0);
1588}
1589