if_lge.c revision 137402
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/lge/if_lge.c 137402 2004-11-08 19:21:57Z phk $");
36
37/*
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
40 *
41 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44 * are three supported methods for data transfer between host and
45 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46 * Propulsion Technology (tm) DMA. The latter mechanism is a form
47 * of double buffer DMA where the packet data is copied to a
48 * pre-allocated DMA buffer who's physical address has been loaded
49 * into a table at device initialization time. The rationale is that
50 * the virtual to physical address translation needed for normal
51 * scatter/gather DMA is more expensive than the data copy needed
52 * for double buffering. This may be true in Windows NT and the like,
53 * but it isn't true for us, at least on the x86 arch. This driver
54 * uses the scatter/gather I/O method for both TX and RX.
55 *
56 * The LXT1001 only supports TCP/IP checksum offload on receive.
57 * Also, the VLAN tagging is done using a 16-entry table which allows
58 * the chip to perform hardware filtering based on VLAN tags. Sadly,
59 * our vlan support doesn't currently play well with this kind of
60 * hardware support.
61 *
62 * Special thanks to:
63 * - Jeff James at Intel, for arranging to have the LXT1001 manual
64 *   released (at long last)
65 * - Beny Chen at D-Link, for actually sending it to me
66 * - Brad Short and Keith Alexis at SMC, for sending me sample
67 *   SMC9462SX and SMC9462TX adapters for testing
68 * - Paul Saab at Y!, for not killing me (though it remains to be seen
69 *   if in fact he did me much of a favor)
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/sockio.h>
75#include <sys/mbuf.h>
76#include <sys/malloc.h>
77#include <sys/kernel.h>
78#include <sys/module.h>
79#include <sys/socket.h>
80
81#include <net/if.h>
82#include <net/if_arp.h>
83#include <net/ethernet.h>
84#include <net/if_dl.h>
85#include <net/if_media.h>
86
87#include <net/bpf.h>
88
89#include <vm/vm.h>              /* for vtophys */
90#include <vm/pmap.h>            /* for vtophys */
91#include <machine/clock.h>      /* for DELAY */
92#include <machine/bus_pio.h>
93#include <machine/bus_memio.h>
94#include <machine/bus.h>
95#include <machine/resource.h>
96#include <sys/bus.h>
97#include <sys/rman.h>
98
99#include <dev/mii/mii.h>
100#include <dev/mii/miivar.h>
101
102#include <dev/pci/pcireg.h>
103#include <dev/pci/pcivar.h>
104
105#define LGE_USEIOSPACE
106
107#include <dev/lge/if_lgereg.h>
108
109/* "controller miibus0" required.  See GENERIC if you get errors here. */
110#include "miibus_if.h"
111
112/*
113 * Various supported device vendors/types and their names.
114 */
115static struct lge_type lge_devs[] = {
116	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
117	{ 0, 0, NULL }
118};
119
120static int lge_probe(device_t);
121static int lge_attach(device_t);
122static int lge_detach(device_t);
123
124static int lge_alloc_jumbo_mem(struct lge_softc *);
125static void lge_free_jumbo_mem(struct lge_softc *);
126static void *lge_jalloc(struct lge_softc *);
127static void lge_jfree(void *, void *);
128
129static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
130static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
131static void lge_rxeof(struct lge_softc *, int);
132static void lge_rxeoc(struct lge_softc *);
133static void lge_txeof(struct lge_softc *);
134static void lge_intr(void *);
135static void lge_tick(void *);
136static void lge_start(struct ifnet *);
137static int lge_ioctl(struct ifnet *, u_long, caddr_t);
138static void lge_init(void *);
139static void lge_stop(struct lge_softc *);
140static void lge_watchdog(struct ifnet *);
141static void lge_shutdown(device_t);
142static int lge_ifmedia_upd(struct ifnet *);
143static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
144
145static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
146static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
147
148static int lge_miibus_readreg(device_t, int, int);
149static int lge_miibus_writereg(device_t, int, int, int);
150static void lge_miibus_statchg(device_t);
151
152static void lge_setmulti(struct lge_softc *);
153static void lge_reset(struct lge_softc *);
154static int lge_list_rx_init(struct lge_softc *);
155static int lge_list_tx_init(struct lge_softc *);
156
157#ifdef LGE_USEIOSPACE
158#define LGE_RES			SYS_RES_IOPORT
159#define LGE_RID			LGE_PCI_LOIO
160#else
161#define LGE_RES			SYS_RES_MEMORY
162#define LGE_RID			LGE_PCI_LOMEM
163#endif
164
165static device_method_t lge_methods[] = {
166	/* Device interface */
167	DEVMETHOD(device_probe,		lge_probe),
168	DEVMETHOD(device_attach,	lge_attach),
169	DEVMETHOD(device_detach,	lge_detach),
170	DEVMETHOD(device_shutdown,	lge_shutdown),
171
172	/* bus interface */
173	DEVMETHOD(bus_print_child,	bus_generic_print_child),
174	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
175
176	/* MII interface */
177	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
178	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
179	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
180
181	{ 0, 0 }
182};
183
184static driver_t lge_driver = {
185	"lge",
186	lge_methods,
187	sizeof(struct lge_softc)
188};
189
190static devclass_t lge_devclass;
191
192DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
193DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
194MODULE_DEPEND(lge, pci, 1, 1, 1);
195MODULE_DEPEND(lge, ether, 1, 1, 1);
196MODULE_DEPEND(lge, miibus, 1, 1, 1);
197
198#define LGE_SETBIT(sc, reg, x)				\
199	CSR_WRITE_4(sc, reg,				\
200		CSR_READ_4(sc, reg) | (x))
201
202#define LGE_CLRBIT(sc, reg, x)				\
203	CSR_WRITE_4(sc, reg,				\
204		CSR_READ_4(sc, reg) & ~(x))
205
206#define SIO_SET(x)					\
207	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
208
209#define SIO_CLR(x)					\
210	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
211
212/*
213 * Read a word of data stored in the EEPROM at address 'addr.'
214 */
215static void
216lge_eeprom_getword(sc, addr, dest)
217	struct lge_softc	*sc;
218	int			addr;
219	u_int16_t		*dest;
220{
221	register int		i;
222	u_int32_t		val;
223
224	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
225	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
226
227	for (i = 0; i < LGE_TIMEOUT; i++)
228		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
229			break;
230
231	if (i == LGE_TIMEOUT) {
232		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
233		return;
234	}
235
236	val = CSR_READ_4(sc, LGE_EEDATA);
237
238	if (addr & 1)
239		*dest = (val >> 16) & 0xFFFF;
240	else
241		*dest = val & 0xFFFF;
242
243	return;
244}
245
246/*
247 * Read a sequence of words from the EEPROM.
248 */
249static void
250lge_read_eeprom(sc, dest, off, cnt, swap)
251	struct lge_softc	*sc;
252	caddr_t			dest;
253	int			off;
254	int			cnt;
255	int			swap;
256{
257	int			i;
258	u_int16_t		word = 0, *ptr;
259
260	for (i = 0; i < cnt; i++) {
261		lge_eeprom_getword(sc, off + i, &word);
262		ptr = (u_int16_t *)(dest + (i * 2));
263		if (swap)
264			*ptr = ntohs(word);
265		else
266			*ptr = word;
267	}
268
269	return;
270}
271
272static int
273lge_miibus_readreg(dev, phy, reg)
274	device_t		dev;
275	int			phy, reg;
276{
277	struct lge_softc	*sc;
278	int			i;
279
280	sc = device_get_softc(dev);
281
282	/*
283	 * If we have a non-PCS PHY, pretend that the internal
284	 * autoneg stuff at PHY address 0 isn't there so that
285	 * the miibus code will find only the GMII PHY.
286	 */
287	if (sc->lge_pcs == 0 && phy == 0)
288		return(0);
289
290	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
291
292	for (i = 0; i < LGE_TIMEOUT; i++)
293		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
294			break;
295
296	if (i == LGE_TIMEOUT) {
297		printf("lge%d: PHY read timed out\n", sc->lge_unit);
298		return(0);
299	}
300
301	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
302}
303
304static int
305lge_miibus_writereg(dev, phy, reg, data)
306	device_t		dev;
307	int			phy, reg, data;
308{
309	struct lge_softc	*sc;
310	int			i;
311
312	sc = device_get_softc(dev);
313
314	CSR_WRITE_4(sc, LGE_GMIICTL,
315	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
316
317	for (i = 0; i < LGE_TIMEOUT; i++)
318		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
319			break;
320
321	if (i == LGE_TIMEOUT) {
322		printf("lge%d: PHY write timed out\n", sc->lge_unit);
323		return(0);
324	}
325
326	return(0);
327}
328
329static void
330lge_miibus_statchg(dev)
331	device_t		dev;
332{
333	struct lge_softc	*sc;
334	struct mii_data		*mii;
335
336	sc = device_get_softc(dev);
337	mii = device_get_softc(sc->lge_miibus);
338
339	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
340	switch (IFM_SUBTYPE(mii->mii_media_active)) {
341	case IFM_1000_T:
342	case IFM_1000_SX:
343		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
344		break;
345	case IFM_100_TX:
346		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
347		break;
348	case IFM_10_T:
349		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
350		break;
351	default:
352		/*
353		 * Choose something, even if it's wrong. Clearing
354		 * all the bits will hose autoneg on the internal
355		 * PHY.
356		 */
357		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
358		break;
359	}
360
361	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
362		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
363	} else {
364		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
365	}
366
367	return;
368}
369
370static void
371lge_setmulti(sc)
372	struct lge_softc	*sc;
373{
374	struct ifnet		*ifp;
375	struct ifmultiaddr	*ifma;
376	u_int32_t		h = 0, hashes[2] = { 0, 0 };
377
378	ifp = &sc->arpcom.ac_if;
379
380	/* Make sure multicast hash table is enabled. */
381	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
382
383	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
384		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
385		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
386		return;
387	}
388
389	/* first, zot all the existing hash bits */
390	CSR_WRITE_4(sc, LGE_MAR0, 0);
391	CSR_WRITE_4(sc, LGE_MAR1, 0);
392
393	/* now program new ones */
394	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
395		if (ifma->ifma_addr->sa_family != AF_LINK)
396			continue;
397		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
398		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
399		if (h < 32)
400			hashes[0] |= (1 << h);
401		else
402			hashes[1] |= (1 << (h - 32));
403	}
404
405	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
406	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
407
408	return;
409}
410
411static void
412lge_reset(sc)
413	struct lge_softc	*sc;
414{
415	register int		i;
416
417	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
418
419	for (i = 0; i < LGE_TIMEOUT; i++) {
420		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
421			break;
422	}
423
424	if (i == LGE_TIMEOUT)
425		printf("lge%d: reset never completed\n", sc->lge_unit);
426
427	/* Wait a little while for the chip to get its brains in order. */
428	DELAY(1000);
429
430        return;
431}
432
433/*
434 * Probe for a Level 1 chip. Check the PCI vendor and device
435 * IDs against our list and return a device name if we find a match.
436 */
437static int
438lge_probe(dev)
439	device_t		dev;
440{
441	struct lge_type		*t;
442
443	t = lge_devs;
444
445	while(t->lge_name != NULL) {
446		if ((pci_get_vendor(dev) == t->lge_vid) &&
447		    (pci_get_device(dev) == t->lge_did)) {
448			device_set_desc(dev, t->lge_name);
449			return(0);
450		}
451		t++;
452	}
453
454	return(ENXIO);
455}
456
457/*
458 * Attach the interface. Allocate softc structures, do ifmedia
459 * setup and ethernet/BPF attach.
460 */
461static int
462lge_attach(dev)
463	device_t		dev;
464{
465	int			s;
466	u_char			eaddr[ETHER_ADDR_LEN];
467	struct lge_softc	*sc;
468	struct ifnet		*ifp;
469	int			unit, error = 0, rid;
470
471	s = splimp();
472
473	sc = device_get_softc(dev);
474	unit = device_get_unit(dev);
475	bzero(sc, sizeof(struct lge_softc));
476	/*
477	 * Map control/status registers.
478	 */
479	pci_enable_busmaster(dev);
480
481	rid = LGE_RID;
482	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
483
484	if (sc->lge_res == NULL) {
485		printf("lge%d: couldn't map ports/memory\n", unit);
486		error = ENXIO;
487		goto fail;
488	}
489
490	sc->lge_btag = rman_get_bustag(sc->lge_res);
491	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
492
493	/* Allocate interrupt */
494	rid = 0;
495	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
496	    RF_SHAREABLE | RF_ACTIVE);
497
498	if (sc->lge_irq == NULL) {
499		printf("lge%d: couldn't map interrupt\n", unit);
500		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
501		error = ENXIO;
502		goto fail;
503	}
504
505	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
506	    lge_intr, sc, &sc->lge_intrhand);
507
508	if (error) {
509		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
510		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
511		printf("lge%d: couldn't set up irq\n", unit);
512		goto fail;
513	}
514
515	/* Reset the adapter. */
516	lge_reset(sc);
517
518	/*
519	 * Get station address from the EEPROM.
520	 */
521	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
522	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
523	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
524
525	sc->lge_unit = unit;
526	callout_handle_init(&sc->lge_stat_ch);
527	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
528
529	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
530	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
531
532	if (sc->lge_ldata == NULL) {
533		printf("lge%d: no memory for list buffers!\n", unit);
534		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
535		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
536		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
537		error = ENXIO;
538		goto fail;
539	}
540	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
541
542	/* Try to allocate memory for jumbo buffers. */
543	if (lge_alloc_jumbo_mem(sc)) {
544		printf("lge%d: jumbo buffer allocation failed\n",
545                    sc->lge_unit);
546		contigfree(sc->lge_ldata,
547		    sizeof(struct lge_list_data), M_DEVBUF);
548		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
549		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
550		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
551		error = ENXIO;
552		goto fail;
553	}
554
555	ifp = &sc->arpcom.ac_if;
556	ifp->if_softc = sc;
557	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
558	ifp->if_mtu = ETHERMTU;
559	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
560	    IFF_NEEDSGIANT;
561	ifp->if_ioctl = lge_ioctl;
562	ifp->if_start = lge_start;
563	ifp->if_watchdog = lge_watchdog;
564	ifp->if_init = lge_init;
565	ifp->if_baudrate = 1000000000;
566	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
567	ifp->if_capabilities = IFCAP_RXCSUM;
568	ifp->if_capenable = ifp->if_capabilities;
569
570	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
571		sc->lge_pcs = 1;
572	else
573		sc->lge_pcs = 0;
574
575	/*
576	 * Do MII setup.
577	 */
578	if (mii_phy_probe(dev, &sc->lge_miibus,
579	    lge_ifmedia_upd, lge_ifmedia_sts)) {
580		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
581		contigfree(sc->lge_ldata,
582		    sizeof(struct lge_list_data), M_DEVBUF);
583		lge_free_jumbo_mem(sc);
584		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
585		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
586		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
587		error = ENXIO;
588		goto fail;
589	}
590
591	/*
592	 * Call MI attach routine.
593	 */
594	ether_ifattach(ifp, eaddr);
595	callout_handle_init(&sc->lge_stat_ch);
596
597fail:
598	splx(s);
599	return(error);
600}
601
602static int
603lge_detach(dev)
604	device_t		dev;
605{
606	struct lge_softc	*sc;
607	struct ifnet		*ifp;
608	int			s;
609
610	s = splimp();
611
612	sc = device_get_softc(dev);
613	ifp = &sc->arpcom.ac_if;
614
615	lge_reset(sc);
616	lge_stop(sc);
617	ether_ifdetach(ifp);
618
619	bus_generic_detach(dev);
620	device_delete_child(dev, sc->lge_miibus);
621
622	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
623	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
624	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
625
626	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
627	lge_free_jumbo_mem(sc);
628
629	splx(s);
630
631	return(0);
632}
633
634/*
635 * Initialize the transmit descriptors.
636 */
637static int
638lge_list_tx_init(sc)
639	struct lge_softc	*sc;
640{
641	struct lge_list_data	*ld;
642	struct lge_ring_data	*cd;
643	int			i;
644
645	cd = &sc->lge_cdata;
646	ld = sc->lge_ldata;
647	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
648		ld->lge_tx_list[i].lge_mbuf = NULL;
649		ld->lge_tx_list[i].lge_ctl = 0;
650	}
651
652	cd->lge_tx_prod = cd->lge_tx_cons = 0;
653
654	return(0);
655}
656
657
658/*
659 * Initialize the RX descriptors and allocate mbufs for them. Note that
660 * we arralge the descriptors in a closed ring, so that the last descriptor
661 * points back to the first.
662 */
663static int
664lge_list_rx_init(sc)
665	struct lge_softc	*sc;
666{
667	struct lge_list_data	*ld;
668	struct lge_ring_data	*cd;
669	int			i;
670
671	ld = sc->lge_ldata;
672	cd = &sc->lge_cdata;
673
674	cd->lge_rx_prod = cd->lge_rx_cons = 0;
675
676	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
677
678	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
679		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
680			break;
681		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
682			return(ENOBUFS);
683	}
684
685	/* Clear possible 'rx command queue empty' interrupt. */
686	CSR_READ_4(sc, LGE_ISR);
687
688	return(0);
689}
690
691/*
692 * Initialize an RX descriptor and attach an MBUF cluster.
693 */
694static int
695lge_newbuf(sc, c, m)
696	struct lge_softc	*sc;
697	struct lge_rx_desc	*c;
698	struct mbuf		*m;
699{
700	struct mbuf		*m_new = NULL;
701	caddr_t			*buf = NULL;
702
703	if (m == NULL) {
704		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
705		if (m_new == NULL) {
706			printf("lge%d: no memory for rx list "
707			    "-- packet dropped!\n", sc->lge_unit);
708			return(ENOBUFS);
709		}
710
711		/* Allocate the jumbo buffer */
712		buf = lge_jalloc(sc);
713		if (buf == NULL) {
714#ifdef LGE_VERBOSE
715			printf("lge%d: jumbo allocation failed "
716			    "-- packet dropped!\n", sc->lge_unit);
717#endif
718			m_freem(m_new);
719			return(ENOBUFS);
720		}
721		/* Attach the buffer to the mbuf */
722		m_new->m_data = (void *)buf;
723		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
724		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
725		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
726	} else {
727		m_new = m;
728		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
729		m_new->m_data = m_new->m_ext.ext_buf;
730	}
731
732	/*
733	 * Adjust alignment so packet payload begins on a
734	 * longword boundary. Mandatory for Alpha, useful on
735	 * x86 too.
736	*/
737	m_adj(m_new, ETHER_ALIGN);
738
739	c->lge_mbuf = m_new;
740	c->lge_fragptr_hi = 0;
741	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
742	c->lge_fraglen = m_new->m_len;
743	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
744	c->lge_sts = 0;
745
746	/*
747	 * Put this buffer in the RX command FIFO. To do this,
748	 * we just write the physical address of the descriptor
749	 * into the RX descriptor address registers. Note that
750	 * there are two registers, one high DWORD and one low
751	 * DWORD, which lets us specify a 64-bit address if
752	 * desired. We only use a 32-bit address for now.
753	 * Writing to the low DWORD register is what actually
754	 * causes the command to be issued, so we do that
755	 * last.
756	 */
757	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
758	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
759
760	return(0);
761}
762
763static int
764lge_alloc_jumbo_mem(sc)
765	struct lge_softc	*sc;
766{
767	caddr_t			ptr;
768	register int		i;
769	struct lge_jpool_entry   *entry;
770
771	/* Grab a big chunk o' storage. */
772	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
773	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
774
775	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
776		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
777		return(ENOBUFS);
778	}
779
780	SLIST_INIT(&sc->lge_jfree_listhead);
781	SLIST_INIT(&sc->lge_jinuse_listhead);
782
783	/*
784	 * Now divide it up into 9K pieces and save the addresses
785	 * in an array.
786	 */
787	ptr = sc->lge_cdata.lge_jumbo_buf;
788	for (i = 0; i < LGE_JSLOTS; i++) {
789		sc->lge_cdata.lge_jslots[i] = ptr;
790		ptr += LGE_JLEN;
791		entry = malloc(sizeof(struct lge_jpool_entry),
792		    M_DEVBUF, M_NOWAIT);
793		if (entry == NULL) {
794			printf("lge%d: no memory for jumbo "
795			    "buffer queue!\n", sc->lge_unit);
796			return(ENOBUFS);
797		}
798		entry->slot = i;
799		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
800		    entry, jpool_entries);
801	}
802
803	return(0);
804}
805
806static void
807lge_free_jumbo_mem(sc)
808	struct lge_softc	*sc;
809{
810	int			i;
811	struct lge_jpool_entry	*entry;
812
813	for (i = 0; i < LGE_JSLOTS; i++) {
814		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
815		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
816		free(entry, M_DEVBUF);
817	}
818
819	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
820
821	return;
822}
823
824/*
825 * Allocate a jumbo buffer.
826 */
827static void *
828lge_jalloc(sc)
829	struct lge_softc	*sc;
830{
831	struct lge_jpool_entry   *entry;
832
833	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
834
835	if (entry == NULL) {
836#ifdef LGE_VERBOSE
837		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
838#endif
839		return(NULL);
840	}
841
842	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
843	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
844	return(sc->lge_cdata.lge_jslots[entry->slot]);
845}
846
847/*
848 * Release a jumbo buffer.
849 */
850static void
851lge_jfree(buf, args)
852	void			*buf;
853	void			*args;
854{
855	struct lge_softc	*sc;
856	int		        i;
857	struct lge_jpool_entry   *entry;
858
859	/* Extract the softc struct pointer. */
860	sc = args;
861
862	if (sc == NULL)
863		panic("lge_jfree: can't find softc pointer!");
864
865	/* calculate the slot this buffer belongs to */
866	i = ((vm_offset_t)buf
867	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
868
869	if ((i < 0) || (i >= LGE_JSLOTS))
870		panic("lge_jfree: asked to free buffer that we don't manage!");
871
872	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
873	if (entry == NULL)
874		panic("lge_jfree: buffer not in use!");
875	entry->slot = i;
876	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
877	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
878
879	return;
880}
881
882/*
883 * A frame has been uploaded: pass the resulting mbuf chain up to
884 * the higher level protocols.
885 */
886static void
887lge_rxeof(sc, cnt)
888	struct lge_softc	*sc;
889	int			cnt;
890{
891        struct mbuf		*m;
892        struct ifnet		*ifp;
893	struct lge_rx_desc	*cur_rx;
894	int			c, i, total_len = 0;
895	u_int32_t		rxsts, rxctl;
896
897	ifp = &sc->arpcom.ac_if;
898
899	/* Find out how many frames were processed. */
900	c = cnt;
901	i = sc->lge_cdata.lge_rx_cons;
902
903	/* Suck them in. */
904	while(c) {
905		struct mbuf		*m0 = NULL;
906
907		cur_rx = &sc->lge_ldata->lge_rx_list[i];
908		rxctl = cur_rx->lge_ctl;
909		rxsts = cur_rx->lge_sts;
910		m = cur_rx->lge_mbuf;
911		cur_rx->lge_mbuf = NULL;
912		total_len = LGE_RXBYTES(cur_rx);
913		LGE_INC(i, LGE_RX_LIST_CNT);
914		c--;
915
916		/*
917		 * If an error occurs, update stats, clear the
918		 * status word and leave the mbuf cluster in place:
919		 * it should simply get re-used next time this descriptor
920	 	 * comes up in the ring.
921		 */
922		if (rxctl & LGE_RXCTL_ERRMASK) {
923			ifp->if_ierrors++;
924			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
925			continue;
926		}
927
928		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
929			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
930			    ifp, NULL);
931			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
932			if (m0 == NULL) {
933				printf("lge%d: no receive buffers "
934				    "available -- packet dropped!\n",
935				    sc->lge_unit);
936				ifp->if_ierrors++;
937				continue;
938			}
939			m = m0;
940		} else {
941			m->m_pkthdr.rcvif = ifp;
942			m->m_pkthdr.len = m->m_len = total_len;
943		}
944
945		ifp->if_ipackets++;
946
947		/* Do IP checksum checking. */
948		if (rxsts & LGE_RXSTS_ISIP)
949			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
950		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
951			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
952		if ((rxsts & LGE_RXSTS_ISTCP &&
953		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
954		    (rxsts & LGE_RXSTS_ISUDP &&
955		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
956			m->m_pkthdr.csum_flags |=
957			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
958			m->m_pkthdr.csum_data = 0xffff;
959		}
960
961		(*ifp->if_input)(ifp, m);
962	}
963
964	sc->lge_cdata.lge_rx_cons = i;
965
966	return;
967}
968
969static void
970lge_rxeoc(sc)
971	struct lge_softc	*sc;
972{
973	struct ifnet		*ifp;
974
975	ifp = &sc->arpcom.ac_if;
976	ifp->if_flags &= ~IFF_RUNNING;
977	lge_init(sc);
978	return;
979}
980
981/*
982 * A frame was downloaded to the chip. It's safe for us to clean up
983 * the list buffers.
984 */
985
986static void
987lge_txeof(sc)
988	struct lge_softc	*sc;
989{
990	struct lge_tx_desc	*cur_tx = NULL;
991	struct ifnet		*ifp;
992	u_int32_t		idx, txdone;
993
994	ifp = &sc->arpcom.ac_if;
995
996	/* Clear the timeout timer. */
997	ifp->if_timer = 0;
998
999	/*
1000	 * Go through our tx list and free mbufs for those
1001	 * frames that have been transmitted.
1002	 */
1003	idx = sc->lge_cdata.lge_tx_cons;
1004	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1005
1006	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1007		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1008
1009		ifp->if_opackets++;
1010		if (cur_tx->lge_mbuf != NULL) {
1011			m_freem(cur_tx->lge_mbuf);
1012			cur_tx->lge_mbuf = NULL;
1013		}
1014		cur_tx->lge_ctl = 0;
1015
1016		txdone--;
1017		LGE_INC(idx, LGE_TX_LIST_CNT);
1018		ifp->if_timer = 0;
1019	}
1020
1021	sc->lge_cdata.lge_tx_cons = idx;
1022
1023	if (cur_tx != NULL)
1024		ifp->if_flags &= ~IFF_OACTIVE;
1025
1026	return;
1027}
1028
1029static void
1030lge_tick(xsc)
1031	void			*xsc;
1032{
1033	struct lge_softc	*sc;
1034	struct mii_data		*mii;
1035	struct ifnet		*ifp;
1036	int			s;
1037
1038	s = splimp();
1039
1040	sc = xsc;
1041	ifp = &sc->arpcom.ac_if;
1042
1043	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1044	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1045	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1046	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1047
1048	if (!sc->lge_link) {
1049		mii = device_get_softc(sc->lge_miibus);
1050		mii_tick(mii);
1051		if (mii->mii_media_status & IFM_ACTIVE &&
1052		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1053			sc->lge_link++;
1054			if (bootverbose &&
1055		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1056			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1057				printf("lge%d: gigabit link up\n",
1058				    sc->lge_unit);
1059			if (ifp->if_snd.ifq_head != NULL)
1060				lge_start(ifp);
1061		}
1062	}
1063
1064	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1065
1066	splx(s);
1067
1068	return;
1069}
1070
1071static void
1072lge_intr(arg)
1073	void			*arg;
1074{
1075	struct lge_softc	*sc;
1076	struct ifnet		*ifp;
1077	u_int32_t		status;
1078
1079	sc = arg;
1080	ifp = &sc->arpcom.ac_if;
1081
1082	/* Supress unwanted interrupts */
1083	if (!(ifp->if_flags & IFF_UP)) {
1084		lge_stop(sc);
1085		return;
1086	}
1087
1088	for (;;) {
1089		/*
1090		 * Reading the ISR register clears all interrupts, and
1091		 * clears the 'interrupts enabled' bit in the IMR
1092		 * register.
1093		 */
1094		status = CSR_READ_4(sc, LGE_ISR);
1095
1096		if ((status & LGE_INTRS) == 0)
1097			break;
1098
1099		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1100			lge_txeof(sc);
1101
1102		if (status & LGE_ISR_RXDMA_DONE)
1103			lge_rxeof(sc, LGE_RX_DMACNT(status));
1104
1105		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1106			lge_rxeoc(sc);
1107
1108		if (status & LGE_ISR_PHY_INTR) {
1109			sc->lge_link = 0;
1110			untimeout(lge_tick, sc, sc->lge_stat_ch);
1111			lge_tick(sc);
1112		}
1113	}
1114
1115	/* Re-enable interrupts. */
1116	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1117
1118	if (ifp->if_snd.ifq_head != NULL)
1119		lge_start(ifp);
1120
1121	return;
1122}
1123
1124/*
1125 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1126 * pointers to the fragment pointers.
1127 */
1128static int
1129lge_encap(sc, m_head, txidx)
1130	struct lge_softc	*sc;
1131	struct mbuf		*m_head;
1132	u_int32_t		*txidx;
1133{
1134	struct lge_frag		*f = NULL;
1135	struct lge_tx_desc	*cur_tx;
1136	struct mbuf		*m;
1137	int			frag = 0, tot_len = 0;
1138
1139	/*
1140 	 * Start packing the mbufs in this chain into
1141	 * the fragment pointers. Stop when we run out
1142 	 * of fragments or hit the end of the mbuf chain.
1143	 */
1144	m = m_head;
1145	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1146	frag = 0;
1147
1148	for (m = m_head; m != NULL; m = m->m_next) {
1149		if (m->m_len != 0) {
1150			tot_len += m->m_len;
1151			f = &cur_tx->lge_frags[frag];
1152			f->lge_fraglen = m->m_len;
1153			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1154			f->lge_fragptr_hi = 0;
1155			frag++;
1156		}
1157	}
1158
1159	if (m != NULL)
1160		return(ENOBUFS);
1161
1162	cur_tx->lge_mbuf = m_head;
1163	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1164	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1165
1166	/* Queue for transmit */
1167	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1168
1169	return(0);
1170}
1171
1172/*
1173 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1174 * to the mbuf data regions directly in the transmit lists. We also save a
1175 * copy of the pointers since the transmit list fragment pointers are
1176 * physical addresses.
1177 */
1178
1179static void
1180lge_start(ifp)
1181	struct ifnet		*ifp;
1182{
1183	struct lge_softc	*sc;
1184	struct mbuf		*m_head = NULL;
1185	u_int32_t		idx;
1186
1187	sc = ifp->if_softc;
1188
1189	if (!sc->lge_link)
1190		return;
1191
1192	idx = sc->lge_cdata.lge_tx_prod;
1193
1194	if (ifp->if_flags & IFF_OACTIVE)
1195		return;
1196
1197	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1198		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1199			break;
1200
1201		IF_DEQUEUE(&ifp->if_snd, m_head);
1202		if (m_head == NULL)
1203			break;
1204
1205		if (lge_encap(sc, m_head, &idx)) {
1206			IF_PREPEND(&ifp->if_snd, m_head);
1207			ifp->if_flags |= IFF_OACTIVE;
1208			break;
1209		}
1210
1211		/*
1212		 * If there's a BPF listener, bounce a copy of this frame
1213		 * to him.
1214		 */
1215		BPF_MTAP(ifp, m_head);
1216	}
1217
1218	sc->lge_cdata.lge_tx_prod = idx;
1219
1220	/*
1221	 * Set a timeout in case the chip goes out to lunch.
1222	 */
1223	ifp->if_timer = 5;
1224
1225	return;
1226}
1227
1228static void
1229lge_init(xsc)
1230	void			*xsc;
1231{
1232	struct lge_softc	*sc = xsc;
1233	struct ifnet		*ifp = &sc->arpcom.ac_if;
1234	struct mii_data		*mii;
1235	int			s;
1236
1237	if (ifp->if_flags & IFF_RUNNING)
1238		return;
1239
1240	s = splimp();
1241
1242	/*
1243	 * Cancel pending I/O and free all RX/TX buffers.
1244	 */
1245	lge_stop(sc);
1246	lge_reset(sc);
1247
1248	mii = device_get_softc(sc->lge_miibus);
1249
1250	/* Set MAC address */
1251	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1252	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1253
1254	/* Init circular RX list. */
1255	if (lge_list_rx_init(sc) == ENOBUFS) {
1256		printf("lge%d: initialization failed: no "
1257		    "memory for rx buffers\n", sc->lge_unit);
1258		lge_stop(sc);
1259		(void)splx(s);
1260		return;
1261	}
1262
1263	/*
1264	 * Init tx descriptors.
1265	 */
1266	lge_list_tx_init(sc);
1267
1268	/* Set initial value for MODE1 register. */
1269	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1270	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1271	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1272	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1273
1274	 /* If we want promiscuous mode, set the allframes bit. */
1275	if (ifp->if_flags & IFF_PROMISC) {
1276		CSR_WRITE_4(sc, LGE_MODE1,
1277		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1278	} else {
1279		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1280	}
1281
1282	/*
1283	 * Set the capture broadcast bit to capture broadcast frames.
1284	 */
1285	if (ifp->if_flags & IFF_BROADCAST) {
1286		CSR_WRITE_4(sc, LGE_MODE1,
1287		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1288	} else {
1289		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1290	}
1291
1292	/* Packet padding workaround? */
1293	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1294
1295	/* No error frames */
1296	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1297
1298	/* Receive large frames */
1299	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1300
1301	/* Workaround: disable RX/TX flow control */
1302	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1303	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1304
1305	/* Make sure to strip CRC from received frames */
1306	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1307
1308	/* Turn off magic packet mode */
1309	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1310
1311	/* Turn off all VLAN stuff */
1312	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1313	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1314
1315	/* Workarond: FIFO overflow */
1316	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1317	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1318
1319	/*
1320	 * Load the multicast filter.
1321	 */
1322	lge_setmulti(sc);
1323
1324	/*
1325	 * Enable hardware checksum validation for all received IPv4
1326	 * packets, do not reject packets with bad checksums.
1327	 */
1328	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1329	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1330	    LGE_MODE2_RX_ERRCSUM);
1331
1332	/*
1333	 * Enable the delivery of PHY interrupts based on
1334	 * link/speed/duplex status chalges.
1335	 */
1336	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1337
1338	/* Enable receiver and transmitter. */
1339	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1340	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1341
1342	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1343	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1344
1345	/*
1346	 * Enable interrupts.
1347	 */
1348	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1349	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1350
1351	lge_ifmedia_upd(ifp);
1352
1353	ifp->if_flags |= IFF_RUNNING;
1354	ifp->if_flags &= ~IFF_OACTIVE;
1355
1356	(void)splx(s);
1357
1358	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1359
1360	return;
1361}
1362
1363/*
1364 * Set media options.
1365 */
1366static int
1367lge_ifmedia_upd(ifp)
1368	struct ifnet		*ifp;
1369{
1370	struct lge_softc	*sc;
1371	struct mii_data		*mii;
1372
1373	sc = ifp->if_softc;
1374
1375	mii = device_get_softc(sc->lge_miibus);
1376	sc->lge_link = 0;
1377	if (mii->mii_instance) {
1378		struct mii_softc	*miisc;
1379		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1380		    miisc = LIST_NEXT(miisc, mii_list))
1381			mii_phy_reset(miisc);
1382	}
1383	mii_mediachg(mii);
1384
1385	return(0);
1386}
1387
1388/*
1389 * Report current media status.
1390 */
1391static void
1392lge_ifmedia_sts(ifp, ifmr)
1393	struct ifnet		*ifp;
1394	struct ifmediareq	*ifmr;
1395{
1396	struct lge_softc	*sc;
1397	struct mii_data		*mii;
1398
1399	sc = ifp->if_softc;
1400
1401	mii = device_get_softc(sc->lge_miibus);
1402	mii_pollstat(mii);
1403	ifmr->ifm_active = mii->mii_media_active;
1404	ifmr->ifm_status = mii->mii_media_status;
1405
1406	return;
1407}
1408
1409static int
1410lge_ioctl(ifp, command, data)
1411	struct ifnet		*ifp;
1412	u_long			command;
1413	caddr_t			data;
1414{
1415	struct lge_softc	*sc = ifp->if_softc;
1416	struct ifreq		*ifr = (struct ifreq *) data;
1417	struct mii_data		*mii;
1418	int			s, error = 0;
1419
1420	s = splimp();
1421
1422	switch(command) {
1423	case SIOCSIFMTU:
1424		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1425			error = EINVAL;
1426		else
1427			ifp->if_mtu = ifr->ifr_mtu;
1428		break;
1429	case SIOCSIFFLAGS:
1430		if (ifp->if_flags & IFF_UP) {
1431			if (ifp->if_flags & IFF_RUNNING &&
1432			    ifp->if_flags & IFF_PROMISC &&
1433			    !(sc->lge_if_flags & IFF_PROMISC)) {
1434				CSR_WRITE_4(sc, LGE_MODE1,
1435				    LGE_MODE1_SETRST_CTL1|
1436				    LGE_MODE1_RX_PROMISC);
1437			} else if (ifp->if_flags & IFF_RUNNING &&
1438			    !(ifp->if_flags & IFF_PROMISC) &&
1439			    sc->lge_if_flags & IFF_PROMISC) {
1440				CSR_WRITE_4(sc, LGE_MODE1,
1441				    LGE_MODE1_RX_PROMISC);
1442			} else {
1443				ifp->if_flags &= ~IFF_RUNNING;
1444				lge_init(sc);
1445			}
1446		} else {
1447			if (ifp->if_flags & IFF_RUNNING)
1448				lge_stop(sc);
1449		}
1450		sc->lge_if_flags = ifp->if_flags;
1451		error = 0;
1452		break;
1453	case SIOCADDMULTI:
1454	case SIOCDELMULTI:
1455		lge_setmulti(sc);
1456		error = 0;
1457		break;
1458	case SIOCGIFMEDIA:
1459	case SIOCSIFMEDIA:
1460		mii = device_get_softc(sc->lge_miibus);
1461		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1462		break;
1463	default:
1464		error = ether_ioctl(ifp, command, data);
1465		break;
1466	}
1467
1468	(void)splx(s);
1469
1470	return(error);
1471}
1472
1473static void
1474lge_watchdog(ifp)
1475	struct ifnet		*ifp;
1476{
1477	struct lge_softc	*sc;
1478
1479	sc = ifp->if_softc;
1480
1481	ifp->if_oerrors++;
1482	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1483
1484	lge_stop(sc);
1485	lge_reset(sc);
1486	ifp->if_flags &= ~IFF_RUNNING;
1487	lge_init(sc);
1488
1489	if (ifp->if_snd.ifq_head != NULL)
1490		lge_start(ifp);
1491
1492	return;
1493}
1494
1495/*
1496 * Stop the adapter and free any mbufs allocated to the
1497 * RX and TX lists.
1498 */
1499static void
1500lge_stop(sc)
1501	struct lge_softc	*sc;
1502{
1503	register int		i;
1504	struct ifnet		*ifp;
1505
1506	ifp = &sc->arpcom.ac_if;
1507	ifp->if_timer = 0;
1508	untimeout(lge_tick, sc, sc->lge_stat_ch);
1509	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1510
1511	/* Disable receiver and transmitter. */
1512	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1513	sc->lge_link = 0;
1514
1515	/*
1516	 * Free data in the RX lists.
1517	 */
1518	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1519		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1520			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1521			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1522		}
1523	}
1524	bzero((char *)&sc->lge_ldata->lge_rx_list,
1525		sizeof(sc->lge_ldata->lge_rx_list));
1526
1527	/*
1528	 * Free the TX list buffers.
1529	 */
1530	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1531		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1532			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1533			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1534		}
1535	}
1536
1537	bzero((char *)&sc->lge_ldata->lge_tx_list,
1538		sizeof(sc->lge_ldata->lge_tx_list));
1539
1540	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1541
1542	return;
1543}
1544
1545/*
1546 * Stop all chip I/O so that the kernel's probe routines don't
1547 * get confused by errant DMAs when rebooting.
1548 */
1549static void
1550lge_shutdown(dev)
1551	device_t		dev;
1552{
1553	struct lge_softc	*sc;
1554
1555	sc = device_get_softc(dev);
1556
1557	lge_reset(sc);
1558	lge_stop(sc);
1559
1560	return;
1561}
1562