isci_controller.c revision 276174
1209867Snwhitehorn/*-
2209867Snwhitehorn * BSD LICENSE
3209867Snwhitehorn *
4209867Snwhitehorn * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
5209867Snwhitehorn * All rights reserved.
6209867Snwhitehorn *
7209867Snwhitehorn * Redistribution and use in source and binary forms, with or without
8218822Sdim * modification, are permitted provided that the following conditions
9209867Snwhitehorn * are met:
10209867Snwhitehorn *
11209867Snwhitehorn *   * Redistributions of source code must retain the above copyright
12209867Snwhitehorn *     notice, this list of conditions and the following disclaimer.
13209867Snwhitehorn *   * Redistributions in binary form must reproduce the above copyright
14209867Snwhitehorn *     notice, this list of conditions and the following disclaimer in
15209867Snwhitehorn *     the documentation and/or other materials provided with the
16209867Snwhitehorn *     distribution.
17209867Snwhitehorn *
18209867Snwhitehorn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19209867Snwhitehorn * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20209867Snwhitehorn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21209867Snwhitehorn * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22209867Snwhitehorn * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23209867Snwhitehorn * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24218822Sdim * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25209867Snwhitehorn * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26209867Snwhitehorn * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27209867Snwhitehorn * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28209867Snwhitehorn * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29209867Snwhitehorn */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/isci/isci_controller.c 276174 2014-12-24 07:04:04Z scottl $");
33
34#include <dev/isci/isci.h>
35
36#include <sys/conf.h>
37#include <sys/malloc.h>
38
39#include <cam/cam_periph.h>
40#include <cam/cam_xpt_periph.h>
41
42#include <dev/isci/scil/sci_memory_descriptor_list.h>
43#include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
44
45#include <dev/isci/scil/scif_controller.h>
46#include <dev/isci/scil/scif_library.h>
47#include <dev/isci/scil/scif_io_request.h>
48#include <dev/isci/scil/scif_task_request.h>
49#include <dev/isci/scil/scif_remote_device.h>
50#include <dev/isci/scil/scif_domain.h>
51#include <dev/isci/scil/scif_user_callback.h>
52#include <dev/isci/scil/scic_sgpio.h>
53
54#include <dev/led/led.h>
55
56void isci_action(struct cam_sim *sim, union ccb *ccb);
57void isci_poll(struct cam_sim *sim);
58
59#define ccb_sim_ptr sim_priv.entries[0].ptr
60
61/**
62 * @brief This user callback will inform the user that the controller has
63 *        had a serious unexpected error.  The user should not the error,
64 *        disable interrupts, and wait for current ongoing processing to
65 *        complete.  Subsequently, the user should reset the controller.
66 *
67 * @param[in]  controller This parameter specifies the controller that had
68 *                        an error.
69 *
70 * @return none
71 */
72void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
73    SCI_CONTROLLER_ERROR error)
74{
75
76	isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
77	    error);
78}
79
80/**
81 * @brief This user callback will inform the user that the controller has
82 *        finished the start process.
83 *
84 * @param[in]  controller This parameter specifies the controller that was
85 *             started.
86 * @param[in]  completion_status This parameter specifies the results of
87 *             the start operation.  SCI_SUCCESS indicates successful
88 *             completion.
89 *
90 * @return none
91 */
92void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
93    SCI_STATUS completion_status)
94{
95	uint32_t index;
96	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
97	    sci_object_get_association(controller);
98
99	isci_controller->is_started = TRUE;
100
101	/* Set bits for all domains.  We will clear them one-by-one once
102	 *  the domains complete discovery, or return error when calling
103	 *  scif_domain_discover.  Once all bits are clear, we will register
104	 *  the controller with CAM.
105	 */
106	isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
107
108	for(index = 0; index < SCI_MAX_DOMAINS; index++) {
109		SCI_STATUS status;
110		SCI_DOMAIN_HANDLE_T domain =
111		    isci_controller->domain[index].sci_object;
112
113		status = scif_domain_discover(
114			domain,
115			scif_domain_get_suggested_discover_timeout(domain),
116			DEVICE_TIMEOUT
117		);
118
119		if (status != SCI_SUCCESS)
120		{
121			isci_controller_domain_discovery_complete(
122			    isci_controller, &isci_controller->domain[index]);
123		}
124	}
125}
126
127/**
128 * @brief This user callback will inform the user that the controller has
129 *        finished the stop process. Note, after user calls
130 *        scif_controller_stop(), before user receives this controller stop
131 *        complete callback, user should not expect any callback from
132 *        framework, such like scif_cb_domain_change_notification().
133 *
134 * @param[in]  controller This parameter specifies the controller that was
135 *             stopped.
136 * @param[in]  completion_status This parameter specifies the results of
137 *             the stop operation.  SCI_SUCCESS indicates successful
138 *             completion.
139 *
140 * @return none
141 */
142void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
143    SCI_STATUS completion_status)
144{
145	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
146	    sci_object_get_association(controller);
147
148	isci_controller->is_started = FALSE;
149}
150
151static void
152isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
153{
154	SCI_PHYSICAL_ADDRESS *phys_addr = arg;
155
156	*phys_addr = seg[0].ds_addr;
157}
158
159/**
160 * @brief This method will be invoked to allocate memory dynamically.
161 *
162 * @param[in]  controller This parameter represents the controller
163 *             object for which to allocate memory.
164 * @param[out] mde This parameter represents the memory descriptor to
165 *             be filled in by the user that will reference the newly
166 *             allocated memory.
167 *
168 * @return none
169 */
170void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
171    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
172{
173	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
174	    sci_object_get_association(controller);
175
176	/*
177	 * Note this routine is only used for buffers needed to translate
178	 * SCSI UNMAP commands to ATA DSM commands for SATA disks.
179	 *
180	 * We first try to pull a buffer from the controller's pool, and only
181	 * call contigmalloc if one isn't there.
182	 */
183	if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
184		sci_pool_get(isci_controller->unmap_buffer_pool,
185		    mde->virtual_address);
186	} else
187		mde->virtual_address = contigmalloc(PAGE_SIZE,
188		    M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
189		    mde->constant_memory_alignment, 0);
190
191	if (mde->virtual_address != NULL)
192		bus_dmamap_load(isci_controller->buffer_dma_tag,
193		    NULL, mde->virtual_address, PAGE_SIZE,
194		    isci_single_map, &mde->physical_address,
195		    BUS_DMA_NOWAIT);
196}
197
198/**
199 * @brief This method will be invoked to allocate memory dynamically.
200 *
201 * @param[in]  controller This parameter represents the controller
202 *             object for which to allocate memory.
203 * @param[out] mde This parameter represents the memory descriptor to
204 *             be filled in by the user that will reference the newly
205 *             allocated memory.
206 *
207 * @return none
208 */
209void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
210    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
211{
212	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
213	    sci_object_get_association(controller);
214
215	/*
216	 * Put the buffer back into the controller's buffer pool, rather
217	 * than invoking configfree.  This helps reduce chance we won't
218	 * have buffers available when system is under memory pressure.
219	 */
220	sci_pool_put(isci_controller->unmap_buffer_pool,
221	    mde->virtual_address);
222}
223
224void isci_controller_construct(struct ISCI_CONTROLLER *controller,
225    struct isci_softc *isci)
226{
227	SCI_CONTROLLER_HANDLE_T scif_controller_handle;
228
229	scif_library_allocate_controller(isci->sci_library_handle,
230	    &scif_controller_handle);
231
232	scif_controller_construct(isci->sci_library_handle,
233	    scif_controller_handle, NULL);
234
235	controller->isci = isci;
236	controller->scif_controller_handle = scif_controller_handle;
237
238	/* This allows us to later use
239	 *  sci_object_get_association(scif_controller_handle)
240	 * inside of a callback routine to get our struct ISCI_CONTROLLER object
241	 */
242	sci_object_set_association(scif_controller_handle, (void *)controller);
243
244	controller->is_started = FALSE;
245	controller->is_frozen = FALSE;
246	controller->release_queued_ccbs = FALSE;
247	controller->sim = NULL;
248	controller->initial_discovery_mask = 0;
249
250	sci_fast_list_init(&controller->pending_device_reset_list);
251
252	mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
253
254	uint32_t domain_index;
255
256	for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
257		isci_domain_construct( &controller->domain[domain_index],
258		    domain_index, controller);
259	}
260
261	controller->timer_memory = malloc(
262	    sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
263	    M_NOWAIT | M_ZERO);
264
265	sci_pool_initialize(controller->timer_pool);
266
267	struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
268	    controller->timer_memory;
269
270	for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
271		sci_pool_put(controller->timer_pool, timer++);
272	}
273
274	sci_pool_initialize(controller->unmap_buffer_pool);
275}
276
277static void isci_led_fault_func(void *priv, int onoff)
278{
279	struct ISCI_PHY *phy = priv;
280
281	/* map onoff to the fault LED */
282	phy->led_fault = onoff;
283	scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
284		phy->led_fault, phy->led_locate, 0);
285}
286
287static void isci_led_locate_func(void *priv, int onoff)
288{
289	struct ISCI_PHY *phy = priv;
290
291	/* map onoff to the locate LED */
292	phy->led_locate = onoff;
293	scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
294		phy->led_fault, phy->led_locate, 0);
295}
296
297SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
298{
299	SCIC_USER_PARAMETERS_T scic_user_parameters;
300	SCI_CONTROLLER_HANDLE_T scic_controller_handle;
301	char led_name[64];
302	unsigned long tunable;
303	uint32_t io_shortage;
304	uint32_t fail_on_timeout;
305	int i;
306
307	scic_controller_handle =
308	    scif_controller_get_scic_handle(controller->scif_controller_handle);
309
310	if (controller->isci->oem_parameters_found == TRUE)
311	{
312		scic_oem_parameters_set(
313		    scic_controller_handle,
314		    &controller->oem_parameters,
315		    (uint8_t)(controller->oem_parameters_version));
316	}
317
318	scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
319
320	if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
321		scic_user_parameters.sds1.no_outbound_task_timeout =
322		    (uint8_t)tunable;
323
324	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
325		scic_user_parameters.sds1.ssp_max_occupancy_timeout =
326		    (uint16_t)tunable;
327
328	if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
329		scic_user_parameters.sds1.stp_max_occupancy_timeout =
330		    (uint16_t)tunable;
331
332	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
333		scic_user_parameters.sds1.ssp_inactivity_timeout =
334		    (uint16_t)tunable;
335
336	if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
337		scic_user_parameters.sds1.stp_inactivity_timeout =
338		    (uint16_t)tunable;
339
340	if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
341		for (i = 0; i < SCI_MAX_PHYS; i++)
342			scic_user_parameters.sds1.phys[i].max_speed_generation =
343			    (uint8_t)tunable;
344
345	scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
346
347	/* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
348	 *  a workaround - one per domain.
349	 */
350	controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
351
352	if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
353	    &controller->queue_depth)) {
354		controller->queue_depth = max(1, min(controller->queue_depth,
355		    SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
356	}
357
358	/* Reserve one request so that we can ensure we have one available TC
359	 *  to do internal device resets.
360	 */
361	controller->sim_queue_depth = controller->queue_depth - 1;
362
363	/* Although we save one TC to do internal device resets, it is possible
364	 *  we could end up using several TCs for simultaneous device resets
365	 *  while at the same time having CAM fill our controller queue.  To
366	 *  simulate this condition, and how our driver handles it, we can set
367	 *  this io_shortage parameter, which will tell CAM that we have a
368	 *  large queue depth than we really do.
369	 */
370	io_shortage = 0;
371	TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
372	controller->sim_queue_depth += io_shortage;
373
374	fail_on_timeout = 1;
375	TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout);
376	controller->fail_on_task_timeout = fail_on_timeout;
377
378	/* Attach to CAM using xpt_bus_register now, then immediately freeze
379	 *  the simq.  It will get released later when initial domain discovery
380	 *  is complete.
381	 */
382	controller->has_been_scanned = FALSE;
383	mtx_lock(&controller->lock);
384	isci_controller_attach_to_cam(controller);
385	xpt_freeze_simq(controller->sim, 1);
386	mtx_unlock(&controller->lock);
387
388	for (i = 0; i < SCI_MAX_PHYS; i++) {
389		controller->phys[i].handle = scic_controller_handle;
390		controller->phys[i].index = i;
391
392		/* fault */
393		controller->phys[i].led_fault = 0;
394		sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
395		controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
396		    &controller->phys[i], led_name);
397
398		/* locate */
399		controller->phys[i].led_locate = 0;
400		sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
401		controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
402		    &controller->phys[i], led_name);
403	}
404
405	return (scif_controller_initialize(controller->scif_controller_handle));
406}
407
408int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
409{
410	int error;
411	device_t device =  controller->isci->device;
412	uint32_t max_segment_size = isci_io_request_get_max_io_size();
413	uint32_t status = 0;
414	struct ISCI_MEMORY *uncached_controller_memory =
415	    &controller->uncached_controller_memory;
416	struct ISCI_MEMORY *cached_controller_memory =
417	    &controller->cached_controller_memory;
418	struct ISCI_MEMORY *request_memory =
419	    &controller->request_memory;
420	POINTER_UINT virtual_address;
421	bus_addr_t physical_address;
422
423	controller->mdl = sci_controller_get_memory_descriptor_list_handle(
424	    controller->scif_controller_handle);
425
426	uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
427	    controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
428
429	error = isci_allocate_dma_buffer(device, uncached_controller_memory);
430
431	if (error != 0)
432	    return (error);
433
434	sci_mdl_decorator_assign_memory( controller->mdl,
435	    SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
436	    uncached_controller_memory->virtual_address,
437	    uncached_controller_memory->physical_address);
438
439	cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
440	    controller->mdl,
441	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
442	);
443
444	error = isci_allocate_dma_buffer(device, cached_controller_memory);
445
446	if (error != 0)
447	    return (error);
448
449	sci_mdl_decorator_assign_memory(controller->mdl,
450	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
451	    cached_controller_memory->virtual_address,
452	    cached_controller_memory->physical_address);
453
454	request_memory->size =
455	    controller->queue_depth * isci_io_request_get_object_size();
456
457	error = isci_allocate_dma_buffer(device, request_memory);
458
459	if (error != 0)
460	    return (error);
461
462	/* For STP PIO testing, we want to ensure we can force multiple SGLs
463	 *  since this has been a problem area in SCIL.  This tunable parameter
464	 *  will allow us to force DMA segments to a smaller size, ensuring
465	 *  that even if a physically contiguous buffer is attached to this
466	 *  I/O, the DMA subsystem will pass us multiple segments in our DMA
467	 *  load callback.
468	 */
469	TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
470
471	/* Create DMA tag for our I/O requests.  Then we can create DMA maps based off
472	 *  of this tag and store them in each of our ISCI_IO_REQUEST objects.  This
473	 *  will enable better performance than creating the DMA maps everytime we get
474	 *  an I/O.
475	 */
476	status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0,
477	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
478	    isci_io_request_get_max_io_size(),
479	    SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL,
480	    &controller->buffer_dma_tag);
481
482	sci_pool_initialize(controller->request_pool);
483
484	virtual_address = request_memory->virtual_address;
485	physical_address = request_memory->physical_address;
486
487	for (int i = 0; i < controller->queue_depth; i++) {
488		struct ISCI_REQUEST *request =
489		    (struct ISCI_REQUEST *)virtual_address;
490
491		isci_request_construct(request,
492		    controller->scif_controller_handle,
493		    controller->buffer_dma_tag, physical_address);
494
495		sci_pool_put(controller->request_pool, request);
496
497		virtual_address += isci_request_get_object_size();
498		physical_address += isci_request_get_object_size();
499	}
500
501	uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
502	    scif_remote_device_get_object_size();
503
504	controller->remote_device_memory = (uint8_t *) malloc(
505	    remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
506	    M_NOWAIT | M_ZERO);
507
508	sci_pool_initialize(controller->remote_device_pool);
509
510	uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
511
512	for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
513		struct ISCI_REMOTE_DEVICE *remote_device =
514		    (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
515
516		controller->remote_device[i] = NULL;
517		remote_device->index = i;
518		remote_device->is_resetting = FALSE;
519		remote_device->frozen_lun_mask = 0;
520		sci_fast_list_element_init(remote_device,
521		    &remote_device->pending_device_reset_element);
522		TAILQ_INIT(&remote_device->queued_ccbs);
523		remote_device->release_queued_ccb = FALSE;
524		remote_device->queued_ccb_in_progress = NULL;
525
526		/*
527		 * For the first SCI_MAX_DOMAINS device objects, do not put
528		 *  them in the pool, rather assign them to each domain.  This
529		 *  ensures that any device attached directly to port "i" will
530		 *  always get CAM target id "i".
531		 */
532		if (i < SCI_MAX_DOMAINS)
533			controller->domain[i].da_remote_device = remote_device;
534		else
535			sci_pool_put(controller->remote_device_pool,
536			    remote_device);
537		remote_device_memory_ptr += remote_device_size;
538	}
539
540	return (0);
541}
542
543void isci_controller_start(void *controller_handle)
544{
545	struct ISCI_CONTROLLER *controller =
546	    (struct ISCI_CONTROLLER *)controller_handle;
547	SCI_CONTROLLER_HANDLE_T scif_controller_handle =
548	    controller->scif_controller_handle;
549
550	scif_controller_start(scif_controller_handle,
551	    scif_controller_get_suggested_start_timeout(scif_controller_handle));
552
553	scic_controller_enable_interrupts(
554	    scif_controller_get_scic_handle(controller->scif_controller_handle));
555}
556
557void isci_controller_domain_discovery_complete(
558    struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
559{
560	if (!isci_controller->has_been_scanned)
561	{
562		/* Controller has not been scanned yet.  We'll clear
563		 *  the discovery bit for this domain, then check if all bits
564		 *  are now clear.  That would indicate that all domains are
565		 *  done with discovery and we can then proceed with initial
566		 *  scan.
567		 */
568
569		isci_controller->initial_discovery_mask &=
570		    ~(1 << isci_domain->index);
571
572		if (isci_controller->initial_discovery_mask == 0) {
573			struct isci_softc *driver = isci_controller->isci;
574			uint8_t next_index = isci_controller->index + 1;
575
576			isci_controller->has_been_scanned = TRUE;
577
578			/* Unfreeze simq to allow initial scan to proceed. */
579			xpt_release_simq(isci_controller->sim, TRUE);
580
581#if __FreeBSD_version < 800000
582			/* When driver is loaded after boot, we need to
583			 *  explicitly rescan here for versions <8.0, because
584			 *  CAM only automatically scans new buses at boot
585			 *  time.
586			 */
587			union ccb *ccb = xpt_alloc_ccb_nowait();
588
589			xpt_create_path(&ccb->ccb_h.path, NULL,
590			    cam_sim_path(isci_controller->sim),
591			    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
592
593			xpt_rescan(ccb);
594#endif
595
596			if (next_index < driver->controller_count) {
597				/*  There are more controllers that need to
598				 *   start.  So start the next one.
599				 */
600				isci_controller_start(
601				    &driver->controllers[next_index]);
602			}
603			else
604			{
605				/* All controllers have been started and completed discovery.
606				 *  Disestablish the config hook while will signal to the
607				 *  kernel during boot that it is safe to try to find and
608				 *  mount the root partition.
609				 */
610				config_intrhook_disestablish(
611				    &driver->config_hook);
612			}
613		}
614	}
615}
616
617int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
618{
619	struct isci_softc *isci = controller->isci;
620	device_t parent = device_get_parent(isci->device);
621	int unit = device_get_unit(isci->device);
622	struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
623
624	if(isci_devq == NULL) {
625		isci_log_message(0, "ISCI", "isci_devq is NULL \n");
626		return (-1);
627	}
628
629	controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
630	    controller, unit, &controller->lock, controller->sim_queue_depth,
631	    controller->sim_queue_depth, isci_devq);
632
633	if(controller->sim == NULL) {
634		isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
635		cam_simq_free(isci_devq);
636		return (-1);
637	}
638
639	if(xpt_bus_register(controller->sim, parent, controller->index)
640	    != CAM_SUCCESS) {
641		isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
642		cam_sim_free(controller->sim, TRUE);
643		mtx_unlock(&controller->lock);
644		return (-1);
645	}
646
647	if(xpt_create_path(&controller->path, NULL,
648	    cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
649	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
650		isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
651		xpt_bus_deregister(cam_sim_path(controller->sim));
652		cam_sim_free(controller->sim, TRUE);
653		mtx_unlock(&controller->lock);
654		return (-1);
655	}
656
657	return (0);
658}
659
660void isci_poll(struct cam_sim *sim)
661{
662	struct ISCI_CONTROLLER *controller =
663	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
664
665	isci_interrupt_poll_handler(controller);
666}
667
668void isci_action(struct cam_sim *sim, union ccb *ccb)
669{
670	struct ISCI_CONTROLLER *controller =
671	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
672
673	switch ( ccb->ccb_h.func_code ) {
674	case XPT_PATH_INQ:
675		{
676			struct ccb_pathinq *cpi = &ccb->cpi;
677			int bus = cam_sim_bus(sim);
678			ccb->ccb_h.ccb_sim_ptr = sim;
679			cpi->version_num = 1;
680			cpi->hba_inquiry = PI_TAG_ABLE;
681			cpi->target_sprt = 0;
682			cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
683			    PIM_UNMAPPED;
684			cpi->hba_eng_cnt = 0;
685			cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
686			cpi->max_lun = ISCI_MAX_LUN;
687#if __FreeBSD_version >= 800102
688			cpi->maxio = isci_io_request_get_max_io_size();
689#endif
690			cpi->unit_number = cam_sim_unit(sim);
691			cpi->bus_id = bus;
692			cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
693			cpi->base_transfer_speed = 300000;
694			strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
695			strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
696			strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
697			cpi->transport = XPORT_SAS;
698			cpi->transport_version = 0;
699			cpi->protocol = PROTO_SCSI;
700			cpi->protocol_version = SCSI_REV_SPC2;
701			cpi->ccb_h.status = CAM_REQ_CMP;
702			xpt_done(ccb);
703		}
704		break;
705	case XPT_GET_TRAN_SETTINGS:
706		{
707			struct ccb_trans_settings *general_settings = &ccb->cts;
708			struct ccb_trans_settings_sas *sas_settings =
709			    &general_settings->xport_specific.sas;
710			struct ccb_trans_settings_scsi *scsi_settings =
711			    &general_settings->proto_specific.scsi;
712			struct ISCI_REMOTE_DEVICE *remote_device;
713
714			remote_device = controller->remote_device[ccb->ccb_h.target_id];
715
716			if (remote_device == NULL) {
717				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
718				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
719				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
720				xpt_done(ccb);
721				break;
722			}
723
724			general_settings->protocol = PROTO_SCSI;
725			general_settings->transport = XPORT_SAS;
726			general_settings->protocol_version = SCSI_REV_SPC2;
727			general_settings->transport_version = 0;
728			scsi_settings->valid = CTS_SCSI_VALID_TQ;
729			scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
730			ccb->ccb_h.status &= ~CAM_STATUS_MASK;
731			ccb->ccb_h.status |= CAM_REQ_CMP;
732
733			sas_settings->bitrate =
734			    isci_remote_device_get_bitrate(remote_device);
735
736			if (sas_settings->bitrate != 0)
737				sas_settings->valid = CTS_SAS_VALID_SPEED;
738
739			xpt_done(ccb);
740		}
741		break;
742	case XPT_SCSI_IO:
743		isci_io_request_execute_scsi_io(ccb, controller);
744		break;
745#if __FreeBSD_version >= 900026
746	case XPT_SMP_IO:
747		isci_io_request_execute_smp_io(ccb, controller);
748		break;
749#endif
750	case XPT_SET_TRAN_SETTINGS:
751		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
752		ccb->ccb_h.status |= CAM_REQ_CMP;
753		xpt_done(ccb);
754		break;
755	case XPT_CALC_GEOMETRY:
756		cam_calc_geometry(&ccb->ccg, /*extended*/1);
757		xpt_done(ccb);
758		break;
759	case XPT_RESET_DEV:
760		{
761			struct ISCI_REMOTE_DEVICE *remote_device =
762			    controller->remote_device[ccb->ccb_h.target_id];
763
764			if (remote_device != NULL)
765				isci_remote_device_reset(remote_device, ccb);
766			else {
767				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
768				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
769				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
770				xpt_done(ccb);
771			}
772		}
773		break;
774	case XPT_RESET_BUS:
775		ccb->ccb_h.status = CAM_REQ_CMP;
776		xpt_done(ccb);
777		break;
778	default:
779		isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
780		    ccb->ccb_h.func_code);
781		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
782		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
783		ccb->ccb_h.status |= CAM_REQ_INVALID;
784		xpt_done(ccb);
785		break;
786	}
787}
788
789/*
790 * Unfortunately, SCIL doesn't cleanly handle retry conditions.
791 *  CAM_REQUEUE_REQ works only when no one is using the pass(4) interface.  So
792 *  when SCIL denotes an I/O needs to be retried (typically because of mixing
793 *  tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
794 *  these I/O internally.  Once SCIL completes an I/O to this device, or we get
795 *  a ready notification, we will retry the first I/O on the queue.
796 *  Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
797 *  the context of the completion handler, so we need to retry these I/O after
798 *  the completion handler is done executing.
799 */
800void
801isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
802{
803	struct ISCI_REMOTE_DEVICE *dev;
804	struct ccb_hdr *ccb_h;
805	int dev_idx;
806
807	KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
808
809	controller->release_queued_ccbs = FALSE;
810	for (dev_idx = 0;
811	     dev_idx < SCI_MAX_REMOTE_DEVICES;
812	     dev_idx++) {
813
814		dev = controller->remote_device[dev_idx];
815		if (dev != NULL &&
816		    dev->release_queued_ccb == TRUE &&
817		    dev->queued_ccb_in_progress == NULL) {
818			dev->release_queued_ccb = FALSE;
819			ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
820
821			if (ccb_h == NULL)
822				continue;
823
824			isci_log_message(1, "ISCI", "release %p %x\n", ccb_h,
825			    ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]);
826
827			dev->queued_ccb_in_progress = (union ccb *)ccb_h;
828			isci_io_request_execute_scsi_io(
829			    (union ccb *)ccb_h, controller);
830		}
831	}
832}
833