isci_controller.c revision 239545
1/*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 *   * Redistributions of source code must retain the above copyright
12 *     notice, this list of conditions and the following disclaimer.
13 *   * Redistributions in binary form must reproduce the above copyright
14 *     notice, this list of conditions and the following disclaimer in
15 *     the documentation and/or other materials provided with the
16 *     distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/isci/isci_controller.c 239545 2012-08-21 22:28:14Z jimharris $");
33
34#include <dev/isci/isci.h>
35
36#include <sys/conf.h>
37#include <sys/malloc.h>
38
39#include <cam/cam_periph.h>
40#include <cam/cam_xpt_periph.h>
41
42#include <dev/isci/scil/sci_memory_descriptor_list.h>
43#include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
44
45#include <dev/isci/scil/scif_controller.h>
46#include <dev/isci/scil/scif_library.h>
47#include <dev/isci/scil/scif_io_request.h>
48#include <dev/isci/scil/scif_task_request.h>
49#include <dev/isci/scil/scif_remote_device.h>
50#include <dev/isci/scil/scif_domain.h>
51#include <dev/isci/scil/scif_user_callback.h>
52
53void isci_action(struct cam_sim *sim, union ccb *ccb);
54void isci_poll(struct cam_sim *sim);
55
56#define ccb_sim_ptr sim_priv.entries[0].ptr
57
58/**
59 * @brief This user callback will inform the user that the controller has
60 *        had a serious unexpected error.  The user should not the error,
61 *        disable interrupts, and wait for current ongoing processing to
62 *        complete.  Subsequently, the user should reset the controller.
63 *
64 * @param[in]  controller This parameter specifies the controller that had
65 *                        an error.
66 *
67 * @return none
68 */
69void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
70    SCI_CONTROLLER_ERROR error)
71{
72
73	isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
74	    error);
75}
76
77/**
78 * @brief This user callback will inform the user that the controller has
79 *        finished the start process.
80 *
81 * @param[in]  controller This parameter specifies the controller that was
82 *             started.
83 * @param[in]  completion_status This parameter specifies the results of
84 *             the start operation.  SCI_SUCCESS indicates successful
85 *             completion.
86 *
87 * @return none
88 */
89void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
90    SCI_STATUS completion_status)
91{
92	uint32_t index;
93	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
94	    sci_object_get_association(controller);
95
96	isci_controller->is_started = TRUE;
97
98	/* Set bits for all domains.  We will clear them one-by-one once
99	 *  the domains complete discovery, or return error when calling
100	 *  scif_domain_discover.  Once all bits are clear, we will register
101	 *  the controller with CAM.
102	 */
103	isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
104
105	for(index = 0; index < SCI_MAX_DOMAINS; index++) {
106		SCI_STATUS status;
107		SCI_DOMAIN_HANDLE_T domain =
108		    isci_controller->domain[index].sci_object;
109
110		status = scif_domain_discover(
111			domain,
112			scif_domain_get_suggested_discover_timeout(domain),
113			DEVICE_TIMEOUT
114		);
115
116		if (status != SCI_SUCCESS)
117		{
118			isci_controller_domain_discovery_complete(
119			    isci_controller, &isci_controller->domain[index]);
120		}
121	}
122}
123
124/**
125 * @brief This user callback will inform the user that the controller has
126 *        finished the stop process. Note, after user calls
127 *        scif_controller_stop(), before user receives this controller stop
128 *        complete callback, user should not expect any callback from
129 *        framework, such like scif_cb_domain_change_notification().
130 *
131 * @param[in]  controller This parameter specifies the controller that was
132 *             stopped.
133 * @param[in]  completion_status This parameter specifies the results of
134 *             the stop operation.  SCI_SUCCESS indicates successful
135 *             completion.
136 *
137 * @return none
138 */
139void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
140    SCI_STATUS completion_status)
141{
142	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
143	    sci_object_get_association(controller);
144
145	isci_controller->is_started = FALSE;
146}
147
148static void
149isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
150{
151	SCI_PHYSICAL_ADDRESS *phys_addr = arg;
152
153	*phys_addr = seg[0].ds_addr;
154}
155
156/**
157 * @brief This method will be invoked to allocate memory dynamically.
158 *
159 * @param[in]  controller This parameter represents the controller
160 *             object for which to allocate memory.
161 * @param[out] mde This parameter represents the memory descriptor to
162 *             be filled in by the user that will reference the newly
163 *             allocated memory.
164 *
165 * @return none
166 */
167void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
168    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
169{
170	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
171	    sci_object_get_association(controller);
172
173	/*
174	 * Note this routine is only used for buffers needed to translate
175	 * SCSI UNMAP commands to ATA DSM commands for SATA disks.
176	 *
177	 * We first try to pull a buffer from the controller's pool, and only
178	 * call contigmalloc if one isn't there.
179	 */
180	if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
181		sci_pool_get(isci_controller->unmap_buffer_pool,
182		    mde->virtual_address);
183	} else
184		mde->virtual_address = contigmalloc(PAGE_SIZE,
185		    M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
186		    mde->constant_memory_alignment, 0);
187
188	if (mde->virtual_address != NULL)
189		bus_dmamap_load(isci_controller->buffer_dma_tag,
190		    NULL, mde->virtual_address, PAGE_SIZE,
191		    isci_single_map, &mde->physical_address,
192		    BUS_DMA_NOWAIT);
193}
194
195/**
196 * @brief This method will be invoked to allocate memory dynamically.
197 *
198 * @param[in]  controller This parameter represents the controller
199 *             object for which to allocate memory.
200 * @param[out] mde This parameter represents the memory descriptor to
201 *             be filled in by the user that will reference the newly
202 *             allocated memory.
203 *
204 * @return none
205 */
206void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
207    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
208{
209	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
210	    sci_object_get_association(controller);
211
212	/*
213	 * Put the buffer back into the controller's buffer pool, rather
214	 * than invoking configfree.  This helps reduce chance we won't
215	 * have buffers available when system is under memory pressure.
216	 */
217	sci_pool_put(isci_controller->unmap_buffer_pool,
218	    mde->virtual_address);
219}
220
221void isci_controller_construct(struct ISCI_CONTROLLER *controller,
222    struct isci_softc *isci)
223{
224	SCI_CONTROLLER_HANDLE_T scif_controller_handle;
225
226	scif_library_allocate_controller(isci->sci_library_handle,
227	    &scif_controller_handle);
228
229	scif_controller_construct(isci->sci_library_handle,
230	    scif_controller_handle, NULL);
231
232	controller->isci = isci;
233	controller->scif_controller_handle = scif_controller_handle;
234
235	/* This allows us to later use
236	 *  sci_object_get_association(scif_controller_handle)
237	 * inside of a callback routine to get our struct ISCI_CONTROLLER object
238	 */
239	sci_object_set_association(scif_controller_handle, (void *)controller);
240
241	controller->is_started = FALSE;
242	controller->is_frozen = FALSE;
243	controller->release_queued_ccbs = FALSE;
244	controller->sim = NULL;
245	controller->initial_discovery_mask = 0;
246
247	sci_fast_list_init(&controller->pending_device_reset_list);
248
249	mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
250
251	uint32_t domain_index;
252
253	for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
254		isci_domain_construct( &controller->domain[domain_index],
255		    domain_index, controller);
256	}
257
258	controller->timer_memory = malloc(
259	    sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
260	    M_NOWAIT | M_ZERO);
261
262	sci_pool_initialize(controller->timer_pool);
263
264	struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
265	    controller->timer_memory;
266
267	for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
268		sci_pool_put(controller->timer_pool, timer++);
269	}
270
271	sci_pool_initialize(controller->unmap_buffer_pool);
272}
273
274SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
275{
276	SCIC_USER_PARAMETERS_T scic_user_parameters;
277	SCI_CONTROLLER_HANDLE_T scic_controller_handle;
278	unsigned long tunable;
279	int i;
280
281	scic_controller_handle =
282	    scif_controller_get_scic_handle(controller->scif_controller_handle);
283
284	if (controller->isci->oem_parameters_found == TRUE)
285	{
286		scic_oem_parameters_set(
287		    scic_controller_handle,
288		    &controller->oem_parameters,
289		    (uint8_t)(controller->oem_parameters_version));
290	}
291
292	scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
293
294	if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
295		scic_user_parameters.sds1.no_outbound_task_timeout =
296		    (uint8_t)tunable;
297
298	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
299		scic_user_parameters.sds1.ssp_max_occupancy_timeout =
300		    (uint16_t)tunable;
301
302	if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
303		scic_user_parameters.sds1.stp_max_occupancy_timeout =
304		    (uint16_t)tunable;
305
306	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
307		scic_user_parameters.sds1.ssp_inactivity_timeout =
308		    (uint16_t)tunable;
309
310	if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
311		scic_user_parameters.sds1.stp_inactivity_timeout =
312		    (uint16_t)tunable;
313
314	if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
315		for (i = 0; i < SCI_MAX_PHYS; i++)
316			scic_user_parameters.sds1.phys[i].max_speed_generation =
317			    (uint8_t)tunable;
318
319	scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
320
321	/* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
322	 *  a workaround - one per domain.
323	 */
324	controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
325
326	if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
327	    &controller->queue_depth)) {
328		controller->queue_depth = max(1, min(controller->queue_depth,
329		    SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
330	}
331
332	/* Reserve one request so that we can ensure we have one available TC
333	 *  to do internal device resets.
334	 */
335	controller->sim_queue_depth = controller->queue_depth - 1;
336
337	/* Although we save one TC to do internal device resets, it is possible
338	 *  we could end up using several TCs for simultaneous device resets
339	 *  while at the same time having CAM fill our controller queue.  To
340	 *  simulate this condition, and how our driver handles it, we can set
341	 *  this io_shortage parameter, which will tell CAM that we have a
342	 *  large queue depth than we really do.
343	 */
344	uint32_t io_shortage = 0;
345	TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
346	controller->sim_queue_depth += io_shortage;
347
348	/* Attach to CAM using xpt_bus_register now, then immediately freeze
349	 *  the simq.  It will get released later when initial domain discovery
350	 *  is complete.
351	 */
352	controller->has_been_scanned = FALSE;
353	mtx_lock(&controller->lock);
354	isci_controller_attach_to_cam(controller);
355	xpt_freeze_simq(controller->sim, 1);
356	mtx_unlock(&controller->lock);
357
358	return (scif_controller_initialize(controller->scif_controller_handle));
359}
360
361int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
362{
363	int error;
364	device_t device =  controller->isci->device;
365	uint32_t max_segment_size = isci_io_request_get_max_io_size();
366	uint32_t status = 0;
367	struct ISCI_MEMORY *uncached_controller_memory =
368	    &controller->uncached_controller_memory;
369	struct ISCI_MEMORY *cached_controller_memory =
370	    &controller->cached_controller_memory;
371	struct ISCI_MEMORY *request_memory =
372	    &controller->request_memory;
373	POINTER_UINT virtual_address;
374	bus_addr_t physical_address;
375
376	controller->mdl = sci_controller_get_memory_descriptor_list_handle(
377	    controller->scif_controller_handle);
378
379	uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
380	    controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
381
382	error = isci_allocate_dma_buffer(device, uncached_controller_memory);
383
384	if (error != 0)
385	    return (error);
386
387	sci_mdl_decorator_assign_memory( controller->mdl,
388	    SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
389	    uncached_controller_memory->virtual_address,
390	    uncached_controller_memory->physical_address);
391
392	cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
393	    controller->mdl,
394	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
395	);
396
397	error = isci_allocate_dma_buffer(device, cached_controller_memory);
398
399	if (error != 0)
400	    return (error);
401
402	sci_mdl_decorator_assign_memory(controller->mdl,
403	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
404	    cached_controller_memory->virtual_address,
405	    cached_controller_memory->physical_address);
406
407	request_memory->size =
408	    controller->queue_depth * isci_io_request_get_object_size();
409
410	error = isci_allocate_dma_buffer(device, request_memory);
411
412	if (error != 0)
413	    return (error);
414
415	/* For STP PIO testing, we want to ensure we can force multiple SGLs
416	 *  since this has been a problem area in SCIL.  This tunable parameter
417	 *  will allow us to force DMA segments to a smaller size, ensuring
418	 *  that even if a physically contiguous buffer is attached to this
419	 *  I/O, the DMA subsystem will pass us multiple segments in our DMA
420	 *  load callback.
421	 */
422	TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
423
424	/* Create DMA tag for our I/O requests.  Then we can create DMA maps based off
425	 *  of this tag and store them in each of our ISCI_IO_REQUEST objects.  This
426	 *  will enable better performance than creating the DMA maps everytime we get
427	 *  an I/O.
428	 */
429	status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0,
430	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
431	    isci_io_request_get_max_io_size(),
432	    SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL,
433	    &controller->buffer_dma_tag);
434
435	sci_pool_initialize(controller->request_pool);
436
437	virtual_address = request_memory->virtual_address;
438	physical_address = request_memory->physical_address;
439
440	for (int i = 0; i < controller->queue_depth; i++) {
441		struct ISCI_REQUEST *request =
442		    (struct ISCI_REQUEST *)virtual_address;
443
444		isci_request_construct(request,
445		    controller->scif_controller_handle,
446		    controller->buffer_dma_tag, physical_address);
447
448		sci_pool_put(controller->request_pool, request);
449
450		virtual_address += isci_request_get_object_size();
451		physical_address += isci_request_get_object_size();
452	}
453
454	uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
455	    scif_remote_device_get_object_size();
456
457	controller->remote_device_memory = (uint8_t *) malloc(
458	    remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
459	    M_NOWAIT | M_ZERO);
460
461	sci_pool_initialize(controller->remote_device_pool);
462
463	uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
464
465	for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
466		struct ISCI_REMOTE_DEVICE *remote_device =
467		    (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
468
469		controller->remote_device[i] = NULL;
470		remote_device->index = i;
471		remote_device->is_resetting = FALSE;
472		remote_device->frozen_lun_mask = 0;
473		sci_fast_list_element_init(remote_device,
474		    &remote_device->pending_device_reset_element);
475		TAILQ_INIT(&remote_device->queued_ccbs);
476		remote_device->release_queued_ccb = FALSE;
477		remote_device->queued_ccb_in_progress = NULL;
478
479		/*
480		 * For the first SCI_MAX_DOMAINS device objects, do not put
481		 *  them in the pool, rather assign them to each domain.  This
482		 *  ensures that any device attached directly to port "i" will
483		 *  always get CAM target id "i".
484		 */
485		if (i < SCI_MAX_DOMAINS)
486			controller->domain[i].da_remote_device = remote_device;
487		else
488			sci_pool_put(controller->remote_device_pool,
489			    remote_device);
490		remote_device_memory_ptr += remote_device_size;
491	}
492
493	return (0);
494}
495
496void isci_controller_start(void *controller_handle)
497{
498	struct ISCI_CONTROLLER *controller =
499	    (struct ISCI_CONTROLLER *)controller_handle;
500	SCI_CONTROLLER_HANDLE_T scif_controller_handle =
501	    controller->scif_controller_handle;
502
503	scif_controller_start(scif_controller_handle,
504	    scif_controller_get_suggested_start_timeout(scif_controller_handle));
505
506	scic_controller_enable_interrupts(
507	    scif_controller_get_scic_handle(controller->scif_controller_handle));
508}
509
510void isci_controller_domain_discovery_complete(
511    struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
512{
513	if (!isci_controller->has_been_scanned)
514	{
515		/* Controller has not been scanned yet.  We'll clear
516		 *  the discovery bit for this domain, then check if all bits
517		 *  are now clear.  That would indicate that all domains are
518		 *  done with discovery and we can then proceed with initial
519		 *  scan.
520		 */
521
522		isci_controller->initial_discovery_mask &=
523		    ~(1 << isci_domain->index);
524
525		if (isci_controller->initial_discovery_mask == 0) {
526			struct isci_softc *driver = isci_controller->isci;
527			uint8_t next_index = isci_controller->index + 1;
528
529			isci_controller->has_been_scanned = TRUE;
530
531			/* Unfreeze simq to allow initial scan to proceed. */
532			xpt_release_simq(isci_controller->sim, TRUE);
533
534#if __FreeBSD_version < 800000
535			/* When driver is loaded after boot, we need to
536			 *  explicitly rescan here for versions <8.0, because
537			 *  CAM only automatically scans new buses at boot
538			 *  time.
539			 */
540			union ccb *ccb = xpt_alloc_ccb_nowait();
541
542			xpt_create_path(&ccb->ccb_h.path, xpt_periph,
543			    cam_sim_path(isci_controller->sim),
544			    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
545
546			xpt_rescan(ccb);
547#endif
548
549			if (next_index < driver->controller_count) {
550				/*  There are more controllers that need to
551				 *   start.  So start the next one.
552				 */
553				isci_controller_start(
554				    &driver->controllers[next_index]);
555			}
556			else
557			{
558				/* All controllers have been started and completed discovery.
559				 *  Disestablish the config hook while will signal to the
560				 *  kernel during boot that it is safe to try to find and
561				 *  mount the root partition.
562				 */
563				config_intrhook_disestablish(
564				    &driver->config_hook);
565			}
566		}
567	}
568}
569
570int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
571{
572	struct isci_softc *isci = controller->isci;
573	device_t parent = device_get_parent(isci->device);
574	int unit = device_get_unit(isci->device);
575	struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
576
577	if(isci_devq == NULL) {
578		isci_log_message(0, "ISCI", "isci_devq is NULL \n");
579		return (-1);
580	}
581
582	controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
583	    controller, unit, &controller->lock, controller->sim_queue_depth,
584	    controller->sim_queue_depth, isci_devq);
585
586	if(controller->sim == NULL) {
587		isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
588		cam_simq_free(isci_devq);
589		return (-1);
590	}
591
592	if(xpt_bus_register(controller->sim, parent, controller->index)
593	    != CAM_SUCCESS) {
594		isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
595		cam_sim_free(controller->sim, TRUE);
596		mtx_unlock(&controller->lock);
597		return (-1);
598	}
599
600	if(xpt_create_path(&controller->path, NULL,
601	    cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
602	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
603		isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
604		xpt_bus_deregister(cam_sim_path(controller->sim));
605		cam_sim_free(controller->sim, TRUE);
606		mtx_unlock(&controller->lock);
607		return (-1);
608	}
609
610	return (0);
611}
612
613void isci_poll(struct cam_sim *sim)
614{
615	struct ISCI_CONTROLLER *controller =
616	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
617
618	isci_interrupt_poll_handler(controller);
619}
620
621void isci_action(struct cam_sim *sim, union ccb *ccb)
622{
623	struct ISCI_CONTROLLER *controller =
624	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
625
626	switch ( ccb->ccb_h.func_code ) {
627	case XPT_PATH_INQ:
628		{
629			struct ccb_pathinq *cpi = &ccb->cpi;
630			int bus = cam_sim_bus(sim);
631			ccb->ccb_h.ccb_sim_ptr = sim;
632			cpi->version_num = 1;
633			cpi->hba_inquiry = PI_TAG_ABLE;
634			cpi->target_sprt = 0;
635			cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
636			cpi->hba_eng_cnt = 0;
637			cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
638			cpi->max_lun = ISCI_MAX_LUN;
639#if __FreeBSD_version >= 800102
640			cpi->maxio = isci_io_request_get_max_io_size();
641#endif
642			cpi->unit_number = cam_sim_unit(sim);
643			cpi->bus_id = bus;
644			cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
645			cpi->base_transfer_speed = 300000;
646			strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
647			strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
648			strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
649			cpi->transport = XPORT_SAS;
650			cpi->transport_version = 0;
651			cpi->protocol = PROTO_SCSI;
652			cpi->protocol_version = SCSI_REV_SPC2;
653			cpi->ccb_h.status = CAM_REQ_CMP;
654			xpt_done(ccb);
655		}
656		break;
657	case XPT_GET_TRAN_SETTINGS:
658		{
659			struct ccb_trans_settings *general_settings = &ccb->cts;
660			struct ccb_trans_settings_sas *sas_settings =
661			    &general_settings->xport_specific.sas;
662			struct ccb_trans_settings_scsi *scsi_settings =
663			    &general_settings->proto_specific.scsi;
664			struct ISCI_REMOTE_DEVICE *remote_device;
665
666			remote_device = controller->remote_device[ccb->ccb_h.target_id];
667
668			if (remote_device == NULL) {
669				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
670				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
671				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
672				xpt_done(ccb);
673				break;
674			}
675
676			general_settings->protocol = PROTO_SCSI;
677			general_settings->transport = XPORT_SAS;
678			general_settings->protocol_version = SCSI_REV_SPC2;
679			general_settings->transport_version = 0;
680			scsi_settings->valid = CTS_SCSI_VALID_TQ;
681			scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
682			ccb->ccb_h.status &= ~CAM_STATUS_MASK;
683			ccb->ccb_h.status |= CAM_REQ_CMP;
684
685			sas_settings->bitrate =
686			    isci_remote_device_get_bitrate(remote_device);
687
688			if (sas_settings->bitrate != 0)
689				sas_settings->valid = CTS_SAS_VALID_SPEED;
690
691			xpt_done(ccb);
692		}
693		break;
694	case XPT_SCSI_IO:
695		isci_io_request_execute_scsi_io(ccb, controller);
696		break;
697#if __FreeBSD_version >= 900026
698	case XPT_SMP_IO:
699		isci_io_request_execute_smp_io(ccb, controller);
700		break;
701#endif
702	case XPT_SET_TRAN_SETTINGS:
703		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
704		ccb->ccb_h.status |= CAM_REQ_CMP;
705		xpt_done(ccb);
706		break;
707	case XPT_CALC_GEOMETRY:
708		cam_calc_geometry(&ccb->ccg, /*extended*/1);
709		xpt_done(ccb);
710		break;
711	case XPT_RESET_DEV:
712		{
713			struct ISCI_REMOTE_DEVICE *remote_device =
714			    controller->remote_device[ccb->ccb_h.target_id];
715
716			if (remote_device != NULL)
717				isci_remote_device_reset(remote_device, ccb);
718			else {
719				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
720				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
721				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
722				xpt_done(ccb);
723			}
724		}
725		break;
726	case XPT_RESET_BUS:
727		ccb->ccb_h.status = CAM_REQ_CMP;
728		xpt_done(ccb);
729		break;
730	default:
731		isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
732		    ccb->ccb_h.func_code);
733		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
734		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
735		ccb->ccb_h.status |= CAM_REQ_INVALID;
736		xpt_done(ccb);
737		break;
738	}
739}
740
741/*
742 * Unfortunately, SCIL doesn't cleanly handle retry conditions.
743 *  CAM_REQUEUE_REQ works only when no one is using the pass(4) interface.  So
744 *  when SCIL denotes an I/O needs to be retried (typically because of mixing
745 *  tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
746 *  these I/O internally.  Once SCIL completes an I/O to this device, or we get
747 *  a ready notification, we will retry the first I/O on the queue.
748 *  Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
749 *  the context of the completion handler, so we need to retry these I/O after
750 *  the completion handler is done executing.
751 */
752void
753isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
754{
755	struct ISCI_REMOTE_DEVICE *dev;
756	struct ccb_hdr *ccb_h;
757	int dev_idx;
758
759	KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
760
761	controller->release_queued_ccbs = FALSE;
762	for (dev_idx = 0;
763	     dev_idx < SCI_MAX_REMOTE_DEVICES;
764	     dev_idx++) {
765
766		dev = controller->remote_device[dev_idx];
767		if (dev != NULL &&
768		    dev->release_queued_ccb == TRUE &&
769		    dev->queued_ccb_in_progress == NULL) {
770			dev->release_queued_ccb = FALSE;
771			ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
772
773			if (ccb_h == NULL)
774				continue;
775
776			isci_log_message(1, "ISCI", "release %p %x\n", ccb_h,
777			    ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]);
778
779			dev->queued_ccb_in_progress = (union ccb *)ccb_h;
780			isci_io_request_execute_scsi_io(
781			    (union ccb *)ccb_h, controller);
782		}
783	}
784}
785