hwpmc_piv.c revision 185341
1/*-
2 * Copyright (c) 2003-2007 Joseph Koshy
3 * Copyright (c) 2007 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by A. Joseph Koshy under
7 * sponsorship from the FreeBSD Foundation and Google, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/hwpmc/hwpmc_piv.c 185341 2008-11-26 19:25:13Z jkim $");
33
34#include <sys/param.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/pmc.h>
38#include <sys/pmckern.h>
39#include <sys/smp.h>
40#include <sys/systm.h>
41
42#include <machine/cpu.h>
43#include <machine/cpufunc.h>
44#include <machine/cputypes.h>
45#include <machine/md_var.h>
46#include <machine/specialreg.h>
47
48/*
49 * PENTIUM 4 SUPPORT
50 *
51 * The P4 has 18 PMCs, divided into 4 groups with 4,4,4 and 6 PMCs
52 * respectively.  Each PMC comprises of two model specific registers:
53 * a counter configuration control register (CCCR) and a counter
54 * register that holds the actual event counts.
55 *
56 * Configuring an event requires the use of one of 45 event selection
57 * control registers (ESCR).  Events are associated with specific
58 * ESCRs.  Each PMC group has a set of ESCRs it can use.
59 *
60 * - The BPU counter group (4 PMCs) can use the 16 ESCRs:
61 *   BPU_ESCR{0,1}, IS_ESCR{0,1}, MOB_ESCR{0,1}, ITLB_ESCR{0,1},
62 *   PMH_ESCR{0,1}, IX_ESCR{0,1}, FSB_ESCR{0,}, BSU_ESCR{0,1}.
63 *
64 * - The MS counter group (4 PMCs) can use the 6 ESCRs: MS_ESCR{0,1},
65 *   TC_ESCR{0,1}, TBPU_ESCR{0,1}.
66 *
67 * - The FLAME counter group (4 PMCs) can use the 10 ESCRs:
68 *   FLAME_ESCR{0,1}, FIRM_ESCR{0,1}, SAAT_ESCR{0,1}, U2L_ESCR{0,1},
69 *   DAC_ESCR{0,1}.
70 *
71 * - The IQ counter group (6 PMCs) can use the 13 ESCRs: IQ_ESCR{0,1},
72 *   ALF_ESCR{0,1}, RAT_ESCR{0,1}, SSU_ESCR0, CRU_ESCR{0,1,2,3,4,5}.
73 *
74 * Even-numbered ESCRs can be used with counters 0, 1 and 4 (if
75 * present) of a counter group.  Odd-numbers ESCRs can be used with
76 * counters 2, 3 and 5 (if present) of a counter group.  The
77 * 'p4_escrs[]' table describes these restrictions in a form that
78 * function 'p4_allocate()' uses for making allocation decisions.
79 *
80 * SYSTEM-MODE AND THREAD-MODE ALLOCATION
81 *
82 * In addition to remembering the state of PMC rows
83 * ('FREE','STANDALONE', or 'THREAD'), we similar need to track the
84 * state of ESCR rows.  If an ESCR is allocated to a system-mode PMC
85 * on a CPU we cannot allocate this to a thread-mode PMC.  On a
86 * multi-cpu (multiple physical CPUs) system, ESCR allocation on each
87 * CPU is tracked by the pc_escrs[] array.
88 *
89 * Each system-mode PMC that is using an ESCR records its row-index in
90 * the appropriate entry and system-mode allocation attempts check
91 * that an ESCR is available using this array.  Process-mode PMCs do
92 * not use the pc_escrs[] array, since ESCR row itself would have been
93 * marked as in 'THREAD' mode.
94 *
95 * HYPERTHREADING SUPPORT
96 *
97 * When HTT is enabled, the FreeBSD kernel treats the two 'logical'
98 * cpus as independent CPUs and can schedule kernel threads on them
99 * independently.  However, the two logical CPUs share the same set of
100 * PMC resources.  We need to ensure that:
101 * - PMCs that use the PMC_F_DESCENDANTS semantics are handled correctly,
102 *   and,
103 * - Threads of multi-threaded processes that get scheduled on the same
104 *   physical CPU are handled correctly.
105 *
106 * HTT Detection
107 *
108 * Not all HTT capable systems will have HTT enabled.  We detect the
109 * presence of HTT by detecting if 'p4_init()' was called for a secondary
110 * CPU in a HTT pair.
111 *
112 * Note that hwpmc(4) cannot currently deal with a change in HTT status once
113 * loaded.
114 *
115 * Handling HTT READ / WRITE / START / STOP
116 *
117 * PMC resources are shared across the CPUs in an HTT pair.  We
118 * designate the lower numbered CPU in a HTT pair as the 'primary'
119 * CPU.  In each primary CPU's state we keep track of a 'runcount'
120 * which reflects the number of PMC-using processes that have been
121 * scheduled on its secondary CPU.  Process-mode PMC operations will
122 * actually 'start' or 'stop' hardware only if these are the first or
123 * last processes respectively to use the hardware.  PMC values
124 * written by a 'write' operation are saved and are transferred to
125 * hardware at PMC 'start' time if the runcount is 0.  If the runcount
126 * is greater than 0 at the time of a 'start' operation, we keep track
127 * of the actual hardware value at the time of the 'start' operation
128 * and use this to adjust the final readings at PMC 'stop' or 'read'
129 * time.
130 *
131 * Execution sequences:
132 *
133 * Case 1:   CPUx   +...-		(no overlap)
134 *	     CPUy         +...-
135 *           RC   0 1   0 1   0
136 *
137 * Case 2:   CPUx   +........-		(partial overlap)
138 * 	     CPUy       +........-
139 *           RC   0 1   2    1   0
140 *
141 * Case 3:   CPUx   +..............-	(fully overlapped)
142 *	     CPUy       +.....-
143 *	     RC   0 1   2     1    0
144 *
145 *     Key:
146 *     'CPU[xy]' : one of the two logical processors on a HTT CPU.
147 *     'RC'      : run count (#threads per physical core).
148 *     '+'       : point in time when a thread is put on a CPU.
149 *     '-'       : point in time where a thread is taken off a CPU.
150 *
151 * Handling HTT CONFIG
152 *
153 * Different processes attached to the same PMC may get scheduled on
154 * the two logical processors in the package.  We keep track of config
155 * and de-config operations using the CFGFLAGS fields of the per-physical
156 * cpu state.
157 */
158
159#define	P4_PMCS()				\
160	P4_PMC(BPU_COUNTER0)			\
161	P4_PMC(BPU_COUNTER1)			\
162	P4_PMC(BPU_COUNTER2)			\
163	P4_PMC(BPU_COUNTER3)			\
164	P4_PMC(MS_COUNTER0)			\
165	P4_PMC(MS_COUNTER1)			\
166	P4_PMC(MS_COUNTER2)			\
167	P4_PMC(MS_COUNTER3)			\
168	P4_PMC(FLAME_COUNTER0)			\
169	P4_PMC(FLAME_COUNTER1)			\
170	P4_PMC(FLAME_COUNTER2)			\
171	P4_PMC(FLAME_COUNTER3)			\
172	P4_PMC(IQ_COUNTER0)			\
173	P4_PMC(IQ_COUNTER1)			\
174	P4_PMC(IQ_COUNTER2)			\
175	P4_PMC(IQ_COUNTER3)			\
176	P4_PMC(IQ_COUNTER4)			\
177	P4_PMC(IQ_COUNTER5)			\
178	P4_PMC(NONE)
179
180enum pmc_p4pmc {
181#undef	P4_PMC
182#define	P4_PMC(N)	P4_PMC_##N ,
183	P4_PMCS()
184};
185
186/*
187 * P4 ESCR descriptors
188 */
189
190#define	P4_ESCRS()							\
191    P4_ESCR(BSU_ESCR0,	0x3A0, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
192    P4_ESCR(BSU_ESCR1,	0x3A1, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
193    P4_ESCR(FSB_ESCR0,	0x3A2, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
194    P4_ESCR(FSB_ESCR1,	0x3A3, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
195    P4_ESCR(FIRM_ESCR0,	0x3A4, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
196    P4_ESCR(FIRM_ESCR1,	0x3A5, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
197    P4_ESCR(FLAME_ESCR0, 0x3A6, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
198    P4_ESCR(FLAME_ESCR1, 0x3A7, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
199    P4_ESCR(DAC_ESCR0,	0x3A8, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
200    P4_ESCR(DAC_ESCR1,	0x3A9, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
201    P4_ESCR(MOB_ESCR0,	0x3AA, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
202    P4_ESCR(MOB_ESCR1,	0x3AB, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
203    P4_ESCR(PMH_ESCR0,	0x3AC, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
204    P4_ESCR(PMH_ESCR1,	0x3AD, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
205    P4_ESCR(SAAT_ESCR0,	0x3AE, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
206    P4_ESCR(SAAT_ESCR1,	0x3AF, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
207    P4_ESCR(U2L_ESCR0,	0x3B0, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
208    P4_ESCR(U2L_ESCR1,	0x3B1, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
209    P4_ESCR(BPU_ESCR0,	0x3B2, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
210    P4_ESCR(BPU_ESCR1,	0x3B3, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
211    P4_ESCR(IS_ESCR0,	0x3B4, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
212    P4_ESCR(IS_ESCR1,	0x3B5, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
213    P4_ESCR(ITLB_ESCR0,	0x3B6, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
214    P4_ESCR(ITLB_ESCR1,	0x3B7, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
215    P4_ESCR(CRU_ESCR0,	0x3B8, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
216    P4_ESCR(CRU_ESCR1,	0x3B9, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
217    P4_ESCR(IQ_ESCR0,	0x3BA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
218    P4_ESCR(IQ_ESCR1,	0x3BB, IQ_COUNTER1, IQ_COUNTER3, IQ_COUNTER5)	\
219    P4_ESCR(RAT_ESCR0,	0x3BC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
220    P4_ESCR(RAT_ESCR1,	0x3BD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
221    P4_ESCR(SSU_ESCR0,	0x3BE, IQ_COUNTER0, IQ_COUNTER2, IQ_COUNTER4)	\
222    P4_ESCR(MS_ESCR0,	0x3C0, MS_COUNTER0, MS_COUNTER1, NONE)		\
223    P4_ESCR(MS_ESCR1,	0x3C1, MS_COUNTER2, MS_COUNTER3, NONE)		\
224    P4_ESCR(TBPU_ESCR0,	0x3C2, MS_COUNTER0, MS_COUNTER1, NONE)		\
225    P4_ESCR(TBPU_ESCR1,	0x3C3, MS_COUNTER2, MS_COUNTER3, NONE)		\
226    P4_ESCR(TC_ESCR0,	0x3C4, MS_COUNTER0, MS_COUNTER1, NONE)		\
227    P4_ESCR(TC_ESCR1,	0x3C5, MS_COUNTER2, MS_COUNTER3, NONE)		\
228    P4_ESCR(IX_ESCR0,	0x3C8, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
229    P4_ESCR(IX_ESCR1,	0x3C9, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
230    P4_ESCR(ALF_ESCR0,	0x3CA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
231    P4_ESCR(ALF_ESCR1,	0x3CB, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
232    P4_ESCR(CRU_ESCR2,	0x3CC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
233    P4_ESCR(CRU_ESCR3,	0x3CD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
234    P4_ESCR(CRU_ESCR4,	0x3E0, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
235    P4_ESCR(CRU_ESCR5,	0x3E1, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
236    P4_ESCR(NONE,		~0,    NONE, NONE, NONE)
237
238enum pmc_p4escr {
239#define	P4_ESCR(N, MSR, P1, P2, P3)	P4_ESCR_##N ,
240	P4_ESCRS()
241#undef	P4_ESCR
242};
243
244struct pmc_p4escr_descr {
245	const char	pm_escrname[PMC_NAME_MAX];
246	u_short		pm_escr_msr;
247	const enum pmc_p4pmc pm_pmcs[P4_MAX_PMC_PER_ESCR];
248};
249
250static struct pmc_p4escr_descr p4_escrs[] =
251{
252#define	P4_ESCR(N, MSR, P1, P2, P3)		\
253	{					\
254		.pm_escrname = #N,		\
255		.pm_escr_msr = (MSR),		\
256		.pm_pmcs =			\
257		{				\
258			P4_PMC_##P1,		\
259			P4_PMC_##P2,		\
260			P4_PMC_##P3		\
261		}				\
262	} ,
263
264	P4_ESCRS()
265
266#undef	P4_ESCR
267};
268
269/*
270 * P4 Event descriptor
271 */
272
273struct p4_event_descr {
274	const enum pmc_event pm_event;
275	const uint32_t	pm_escr_eventselect;
276	const uint32_t	pm_cccr_select;
277	const char	pm_is_ti_event;
278	enum pmc_p4escr	pm_escrs[P4_MAX_ESCR_PER_EVENT];
279};
280
281static struct p4_event_descr p4_events[] = {
282
283#define	P4_EVDESCR(NAME, ESCREVENTSEL, CCCRSEL, TI_EVENT, ESCR0, ESCR1)	\
284	{								\
285		.pm_event            = PMC_EV_P4_##NAME,		\
286		.pm_escr_eventselect = (ESCREVENTSEL),			\
287		.pm_cccr_select      = (CCCRSEL),			\
288		.pm_is_ti_event	     = (TI_EVENT),			\
289		.pm_escrs            =					\
290		{							\
291			P4_ESCR_##ESCR0,				\
292			P4_ESCR_##ESCR1					\
293		}							\
294	}
295
296P4_EVDESCR(TC_DELIVER_MODE,	0x01, 0x01, TRUE,  TC_ESCR0,	TC_ESCR1),
297P4_EVDESCR(BPU_FETCH_REQUEST,	0x03, 0x00, FALSE, BPU_ESCR0,	BPU_ESCR1),
298P4_EVDESCR(ITLB_REFERENCE,	0x18, 0x03, FALSE, ITLB_ESCR0,	ITLB_ESCR1),
299P4_EVDESCR(MEMORY_CANCEL,	0x02, 0x05, FALSE, DAC_ESCR0,	DAC_ESCR1),
300P4_EVDESCR(MEMORY_COMPLETE,	0x08, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
301P4_EVDESCR(LOAD_PORT_REPLAY,	0x04, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
302P4_EVDESCR(STORE_PORT_REPLAY,	0x05, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
303P4_EVDESCR(MOB_LOAD_REPLAY,	0x03, 0x02, FALSE, MOB_ESCR0,	MOB_ESCR1),
304P4_EVDESCR(PAGE_WALK_TYPE,	0x01, 0x04, TRUE,  PMH_ESCR0,	PMH_ESCR1),
305P4_EVDESCR(BSQ_CACHE_REFERENCE,	0x0C, 0x07, FALSE, BSU_ESCR0,	BSU_ESCR1),
306P4_EVDESCR(IOQ_ALLOCATION,	0x03, 0x06, FALSE, FSB_ESCR0,	FSB_ESCR1),
307P4_EVDESCR(IOQ_ACTIVE_ENTRIES,	0x1A, 0x06, FALSE, FSB_ESCR1,	NONE),
308P4_EVDESCR(FSB_DATA_ACTIVITY,	0x17, 0x06, TRUE,  FSB_ESCR0,	FSB_ESCR1),
309P4_EVDESCR(BSQ_ALLOCATION,	0x05, 0x07, FALSE, BSU_ESCR0,	NONE),
310P4_EVDESCR(BSQ_ACTIVE_ENTRIES,	0x06, 0x07, FALSE, BSU_ESCR1,	NONE),
311	/* BSQ_ACTIVE_ENTRIES inherits CPU specificity from BSQ_ALLOCATION */
312P4_EVDESCR(SSE_INPUT_ASSIST,	0x34, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
313P4_EVDESCR(PACKED_SP_UOP,	0x08, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
314P4_EVDESCR(PACKED_DP_UOP,	0x0C, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
315P4_EVDESCR(SCALAR_SP_UOP,	0x0A, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
316P4_EVDESCR(SCALAR_DP_UOP,	0x0E, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
317P4_EVDESCR(64BIT_MMX_UOP,	0x02, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
318P4_EVDESCR(128BIT_MMX_UOP,	0x1A, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
319P4_EVDESCR(X87_FP_UOP,		0x04, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
320P4_EVDESCR(X87_SIMD_MOVES_UOP,	0x2E, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
321P4_EVDESCR(GLOBAL_POWER_EVENTS,	0x13, 0x06, FALSE, FSB_ESCR0,	FSB_ESCR1),
322P4_EVDESCR(TC_MS_XFER,		0x05, 0x00, FALSE, MS_ESCR0,	MS_ESCR1),
323P4_EVDESCR(UOP_QUEUE_WRITES,	0x09, 0x00, FALSE, MS_ESCR0,	MS_ESCR1),
324P4_EVDESCR(RETIRED_MISPRED_BRANCH_TYPE,
325    				0x05, 0x02, FALSE, TBPU_ESCR0,	TBPU_ESCR1),
326P4_EVDESCR(RETIRED_BRANCH_TYPE,	0x04, 0x02, FALSE, TBPU_ESCR0,	TBPU_ESCR1),
327P4_EVDESCR(RESOURCE_STALL,	0x01, 0x01, FALSE, ALF_ESCR0,	ALF_ESCR1),
328P4_EVDESCR(WC_BUFFER,		0x05, 0x05, TRUE,  DAC_ESCR0,	DAC_ESCR1),
329P4_EVDESCR(B2B_CYCLES,		0x16, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
330P4_EVDESCR(BNR,			0x08, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
331P4_EVDESCR(SNOOP,		0x06, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
332P4_EVDESCR(RESPONSE,		0x04, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
333P4_EVDESCR(FRONT_END_EVENT,	0x08, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
334P4_EVDESCR(EXECUTION_EVENT,	0x0C, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
335P4_EVDESCR(REPLAY_EVENT, 	0x09, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
336P4_EVDESCR(INSTR_RETIRED,	0x02, 0x04, FALSE, CRU_ESCR0,	CRU_ESCR1),
337P4_EVDESCR(UOPS_RETIRED,	0x01, 0x04, FALSE, CRU_ESCR0,	CRU_ESCR1),
338P4_EVDESCR(UOP_TYPE,		0x02, 0x02, FALSE, RAT_ESCR0,	RAT_ESCR1),
339P4_EVDESCR(BRANCH_RETIRED,	0x06, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
340P4_EVDESCR(MISPRED_BRANCH_RETIRED, 0x03, 0x04, FALSE, CRU_ESCR0, CRU_ESCR1),
341P4_EVDESCR(X87_ASSIST,		0x03, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
342P4_EVDESCR(MACHINE_CLEAR,	0x02, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3)
343
344#undef	P4_EVDESCR
345};
346
347#define	P4_EVENT_IS_TI(E) ((E)->pm_is_ti_event == TRUE)
348
349#define	P4_NEVENTS	(PMC_EV_P4_LAST - PMC_EV_P4_FIRST + 1)
350
351/*
352 * P4 PMC descriptors
353 */
354
355struct p4pmc_descr {
356	struct pmc_descr pm_descr; 	/* common information */
357	enum pmc_p4pmc	pm_pmcnum;	/* PMC number */
358	uint32_t	pm_pmc_msr; 	/* PERFCTR MSR address */
359	uint32_t	pm_cccr_msr;  	/* CCCR MSR address */
360};
361
362static struct p4pmc_descr p4_pmcdesc[P4_NPMCS] = {
363#define	P4_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM |  \
364	PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \
365	PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE |            \
366	PMC_CAP_TAGGING | PMC_CAP_CASCADE)
367
368#define	P4_PMCDESCR(N, PMC, CCCR)			\
369	{						\
370		.pm_descr =				\
371		{					\
372			.pd_name = #N,			\
373			.pd_class = PMC_CLASS_P4,	\
374			.pd_caps = P4_PMC_CAPS,		\
375			.pd_width = 40			\
376		},					\
377		.pm_pmcnum      = P4_PMC_##N,		\
378		.pm_cccr_msr 	= (CCCR),		\
379		.pm_pmc_msr	= (PMC)			\
380	}
381
382	P4_PMCDESCR(BPU_COUNTER0,	0x300,	0x360),
383	P4_PMCDESCR(BPU_COUNTER1,	0x301,	0x361),
384	P4_PMCDESCR(BPU_COUNTER2,	0x302,	0x362),
385	P4_PMCDESCR(BPU_COUNTER3,	0x303,	0x363),
386	P4_PMCDESCR(MS_COUNTER0,	0x304,	0x364),
387	P4_PMCDESCR(MS_COUNTER1,	0x305,	0x365),
388	P4_PMCDESCR(MS_COUNTER2,	0x306,	0x366),
389	P4_PMCDESCR(MS_COUNTER3,	0x307,	0x367),
390	P4_PMCDESCR(FLAME_COUNTER0,	0x308,	0x368),
391	P4_PMCDESCR(FLAME_COUNTER1,	0x309,	0x369),
392	P4_PMCDESCR(FLAME_COUNTER2,	0x30A,	0x36A),
393	P4_PMCDESCR(FLAME_COUNTER3,	0x30B,	0x36B),
394	P4_PMCDESCR(IQ_COUNTER0,	0x30C,	0x36C),
395	P4_PMCDESCR(IQ_COUNTER1,	0x30D,	0x36D),
396	P4_PMCDESCR(IQ_COUNTER2,	0x30E,	0x36E),
397	P4_PMCDESCR(IQ_COUNTER3,	0x30F,	0x36F),
398	P4_PMCDESCR(IQ_COUNTER4,	0x310,	0x370),
399	P4_PMCDESCR(IQ_COUNTER5,	0x311,	0x371),
400
401#undef	P4_PMCDESCR
402};
403
404/* HTT support */
405#define	P4_NHTT					2 /* logical processors/chip */
406
407static int p4_system_has_htt;
408
409/*
410 * Per-CPU data structure for P4 class CPUs
411 *
412 * [19 struct pmc_hw structures]
413 * [45 ESCRs status bytes]
414 * [per-cpu spin mutex]
415 * [19 flag fields for holding config flags and a runcount]
416 * [19*2 hw value fields]	(Thread mode PMC support)
417 *    or
418 * [19*2 EIP values]		(Sampling mode PMCs)
419 * [19*2 pmc value fields]	(Thread mode PMC support))
420 */
421
422struct p4_cpu {
423	struct pmc_hw	pc_p4pmcs[P4_NPMCS];
424	char		pc_escrs[P4_NESCR];
425	struct mtx	pc_mtx;		/* spin lock */
426	uint32_t	pc_intrflag;	/* NMI handler flags */
427	unsigned int	pc_intrlock;	/* NMI handler spin lock */
428	unsigned char	pc_flags[P4_NPMCS]; /* 4 bits each: {cfg,run}count */
429	union {
430		pmc_value_t pc_hw[P4_NPMCS * P4_NHTT];
431		uintptr_t   pc_ip[P4_NPMCS * P4_NHTT];
432	}		pc_si;
433	pmc_value_t	pc_pmc_values[P4_NPMCS * P4_NHTT];
434};
435
436static struct p4_cpu **p4_pcpu;
437
438#define	P4_PCPU_PMC_VALUE(PC,RI,CPU) 	(PC)->pc_pmc_values[(RI)*((CPU) & 1)]
439#define	P4_PCPU_HW_VALUE(PC,RI,CPU)	(PC)->pc_si.pc_hw[(RI)*((CPU) & 1)]
440#define	P4_PCPU_SAVED_IP(PC,RI,CPU)	(PC)->pc_si.pc_ip[(RI)*((CPU) & 1)]
441
442#define	P4_PCPU_GET_FLAGS(PC,RI,MASK)	((PC)->pc_flags[(RI)] & (MASK))
443#define	P4_PCPU_SET_FLAGS(PC,RI,MASK,VAL)	do {	\
444	char _tmp;					\
445	_tmp = (PC)->pc_flags[(RI)];			\
446	_tmp &= ~(MASK);				\
447	_tmp |= (VAL) & (MASK);				\
448	(PC)->pc_flags[(RI)] = _tmp;			\
449} while (0)
450
451#define	P4_PCPU_GET_RUNCOUNT(PC,RI)	P4_PCPU_GET_FLAGS(PC,RI,0x0F)
452#define	P4_PCPU_SET_RUNCOUNT(PC,RI,V)	P4_PCPU_SET_FLAGS(PC,RI,0x0F,V)
453
454#define	P4_PCPU_GET_CFGFLAGS(PC,RI)	(P4_PCPU_GET_FLAGS(PC,RI,0xF0) >> 4)
455#define	P4_PCPU_SET_CFGFLAGS(PC,RI,C)	P4_PCPU_SET_FLAGS(PC,RI,0xF0,((C) <<4))
456
457#define	P4_CPU_TO_FLAG(C)		(P4_CPU_IS_HTT_SECONDARY(cpu) ? 0x2 : 0x1)
458
459#define	P4_PCPU_GET_INTRFLAG(PC,I)	((PC)->pc_intrflag & (1 << (I)))
460#define	P4_PCPU_SET_INTRFLAG(PC,I,V)	do {		\
461		uint32_t __mask;			\
462		__mask = 1 << (I);			\
463		if ((V))				\
464			(PC)->pc_intrflag |= __mask;	\
465		else					\
466			(PC)->pc_intrflag &= ~__mask;	\
467	} while (0)
468
469/*
470 * A minimal spin lock implementation for use inside the NMI handler.
471 *
472 * We don't want to use a regular spin lock here, because curthread
473 * may not be consistent at the time the handler is invoked.
474 */
475#define	P4_PCPU_ACQ_INTR_SPINLOCK(PC) do {				\
476		while (!atomic_cmpset_acq_int(&pc->pc_intrlock, 0, 1))	\
477			ia32_pause();					\
478	} while (0)
479#define	P4_PCPU_REL_INTR_SPINLOCK(PC) 					\
480	atomic_store_rel_int(&pc->pc_intrlock, 0);
481
482/* ESCR row disposition */
483static int p4_escrdisp[P4_NESCR];
484
485#define	P4_ESCR_ROW_DISP_IS_THREAD(E)		(p4_escrdisp[(E)] > 0)
486#define	P4_ESCR_ROW_DISP_IS_STANDALONE(E)	(p4_escrdisp[(E)] < 0)
487#define	P4_ESCR_ROW_DISP_IS_FREE(E)		(p4_escrdisp[(E)] == 0)
488
489#define	P4_ESCR_MARK_ROW_STANDALONE(E) do {				\
490	KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
491		    __LINE__));						\
492	atomic_add_int(&p4_escrdisp[(E)], -1);				\
493	KASSERT(p4_escrdisp[(E)] >= (-pmc_cpu_max_active()), 		\
494		("[p4,%d] row disposition error", __LINE__));		\
495} while (0)
496
497#define	P4_ESCR_UNMARK_ROW_STANDALONE(E) do {				\
498	atomic_add_int(&p4_escrdisp[(E)], 1);				\
499	KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
500		    __LINE__));						\
501} while (0)
502
503#define	P4_ESCR_MARK_ROW_THREAD(E) do {					 \
504	KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
505		    __LINE__));						 \
506	atomic_add_int(&p4_escrdisp[(E)], 1);				 \
507} while (0)
508
509#define	P4_ESCR_UNMARK_ROW_THREAD(E) do {				 \
510	atomic_add_int(&p4_escrdisp[(E)], -1);				 \
511	KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
512		    __LINE__));						 \
513} while (0)
514
515#define	P4_PMC_IS_STOPPED(cccr)	((rdmsr(cccr) & P4_CCCR_ENABLE) == 0)
516
517#define	P4_CPU_IS_HTT_SECONDARY(cpu)					\
518	(p4_system_has_htt ? ((cpu) & 1) : 0)
519#define	P4_TO_HTT_PRIMARY(cpu) 						\
520	(p4_system_has_htt ? ((cpu) & ~1) : (cpu))
521
522#define	P4_CCCR_Tx_MASK	(~(P4_CCCR_OVF_PMI_T0|P4_CCCR_OVF_PMI_T1|	\
523			     P4_CCCR_ENABLE|P4_CCCR_OVF))
524#define	P4_ESCR_Tx_MASK	(~(P4_ESCR_T0_OS|P4_ESCR_T0_USR|P4_ESCR_T1_OS|	\
525			     P4_ESCR_T1_USR))
526
527/*
528 * support routines
529 */
530
531static struct p4_event_descr *
532p4_find_event(enum pmc_event ev)
533{
534	int n;
535
536	for (n = 0; n < P4_NEVENTS; n++)
537		if (p4_events[n].pm_event == ev)
538			break;
539	if (n == P4_NEVENTS)
540		return (NULL);
541	return (&p4_events[n]);
542}
543
544/*
545 * Initialize per-cpu state
546 */
547
548static int
549p4_pcpu_init(struct pmc_mdep *md, int cpu)
550{
551	char *pescr;
552	int n, first_ri, phycpu;
553	struct pmc_hw *phw;
554	struct p4_cpu *p4c;
555	struct pmc_cpu *pc, *plc;
556
557	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
558	    ("[p4,%d] insane cpu number %d", __LINE__, cpu));
559
560	PMCDBG(MDP,INI,0, "p4-init cpu=%d is-primary=%d", cpu,
561	    pmc_cpu_is_primary(cpu) != 0);
562
563	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
564
565	/*
566	 * The two CPUs in an HT pair share their per-cpu state.
567	 *
568	 * For HT capable CPUs, we assume that the two logical
569	 * processors in the HT pair get two consecutive CPU ids
570	 * starting with an even id #.
571	 *
572	 * The primary CPU (the even numbered CPU of the pair) would
573	 * have been initialized prior to the initialization for the
574	 * secondary.
575	 */
576
577	if (!pmc_cpu_is_primary(cpu) && (cpu & 1)) {
578
579		p4_system_has_htt = 1;
580
581		phycpu = P4_TO_HTT_PRIMARY(cpu);
582		pc = pmc_pcpu[phycpu];
583		plc = pmc_pcpu[cpu];
584
585		KASSERT(plc != pc, ("[p4,%d] per-cpu config error", __LINE__));
586
587		PMCDBG(MDP,INI,1, "p4-init cpu=%d phycpu=%d pc=%p", cpu,
588		    phycpu, pc);
589		KASSERT(pc, ("[p4,%d] Null Per-Cpu state cpu=%d phycpu=%d",
590		    __LINE__, cpu, phycpu));
591
592		/* PMCs are shared with the physical CPU. */
593		for (n = 0; n < P4_NPMCS; n++)
594			plc->pc_hwpmcs[n + first_ri] =
595			    pc->pc_hwpmcs[n + first_ri];
596
597		return (0);
598	}
599
600	p4c = malloc(sizeof(struct p4_cpu), M_PMC, M_WAITOK|M_ZERO);
601
602	if (p4c == NULL)
603		return (ENOMEM);
604
605	pc = pmc_pcpu[cpu];
606
607	KASSERT(pc != NULL, ("[p4,%d] cpu %d null per-cpu", __LINE__, cpu));
608
609	p4_pcpu[cpu] = p4c;
610	phw = p4c->pc_p4pmcs;
611
612	for (n = 0; n < P4_NPMCS; n++, phw++) {
613		phw->phw_state   = PMC_PHW_FLAG_IS_ENABLED |
614		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
615		phw->phw_pmc     = NULL;
616		pc->pc_hwpmcs[n + first_ri] = phw;
617	}
618
619	pescr = p4c->pc_escrs;
620	for (n = 0; n < P4_NESCR; n++)
621		*pescr++ = P4_INVALID_PMC_INDEX;
622
623	mtx_init(&p4c->pc_mtx, "p4-pcpu", "pmc-leaf", MTX_SPIN);
624
625	return (0);
626}
627
628/*
629 * Destroy per-cpu state.
630 */
631
632static int
633p4_pcpu_fini(struct pmc_mdep *md, int cpu)
634{
635	int first_ri, i;
636	struct p4_cpu *p4c;
637	struct pmc_cpu *pc;
638
639	PMCDBG(MDP,INI,0, "p4-cleanup cpu=%d", cpu);
640
641	pc = pmc_pcpu[cpu];
642	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
643
644	for (i = 0; i < P4_NPMCS; i++)
645		pc->pc_hwpmcs[i + first_ri] = NULL;
646
647	if (!pmc_cpu_is_primary(cpu) && (cpu & 1))
648		return (0);
649
650	p4c = p4_pcpu[cpu];
651
652	KASSERT(p4c != NULL, ("[p4,%d] NULL pcpu", __LINE__));
653
654	/* Turn off all PMCs on this CPU */
655	for (i = 0; i < P4_NPMCS - 1; i++)
656		wrmsr(P4_CCCR_MSR_FIRST + i,
657		    rdmsr(P4_CCCR_MSR_FIRST + i) & ~P4_CCCR_ENABLE);
658
659	mtx_destroy(&p4c->pc_mtx);
660
661	free(p4c, M_PMC);
662
663	p4_pcpu[cpu] = NULL;
664
665	return (0);
666}
667
668/*
669 * Read a PMC
670 */
671
672static int
673p4_read_pmc(int cpu, int ri, pmc_value_t *v)
674{
675	struct pmc *pm;
676	pmc_value_t tmp;
677	struct p4_cpu *pc;
678	enum pmc_mode mode;
679	struct p4pmc_descr *pd;
680
681	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
682	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
683	KASSERT(ri >= 0 && ri < P4_NPMCS,
684	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
685
686	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
687	pm = pc->pc_p4pmcs[ri].phw_pmc;
688	pd = &p4_pmcdesc[ri];
689
690	KASSERT(pm != NULL,
691	    ("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__, cpu, ri));
692
693	KASSERT(pd->pm_descr.pd_class == PMC_TO_CLASS(pm),
694	    ("[p4,%d] class mismatch pd %d != id class %d", __LINE__,
695	    pd->pm_descr.pd_class, PMC_TO_CLASS(pm)));
696
697	mode = PMC_TO_MODE(pm);
698
699	PMCDBG(MDP,REA,1, "p4-read cpu=%d ri=%d mode=%d", cpu, ri, mode);
700
701	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
702	    ("[p4,%d] unknown PMC class %d", __LINE__, pd->pm_descr.pd_class));
703
704	tmp = rdmsr(p4_pmcdesc[ri].pm_pmc_msr);
705
706	if (PMC_IS_VIRTUAL_MODE(mode)) {
707		if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit overflow */
708			tmp += (P4_PERFCTR_MASK + 1) -
709			    P4_PCPU_HW_VALUE(pc,ri,cpu);
710		else
711			tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
712		tmp += P4_PCPU_PMC_VALUE(pc,ri,cpu);
713	}
714
715	if (PMC_IS_SAMPLING_MODE(mode)) /* undo transformation */
716		*v = P4_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
717	else
718		*v = tmp;
719
720	PMCDBG(MDP,REA,2, "p4-read -> %jx", *v);
721
722	return (0);
723}
724
725/*
726 * Write a PMC
727 */
728
729static int
730p4_write_pmc(int cpu, int ri, pmc_value_t v)
731{
732	enum pmc_mode mode;
733	struct pmc *pm;
734	struct p4_cpu *pc;
735	const struct pmc_hw *phw;
736	const struct p4pmc_descr *pd;
737
738	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
739	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
740	KASSERT(ri >= 0 && ri < P4_NPMCS,
741	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
742
743	pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
744	phw = &pc->pc_p4pmcs[ri];
745	pm  = phw->phw_pmc;
746	pd  = &p4_pmcdesc[ri];
747
748	KASSERT(pm != NULL,
749	    ("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__,
750		cpu, ri));
751
752	mode = PMC_TO_MODE(pm);
753
754	PMCDBG(MDP,WRI,1, "p4-write cpu=%d ri=%d mode=%d v=%jx", cpu, ri,
755	    mode, v);
756
757	/*
758	 * write the PMC value to the register/saved value: for
759	 * sampling mode PMCs, the value to be programmed into the PMC
760	 * counter is -(C+1) where 'C' is the requested sample rate.
761	 */
762	if (PMC_IS_SAMPLING_MODE(mode))
763		v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
764
765	if (PMC_IS_SYSTEM_MODE(mode))
766		wrmsr(pd->pm_pmc_msr, v);
767	else
768		P4_PCPU_PMC_VALUE(pc,ri,cpu) = v;
769
770	return (0);
771}
772
773/*
774 * Configure a PMC 'pm' on the given CPU and row-index.
775 *
776 * 'pm' may be NULL to indicate de-configuration.
777 *
778 * On HTT systems, a PMC may get configured twice, once for each
779 * "logical" CPU.  We track this using the CFGFLAGS field of the
780 * per-cpu state; this field is a bit mask with one bit each for
781 * logical CPUs 0 & 1.
782 */
783
784static int
785p4_config_pmc(int cpu, int ri, struct pmc *pm)
786{
787	struct pmc_hw *phw;
788	struct p4_cpu *pc;
789	int cfgflags, cpuflag;
790
791	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
792	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
793
794	KASSERT(ri >= 0 && ri < P4_NPMCS,
795	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
796
797	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
798
799	pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
800	phw = &pc->pc_p4pmcs[ri];
801
802	KASSERT(pm == NULL || phw->phw_pmc == NULL ||
803	    (p4_system_has_htt && phw->phw_pmc == pm),
804	    ("[p4,%d] hwpmc not unconfigured before re-config", __LINE__));
805
806	mtx_lock_spin(&pc->pc_mtx);
807	cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
808
809	KASSERT(cfgflags >= 0 || cfgflags <= 3,
810	    ("[p4,%d] illegal cfgflags cfg=%d on cpu=%d ri=%d", __LINE__,
811		cfgflags, cpu, ri));
812
813	KASSERT(cfgflags == 0 || phw->phw_pmc,
814	    ("[p4,%d] cpu=%d ri=%d pmc configured with zero cfg count",
815		__LINE__, cpu, ri));
816
817	cpuflag = P4_CPU_TO_FLAG(cpu);
818
819	if (pm) {		/* config */
820		if (cfgflags == 0)
821			phw->phw_pmc = pm;
822
823		KASSERT(phw->phw_pmc == pm,
824		    ("[p4,%d] cpu=%d ri=%d config %p != hw %p",
825			__LINE__, cpu, ri, pm, phw->phw_pmc));
826
827		cfgflags |= cpuflag;
828	} else {		/* unconfig */
829		cfgflags &= ~cpuflag;
830
831		if (cfgflags == 0)
832			phw->phw_pmc = NULL;
833	}
834
835	KASSERT(cfgflags >= 0 || cfgflags <= 3,
836	    ("[p4,%d] illegal runcount cfg=%d on cpu=%d ri=%d", __LINE__,
837		cfgflags, cpu, ri));
838
839	P4_PCPU_SET_CFGFLAGS(pc,ri,cfgflags);
840
841	mtx_unlock_spin(&pc->pc_mtx);
842
843	return (0);
844}
845
846/*
847 * Retrieve a configured PMC pointer from hardware state.
848 */
849
850static int
851p4_get_config(int cpu, int ri, struct pmc **ppm)
852{
853	int cfgflags;
854	struct p4_cpu *pc;
855
856	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
857	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
858	KASSERT(ri >= 0 && ri < P4_NPMCS,
859	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
860
861	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
862
863	mtx_lock_spin(&pc->pc_mtx);
864	cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
865	mtx_unlock_spin(&pc->pc_mtx);
866
867	if (cfgflags & P4_CPU_TO_FLAG(cpu))
868		*ppm = pc->pc_p4pmcs[ri].phw_pmc; /* PMC config'ed on this CPU */
869	else
870		*ppm = NULL;
871
872	return 0;
873}
874
875/*
876 * Allocate a PMC.
877 *
878 * The allocation strategy differs between HTT and non-HTT systems.
879 *
880 * The non-HTT case:
881 *   - Given the desired event and the PMC row-index, lookup the
882 *   list of valid ESCRs for the event.
883 *   - For each valid ESCR:
884 *     - Check if the ESCR is free and the ESCR row is in a compatible
885 *       mode (i.e., system or process))
886 *     - Check if the ESCR is usable with a P4 PMC at the desired row-index.
887 *   If everything matches, we determine the appropriate bit values for the
888 *   ESCR and CCCR registers.
889 *
890 * The HTT case:
891 *
892 * - Process mode PMCs require special care.  The FreeBSD scheduler could
893 *   schedule any two processes on the same physical CPU.  We need to ensure
894 *   that a given PMC row-index is never allocated to two different
895 *   PMCs owned by different user-processes.
896 *   This is ensured by always allocating a PMC from a 'FREE' PMC row
897 *   if the system has HTT active.
898 * - A similar check needs to be done for ESCRs; we do not want two PMCs
899 *   using the same ESCR to be scheduled at the same time.  Thus ESCR
900 *   allocation is also restricted to FREE rows if the system has HTT
901 *   enabled.
902 * - Thirdly, some events are 'thread-independent' terminology, i.e.,
903 *   the PMC hardware cannot distinguish between events caused by
904 *   different logical CPUs.  This makes it impossible to assign events
905 *   to a given thread of execution.  If the system has HTT enabled,
906 *   these events are not allowed for process-mode PMCs.
907 */
908
909static int
910p4_allocate_pmc(int cpu, int ri, struct pmc *pm,
911    const struct pmc_op_pmcallocate *a)
912{
913	int found, n, m;
914	uint32_t caps, cccrvalue, escrvalue, tflags;
915	enum pmc_p4escr escr;
916	struct p4_cpu *pc;
917	struct p4_event_descr *pevent;
918	const struct p4pmc_descr *pd;
919
920	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
921	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
922	KASSERT(ri >= 0 && ri < P4_NPMCS,
923	    ("[p4,%d] illegal row-index value %d", __LINE__, ri));
924
925	pd = &p4_pmcdesc[ri];
926
927	PMCDBG(MDP,ALL,1, "p4-allocate ri=%d class=%d pmccaps=0x%x "
928	    "reqcaps=0x%x", ri, pd->pm_descr.pd_class, pd->pm_descr.pd_caps,
929	    pm->pm_caps);
930
931	/* check class */
932	if (pd->pm_descr.pd_class != a->pm_class)
933		return (EINVAL);
934
935	/* check requested capabilities */
936	caps = a->pm_caps;
937	if ((pd->pm_descr.pd_caps & caps) != caps)
938		return (EPERM);
939
940	/*
941	 * If the system has HTT enabled, and the desired allocation
942	 * mode is process-private, and the PMC row disposition is not
943	 * FREE (0), decline the allocation.
944	 */
945
946	if (p4_system_has_htt &&
947	    PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
948	    pmc_getrowdisp(ri) != 0)
949		return (EBUSY);
950
951	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
952	    ("[p4,%d] unknown PMC class %d", __LINE__,
953		pd->pm_descr.pd_class));
954
955	if (pm->pm_event < PMC_EV_P4_FIRST ||
956	    pm->pm_event > PMC_EV_P4_LAST)
957		return (EINVAL);
958
959	if ((pevent = p4_find_event(pm->pm_event)) == NULL)
960		return (ESRCH);
961
962	PMCDBG(MDP,ALL,2, "pevent={ev=%d,escrsel=0x%x,cccrsel=0x%x,isti=%d}",
963	    pevent->pm_event, pevent->pm_escr_eventselect,
964	    pevent->pm_cccr_select, pevent->pm_is_ti_event);
965
966	/*
967	 * Some PMC events are 'thread independent'and therefore
968	 * cannot be used for process-private modes if HTT is being
969	 * used.
970	 */
971
972	if (P4_EVENT_IS_TI(pevent) &&
973	    PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
974	    p4_system_has_htt)
975		return (EINVAL);
976
977	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
978
979	found   = 0;
980
981	/* look for a suitable ESCR for this event */
982	for (n = 0; n < P4_MAX_ESCR_PER_EVENT && !found; n++) {
983		if ((escr = pevent->pm_escrs[n]) == P4_ESCR_NONE)
984			break;	/* out of ESCRs */
985		/*
986		 * Check ESCR row disposition.
987		 *
988		 * If the request is for a system-mode PMC, then the
989		 * ESCR row should not be in process-virtual mode, and
990		 * should also be free on the current CPU.
991		 */
992
993		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
994		    if (P4_ESCR_ROW_DISP_IS_THREAD(escr) ||
995			pc->pc_escrs[escr] != P4_INVALID_PMC_INDEX)
996			    continue;
997		}
998
999		/*
1000		 * If the request is for a process-virtual PMC, and if
1001		 * HTT is not enabled, we can use an ESCR row that is
1002		 * either FREE or already in process mode.
1003		 *
1004		 * If HTT is enabled, then we need to ensure that a
1005		 * given ESCR is never allocated to two PMCS that
1006		 * could run simultaneously on the two logical CPUs of
1007		 * a CPU package.  We ensure this be only allocating
1008		 * ESCRs from rows marked as 'FREE'.
1009		 */
1010
1011		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
1012			if (p4_system_has_htt) {
1013				if (!P4_ESCR_ROW_DISP_IS_FREE(escr))
1014					continue;
1015			} else
1016				if (P4_ESCR_ROW_DISP_IS_STANDALONE(escr))
1017					continue;
1018		}
1019
1020		/*
1021		 * We found a suitable ESCR for this event.  Now check if
1022		 * this escr can work with the PMC at row-index 'ri'.
1023		 */
1024
1025		for (m = 0; m < P4_MAX_PMC_PER_ESCR; m++)
1026			if (p4_escrs[escr].pm_pmcs[m] == pd->pm_pmcnum) {
1027				found = 1;
1028				break;
1029			}
1030	}
1031
1032	if (found == 0)
1033		return (ESRCH);
1034
1035	KASSERT((int) escr >= 0 && escr < P4_NESCR,
1036	    ("[p4,%d] illegal ESCR value %d", __LINE__, escr));
1037
1038	/* mark ESCR row mode */
1039	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1040		pc->pc_escrs[escr] = ri; /* mark ESCR as in use on this cpu */
1041		P4_ESCR_MARK_ROW_STANDALONE(escr);
1042	} else {
1043		KASSERT(pc->pc_escrs[escr] == P4_INVALID_PMC_INDEX,
1044		    ("[p4,%d] escr[%d] already in use", __LINE__, escr));
1045		P4_ESCR_MARK_ROW_THREAD(escr);
1046	}
1047
1048	pm->pm_md.pm_p4.pm_p4_escrmsr   = p4_escrs[escr].pm_escr_msr;
1049	pm->pm_md.pm_p4.pm_p4_escr      = escr;
1050
1051	cccrvalue = P4_CCCR_TO_ESCR_SELECT(pevent->pm_cccr_select);
1052	escrvalue = P4_ESCR_TO_EVENT_SELECT(pevent->pm_escr_eventselect);
1053
1054	/* CCCR fields */
1055	if (caps & PMC_CAP_THRESHOLD)
1056		cccrvalue |= (a->pm_md.pm_p4.pm_p4_cccrconfig &
1057		    P4_CCCR_THRESHOLD_MASK) | P4_CCCR_COMPARE;
1058
1059	if (caps & PMC_CAP_EDGE)
1060		cccrvalue |= P4_CCCR_EDGE;
1061
1062	if (caps & PMC_CAP_INVERT)
1063		cccrvalue |= P4_CCCR_COMPLEMENT;
1064
1065	if (p4_system_has_htt)
1066		cccrvalue |= a->pm_md.pm_p4.pm_p4_cccrconfig &
1067		    P4_CCCR_ACTIVE_THREAD_MASK;
1068	else			/* no HTT; thread field should be '11b' */
1069		cccrvalue |= P4_CCCR_TO_ACTIVE_THREAD(0x3);
1070
1071	if (caps & PMC_CAP_CASCADE)
1072		cccrvalue |= P4_CCCR_CASCADE;
1073
1074	/* On HTT systems the PMI T0 field may get moved to T1 at pmc start */
1075	if (caps & PMC_CAP_INTERRUPT)
1076		cccrvalue |= P4_CCCR_OVF_PMI_T0;
1077
1078	/* ESCR fields */
1079	if (caps & PMC_CAP_QUALIFIER)
1080		escrvalue |= a->pm_md.pm_p4.pm_p4_escrconfig &
1081		    P4_ESCR_EVENT_MASK_MASK;
1082	if (caps & PMC_CAP_TAGGING)
1083		escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
1084		    P4_ESCR_TAG_VALUE_MASK) | P4_ESCR_TAG_ENABLE;
1085	if (caps & PMC_CAP_QUALIFIER)
1086		escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
1087		    P4_ESCR_EVENT_MASK_MASK);
1088
1089	/* HTT: T0_{OS,USR} bits may get moved to T1 at pmc start */
1090	tflags = 0;
1091	if (caps & PMC_CAP_SYSTEM)
1092		tflags |= P4_ESCR_T0_OS;
1093	if (caps & PMC_CAP_USER)
1094		tflags |= P4_ESCR_T0_USR;
1095	if (tflags == 0)
1096		tflags = (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
1097	escrvalue |= tflags;
1098
1099	pm->pm_md.pm_p4.pm_p4_cccrvalue = cccrvalue;
1100	pm->pm_md.pm_p4.pm_p4_escrvalue = escrvalue;
1101
1102	PMCDBG(MDP,ALL,2, "p4-allocate cccrsel=0x%x cccrval=0x%x "
1103	    "escr=%d escrmsr=0x%x escrval=0x%x", pevent->pm_cccr_select,
1104	    cccrvalue, escr, pm->pm_md.pm_p4.pm_p4_escrmsr, escrvalue);
1105
1106	return (0);
1107}
1108
1109/*
1110 * release a PMC.
1111 */
1112
1113static int
1114p4_release_pmc(int cpu, int ri, struct pmc *pm)
1115{
1116	enum pmc_p4escr escr;
1117	struct p4_cpu *pc;
1118
1119	KASSERT(ri >= 0 && ri < P4_NPMCS,
1120	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
1121
1122	escr = pm->pm_md.pm_p4.pm_p4_escr;
1123
1124	PMCDBG(MDP,REL,1, "p4-release cpu=%d ri=%d escr=%d", cpu, ri, escr);
1125
1126	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1127		pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1128
1129		KASSERT(pc->pc_p4pmcs[ri].phw_pmc == NULL,
1130		    ("[p4,%d] releasing configured PMC ri=%d", __LINE__, ri));
1131
1132		P4_ESCR_UNMARK_ROW_STANDALONE(escr);
1133		KASSERT(pc->pc_escrs[escr] == ri,
1134		    ("[p4,%d] escr[%d] not allocated to ri %d", __LINE__,
1135			escr, ri));
1136	        pc->pc_escrs[escr] = P4_INVALID_PMC_INDEX; /* mark as free */
1137	} else
1138		P4_ESCR_UNMARK_ROW_THREAD(escr);
1139
1140	return (0);
1141}
1142
1143/*
1144 * Start a PMC
1145 */
1146
1147static int
1148p4_start_pmc(int cpu, int ri)
1149{
1150	int rc;
1151	struct pmc *pm;
1152	struct p4_cpu *pc;
1153	struct p4pmc_descr *pd;
1154	uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
1155
1156	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1157	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
1158	KASSERT(ri >= 0 && ri < P4_NPMCS,
1159	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
1160
1161	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1162	pm = pc->pc_p4pmcs[ri].phw_pmc;
1163	pd = &p4_pmcdesc[ri];
1164
1165	KASSERT(pm != NULL,
1166	    ("[p4,%d] starting cpu%d,pmc%d with null pmc", __LINE__, cpu, ri));
1167
1168	PMCDBG(MDP,STA,1, "p4-start cpu=%d ri=%d", cpu, ri);
1169
1170	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
1171	    ("[p4,%d] wrong PMC class %d", __LINE__,
1172		pd->pm_descr.pd_class));
1173
1174	/* retrieve the desired CCCR/ESCR values from the PMC */
1175	cccrvalue = pm->pm_md.pm_p4.pm_p4_cccrvalue;
1176	escrvalue = pm->pm_md.pm_p4.pm_p4_escrvalue;
1177	escrmsr   = pm->pm_md.pm_p4.pm_p4_escrmsr;
1178
1179	/* extract and zero the logical processor selection bits */
1180	cccrtbits = cccrvalue & P4_CCCR_OVF_PMI_T0;
1181	escrtbits = escrvalue & (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
1182	cccrvalue &= ~P4_CCCR_OVF_PMI_T0;
1183	escrvalue &= ~(P4_ESCR_T0_OS|P4_ESCR_T0_USR);
1184
1185	if (P4_CPU_IS_HTT_SECONDARY(cpu)) { /* shift T0 bits to T1 position */
1186		cccrtbits <<= 1;
1187		escrtbits >>= 2;
1188	}
1189
1190	/* start system mode PMCs directly */
1191	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1192		wrmsr(escrmsr, escrvalue | escrtbits);
1193		wrmsr(pd->pm_cccr_msr, cccrvalue | cccrtbits | P4_CCCR_ENABLE);
1194		return 0;
1195	}
1196
1197	/*
1198	 * Thread mode PMCs
1199	 *
1200	 * On HTT machines, the same PMC could be scheduled on the
1201	 * same physical CPU twice (once for each logical CPU), for
1202	 * example, if two threads of a multi-threaded process get
1203	 * scheduled on the same CPU.
1204	 *
1205	 */
1206
1207	mtx_lock_spin(&pc->pc_mtx);
1208
1209	rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
1210	KASSERT(rc == 0 || rc == 1,
1211	    ("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
1212		rc));
1213
1214	if (rc == 0) {		/* 1st CPU and the non-HTT case */
1215
1216		KASSERT(P4_PMC_IS_STOPPED(pd->pm_cccr_msr),
1217		    ("[p4,%d] cpu=%d ri=%d cccr=0x%x not stopped", __LINE__,
1218			cpu, ri, pd->pm_cccr_msr));
1219
1220		/* write out the low 40 bits of the saved value to hardware */
1221		wrmsr(pd->pm_pmc_msr,
1222		    P4_PCPU_PMC_VALUE(pc,ri,cpu) & P4_PERFCTR_MASK);
1223
1224	} else if (rc == 1) {		/* 2nd CPU */
1225
1226		/*
1227		 * Stop the PMC and retrieve the CCCR and ESCR values
1228		 * from their MSRs, and turn on the additional T[0/1]
1229		 * bits for the 2nd CPU.
1230		 */
1231
1232		cccrvalue = rdmsr(pd->pm_cccr_msr);
1233		wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
1234
1235		/* check that the configuration bits read back match the PMC */
1236		KASSERT((cccrvalue & P4_CCCR_Tx_MASK) ==
1237		    (pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK),
1238		    ("[p4,%d] Extra CCCR bits cpu=%d rc=%d ri=%d "
1239			"cccr=0x%x PMC=0x%x", __LINE__, cpu, rc, ri,
1240			cccrvalue & P4_CCCR_Tx_MASK,
1241			pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK));
1242		KASSERT(cccrvalue & P4_CCCR_ENABLE,
1243		    ("[p4,%d] 2nd cpu rc=%d cpu=%d ri=%d not running",
1244			__LINE__, rc, cpu, ri));
1245		KASSERT((cccrvalue & cccrtbits) == 0,
1246		    ("[p4,%d] CCCR T0/T1 mismatch rc=%d cpu=%d ri=%d"
1247		     "cccrvalue=0x%x tbits=0x%x", __LINE__, rc, cpu, ri,
1248			cccrvalue, cccrtbits));
1249
1250		escrvalue = rdmsr(escrmsr);
1251
1252		KASSERT((escrvalue & P4_ESCR_Tx_MASK) ==
1253		    (pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK),
1254		    ("[p4,%d] Extra ESCR bits cpu=%d rc=%d ri=%d "
1255			"escr=0x%x pm=0x%x", __LINE__, cpu, rc, ri,
1256			escrvalue & P4_ESCR_Tx_MASK,
1257			pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK));
1258		KASSERT((escrvalue & escrtbits) == 0,
1259		    ("[p4,%d] ESCR T0/T1 mismatch rc=%d cpu=%d ri=%d "
1260		     "escrmsr=0x%x escrvalue=0x%x tbits=0x%x", __LINE__,
1261			rc, cpu, ri, escrmsr, escrvalue, escrtbits));
1262	}
1263
1264	/* Enable the correct bits for this CPU. */
1265	escrvalue |= escrtbits;
1266	cccrvalue |= cccrtbits | P4_CCCR_ENABLE;
1267
1268	/* Save HW value at the time of starting hardware */
1269	P4_PCPU_HW_VALUE(pc,ri,cpu) = rdmsr(pd->pm_pmc_msr);
1270
1271	/* Program the ESCR and CCCR and start the PMC */
1272	wrmsr(escrmsr, escrvalue);
1273	wrmsr(pd->pm_cccr_msr, cccrvalue);
1274
1275	++rc;
1276	P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
1277
1278	mtx_unlock_spin(&pc->pc_mtx);
1279
1280	PMCDBG(MDP,STA,2,"p4-start cpu=%d rc=%d ri=%d escr=%d "
1281	    "escrmsr=0x%x escrvalue=0x%x cccr_config=0x%x v=%jx", cpu, rc,
1282	    ri, pm->pm_md.pm_p4.pm_p4_escr, escrmsr, escrvalue,
1283	    cccrvalue, P4_PCPU_HW_VALUE(pc,ri,cpu));
1284
1285	return (0);
1286}
1287
1288/*
1289 * Stop a PMC.
1290 */
1291
1292static int
1293p4_stop_pmc(int cpu, int ri)
1294{
1295	int rc;
1296	uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
1297	struct pmc *pm;
1298	struct p4_cpu *pc;
1299	struct p4pmc_descr *pd;
1300	pmc_value_t tmp;
1301
1302	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1303	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
1304	KASSERT(ri >= 0 && ri < P4_NPMCS,
1305	    ("[p4,%d] illegal row index %d", __LINE__, ri));
1306
1307	pd = &p4_pmcdesc[ri];
1308	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1309	pm = pc->pc_p4pmcs[ri].phw_pmc;
1310
1311	KASSERT(pm != NULL,
1312	    ("[p4,%d] null pmc for cpu%d, ri%d", __LINE__, cpu, ri));
1313
1314	PMCDBG(MDP,STO,1, "p4-stop cpu=%d ri=%d", cpu, ri);
1315
1316	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1317		wrmsr(pd->pm_cccr_msr,
1318		    pm->pm_md.pm_p4.pm_p4_cccrvalue & ~P4_CCCR_ENABLE);
1319		return (0);
1320	}
1321
1322	/*
1323	 * Thread mode PMCs.
1324	 *
1325	 * On HTT machines, this PMC may be in use by two threads
1326	 * running on two logical CPUS.  Thus we look at the
1327	 * 'runcount' field and only turn off the appropriate TO/T1
1328	 * bits (and keep the PMC running) if two logical CPUs were
1329	 * using the PMC.
1330	 *
1331	 */
1332
1333	/* bits to mask */
1334	cccrtbits = P4_CCCR_OVF_PMI_T0;
1335	escrtbits = P4_ESCR_T0_OS | P4_ESCR_T0_USR;
1336	if (P4_CPU_IS_HTT_SECONDARY(cpu)) {
1337		cccrtbits <<= 1;
1338		escrtbits >>= 2;
1339	}
1340
1341	mtx_lock_spin(&pc->pc_mtx);
1342
1343	rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
1344
1345	KASSERT(rc == 2 || rc == 1,
1346	    ("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
1347		rc));
1348
1349	--rc;
1350
1351	P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
1352
1353	/* Stop this PMC */
1354	cccrvalue = rdmsr(pd->pm_cccr_msr);
1355	wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
1356
1357	escrmsr   = pm->pm_md.pm_p4.pm_p4_escrmsr;
1358	escrvalue = rdmsr(escrmsr);
1359
1360	/* The current CPU should be running on this PMC */
1361	KASSERT(escrvalue & escrtbits,
1362	    ("[p4,%d] ESCR T0/T1 mismatch cpu=%d rc=%d ri=%d escrmsr=0x%x "
1363		"escrvalue=0x%x tbits=0x%x", __LINE__, cpu, rc, ri, escrmsr,
1364		escrvalue, escrtbits));
1365	KASSERT(PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)) ||
1366	    (cccrvalue & cccrtbits),
1367	    ("[p4,%d] CCCR T0/T1 mismatch cpu=%d ri=%d cccrvalue=0x%x "
1368		"tbits=0x%x", __LINE__, cpu, ri, cccrvalue, cccrtbits));
1369
1370	/* get the current hardware reading */
1371	tmp = rdmsr(pd->pm_pmc_msr);
1372
1373	if (rc == 1) {		/* need to keep the PMC running */
1374		escrvalue &= ~escrtbits;
1375		cccrvalue &= ~cccrtbits;
1376		wrmsr(escrmsr, escrvalue);
1377		wrmsr(pd->pm_cccr_msr, cccrvalue);
1378	}
1379
1380	mtx_unlock_spin(&pc->pc_mtx);
1381
1382	PMCDBG(MDP,STO,2, "p4-stop cpu=%d rc=%d ri=%d escrmsr=0x%x "
1383	    "escrval=0x%x cccrval=0x%x v=%jx", cpu, rc, ri, escrmsr,
1384	    escrvalue, cccrvalue, tmp);
1385
1386	if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit counter overflow */
1387		tmp += (P4_PERFCTR_MASK + 1) - P4_PCPU_HW_VALUE(pc,ri,cpu);
1388	else
1389		tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
1390
1391	P4_PCPU_PMC_VALUE(pc,ri,cpu) += tmp;
1392
1393	return 0;
1394}
1395
1396/*
1397 * Handle an interrupt.
1398 *
1399 * The hardware sets the CCCR_OVF whenever a counter overflow occurs,
1400 * so the handler examines all the 18 CCCR registers, processing the
1401 * counters that have overflowed.
1402 *
1403 * On HTT machines, the CCCR register is shared and will interrupt
1404 * both logical processors if so configured.  Thus multiple logical
1405 * CPUs could enter the NMI service routine at the same time.  These
1406 * will get serialized using a per-cpu spinlock dedicated for use in
1407 * the NMI handler.
1408 */
1409
1410static int
1411p4_intr(int cpu, struct trapframe *tf)
1412{
1413	uint32_t cccrval, ovf_mask, ovf_partner;
1414	int did_interrupt, error, ri;
1415	struct p4_cpu *pc;
1416	struct pmc *pm;
1417	pmc_value_t v;
1418
1419	PMCDBG(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
1420	    TRAPF_USERMODE(tf));
1421
1422	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1423
1424	ovf_mask = P4_CPU_IS_HTT_SECONDARY(cpu) ?
1425	    P4_CCCR_OVF_PMI_T1 : P4_CCCR_OVF_PMI_T0;
1426	ovf_mask |= P4_CCCR_OVF;
1427	if (p4_system_has_htt)
1428		ovf_partner = P4_CPU_IS_HTT_SECONDARY(cpu) ?
1429		    P4_CCCR_OVF_PMI_T0 : P4_CCCR_OVF_PMI_T1;
1430	else
1431		ovf_partner = 0;
1432	did_interrupt = 0;
1433
1434	if (p4_system_has_htt)
1435		P4_PCPU_ACQ_INTR_SPINLOCK(pc);
1436
1437	/*
1438	 * Loop through all CCCRs, looking for ones that have
1439	 * interrupted this CPU.
1440	 */
1441	for (ri = 0; ri < P4_NPMCS; ri++) {
1442
1443		/*
1444		 * Check if our partner logical CPU has already marked
1445		 * this PMC has having interrupted it.  If so, reset
1446		 * the flag and process the interrupt, but leave the
1447		 * hardware alone.
1448		 */
1449		if (p4_system_has_htt && P4_PCPU_GET_INTRFLAG(pc,ri)) {
1450			P4_PCPU_SET_INTRFLAG(pc,ri,0);
1451			did_interrupt = 1;
1452
1453			/*
1454			 * Ignore de-configured or stopped PMCs.
1455			 * Ignore PMCs not in sampling mode.
1456			 */
1457			pm = pc->pc_p4pmcs[ri].phw_pmc;
1458			if (pm == NULL ||
1459			    pm->pm_state != PMC_STATE_RUNNING ||
1460			    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1461				continue;
1462			}
1463			(void) pmc_process_interrupt(cpu, pm, tf,
1464			    TRAPF_USERMODE(tf));
1465			continue;
1466		}
1467
1468		/*
1469		 * Fresh interrupt.  Look for the CCCR_OVF bit
1470		 * and the OVF_Tx bit for this logical
1471		 * processor being set.
1472		 */
1473		cccrval = rdmsr(P4_CCCR_MSR_FIRST + ri);
1474
1475		if ((cccrval & ovf_mask) != ovf_mask)
1476			continue;
1477
1478		/*
1479		 * If the other logical CPU would also have been
1480		 * interrupted due to the PMC being shared, record
1481		 * this fact in the per-cpu saved interrupt flag
1482		 * bitmask.
1483		 */
1484		if (p4_system_has_htt && (cccrval & ovf_partner))
1485			P4_PCPU_SET_INTRFLAG(pc, ri, 1);
1486
1487		v = rdmsr(P4_PERFCTR_MSR_FIRST + ri);
1488
1489		PMCDBG(MDP,INT, 2, "ri=%d v=%jx", ri, v);
1490
1491		/* Stop the counter, and reset the overflow  bit */
1492		cccrval &= ~(P4_CCCR_OVF | P4_CCCR_ENABLE);
1493		wrmsr(P4_CCCR_MSR_FIRST + ri, cccrval);
1494
1495		did_interrupt = 1;
1496
1497		/*
1498		 * Ignore de-configured or stopped PMCs.  Ignore PMCs
1499		 * not in sampling mode.
1500		 */
1501		pm = pc->pc_p4pmcs[ri].phw_pmc;
1502
1503		if (pm == NULL ||
1504		    pm->pm_state != PMC_STATE_RUNNING ||
1505		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1506			continue;
1507		}
1508
1509		/*
1510		 * Process the interrupt.  Re-enable the PMC if
1511		 * processing was successful.
1512		 */
1513		error = pmc_process_interrupt(cpu, pm, tf,
1514		    TRAPF_USERMODE(tf));
1515
1516		/*
1517		 * Only the first processor executing the NMI handler
1518		 * in a HTT pair will restart a PMC, and that too
1519		 * only if there were no errors.
1520		 */
1521		v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(
1522			pm->pm_sc.pm_reloadcount);
1523		wrmsr(P4_PERFCTR_MSR_FIRST + ri, v);
1524		if (error == 0)
1525			wrmsr(P4_CCCR_MSR_FIRST + ri,
1526			    cccrval | P4_CCCR_ENABLE);
1527	}
1528
1529	/* allow the other CPU to proceed */
1530	if (p4_system_has_htt)
1531		P4_PCPU_REL_INTR_SPINLOCK(pc);
1532
1533	/*
1534	 * On Intel P4 CPUs, the PMC 'pcint' entry in the LAPIC gets
1535	 * masked when a PMC interrupts the CPU.  We need to unmask
1536	 * the interrupt source explicitly.
1537	 */
1538
1539	if (did_interrupt)
1540		pmc_x86_lapic_enable_pmc_interrupt();
1541
1542	atomic_add_int(did_interrupt ? &pmc_stats.pm_intr_processed :
1543	    &pmc_stats.pm_intr_ignored, 1);
1544
1545	return (did_interrupt);
1546}
1547
1548/*
1549 * Describe a CPU's PMC state.
1550 */
1551
1552static int
1553p4_describe(int cpu, int ri, struct pmc_info *pi,
1554    struct pmc **ppmc)
1555{
1556	int error;
1557	size_t copied;
1558	const struct p4pmc_descr *pd;
1559
1560	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1561	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
1562	KASSERT(ri >= 0 && ri < P4_NPMCS,
1563	    ("[p4,%d] row-index %d out of range", __LINE__, ri));
1564
1565	PMCDBG(MDP,OPS,1,"p4-describe cpu=%d ri=%d", cpu, ri);
1566
1567	if (P4_CPU_IS_HTT_SECONDARY(cpu))
1568		return (EINVAL);
1569
1570	pd  = &p4_pmcdesc[ri];
1571
1572	if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
1573	    PMC_NAME_MAX, &copied)) != 0)
1574		return (error);
1575
1576	pi->pm_class = pd->pm_descr.pd_class;
1577
1578	if (p4_pcpu[cpu]->pc_p4pmcs[ri].phw_state & PMC_PHW_FLAG_IS_ENABLED) {
1579		pi->pm_enabled = TRUE;
1580		*ppmc          = p4_pcpu[cpu]->pc_p4pmcs[ri].phw_pmc;
1581	} else {
1582		pi->pm_enabled = FALSE;
1583		*ppmc          = NULL;
1584	}
1585
1586	return (0);
1587}
1588
1589/*
1590 * Get MSR# for use with RDPMC.
1591 */
1592
1593static int
1594p4_get_msr(int ri, uint32_t *msr)
1595{
1596	KASSERT(ri >= 0 && ri < P4_NPMCS,
1597	    ("[p4,%d] ri %d out of range", __LINE__, ri));
1598
1599	*msr = p4_pmcdesc[ri].pm_pmc_msr - P4_PERFCTR_MSR_FIRST;
1600
1601	PMCDBG(MDP,OPS, 1, "ri=%d getmsr=0x%x", ri, *msr);
1602
1603	return 0;
1604}
1605
1606
1607int
1608pmc_p4_initialize(struct pmc_mdep *md, int ncpus)
1609{
1610	struct pmc_classdep *pcd;
1611	struct p4_event_descr *pe;
1612
1613	KASSERT(md != NULL, ("[p4,%d] md is NULL", __LINE__));
1614	KASSERT(cpu_vendor_id == CPU_VENDOR_INTEL,
1615	    ("[p4,%d] Initializing non-intel processor", __LINE__));
1616
1617	PMCDBG(MDP,INI,1, "%s", "p4-initialize");
1618
1619	/* Allocate space for pointers to per-cpu descriptors. */
1620	p4_pcpu = malloc(sizeof(struct p4_cpu **) * ncpus, M_PMC,
1621	    M_ZERO|M_WAITOK);
1622
1623	/* Fill in the class dependent descriptor. */
1624	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4];
1625
1626	switch (md->pmd_cputype) {
1627	case PMC_CPU_INTEL_PIV:
1628
1629		pcd->pcd_caps		= P4_PMC_CAPS;
1630		pcd->pcd_class		= PMC_CLASS_P4;
1631		pcd->pcd_num		= P4_NPMCS;
1632		pcd->pcd_ri		= md->pmd_npmc;
1633		pcd->pcd_width		= 40;
1634
1635		pcd->pcd_allocate_pmc	= p4_allocate_pmc;
1636		pcd->pcd_config_pmc	= p4_config_pmc;
1637		pcd->pcd_describe	= p4_describe;
1638		pcd->pcd_get_config	= p4_get_config;
1639		pcd->pcd_get_msr	= p4_get_msr;
1640		pcd->pcd_pcpu_fini 	= p4_pcpu_fini;
1641		pcd->pcd_pcpu_init    	= p4_pcpu_init;
1642		pcd->pcd_read_pmc	= p4_read_pmc;
1643		pcd->pcd_release_pmc	= p4_release_pmc;
1644		pcd->pcd_start_pmc	= p4_start_pmc;
1645		pcd->pcd_stop_pmc	= p4_stop_pmc;
1646		pcd->pcd_write_pmc	= p4_write_pmc;
1647
1648		md->pmd_pcpu_fini	= NULL;
1649		md->pmd_pcpu_init	= NULL;
1650		md->pmd_intr	    	= p4_intr;
1651		md->pmd_npmc	       += P4_NPMCS;
1652
1653		/* model specific configuration */
1654		if ((cpu_id & 0xFFF) < 0xF27) {
1655
1656			/*
1657			 * On P4 and Xeon with CPUID < (Family 15,
1658			 * Model 2, Stepping 7), only one ESCR is
1659			 * available for the IOQ_ALLOCATION event.
1660			 */
1661
1662			pe = p4_find_event(PMC_EV_P4_IOQ_ALLOCATION);
1663			pe->pm_escrs[1] = P4_ESCR_NONE;
1664		}
1665
1666		break;
1667
1668	default:
1669		KASSERT(0,("[p4,%d] Unknown CPU type", __LINE__));
1670		return ENOSYS;
1671	}
1672
1673	return (0);
1674}
1675
1676void
1677pmc_p4_finalize(struct pmc_mdep *md)
1678{
1679#if	defined(INVARIANTS)
1680	int i, ncpus;
1681#endif
1682
1683	KASSERT(p4_pcpu != NULL,
1684	    ("[p4,%d] NULL p4_pcpu", __LINE__));
1685
1686#if	defined(INVARIANTS)
1687	ncpus = pmc_cpu_max();
1688	for (i = 0; i < ncpus; i++)
1689		KASSERT(p4_pcpu[i] == NULL, ("[p4,%d] non-null pcpu %d",
1690		    __LINE__, i));
1691#endif
1692
1693	free(p4_pcpu, M_PMC);
1694	p4_pcpu = NULL;
1695}
1696