hwpmc_piv.c revision 184802
1/*-
2 * Copyright (c) 2003-2007 Joseph Koshy
3 * Copyright (c) 2007 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by A. Joseph Koshy under
7 * sponsorship from the FreeBSD Foundation and Google, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/hwpmc/hwpmc_piv.c 184802 2008-11-09 17:37:54Z jkoshy $");
33
34#include <sys/param.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/pmc.h>
38#include <sys/pmckern.h>
39#include <sys/smp.h>
40#include <sys/systm.h>
41
42#include <machine/cpu.h>
43#include <machine/cpufunc.h>
44#include <machine/md_var.h>
45#include <machine/specialreg.h>
46
47/*
48 * PENTIUM 4 SUPPORT
49 *
50 * The P4 has 18 PMCs, divided into 4 groups with 4,4,4 and 6 PMCs
51 * respectively.  Each PMC comprises of two model specific registers:
52 * a counter configuration control register (CCCR) and a counter
53 * register that holds the actual event counts.
54 *
55 * Configuring an event requires the use of one of 45 event selection
56 * control registers (ESCR).  Events are associated with specific
57 * ESCRs.  Each PMC group has a set of ESCRs it can use.
58 *
59 * - The BPU counter group (4 PMCs) can use the 16 ESCRs:
60 *   BPU_ESCR{0,1}, IS_ESCR{0,1}, MOB_ESCR{0,1}, ITLB_ESCR{0,1},
61 *   PMH_ESCR{0,1}, IX_ESCR{0,1}, FSB_ESCR{0,}, BSU_ESCR{0,1}.
62 *
63 * - The MS counter group (4 PMCs) can use the 6 ESCRs: MS_ESCR{0,1},
64 *   TC_ESCR{0,1}, TBPU_ESCR{0,1}.
65 *
66 * - The FLAME counter group (4 PMCs) can use the 10 ESCRs:
67 *   FLAME_ESCR{0,1}, FIRM_ESCR{0,1}, SAAT_ESCR{0,1}, U2L_ESCR{0,1},
68 *   DAC_ESCR{0,1}.
69 *
70 * - The IQ counter group (6 PMCs) can use the 13 ESCRs: IQ_ESCR{0,1},
71 *   ALF_ESCR{0,1}, RAT_ESCR{0,1}, SSU_ESCR0, CRU_ESCR{0,1,2,3,4,5}.
72 *
73 * Even-numbered ESCRs can be used with counters 0, 1 and 4 (if
74 * present) of a counter group.  Odd-numbers ESCRs can be used with
75 * counters 2, 3 and 5 (if present) of a counter group.  The
76 * 'p4_escrs[]' table describes these restrictions in a form that
77 * function 'p4_allocate()' uses for making allocation decisions.
78 *
79 * SYSTEM-MODE AND THREAD-MODE ALLOCATION
80 *
81 * In addition to remembering the state of PMC rows
82 * ('FREE','STANDALONE', or 'THREAD'), we similar need to track the
83 * state of ESCR rows.  If an ESCR is allocated to a system-mode PMC
84 * on a CPU we cannot allocate this to a thread-mode PMC.  On a
85 * multi-cpu (multiple physical CPUs) system, ESCR allocation on each
86 * CPU is tracked by the pc_escrs[] array.
87 *
88 * Each system-mode PMC that is using an ESCR records its row-index in
89 * the appropriate entry and system-mode allocation attempts check
90 * that an ESCR is available using this array.  Process-mode PMCs do
91 * not use the pc_escrs[] array, since ESCR row itself would have been
92 * marked as in 'THREAD' mode.
93 *
94 * HYPERTHREADING SUPPORT
95 *
96 * When HTT is enabled, the FreeBSD kernel treats the two 'logical'
97 * cpus as independent CPUs and can schedule kernel threads on them
98 * independently.  However, the two logical CPUs share the same set of
99 * PMC resources.  We need to ensure that:
100 * - PMCs that use the PMC_F_DESCENDANTS semantics are handled correctly,
101 *   and,
102 * - Threads of multi-threaded processes that get scheduled on the same
103 *   physical CPU are handled correctly.
104 *
105 * HTT Detection
106 *
107 * Not all HTT capable systems will have HTT enabled.  We detect the
108 * presence of HTT by detecting if 'p4_init()' was called for a secondary
109 * CPU in a HTT pair.
110 *
111 * Note that hwpmc(4) cannot currently deal with a change in HTT status once
112 * loaded.
113 *
114 * Handling HTT READ / WRITE / START / STOP
115 *
116 * PMC resources are shared across the CPUs in an HTT pair.  We
117 * designate the lower numbered CPU in a HTT pair as the 'primary'
118 * CPU.  In each primary CPU's state we keep track of a 'runcount'
119 * which reflects the number of PMC-using processes that have been
120 * scheduled on its secondary CPU.  Process-mode PMC operations will
121 * actually 'start' or 'stop' hardware only if these are the first or
122 * last processes respectively to use the hardware.  PMC values
123 * written by a 'write' operation are saved and are transferred to
124 * hardware at PMC 'start' time if the runcount is 0.  If the runcount
125 * is greater than 0 at the time of a 'start' operation, we keep track
126 * of the actual hardware value at the time of the 'start' operation
127 * and use this to adjust the final readings at PMC 'stop' or 'read'
128 * time.
129 *
130 * Execution sequences:
131 *
132 * Case 1:   CPUx   +...-		(no overlap)
133 *	     CPUy         +...-
134 *           RC   0 1   0 1   0
135 *
136 * Case 2:   CPUx   +........-		(partial overlap)
137 * 	     CPUy       +........-
138 *           RC   0 1   2    1   0
139 *
140 * Case 3:   CPUx   +..............-	(fully overlapped)
141 *	     CPUy       +.....-
142 *	     RC   0 1   2     1    0
143 *
144 *     Key:
145 *     'CPU[xy]' : one of the two logical processors on a HTT CPU.
146 *     'RC'      : run count (#threads per physical core).
147 *     '+'       : point in time when a thread is put on a CPU.
148 *     '-'       : point in time where a thread is taken off a CPU.
149 *
150 * Handling HTT CONFIG
151 *
152 * Different processes attached to the same PMC may get scheduled on
153 * the two logical processors in the package.  We keep track of config
154 * and de-config operations using the CFGFLAGS fields of the per-physical
155 * cpu state.
156 */
157
158#define	P4_PMCS()				\
159	P4_PMC(BPU_COUNTER0)			\
160	P4_PMC(BPU_COUNTER1)			\
161	P4_PMC(BPU_COUNTER2)			\
162	P4_PMC(BPU_COUNTER3)			\
163	P4_PMC(MS_COUNTER0)			\
164	P4_PMC(MS_COUNTER1)			\
165	P4_PMC(MS_COUNTER2)			\
166	P4_PMC(MS_COUNTER3)			\
167	P4_PMC(FLAME_COUNTER0)			\
168	P4_PMC(FLAME_COUNTER1)			\
169	P4_PMC(FLAME_COUNTER2)			\
170	P4_PMC(FLAME_COUNTER3)			\
171	P4_PMC(IQ_COUNTER0)			\
172	P4_PMC(IQ_COUNTER1)			\
173	P4_PMC(IQ_COUNTER2)			\
174	P4_PMC(IQ_COUNTER3)			\
175	P4_PMC(IQ_COUNTER4)			\
176	P4_PMC(IQ_COUNTER5)			\
177	P4_PMC(NONE)
178
179enum pmc_p4pmc {
180#undef	P4_PMC
181#define	P4_PMC(N)	P4_PMC_##N ,
182	P4_PMCS()
183};
184
185/*
186 * P4 ESCR descriptors
187 */
188
189#define	P4_ESCRS()							\
190    P4_ESCR(BSU_ESCR0,	0x3A0, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
191    P4_ESCR(BSU_ESCR1,	0x3A1, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
192    P4_ESCR(FSB_ESCR0,	0x3A2, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
193    P4_ESCR(FSB_ESCR1,	0x3A3, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
194    P4_ESCR(FIRM_ESCR0,	0x3A4, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
195    P4_ESCR(FIRM_ESCR1,	0x3A5, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
196    P4_ESCR(FLAME_ESCR0, 0x3A6, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
197    P4_ESCR(FLAME_ESCR1, 0x3A7, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
198    P4_ESCR(DAC_ESCR0,	0x3A8, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
199    P4_ESCR(DAC_ESCR1,	0x3A9, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
200    P4_ESCR(MOB_ESCR0,	0x3AA, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
201    P4_ESCR(MOB_ESCR1,	0x3AB, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
202    P4_ESCR(PMH_ESCR0,	0x3AC, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
203    P4_ESCR(PMH_ESCR1,	0x3AD, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
204    P4_ESCR(SAAT_ESCR0,	0x3AE, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
205    P4_ESCR(SAAT_ESCR1,	0x3AF, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
206    P4_ESCR(U2L_ESCR0,	0x3B0, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
207    P4_ESCR(U2L_ESCR1,	0x3B1, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
208    P4_ESCR(BPU_ESCR0,	0x3B2, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
209    P4_ESCR(BPU_ESCR1,	0x3B3, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
210    P4_ESCR(IS_ESCR0,	0x3B4, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
211    P4_ESCR(IS_ESCR1,	0x3B5, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
212    P4_ESCR(ITLB_ESCR0,	0x3B6, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
213    P4_ESCR(ITLB_ESCR1,	0x3B7, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
214    P4_ESCR(CRU_ESCR0,	0x3B8, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
215    P4_ESCR(CRU_ESCR1,	0x3B9, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
216    P4_ESCR(IQ_ESCR0,	0x3BA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
217    P4_ESCR(IQ_ESCR1,	0x3BB, IQ_COUNTER1, IQ_COUNTER3, IQ_COUNTER5)	\
218    P4_ESCR(RAT_ESCR0,	0x3BC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
219    P4_ESCR(RAT_ESCR1,	0x3BD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
220    P4_ESCR(SSU_ESCR0,	0x3BE, IQ_COUNTER0, IQ_COUNTER2, IQ_COUNTER4)	\
221    P4_ESCR(MS_ESCR0,	0x3C0, MS_COUNTER0, MS_COUNTER1, NONE)		\
222    P4_ESCR(MS_ESCR1,	0x3C1, MS_COUNTER2, MS_COUNTER3, NONE)		\
223    P4_ESCR(TBPU_ESCR0,	0x3C2, MS_COUNTER0, MS_COUNTER1, NONE)		\
224    P4_ESCR(TBPU_ESCR1,	0x3C3, MS_COUNTER2, MS_COUNTER3, NONE)		\
225    P4_ESCR(TC_ESCR0,	0x3C4, MS_COUNTER0, MS_COUNTER1, NONE)		\
226    P4_ESCR(TC_ESCR1,	0x3C5, MS_COUNTER2, MS_COUNTER3, NONE)		\
227    P4_ESCR(IX_ESCR0,	0x3C8, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
228    P4_ESCR(IX_ESCR1,	0x3C9, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
229    P4_ESCR(ALF_ESCR0,	0x3CA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
230    P4_ESCR(ALF_ESCR1,	0x3CB, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
231    P4_ESCR(CRU_ESCR2,	0x3CC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
232    P4_ESCR(CRU_ESCR3,	0x3CD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
233    P4_ESCR(CRU_ESCR4,	0x3E0, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
234    P4_ESCR(CRU_ESCR5,	0x3E1, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
235    P4_ESCR(NONE,		~0,    NONE, NONE, NONE)
236
237enum pmc_p4escr {
238#define	P4_ESCR(N, MSR, P1, P2, P3)	P4_ESCR_##N ,
239	P4_ESCRS()
240#undef	P4_ESCR
241};
242
243struct pmc_p4escr_descr {
244	const char	pm_escrname[PMC_NAME_MAX];
245	u_short		pm_escr_msr;
246	const enum pmc_p4pmc pm_pmcs[P4_MAX_PMC_PER_ESCR];
247};
248
249static struct pmc_p4escr_descr p4_escrs[] =
250{
251#define	P4_ESCR(N, MSR, P1, P2, P3)		\
252	{					\
253		.pm_escrname = #N,		\
254		.pm_escr_msr = (MSR),		\
255		.pm_pmcs =			\
256		{				\
257			P4_PMC_##P1,		\
258			P4_PMC_##P2,		\
259			P4_PMC_##P3		\
260		}				\
261	} ,
262
263	P4_ESCRS()
264
265#undef	P4_ESCR
266};
267
268/*
269 * P4 Event descriptor
270 */
271
272struct p4_event_descr {
273	const enum pmc_event pm_event;
274	const uint32_t	pm_escr_eventselect;
275	const uint32_t	pm_cccr_select;
276	const char	pm_is_ti_event;
277	enum pmc_p4escr	pm_escrs[P4_MAX_ESCR_PER_EVENT];
278};
279
280static struct p4_event_descr p4_events[] = {
281
282#define	P4_EVDESCR(NAME, ESCREVENTSEL, CCCRSEL, TI_EVENT, ESCR0, ESCR1)	\
283	{								\
284		.pm_event            = PMC_EV_P4_##NAME,		\
285		.pm_escr_eventselect = (ESCREVENTSEL),			\
286		.pm_cccr_select      = (CCCRSEL),			\
287		.pm_is_ti_event	     = (TI_EVENT),			\
288		.pm_escrs            =					\
289		{							\
290			P4_ESCR_##ESCR0,				\
291			P4_ESCR_##ESCR1					\
292		}							\
293	}
294
295P4_EVDESCR(TC_DELIVER_MODE,	0x01, 0x01, TRUE,  TC_ESCR0,	TC_ESCR1),
296P4_EVDESCR(BPU_FETCH_REQUEST,	0x03, 0x00, FALSE, BPU_ESCR0,	BPU_ESCR1),
297P4_EVDESCR(ITLB_REFERENCE,	0x18, 0x03, FALSE, ITLB_ESCR0,	ITLB_ESCR1),
298P4_EVDESCR(MEMORY_CANCEL,	0x02, 0x05, FALSE, DAC_ESCR0,	DAC_ESCR1),
299P4_EVDESCR(MEMORY_COMPLETE,	0x08, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
300P4_EVDESCR(LOAD_PORT_REPLAY,	0x04, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
301P4_EVDESCR(STORE_PORT_REPLAY,	0x05, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
302P4_EVDESCR(MOB_LOAD_REPLAY,	0x03, 0x02, FALSE, MOB_ESCR0,	MOB_ESCR1),
303P4_EVDESCR(PAGE_WALK_TYPE,	0x01, 0x04, TRUE,  PMH_ESCR0,	PMH_ESCR1),
304P4_EVDESCR(BSQ_CACHE_REFERENCE,	0x0C, 0x07, FALSE, BSU_ESCR0,	BSU_ESCR1),
305P4_EVDESCR(IOQ_ALLOCATION,	0x03, 0x06, FALSE, FSB_ESCR0,	FSB_ESCR1),
306P4_EVDESCR(IOQ_ACTIVE_ENTRIES,	0x1A, 0x06, FALSE, FSB_ESCR1,	NONE),
307P4_EVDESCR(FSB_DATA_ACTIVITY,	0x17, 0x06, TRUE,  FSB_ESCR0,	FSB_ESCR1),
308P4_EVDESCR(BSQ_ALLOCATION,	0x05, 0x07, FALSE, BSU_ESCR0,	NONE),
309P4_EVDESCR(BSQ_ACTIVE_ENTRIES,	0x06, 0x07, FALSE, BSU_ESCR1,	NONE),
310	/* BSQ_ACTIVE_ENTRIES inherits CPU specificity from BSQ_ALLOCATION */
311P4_EVDESCR(SSE_INPUT_ASSIST,	0x34, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
312P4_EVDESCR(PACKED_SP_UOP,	0x08, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
313P4_EVDESCR(PACKED_DP_UOP,	0x0C, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
314P4_EVDESCR(SCALAR_SP_UOP,	0x0A, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
315P4_EVDESCR(SCALAR_DP_UOP,	0x0E, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
316P4_EVDESCR(64BIT_MMX_UOP,	0x02, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
317P4_EVDESCR(128BIT_MMX_UOP,	0x1A, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
318P4_EVDESCR(X87_FP_UOP,		0x04, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
319P4_EVDESCR(X87_SIMD_MOVES_UOP,	0x2E, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
320P4_EVDESCR(GLOBAL_POWER_EVENTS,	0x13, 0x06, FALSE, FSB_ESCR0,	FSB_ESCR1),
321P4_EVDESCR(TC_MS_XFER,		0x05, 0x00, FALSE, MS_ESCR0,	MS_ESCR1),
322P4_EVDESCR(UOP_QUEUE_WRITES,	0x09, 0x00, FALSE, MS_ESCR0,	MS_ESCR1),
323P4_EVDESCR(RETIRED_MISPRED_BRANCH_TYPE,
324    				0x05, 0x02, FALSE, TBPU_ESCR0,	TBPU_ESCR1),
325P4_EVDESCR(RETIRED_BRANCH_TYPE,	0x04, 0x02, FALSE, TBPU_ESCR0,	TBPU_ESCR1),
326P4_EVDESCR(RESOURCE_STALL,	0x01, 0x01, FALSE, ALF_ESCR0,	ALF_ESCR1),
327P4_EVDESCR(WC_BUFFER,		0x05, 0x05, TRUE,  DAC_ESCR0,	DAC_ESCR1),
328P4_EVDESCR(B2B_CYCLES,		0x16, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
329P4_EVDESCR(BNR,			0x08, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
330P4_EVDESCR(SNOOP,		0x06, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
331P4_EVDESCR(RESPONSE,		0x04, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
332P4_EVDESCR(FRONT_END_EVENT,	0x08, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
333P4_EVDESCR(EXECUTION_EVENT,	0x0C, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
334P4_EVDESCR(REPLAY_EVENT, 	0x09, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
335P4_EVDESCR(INSTR_RETIRED,	0x02, 0x04, FALSE, CRU_ESCR0,	CRU_ESCR1),
336P4_EVDESCR(UOPS_RETIRED,	0x01, 0x04, FALSE, CRU_ESCR0,	CRU_ESCR1),
337P4_EVDESCR(UOP_TYPE,		0x02, 0x02, FALSE, RAT_ESCR0,	RAT_ESCR1),
338P4_EVDESCR(BRANCH_RETIRED,	0x06, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
339P4_EVDESCR(MISPRED_BRANCH_RETIRED, 0x03, 0x04, FALSE, CRU_ESCR0, CRU_ESCR1),
340P4_EVDESCR(X87_ASSIST,		0x03, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
341P4_EVDESCR(MACHINE_CLEAR,	0x02, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3)
342
343#undef	P4_EVDESCR
344};
345
346#define	P4_EVENT_IS_TI(E) ((E)->pm_is_ti_event == TRUE)
347
348#define	P4_NEVENTS	(PMC_EV_P4_LAST - PMC_EV_P4_FIRST + 1)
349
350/*
351 * P4 PMC descriptors
352 */
353
354struct p4pmc_descr {
355	struct pmc_descr pm_descr; 	/* common information */
356	enum pmc_p4pmc	pm_pmcnum;	/* PMC number */
357	uint32_t	pm_pmc_msr; 	/* PERFCTR MSR address */
358	uint32_t	pm_cccr_msr;  	/* CCCR MSR address */
359};
360
361static struct p4pmc_descr p4_pmcdesc[P4_NPMCS] = {
362#define	P4_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM |  \
363	PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \
364	PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE |            \
365	PMC_CAP_TAGGING | PMC_CAP_CASCADE)
366
367#define	P4_PMCDESCR(N, PMC, CCCR)			\
368	{						\
369		.pm_descr =				\
370		{					\
371			.pd_name = #N,			\
372			.pd_class = PMC_CLASS_P4,	\
373			.pd_caps = P4_PMC_CAPS,		\
374			.pd_width = 40			\
375		},					\
376		.pm_pmcnum      = P4_PMC_##N,		\
377		.pm_cccr_msr 	= (CCCR),		\
378		.pm_pmc_msr	= (PMC)			\
379	}
380
381	P4_PMCDESCR(BPU_COUNTER0,	0x300,	0x360),
382	P4_PMCDESCR(BPU_COUNTER1,	0x301,	0x361),
383	P4_PMCDESCR(BPU_COUNTER2,	0x302,	0x362),
384	P4_PMCDESCR(BPU_COUNTER3,	0x303,	0x363),
385	P4_PMCDESCR(MS_COUNTER0,	0x304,	0x364),
386	P4_PMCDESCR(MS_COUNTER1,	0x305,	0x365),
387	P4_PMCDESCR(MS_COUNTER2,	0x306,	0x366),
388	P4_PMCDESCR(MS_COUNTER3,	0x307,	0x367),
389	P4_PMCDESCR(FLAME_COUNTER0,	0x308,	0x368),
390	P4_PMCDESCR(FLAME_COUNTER1,	0x309,	0x369),
391	P4_PMCDESCR(FLAME_COUNTER2,	0x30A,	0x36A),
392	P4_PMCDESCR(FLAME_COUNTER3,	0x30B,	0x36B),
393	P4_PMCDESCR(IQ_COUNTER0,	0x30C,	0x36C),
394	P4_PMCDESCR(IQ_COUNTER1,	0x30D,	0x36D),
395	P4_PMCDESCR(IQ_COUNTER2,	0x30E,	0x36E),
396	P4_PMCDESCR(IQ_COUNTER3,	0x30F,	0x36F),
397	P4_PMCDESCR(IQ_COUNTER4,	0x310,	0x370),
398	P4_PMCDESCR(IQ_COUNTER5,	0x311,	0x371),
399
400#undef	P4_PMCDESCR
401};
402
403/* HTT support */
404#define	P4_NHTT					2 /* logical processors/chip */
405
406static int p4_system_has_htt;
407
408/*
409 * Per-CPU data structure for P4 class CPUs
410 *
411 * [19 struct pmc_hw structures]
412 * [45 ESCRs status bytes]
413 * [per-cpu spin mutex]
414 * [19 flag fields for holding config flags and a runcount]
415 * [19*2 hw value fields]	(Thread mode PMC support)
416 *    or
417 * [19*2 EIP values]		(Sampling mode PMCs)
418 * [19*2 pmc value fields]	(Thread mode PMC support))
419 */
420
421struct p4_cpu {
422	struct pmc_hw	pc_p4pmcs[P4_NPMCS];
423	char		pc_escrs[P4_NESCR];
424	struct mtx	pc_mtx;		/* spin lock */
425	uint32_t	pc_intrflag;	/* NMI handler flags */
426	unsigned int	pc_intrlock;	/* NMI handler spin lock */
427	unsigned char	pc_flags[P4_NPMCS]; /* 4 bits each: {cfg,run}count */
428	union {
429		pmc_value_t pc_hw[P4_NPMCS * P4_NHTT];
430		uintptr_t   pc_ip[P4_NPMCS * P4_NHTT];
431	}		pc_si;
432	pmc_value_t	pc_pmc_values[P4_NPMCS * P4_NHTT];
433};
434
435static struct p4_cpu **p4_pcpu;
436
437#define	P4_PCPU_PMC_VALUE(PC,RI,CPU) 	(PC)->pc_pmc_values[(RI)*((CPU) & 1)]
438#define	P4_PCPU_HW_VALUE(PC,RI,CPU)	(PC)->pc_si.pc_hw[(RI)*((CPU) & 1)]
439#define	P4_PCPU_SAVED_IP(PC,RI,CPU)	(PC)->pc_si.pc_ip[(RI)*((CPU) & 1)]
440
441#define	P4_PCPU_GET_FLAGS(PC,RI,MASK)	((PC)->pc_flags[(RI)] & (MASK))
442#define	P4_PCPU_SET_FLAGS(PC,RI,MASK,VAL)	do {	\
443	char _tmp;					\
444	_tmp = (PC)->pc_flags[(RI)];			\
445	_tmp &= ~(MASK);				\
446	_tmp |= (VAL) & (MASK);				\
447	(PC)->pc_flags[(RI)] = _tmp;			\
448} while (0)
449
450#define	P4_PCPU_GET_RUNCOUNT(PC,RI)	P4_PCPU_GET_FLAGS(PC,RI,0x0F)
451#define	P4_PCPU_SET_RUNCOUNT(PC,RI,V)	P4_PCPU_SET_FLAGS(PC,RI,0x0F,V)
452
453#define	P4_PCPU_GET_CFGFLAGS(PC,RI)	(P4_PCPU_GET_FLAGS(PC,RI,0xF0) >> 4)
454#define	P4_PCPU_SET_CFGFLAGS(PC,RI,C)	P4_PCPU_SET_FLAGS(PC,RI,0xF0,((C) <<4))
455
456#define	P4_CPU_TO_FLAG(C)		(P4_CPU_IS_HTT_SECONDARY(cpu) ? 0x2 : 0x1)
457
458#define	P4_PCPU_GET_INTRFLAG(PC,I)	((PC)->pc_intrflag & (1 << (I)))
459#define	P4_PCPU_SET_INTRFLAG(PC,I,V)	do {		\
460		uint32_t __mask;			\
461		__mask = 1 << (I);			\
462		if ((V))				\
463			(PC)->pc_intrflag |= __mask;	\
464		else					\
465			(PC)->pc_intrflag &= ~__mask;	\
466	} while (0)
467
468/*
469 * A minimal spin lock implementation for use inside the NMI handler.
470 *
471 * We don't want to use a regular spin lock here, because curthread
472 * may not be consistent at the time the handler is invoked.
473 */
474#define	P4_PCPU_ACQ_INTR_SPINLOCK(PC) do {				\
475		while (!atomic_cmpset_acq_int(&pc->pc_intrlock, 0, 1))	\
476			ia32_pause();					\
477	} while (0)
478#define	P4_PCPU_REL_INTR_SPINLOCK(PC) 					\
479	atomic_store_rel_int(&pc->pc_intrlock, 0);
480
481/* ESCR row disposition */
482static int p4_escrdisp[P4_NESCR];
483
484#define	P4_ESCR_ROW_DISP_IS_THREAD(E)		(p4_escrdisp[(E)] > 0)
485#define	P4_ESCR_ROW_DISP_IS_STANDALONE(E)	(p4_escrdisp[(E)] < 0)
486#define	P4_ESCR_ROW_DISP_IS_FREE(E)		(p4_escrdisp[(E)] == 0)
487
488#define	P4_ESCR_MARK_ROW_STANDALONE(E) do {				\
489	KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
490		    __LINE__));						\
491	atomic_add_int(&p4_escrdisp[(E)], -1);				\
492	KASSERT(p4_escrdisp[(E)] >= (-pmc_cpu_max_active()), 		\
493		("[p4,%d] row disposition error", __LINE__));		\
494} while (0)
495
496#define	P4_ESCR_UNMARK_ROW_STANDALONE(E) do {				\
497	atomic_add_int(&p4_escrdisp[(E)], 1);				\
498	KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
499		    __LINE__));						\
500} while (0)
501
502#define	P4_ESCR_MARK_ROW_THREAD(E) do {					 \
503	KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
504		    __LINE__));						 \
505	atomic_add_int(&p4_escrdisp[(E)], 1);				 \
506} while (0)
507
508#define	P4_ESCR_UNMARK_ROW_THREAD(E) do {				 \
509	atomic_add_int(&p4_escrdisp[(E)], -1);				 \
510	KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
511		    __LINE__));						 \
512} while (0)
513
514#define	P4_PMC_IS_STOPPED(cccr)	((rdmsr(cccr) & P4_CCCR_ENABLE) == 0)
515
516#define	P4_CPU_IS_HTT_SECONDARY(cpu)					\
517	(p4_system_has_htt ? ((cpu) & 1) : 0)
518#define	P4_TO_HTT_PRIMARY(cpu) 						\
519	(p4_system_has_htt ? ((cpu) & ~1) : (cpu))
520
521#define	P4_CCCR_Tx_MASK	(~(P4_CCCR_OVF_PMI_T0|P4_CCCR_OVF_PMI_T1|	\
522			     P4_CCCR_ENABLE|P4_CCCR_OVF))
523#define	P4_ESCR_Tx_MASK	(~(P4_ESCR_T0_OS|P4_ESCR_T0_USR|P4_ESCR_T1_OS|	\
524			     P4_ESCR_T1_USR))
525
526/*
527 * support routines
528 */
529
530static struct p4_event_descr *
531p4_find_event(enum pmc_event ev)
532{
533	int n;
534
535	for (n = 0; n < P4_NEVENTS; n++)
536		if (p4_events[n].pm_event == ev)
537			break;
538	if (n == P4_NEVENTS)
539		return (NULL);
540	return (&p4_events[n]);
541}
542
543/*
544 * Initialize per-cpu state
545 */
546
547static int
548p4_pcpu_init(struct pmc_mdep *md, int cpu)
549{
550	char *pescr;
551	int n, first_ri, phycpu;
552	struct pmc_hw *phw;
553	struct p4_cpu *p4c;
554	struct pmc_cpu *pc, *plc;
555
556	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
557	    ("[p4,%d] insane cpu number %d", __LINE__, cpu));
558
559	PMCDBG(MDP,INI,0, "p4-init cpu=%d is-primary=%d", cpu,
560	    pmc_cpu_is_primary(cpu) != 0);
561
562	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
563
564	/*
565	 * The two CPUs in an HT pair share their per-cpu state.
566	 *
567	 * For HT capable CPUs, we assume that the two logical
568	 * processors in the HT pair get two consecutive CPU ids
569	 * starting with an even id #.
570	 *
571	 * The primary CPU (the even numbered CPU of the pair) would
572	 * have been initialized prior to the initialization for the
573	 * secondary.
574	 */
575
576	if (!pmc_cpu_is_primary(cpu) && (cpu & 1)) {
577
578		p4_system_has_htt = 1;
579
580		phycpu = P4_TO_HTT_PRIMARY(cpu);
581		pc = pmc_pcpu[phycpu];
582		plc = pmc_pcpu[cpu];
583
584		KASSERT(plc != pc, ("[p4,%d] per-cpu config error", __LINE__));
585
586		PMCDBG(MDP,INI,1, "p4-init cpu=%d phycpu=%d pc=%p", cpu,
587		    phycpu, pc);
588		KASSERT(pc, ("[p4,%d] Null Per-Cpu state cpu=%d phycpu=%d",
589		    __LINE__, cpu, phycpu));
590
591		/* PMCs are shared with the physical CPU. */
592		for (n = 0; n < P4_NPMCS; n++)
593			plc->pc_hwpmcs[n + first_ri] =
594			    pc->pc_hwpmcs[n + first_ri];
595
596		return (0);
597	}
598
599	p4c = malloc(sizeof(struct p4_cpu), M_PMC, M_WAITOK|M_ZERO);
600
601	if (p4c == NULL)
602		return (ENOMEM);
603
604	pc = pmc_pcpu[cpu];
605
606	KASSERT(pc != NULL, ("[p4,%d] cpu %d null per-cpu", __LINE__, cpu));
607
608	p4_pcpu[cpu] = p4c;
609	phw = p4c->pc_p4pmcs;
610
611	for (n = 0; n < P4_NPMCS; n++, phw++) {
612		phw->phw_state   = PMC_PHW_FLAG_IS_ENABLED |
613		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
614		phw->phw_pmc     = NULL;
615		pc->pc_hwpmcs[n + first_ri] = phw;
616	}
617
618	pescr = p4c->pc_escrs;
619	for (n = 0; n < P4_NESCR; n++)
620		*pescr++ = P4_INVALID_PMC_INDEX;
621
622	mtx_init(&p4c->pc_mtx, "p4-pcpu", "pmc-leaf", MTX_SPIN);
623
624	return (0);
625}
626
627/*
628 * Destroy per-cpu state.
629 */
630
631static int
632p4_pcpu_fini(struct pmc_mdep *md, int cpu)
633{
634	int first_ri, i;
635	struct p4_cpu *p4c;
636	struct pmc_cpu *pc;
637
638	PMCDBG(MDP,INI,0, "p4-cleanup cpu=%d", cpu);
639
640	pc = pmc_pcpu[cpu];
641	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
642
643	for (i = 0; i < P4_NPMCS; i++)
644		pc->pc_hwpmcs[i + first_ri] = NULL;
645
646	if (!pmc_cpu_is_primary(cpu) && (cpu & 1))
647		return (0);
648
649	p4c = p4_pcpu[cpu];
650
651	KASSERT(p4c != NULL, ("[p4,%d] NULL pcpu", __LINE__));
652
653	/* Turn off all PMCs on this CPU */
654	for (i = 0; i < P4_NPMCS - 1; i++)
655		wrmsr(P4_CCCR_MSR_FIRST + i,
656		    rdmsr(P4_CCCR_MSR_FIRST + i) & ~P4_CCCR_ENABLE);
657
658	mtx_destroy(&p4c->pc_mtx);
659
660	free(p4c, M_PMC);
661
662	p4_pcpu[cpu] = NULL;
663
664	return (0);
665}
666
667/*
668 * Read a PMC
669 */
670
671static int
672p4_read_pmc(int cpu, int ri, pmc_value_t *v)
673{
674	struct pmc *pm;
675	pmc_value_t tmp;
676	struct p4_cpu *pc;
677	enum pmc_mode mode;
678	struct p4pmc_descr *pd;
679
680	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
681	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
682	KASSERT(ri >= 0 && ri < P4_NPMCS,
683	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
684
685	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
686	pm = pc->pc_p4pmcs[ri].phw_pmc;
687	pd = &p4_pmcdesc[ri];
688
689	KASSERT(pm != NULL,
690	    ("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__, cpu, ri));
691
692	KASSERT(pd->pm_descr.pd_class == PMC_TO_CLASS(pm),
693	    ("[p4,%d] class mismatch pd %d != id class %d", __LINE__,
694	    pd->pm_descr.pd_class, PMC_TO_CLASS(pm)));
695
696	mode = PMC_TO_MODE(pm);
697
698	PMCDBG(MDP,REA,1, "p4-read cpu=%d ri=%d mode=%d", cpu, ri, mode);
699
700	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
701	    ("[p4,%d] unknown PMC class %d", __LINE__, pd->pm_descr.pd_class));
702
703	tmp = rdmsr(p4_pmcdesc[ri].pm_pmc_msr);
704
705	if (PMC_IS_VIRTUAL_MODE(mode)) {
706		if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit overflow */
707			tmp += (P4_PERFCTR_MASK + 1) -
708			    P4_PCPU_HW_VALUE(pc,ri,cpu);
709		else
710			tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
711		tmp += P4_PCPU_PMC_VALUE(pc,ri,cpu);
712	}
713
714	if (PMC_IS_SAMPLING_MODE(mode)) /* undo transformation */
715		*v = P4_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
716	else
717		*v = tmp;
718
719	PMCDBG(MDP,REA,2, "p4-read -> %jx", *v);
720
721	return (0);
722}
723
724/*
725 * Write a PMC
726 */
727
728static int
729p4_write_pmc(int cpu, int ri, pmc_value_t v)
730{
731	enum pmc_mode mode;
732	struct pmc *pm;
733	struct p4_cpu *pc;
734	const struct pmc_hw *phw;
735	const struct p4pmc_descr *pd;
736
737	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
738	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
739	KASSERT(ri >= 0 && ri < P4_NPMCS,
740	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
741
742	pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
743	phw = &pc->pc_p4pmcs[ri];
744	pm  = phw->phw_pmc;
745	pd  = &p4_pmcdesc[ri];
746
747	KASSERT(pm != NULL,
748	    ("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__,
749		cpu, ri));
750
751	mode = PMC_TO_MODE(pm);
752
753	PMCDBG(MDP,WRI,1, "p4-write cpu=%d ri=%d mode=%d v=%jx", cpu, ri,
754	    mode, v);
755
756	/*
757	 * write the PMC value to the register/saved value: for
758	 * sampling mode PMCs, the value to be programmed into the PMC
759	 * counter is -(C+1) where 'C' is the requested sample rate.
760	 */
761	if (PMC_IS_SAMPLING_MODE(mode))
762		v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
763
764	if (PMC_IS_SYSTEM_MODE(mode))
765		wrmsr(pd->pm_pmc_msr, v);
766	else
767		P4_PCPU_PMC_VALUE(pc,ri,cpu) = v;
768
769	return (0);
770}
771
772/*
773 * Configure a PMC 'pm' on the given CPU and row-index.
774 *
775 * 'pm' may be NULL to indicate de-configuration.
776 *
777 * On HTT systems, a PMC may get configured twice, once for each
778 * "logical" CPU.  We track this using the CFGFLAGS field of the
779 * per-cpu state; this field is a bit mask with one bit each for
780 * logical CPUs 0 & 1.
781 */
782
783static int
784p4_config_pmc(int cpu, int ri, struct pmc *pm)
785{
786	struct pmc_hw *phw;
787	struct p4_cpu *pc;
788	int cfgflags, cpuflag;
789
790	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
791	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
792
793	KASSERT(ri >= 0 && ri < P4_NPMCS,
794	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
795
796	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
797
798	pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
799	phw = &pc->pc_p4pmcs[ri];
800
801	KASSERT(pm == NULL || phw->phw_pmc == NULL ||
802	    (p4_system_has_htt && phw->phw_pmc == pm),
803	    ("[p4,%d] hwpmc not unconfigured before re-config", __LINE__));
804
805	mtx_lock_spin(&pc->pc_mtx);
806	cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
807
808	KASSERT(cfgflags >= 0 || cfgflags <= 3,
809	    ("[p4,%d] illegal cfgflags cfg=%d on cpu=%d ri=%d", __LINE__,
810		cfgflags, cpu, ri));
811
812	KASSERT(cfgflags == 0 || phw->phw_pmc,
813	    ("[p4,%d] cpu=%d ri=%d pmc configured with zero cfg count",
814		__LINE__, cpu, ri));
815
816	cpuflag = P4_CPU_TO_FLAG(cpu);
817
818	if (pm) {		/* config */
819		if (cfgflags == 0)
820			phw->phw_pmc = pm;
821
822		KASSERT(phw->phw_pmc == pm,
823		    ("[p4,%d] cpu=%d ri=%d config %p != hw %p",
824			__LINE__, cpu, ri, pm, phw->phw_pmc));
825
826		cfgflags |= cpuflag;
827	} else {		/* unconfig */
828		cfgflags &= ~cpuflag;
829
830		if (cfgflags == 0)
831			phw->phw_pmc = NULL;
832	}
833
834	KASSERT(cfgflags >= 0 || cfgflags <= 3,
835	    ("[p4,%d] illegal runcount cfg=%d on cpu=%d ri=%d", __LINE__,
836		cfgflags, cpu, ri));
837
838	P4_PCPU_SET_CFGFLAGS(pc,ri,cfgflags);
839
840	mtx_unlock_spin(&pc->pc_mtx);
841
842	return (0);
843}
844
845/*
846 * Retrieve a configured PMC pointer from hardware state.
847 */
848
849static int
850p4_get_config(int cpu, int ri, struct pmc **ppm)
851{
852	int cfgflags;
853	struct p4_cpu *pc;
854
855	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
856	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
857	KASSERT(ri >= 0 && ri < P4_NPMCS,
858	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
859
860	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
861
862	mtx_lock_spin(&pc->pc_mtx);
863	cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
864	mtx_unlock_spin(&pc->pc_mtx);
865
866	if (cfgflags & P4_CPU_TO_FLAG(cpu))
867		*ppm = pc->pc_p4pmcs[ri].phw_pmc; /* PMC config'ed on this CPU */
868	else
869		*ppm = NULL;
870
871	return 0;
872}
873
874/*
875 * Allocate a PMC.
876 *
877 * The allocation strategy differs between HTT and non-HTT systems.
878 *
879 * The non-HTT case:
880 *   - Given the desired event and the PMC row-index, lookup the
881 *   list of valid ESCRs for the event.
882 *   - For each valid ESCR:
883 *     - Check if the ESCR is free and the ESCR row is in a compatible
884 *       mode (i.e., system or process))
885 *     - Check if the ESCR is usable with a P4 PMC at the desired row-index.
886 *   If everything matches, we determine the appropriate bit values for the
887 *   ESCR and CCCR registers.
888 *
889 * The HTT case:
890 *
891 * - Process mode PMCs require special care.  The FreeBSD scheduler could
892 *   schedule any two processes on the same physical CPU.  We need to ensure
893 *   that a given PMC row-index is never allocated to two different
894 *   PMCs owned by different user-processes.
895 *   This is ensured by always allocating a PMC from a 'FREE' PMC row
896 *   if the system has HTT active.
897 * - A similar check needs to be done for ESCRs; we do not want two PMCs
898 *   using the same ESCR to be scheduled at the same time.  Thus ESCR
899 *   allocation is also restricted to FREE rows if the system has HTT
900 *   enabled.
901 * - Thirdly, some events are 'thread-independent' terminology, i.e.,
902 *   the PMC hardware cannot distinguish between events caused by
903 *   different logical CPUs.  This makes it impossible to assign events
904 *   to a given thread of execution.  If the system has HTT enabled,
905 *   these events are not allowed for process-mode PMCs.
906 */
907
908static int
909p4_allocate_pmc(int cpu, int ri, struct pmc *pm,
910    const struct pmc_op_pmcallocate *a)
911{
912	int found, n, m;
913	uint32_t caps, cccrvalue, escrvalue, tflags;
914	enum pmc_p4escr escr;
915	struct p4_cpu *pc;
916	struct p4_event_descr *pevent;
917	const struct p4pmc_descr *pd;
918
919	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
920	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
921	KASSERT(ri >= 0 && ri < P4_NPMCS,
922	    ("[p4,%d] illegal row-index value %d", __LINE__, ri));
923
924	pd = &p4_pmcdesc[ri];
925
926	PMCDBG(MDP,ALL,1, "p4-allocate ri=%d class=%d pmccaps=0x%x "
927	    "reqcaps=0x%x", ri, pd->pm_descr.pd_class, pd->pm_descr.pd_caps,
928	    pm->pm_caps);
929
930	/* check class */
931	if (pd->pm_descr.pd_class != a->pm_class)
932		return (EINVAL);
933
934	/* check requested capabilities */
935	caps = a->pm_caps;
936	if ((pd->pm_descr.pd_caps & caps) != caps)
937		return (EPERM);
938
939	/*
940	 * If the system has HTT enabled, and the desired allocation
941	 * mode is process-private, and the PMC row disposition is not
942	 * FREE (0), decline the allocation.
943	 */
944
945	if (p4_system_has_htt &&
946	    PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
947	    pmc_getrowdisp(ri) != 0)
948		return (EBUSY);
949
950	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
951	    ("[p4,%d] unknown PMC class %d", __LINE__,
952		pd->pm_descr.pd_class));
953
954	if (pm->pm_event < PMC_EV_P4_FIRST ||
955	    pm->pm_event > PMC_EV_P4_LAST)
956		return (EINVAL);
957
958	if ((pevent = p4_find_event(pm->pm_event)) == NULL)
959		return (ESRCH);
960
961	PMCDBG(MDP,ALL,2, "pevent={ev=%d,escrsel=0x%x,cccrsel=0x%x,isti=%d}",
962	    pevent->pm_event, pevent->pm_escr_eventselect,
963	    pevent->pm_cccr_select, pevent->pm_is_ti_event);
964
965	/*
966	 * Some PMC events are 'thread independent'and therefore
967	 * cannot be used for process-private modes if HTT is being
968	 * used.
969	 */
970
971	if (P4_EVENT_IS_TI(pevent) &&
972	    PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
973	    p4_system_has_htt)
974		return (EINVAL);
975
976	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
977
978	found   = 0;
979
980	/* look for a suitable ESCR for this event */
981	for (n = 0; n < P4_MAX_ESCR_PER_EVENT && !found; n++) {
982		if ((escr = pevent->pm_escrs[n]) == P4_ESCR_NONE)
983			break;	/* out of ESCRs */
984		/*
985		 * Check ESCR row disposition.
986		 *
987		 * If the request is for a system-mode PMC, then the
988		 * ESCR row should not be in process-virtual mode, and
989		 * should also be free on the current CPU.
990		 */
991
992		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
993		    if (P4_ESCR_ROW_DISP_IS_THREAD(escr) ||
994			pc->pc_escrs[escr] != P4_INVALID_PMC_INDEX)
995			    continue;
996		}
997
998		/*
999		 * If the request is for a process-virtual PMC, and if
1000		 * HTT is not enabled, we can use an ESCR row that is
1001		 * either FREE or already in process mode.
1002		 *
1003		 * If HTT is enabled, then we need to ensure that a
1004		 * given ESCR is never allocated to two PMCS that
1005		 * could run simultaneously on the two logical CPUs of
1006		 * a CPU package.  We ensure this be only allocating
1007		 * ESCRs from rows marked as 'FREE'.
1008		 */
1009
1010		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
1011			if (p4_system_has_htt) {
1012				if (!P4_ESCR_ROW_DISP_IS_FREE(escr))
1013					continue;
1014			} else
1015				if (P4_ESCR_ROW_DISP_IS_STANDALONE(escr))
1016					continue;
1017		}
1018
1019		/*
1020		 * We found a suitable ESCR for this event.  Now check if
1021		 * this escr can work with the PMC at row-index 'ri'.
1022		 */
1023
1024		for (m = 0; m < P4_MAX_PMC_PER_ESCR; m++)
1025			if (p4_escrs[escr].pm_pmcs[m] == pd->pm_pmcnum) {
1026				found = 1;
1027				break;
1028			}
1029	}
1030
1031	if (found == 0)
1032		return (ESRCH);
1033
1034	KASSERT((int) escr >= 0 && escr < P4_NESCR,
1035	    ("[p4,%d] illegal ESCR value %d", __LINE__, escr));
1036
1037	/* mark ESCR row mode */
1038	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1039		pc->pc_escrs[escr] = ri; /* mark ESCR as in use on this cpu */
1040		P4_ESCR_MARK_ROW_STANDALONE(escr);
1041	} else {
1042		KASSERT(pc->pc_escrs[escr] == P4_INVALID_PMC_INDEX,
1043		    ("[p4,%d] escr[%d] already in use", __LINE__, escr));
1044		P4_ESCR_MARK_ROW_THREAD(escr);
1045	}
1046
1047	pm->pm_md.pm_p4.pm_p4_escrmsr   = p4_escrs[escr].pm_escr_msr;
1048	pm->pm_md.pm_p4.pm_p4_escr      = escr;
1049
1050	cccrvalue = P4_CCCR_TO_ESCR_SELECT(pevent->pm_cccr_select);
1051	escrvalue = P4_ESCR_TO_EVENT_SELECT(pevent->pm_escr_eventselect);
1052
1053	/* CCCR fields */
1054	if (caps & PMC_CAP_THRESHOLD)
1055		cccrvalue |= (a->pm_md.pm_p4.pm_p4_cccrconfig &
1056		    P4_CCCR_THRESHOLD_MASK) | P4_CCCR_COMPARE;
1057
1058	if (caps & PMC_CAP_EDGE)
1059		cccrvalue |= P4_CCCR_EDGE;
1060
1061	if (caps & PMC_CAP_INVERT)
1062		cccrvalue |= P4_CCCR_COMPLEMENT;
1063
1064	if (p4_system_has_htt)
1065		cccrvalue |= a->pm_md.pm_p4.pm_p4_cccrconfig &
1066		    P4_CCCR_ACTIVE_THREAD_MASK;
1067	else			/* no HTT; thread field should be '11b' */
1068		cccrvalue |= P4_CCCR_TO_ACTIVE_THREAD(0x3);
1069
1070	if (caps & PMC_CAP_CASCADE)
1071		cccrvalue |= P4_CCCR_CASCADE;
1072
1073	/* On HTT systems the PMI T0 field may get moved to T1 at pmc start */
1074	if (caps & PMC_CAP_INTERRUPT)
1075		cccrvalue |= P4_CCCR_OVF_PMI_T0;
1076
1077	/* ESCR fields */
1078	if (caps & PMC_CAP_QUALIFIER)
1079		escrvalue |= a->pm_md.pm_p4.pm_p4_escrconfig &
1080		    P4_ESCR_EVENT_MASK_MASK;
1081	if (caps & PMC_CAP_TAGGING)
1082		escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
1083		    P4_ESCR_TAG_VALUE_MASK) | P4_ESCR_TAG_ENABLE;
1084	if (caps & PMC_CAP_QUALIFIER)
1085		escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
1086		    P4_ESCR_EVENT_MASK_MASK);
1087
1088	/* HTT: T0_{OS,USR} bits may get moved to T1 at pmc start */
1089	tflags = 0;
1090	if (caps & PMC_CAP_SYSTEM)
1091		tflags |= P4_ESCR_T0_OS;
1092	if (caps & PMC_CAP_USER)
1093		tflags |= P4_ESCR_T0_USR;
1094	if (tflags == 0)
1095		tflags = (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
1096	escrvalue |= tflags;
1097
1098	pm->pm_md.pm_p4.pm_p4_cccrvalue = cccrvalue;
1099	pm->pm_md.pm_p4.pm_p4_escrvalue = escrvalue;
1100
1101	PMCDBG(MDP,ALL,2, "p4-allocate cccrsel=0x%x cccrval=0x%x "
1102	    "escr=%d escrmsr=0x%x escrval=0x%x", pevent->pm_cccr_select,
1103	    cccrvalue, escr, pm->pm_md.pm_p4.pm_p4_escrmsr, escrvalue);
1104
1105	return (0);
1106}
1107
1108/*
1109 * release a PMC.
1110 */
1111
1112static int
1113p4_release_pmc(int cpu, int ri, struct pmc *pm)
1114{
1115	enum pmc_p4escr escr;
1116	struct p4_cpu *pc;
1117
1118	KASSERT(ri >= 0 && ri < P4_NPMCS,
1119	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
1120
1121	escr = pm->pm_md.pm_p4.pm_p4_escr;
1122
1123	PMCDBG(MDP,REL,1, "p4-release cpu=%d ri=%d escr=%d", cpu, ri, escr);
1124
1125	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1126		pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1127
1128		KASSERT(pc->pc_p4pmcs[ri].phw_pmc == NULL,
1129		    ("[p4,%d] releasing configured PMC ri=%d", __LINE__, ri));
1130
1131		P4_ESCR_UNMARK_ROW_STANDALONE(escr);
1132		KASSERT(pc->pc_escrs[escr] == ri,
1133		    ("[p4,%d] escr[%d] not allocated to ri %d", __LINE__,
1134			escr, ri));
1135	        pc->pc_escrs[escr] = P4_INVALID_PMC_INDEX; /* mark as free */
1136	} else
1137		P4_ESCR_UNMARK_ROW_THREAD(escr);
1138
1139	return (0);
1140}
1141
1142/*
1143 * Start a PMC
1144 */
1145
1146static int
1147p4_start_pmc(int cpu, int ri)
1148{
1149	int rc;
1150	struct pmc *pm;
1151	struct p4_cpu *pc;
1152	struct p4pmc_descr *pd;
1153	uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
1154
1155	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1156	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
1157	KASSERT(ri >= 0 && ri < P4_NPMCS,
1158	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
1159
1160	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1161	pm = pc->pc_p4pmcs[ri].phw_pmc;
1162	pd = &p4_pmcdesc[ri];
1163
1164	KASSERT(pm != NULL,
1165	    ("[p4,%d] starting cpu%d,pmc%d with null pmc", __LINE__, cpu, ri));
1166
1167	PMCDBG(MDP,STA,1, "p4-start cpu=%d ri=%d", cpu, ri);
1168
1169	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
1170	    ("[p4,%d] wrong PMC class %d", __LINE__,
1171		pd->pm_descr.pd_class));
1172
1173	/* retrieve the desired CCCR/ESCR values from the PMC */
1174	cccrvalue = pm->pm_md.pm_p4.pm_p4_cccrvalue;
1175	escrvalue = pm->pm_md.pm_p4.pm_p4_escrvalue;
1176	escrmsr   = pm->pm_md.pm_p4.pm_p4_escrmsr;
1177
1178	/* extract and zero the logical processor selection bits */
1179	cccrtbits = cccrvalue & P4_CCCR_OVF_PMI_T0;
1180	escrtbits = escrvalue & (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
1181	cccrvalue &= ~P4_CCCR_OVF_PMI_T0;
1182	escrvalue &= ~(P4_ESCR_T0_OS|P4_ESCR_T0_USR);
1183
1184	if (P4_CPU_IS_HTT_SECONDARY(cpu)) { /* shift T0 bits to T1 position */
1185		cccrtbits <<= 1;
1186		escrtbits >>= 2;
1187	}
1188
1189	/* start system mode PMCs directly */
1190	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1191		wrmsr(escrmsr, escrvalue | escrtbits);
1192		wrmsr(pd->pm_cccr_msr, cccrvalue | cccrtbits | P4_CCCR_ENABLE);
1193		return 0;
1194	}
1195
1196	/*
1197	 * Thread mode PMCs
1198	 *
1199	 * On HTT machines, the same PMC could be scheduled on the
1200	 * same physical CPU twice (once for each logical CPU), for
1201	 * example, if two threads of a multi-threaded process get
1202	 * scheduled on the same CPU.
1203	 *
1204	 */
1205
1206	mtx_lock_spin(&pc->pc_mtx);
1207
1208	rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
1209	KASSERT(rc == 0 || rc == 1,
1210	    ("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
1211		rc));
1212
1213	if (rc == 0) {		/* 1st CPU and the non-HTT case */
1214
1215		KASSERT(P4_PMC_IS_STOPPED(pd->pm_cccr_msr),
1216		    ("[p4,%d] cpu=%d ri=%d cccr=0x%x not stopped", __LINE__,
1217			cpu, ri, pd->pm_cccr_msr));
1218
1219		/* write out the low 40 bits of the saved value to hardware */
1220		wrmsr(pd->pm_pmc_msr,
1221		    P4_PCPU_PMC_VALUE(pc,ri,cpu) & P4_PERFCTR_MASK);
1222
1223	} else if (rc == 1) {		/* 2nd CPU */
1224
1225		/*
1226		 * Stop the PMC and retrieve the CCCR and ESCR values
1227		 * from their MSRs, and turn on the additional T[0/1]
1228		 * bits for the 2nd CPU.
1229		 */
1230
1231		cccrvalue = rdmsr(pd->pm_cccr_msr);
1232		wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
1233
1234		/* check that the configuration bits read back match the PMC */
1235		KASSERT((cccrvalue & P4_CCCR_Tx_MASK) ==
1236		    (pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK),
1237		    ("[p4,%d] Extra CCCR bits cpu=%d rc=%d ri=%d "
1238			"cccr=0x%x PMC=0x%x", __LINE__, cpu, rc, ri,
1239			cccrvalue & P4_CCCR_Tx_MASK,
1240			pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK));
1241		KASSERT(cccrvalue & P4_CCCR_ENABLE,
1242		    ("[p4,%d] 2nd cpu rc=%d cpu=%d ri=%d not running",
1243			__LINE__, rc, cpu, ri));
1244		KASSERT((cccrvalue & cccrtbits) == 0,
1245		    ("[p4,%d] CCCR T0/T1 mismatch rc=%d cpu=%d ri=%d"
1246		     "cccrvalue=0x%x tbits=0x%x", __LINE__, rc, cpu, ri,
1247			cccrvalue, cccrtbits));
1248
1249		escrvalue = rdmsr(escrmsr);
1250
1251		KASSERT((escrvalue & P4_ESCR_Tx_MASK) ==
1252		    (pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK),
1253		    ("[p4,%d] Extra ESCR bits cpu=%d rc=%d ri=%d "
1254			"escr=0x%x pm=0x%x", __LINE__, cpu, rc, ri,
1255			escrvalue & P4_ESCR_Tx_MASK,
1256			pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK));
1257		KASSERT((escrvalue & escrtbits) == 0,
1258		    ("[p4,%d] ESCR T0/T1 mismatch rc=%d cpu=%d ri=%d "
1259		     "escrmsr=0x%x escrvalue=0x%x tbits=0x%x", __LINE__,
1260			rc, cpu, ri, escrmsr, escrvalue, escrtbits));
1261	}
1262
1263	/* Enable the correct bits for this CPU. */
1264	escrvalue |= escrtbits;
1265	cccrvalue |= cccrtbits | P4_CCCR_ENABLE;
1266
1267	/* Save HW value at the time of starting hardware */
1268	P4_PCPU_HW_VALUE(pc,ri,cpu) = rdmsr(pd->pm_pmc_msr);
1269
1270	/* Program the ESCR and CCCR and start the PMC */
1271	wrmsr(escrmsr, escrvalue);
1272	wrmsr(pd->pm_cccr_msr, cccrvalue);
1273
1274	++rc;
1275	P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
1276
1277	mtx_unlock_spin(&pc->pc_mtx);
1278
1279	PMCDBG(MDP,STA,2,"p4-start cpu=%d rc=%d ri=%d escr=%d "
1280	    "escrmsr=0x%x escrvalue=0x%x cccr_config=0x%x v=%jx", cpu, rc,
1281	    ri, pm->pm_md.pm_p4.pm_p4_escr, escrmsr, escrvalue,
1282	    cccrvalue, P4_PCPU_HW_VALUE(pc,ri,cpu));
1283
1284	return (0);
1285}
1286
1287/*
1288 * Stop a PMC.
1289 */
1290
1291static int
1292p4_stop_pmc(int cpu, int ri)
1293{
1294	int rc;
1295	uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
1296	struct pmc *pm;
1297	struct p4_cpu *pc;
1298	struct p4pmc_descr *pd;
1299	pmc_value_t tmp;
1300
1301	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1302	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
1303	KASSERT(ri >= 0 && ri < P4_NPMCS,
1304	    ("[p4,%d] illegal row index %d", __LINE__, ri));
1305
1306	pd = &p4_pmcdesc[ri];
1307	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1308	pm = pc->pc_p4pmcs[ri].phw_pmc;
1309
1310	KASSERT(pm != NULL,
1311	    ("[p4,%d] null pmc for cpu%d, ri%d", __LINE__, cpu, ri));
1312
1313	PMCDBG(MDP,STO,1, "p4-stop cpu=%d ri=%d", cpu, ri);
1314
1315	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
1316		wrmsr(pd->pm_cccr_msr,
1317		    pm->pm_md.pm_p4.pm_p4_cccrvalue & ~P4_CCCR_ENABLE);
1318		return (0);
1319	}
1320
1321	/*
1322	 * Thread mode PMCs.
1323	 *
1324	 * On HTT machines, this PMC may be in use by two threads
1325	 * running on two logical CPUS.  Thus we look at the
1326	 * 'runcount' field and only turn off the appropriate TO/T1
1327	 * bits (and keep the PMC running) if two logical CPUs were
1328	 * using the PMC.
1329	 *
1330	 */
1331
1332	/* bits to mask */
1333	cccrtbits = P4_CCCR_OVF_PMI_T0;
1334	escrtbits = P4_ESCR_T0_OS | P4_ESCR_T0_USR;
1335	if (P4_CPU_IS_HTT_SECONDARY(cpu)) {
1336		cccrtbits <<= 1;
1337		escrtbits >>= 2;
1338	}
1339
1340	mtx_lock_spin(&pc->pc_mtx);
1341
1342	rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
1343
1344	KASSERT(rc == 2 || rc == 1,
1345	    ("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
1346		rc));
1347
1348	--rc;
1349
1350	P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
1351
1352	/* Stop this PMC */
1353	cccrvalue = rdmsr(pd->pm_cccr_msr);
1354	wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
1355
1356	escrmsr   = pm->pm_md.pm_p4.pm_p4_escrmsr;
1357	escrvalue = rdmsr(escrmsr);
1358
1359	/* The current CPU should be running on this PMC */
1360	KASSERT(escrvalue & escrtbits,
1361	    ("[p4,%d] ESCR T0/T1 mismatch cpu=%d rc=%d ri=%d escrmsr=0x%x "
1362		"escrvalue=0x%x tbits=0x%x", __LINE__, cpu, rc, ri, escrmsr,
1363		escrvalue, escrtbits));
1364	KASSERT(PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)) ||
1365	    (cccrvalue & cccrtbits),
1366	    ("[p4,%d] CCCR T0/T1 mismatch cpu=%d ri=%d cccrvalue=0x%x "
1367		"tbits=0x%x", __LINE__, cpu, ri, cccrvalue, cccrtbits));
1368
1369	/* get the current hardware reading */
1370	tmp = rdmsr(pd->pm_pmc_msr);
1371
1372	if (rc == 1) {		/* need to keep the PMC running */
1373		escrvalue &= ~escrtbits;
1374		cccrvalue &= ~cccrtbits;
1375		wrmsr(escrmsr, escrvalue);
1376		wrmsr(pd->pm_cccr_msr, cccrvalue);
1377	}
1378
1379	mtx_unlock_spin(&pc->pc_mtx);
1380
1381	PMCDBG(MDP,STO,2, "p4-stop cpu=%d rc=%d ri=%d escrmsr=0x%x "
1382	    "escrval=0x%x cccrval=0x%x v=%jx", cpu, rc, ri, escrmsr,
1383	    escrvalue, cccrvalue, tmp);
1384
1385	if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit counter overflow */
1386		tmp += (P4_PERFCTR_MASK + 1) - P4_PCPU_HW_VALUE(pc,ri,cpu);
1387	else
1388		tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
1389
1390	P4_PCPU_PMC_VALUE(pc,ri,cpu) += tmp;
1391
1392	return 0;
1393}
1394
1395/*
1396 * Handle an interrupt.
1397 *
1398 * The hardware sets the CCCR_OVF whenever a counter overflow occurs,
1399 * so the handler examines all the 18 CCCR registers, processing the
1400 * counters that have overflowed.
1401 *
1402 * On HTT machines, the CCCR register is shared and will interrupt
1403 * both logical processors if so configured.  Thus multiple logical
1404 * CPUs could enter the NMI service routine at the same time.  These
1405 * will get serialized using a per-cpu spinlock dedicated for use in
1406 * the NMI handler.
1407 */
1408
1409static int
1410p4_intr(int cpu, struct trapframe *tf)
1411{
1412	uint32_t cccrval, ovf_mask, ovf_partner;
1413	int did_interrupt, error, ri;
1414	struct p4_cpu *pc;
1415	struct pmc *pm;
1416	pmc_value_t v;
1417
1418	PMCDBG(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
1419	    TRAPF_USERMODE(tf));
1420
1421	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
1422
1423	ovf_mask = P4_CPU_IS_HTT_SECONDARY(cpu) ?
1424	    P4_CCCR_OVF_PMI_T1 : P4_CCCR_OVF_PMI_T0;
1425	ovf_mask |= P4_CCCR_OVF;
1426	if (p4_system_has_htt)
1427		ovf_partner = P4_CPU_IS_HTT_SECONDARY(cpu) ?
1428		    P4_CCCR_OVF_PMI_T0 : P4_CCCR_OVF_PMI_T1;
1429	else
1430		ovf_partner = 0;
1431	did_interrupt = 0;
1432
1433	if (p4_system_has_htt)
1434		P4_PCPU_ACQ_INTR_SPINLOCK(pc);
1435
1436	/*
1437	 * Loop through all CCCRs, looking for ones that have
1438	 * interrupted this CPU.
1439	 */
1440	for (ri = 0; ri < P4_NPMCS; ri++) {
1441
1442		/*
1443		 * Check if our partner logical CPU has already marked
1444		 * this PMC has having interrupted it.  If so, reset
1445		 * the flag and process the interrupt, but leave the
1446		 * hardware alone.
1447		 */
1448		if (p4_system_has_htt && P4_PCPU_GET_INTRFLAG(pc,ri)) {
1449			P4_PCPU_SET_INTRFLAG(pc,ri,0);
1450			did_interrupt = 1;
1451
1452			/*
1453			 * Ignore de-configured or stopped PMCs.
1454			 * Ignore PMCs not in sampling mode.
1455			 */
1456			pm = pc->pc_p4pmcs[ri].phw_pmc;
1457			if (pm == NULL ||
1458			    pm->pm_state != PMC_STATE_RUNNING ||
1459			    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1460				continue;
1461			}
1462			(void) pmc_process_interrupt(cpu, pm, tf,
1463			    TRAPF_USERMODE(tf));
1464			continue;
1465		}
1466
1467		/*
1468		 * Fresh interrupt.  Look for the CCCR_OVF bit
1469		 * and the OVF_Tx bit for this logical
1470		 * processor being set.
1471		 */
1472		cccrval = rdmsr(P4_CCCR_MSR_FIRST + ri);
1473
1474		if ((cccrval & ovf_mask) != ovf_mask)
1475			continue;
1476
1477		/*
1478		 * If the other logical CPU would also have been
1479		 * interrupted due to the PMC being shared, record
1480		 * this fact in the per-cpu saved interrupt flag
1481		 * bitmask.
1482		 */
1483		if (p4_system_has_htt && (cccrval & ovf_partner))
1484			P4_PCPU_SET_INTRFLAG(pc, ri, 1);
1485
1486		v = rdmsr(P4_PERFCTR_MSR_FIRST + ri);
1487
1488		PMCDBG(MDP,INT, 2, "ri=%d v=%jx", ri, v);
1489
1490		/* Stop the counter, and reset the overflow  bit */
1491		cccrval &= ~(P4_CCCR_OVF | P4_CCCR_ENABLE);
1492		wrmsr(P4_CCCR_MSR_FIRST + ri, cccrval);
1493
1494		did_interrupt = 1;
1495
1496		/*
1497		 * Ignore de-configured or stopped PMCs.  Ignore PMCs
1498		 * not in sampling mode.
1499		 */
1500		pm = pc->pc_p4pmcs[ri].phw_pmc;
1501
1502		if (pm == NULL ||
1503		    pm->pm_state != PMC_STATE_RUNNING ||
1504		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1505			continue;
1506		}
1507
1508		/*
1509		 * Process the interrupt.  Re-enable the PMC if
1510		 * processing was successful.
1511		 */
1512		error = pmc_process_interrupt(cpu, pm, tf,
1513		    TRAPF_USERMODE(tf));
1514
1515		/*
1516		 * Only the first processor executing the NMI handler
1517		 * in a HTT pair will restart a PMC, and that too
1518		 * only if there were no errors.
1519		 */
1520		v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(
1521			pm->pm_sc.pm_reloadcount);
1522		wrmsr(P4_PERFCTR_MSR_FIRST + ri, v);
1523		if (error == 0)
1524			wrmsr(P4_CCCR_MSR_FIRST + ri,
1525			    cccrval | P4_CCCR_ENABLE);
1526	}
1527
1528	/* allow the other CPU to proceed */
1529	if (p4_system_has_htt)
1530		P4_PCPU_REL_INTR_SPINLOCK(pc);
1531
1532	/*
1533	 * On Intel P4 CPUs, the PMC 'pcint' entry in the LAPIC gets
1534	 * masked when a PMC interrupts the CPU.  We need to unmask
1535	 * the interrupt source explicitly.
1536	 */
1537
1538	if (did_interrupt)
1539		pmc_x86_lapic_enable_pmc_interrupt();
1540
1541	atomic_add_int(did_interrupt ? &pmc_stats.pm_intr_processed :
1542	    &pmc_stats.pm_intr_ignored, 1);
1543
1544	return (did_interrupt);
1545}
1546
1547/*
1548 * Describe a CPU's PMC state.
1549 */
1550
1551static int
1552p4_describe(int cpu, int ri, struct pmc_info *pi,
1553    struct pmc **ppmc)
1554{
1555	int error;
1556	size_t copied;
1557	const struct p4pmc_descr *pd;
1558
1559	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1560	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
1561	KASSERT(ri >= 0 && ri < P4_NPMCS,
1562	    ("[p4,%d] row-index %d out of range", __LINE__, ri));
1563
1564	PMCDBG(MDP,OPS,1,"p4-describe cpu=%d ri=%d", cpu, ri);
1565
1566	if (P4_CPU_IS_HTT_SECONDARY(cpu))
1567		return (EINVAL);
1568
1569	pd  = &p4_pmcdesc[ri];
1570
1571	if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
1572	    PMC_NAME_MAX, &copied)) != 0)
1573		return (error);
1574
1575	pi->pm_class = pd->pm_descr.pd_class;
1576
1577	if (p4_pcpu[cpu]->pc_p4pmcs[ri].phw_state & PMC_PHW_FLAG_IS_ENABLED) {
1578		pi->pm_enabled = TRUE;
1579		*ppmc          = p4_pcpu[cpu]->pc_p4pmcs[ri].phw_pmc;
1580	} else {
1581		pi->pm_enabled = FALSE;
1582		*ppmc          = NULL;
1583	}
1584
1585	return (0);
1586}
1587
1588/*
1589 * Get MSR# for use with RDPMC.
1590 */
1591
1592static int
1593p4_get_msr(int ri, uint32_t *msr)
1594{
1595	KASSERT(ri >= 0 && ri < P4_NPMCS,
1596	    ("[p4,%d] ri %d out of range", __LINE__, ri));
1597
1598	*msr = p4_pmcdesc[ri].pm_pmc_msr - P4_PERFCTR_MSR_FIRST;
1599
1600	PMCDBG(MDP,OPS, 1, "ri=%d getmsr=0x%x", ri, *msr);
1601
1602	return 0;
1603}
1604
1605
1606int
1607pmc_p4_initialize(struct pmc_mdep *md, int ncpus)
1608{
1609	struct pmc_classdep *pcd;
1610	struct p4_event_descr *pe;
1611
1612	KASSERT(md != NULL, ("[p4,%d] md is NULL", __LINE__));
1613	KASSERT(strcmp(cpu_vendor, "GenuineIntel") == 0,
1614	    ("[p4,%d] Initializing non-intel processor", __LINE__));
1615
1616	PMCDBG(MDP,INI,1, "%s", "p4-initialize");
1617
1618	/* Allocate space for pointers to per-cpu descriptors. */
1619	p4_pcpu = malloc(sizeof(struct p4_cpu **) * ncpus, M_PMC,
1620	    M_ZERO|M_WAITOK);
1621
1622	/* Fill in the class dependent descriptor. */
1623	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4];
1624
1625	switch (md->pmd_cputype) {
1626	case PMC_CPU_INTEL_PIV:
1627
1628		pcd->pcd_caps		= P4_PMC_CAPS;
1629		pcd->pcd_class		= PMC_CLASS_P4;
1630		pcd->pcd_num		= P4_NPMCS;
1631		pcd->pcd_ri		= md->pmd_npmc;
1632		pcd->pcd_width		= 40;
1633
1634		pcd->pcd_allocate_pmc	= p4_allocate_pmc;
1635		pcd->pcd_config_pmc	= p4_config_pmc;
1636		pcd->pcd_describe	= p4_describe;
1637		pcd->pcd_get_config	= p4_get_config;
1638		pcd->pcd_get_msr	= p4_get_msr;
1639		pcd->pcd_pcpu_fini 	= p4_pcpu_fini;
1640		pcd->pcd_pcpu_init    	= p4_pcpu_init;
1641		pcd->pcd_read_pmc	= p4_read_pmc;
1642		pcd->pcd_release_pmc	= p4_release_pmc;
1643		pcd->pcd_start_pmc	= p4_start_pmc;
1644		pcd->pcd_stop_pmc	= p4_stop_pmc;
1645		pcd->pcd_write_pmc	= p4_write_pmc;
1646
1647		md->pmd_pcpu_fini	= NULL;
1648		md->pmd_pcpu_init	= NULL;
1649		md->pmd_intr	    	= p4_intr;
1650		md->pmd_npmc	       += P4_NPMCS;
1651
1652		/* model specific configuration */
1653		if ((cpu_id & 0xFFF) < 0xF27) {
1654
1655			/*
1656			 * On P4 and Xeon with CPUID < (Family 15,
1657			 * Model 2, Stepping 7), only one ESCR is
1658			 * available for the IOQ_ALLOCATION event.
1659			 */
1660
1661			pe = p4_find_event(PMC_EV_P4_IOQ_ALLOCATION);
1662			pe->pm_escrs[1] = P4_ESCR_NONE;
1663		}
1664
1665		break;
1666
1667	default:
1668		KASSERT(0,("[p4,%d] Unknown CPU type", __LINE__));
1669		return ENOSYS;
1670	}
1671
1672	return (0);
1673}
1674
1675void
1676pmc_p4_finalize(struct pmc_mdep *md)
1677{
1678#if	defined(INVARIANTS)
1679	int i, ncpus;
1680#endif
1681
1682	KASSERT(p4_pcpu != NULL,
1683	    ("[p4,%d] NULL p4_pcpu", __LINE__));
1684
1685#if	defined(INVARIANTS)
1686	ncpus = pmc_cpu_max();
1687	for (i = 0; i < ncpus; i++)
1688		KASSERT(p4_pcpu[i] == NULL, ("[p4,%d] non-null pcpu %d",
1689		    __LINE__, i));
1690#endif
1691
1692	free(p4_pcpu, M_PMC);
1693	p4_pcpu = NULL;
1694}
1695