if_hatm.c revision 148887
1/*-
2 * Copyright (c) 2001-2003
3 *	Fraunhofer Institute for Open Communication Systems (FhG Fokus).
4 * 	All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * Author: Hartmut Brandt <harti@freebsd.org>
28 *
29 * ForeHE driver.
30 *
31 * This file contains the module and driver infrastructure stuff as well
32 * as a couple of utility functions and the entire initialisation.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/dev/hatm/if_hatm.c 148887 2005-08-09 10:20:02Z rwatson $");
37
38#include "opt_inet.h"
39#include "opt_natm.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/bus.h>
47#include <sys/errno.h>
48#include <sys/conf.h>
49#include <sys/module.h>
50#include <sys/queue.h>
51#include <sys/syslog.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/condvar.h>
55#include <sys/sysctl.h>
56#include <vm/uma.h>
57
58#include <sys/sockio.h>
59#include <sys/mbuf.h>
60#include <sys/socket.h>
61
62#include <net/if.h>
63#include <net/if_media.h>
64#include <net/if_atm.h>
65#include <net/if_types.h>
66#include <net/route.h>
67#ifdef ENABLE_BPF
68#include <net/bpf.h>
69#endif
70#include <netinet/in.h>
71#include <netinet/if_atm.h>
72
73#include <machine/bus.h>
74#include <machine/resource.h>
75#include <sys/bus.h>
76#include <sys/rman.h>
77#include <dev/pci/pcireg.h>
78#include <dev/pci/pcivar.h>
79
80#include <dev/utopia/utopia.h>
81#include <dev/hatm/if_hatmconf.h>
82#include <dev/hatm/if_hatmreg.h>
83#include <dev/hatm/if_hatmvar.h>
84
85static const struct {
86	uint16_t	vid;
87	uint16_t	did;
88	const char	*name;
89} hatm_devs[] = {
90	{ 0x1127, 0x400,
91	  "FORE HE" },
92	{ 0, 0, NULL }
93};
94
95SYSCTL_DECL(_hw_atm);
96
97MODULE_DEPEND(hatm, utopia, 1, 1, 1);
98MODULE_DEPEND(hatm, pci, 1, 1, 1);
99MODULE_DEPEND(hatm, atm, 1, 1, 1);
100
101#define EEPROM_DELAY	400 /* microseconds */
102
103/* Read from EEPROM 0000 0011b */
104static const uint32_t readtab[] = {
105	HE_REGM_HOST_PROM_SEL | HE_REGM_HOST_PROM_CLOCK,
106	0,
107	HE_REGM_HOST_PROM_CLOCK,
108	0,				/* 0 */
109	HE_REGM_HOST_PROM_CLOCK,
110	0,				/* 0 */
111	HE_REGM_HOST_PROM_CLOCK,
112	0,				/* 0 */
113	HE_REGM_HOST_PROM_CLOCK,
114	0,				/* 0 */
115	HE_REGM_HOST_PROM_CLOCK,
116	0,				/* 0 */
117	HE_REGM_HOST_PROM_CLOCK,
118	HE_REGM_HOST_PROM_DATA_IN,	/* 0 */
119	HE_REGM_HOST_PROM_CLOCK | HE_REGM_HOST_PROM_DATA_IN,
120	HE_REGM_HOST_PROM_DATA_IN,	/* 1 */
121	HE_REGM_HOST_PROM_CLOCK | HE_REGM_HOST_PROM_DATA_IN,
122	HE_REGM_HOST_PROM_DATA_IN,	/* 1 */
123};
124static const uint32_t clocktab[] = {
125	0, HE_REGM_HOST_PROM_CLOCK,
126	0, HE_REGM_HOST_PROM_CLOCK,
127	0, HE_REGM_HOST_PROM_CLOCK,
128	0, HE_REGM_HOST_PROM_CLOCK,
129	0, HE_REGM_HOST_PROM_CLOCK,
130	0, HE_REGM_HOST_PROM_CLOCK,
131	0, HE_REGM_HOST_PROM_CLOCK,
132	0, HE_REGM_HOST_PROM_CLOCK,
133	0
134};
135
136/*
137 * Convert cell rate to ATM Forum format
138 */
139u_int
140hatm_cps2atmf(uint32_t pcr)
141{
142	u_int e;
143
144	if (pcr == 0)
145		return (0);
146	pcr <<= 9;
147	e = 0;
148	while (pcr > (1024 - 1)) {
149		e++;
150		pcr >>= 1;
151	}
152	return ((1 << 14) | (e << 9) | (pcr & 0x1ff));
153}
154u_int
155hatm_atmf2cps(uint32_t fcr)
156{
157	fcr &= 0x7fff;
158
159	return ((1 << ((fcr >> 9) & 0x1f)) * (512 + (fcr & 0x1ff)) / 512
160	  * (fcr >> 14));
161}
162
163/************************************************************
164 *
165 * Initialisation
166 */
167/*
168 * Probe for a HE controller
169 */
170static int
171hatm_probe(device_t dev)
172{
173	int i;
174
175	for (i = 0; hatm_devs[i].name; i++)
176		if (pci_get_vendor(dev) == hatm_devs[i].vid &&
177		    pci_get_device(dev) == hatm_devs[i].did) {
178			device_set_desc(dev, hatm_devs[i].name);
179			return (BUS_PROBE_DEFAULT);
180		}
181	return (ENXIO);
182}
183
184/*
185 * Allocate and map DMA-able memory. We support only contiguous mappings.
186 */
187static void
188dmaload_helper(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
189{
190	if (error)
191		return;
192	KASSERT(nsegs == 1, ("too many segments for DMA: %d", nsegs));
193	KASSERT(segs[0].ds_addr <= 0xffffffffUL,
194	    ("phys addr too large %lx", (u_long)segs[0].ds_addr));
195
196	*(bus_addr_t *)arg = segs[0].ds_addr;
197}
198static int
199hatm_alloc_dmamem(struct hatm_softc *sc, const char *what, struct dmamem *mem)
200{
201	int error;
202
203	mem->base = NULL;
204
205	/*
206	 * Alignement does not work in the bus_dmamem_alloc function below
207	 * on FreeBSD. malloc seems to align objects at least to the object
208	 * size so increase the size to the alignment if the size is lesser
209	 * than the alignemnt.
210	 * XXX on sparc64 this is (probably) not needed.
211	 */
212	if (mem->size < mem->align)
213		mem->size = mem->align;
214
215	error = bus_dma_tag_create(sc->parent_tag, mem->align, 0,
216	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
217	    NULL, NULL, mem->size, 1,
218	    BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
219	    NULL, NULL, &mem->tag);
220	if (error) {
221		if_printf(sc->ifp, "DMA tag create (%s)\n", what);
222		return (error);
223	}
224
225	error = bus_dmamem_alloc(mem->tag, &mem->base, 0, &mem->map);
226	if (error) {
227		if_printf(sc->ifp, "DMA mem alloc (%s): %d\n",
228		    what, error);
229		bus_dma_tag_destroy(mem->tag);
230		mem->base = NULL;
231		return (error);
232	}
233
234	error = bus_dmamap_load(mem->tag, mem->map, mem->base, mem->size,
235	    dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
236	if (error) {
237		if_printf(sc->ifp, "DMA map load (%s): %d\n",
238		    what, error);
239		bus_dmamem_free(mem->tag, mem->base, mem->map);
240		bus_dma_tag_destroy(mem->tag);
241		mem->base = NULL;
242		return (error);
243	}
244
245	DBG(sc, DMA, ("%s S/A/V/P 0x%x 0x%x %p 0x%lx", what, mem->size,
246	    mem->align, mem->base, (u_long)mem->paddr));
247
248	return (0);
249}
250
251/*
252 * Destroy all the resources of an DMA-able memory region.
253 */
254static void
255hatm_destroy_dmamem(struct dmamem *mem)
256{
257	if (mem->base != NULL) {
258		bus_dmamap_unload(mem->tag, mem->map);
259		bus_dmamem_free(mem->tag, mem->base, mem->map);
260		(void)bus_dma_tag_destroy(mem->tag);
261		mem->base = NULL;
262	}
263}
264
265/*
266 * Initialize/destroy DMA maps for the large pool 0
267 */
268static void
269hatm_destroy_rmaps(struct hatm_softc *sc)
270{
271	u_int b;
272
273	DBG(sc, ATTACH, ("destroying rmaps and lbuf pointers..."));
274	if (sc->rmaps != NULL) {
275		for (b = 0; b < sc->lbufs_size; b++)
276			bus_dmamap_destroy(sc->mbuf_tag, sc->rmaps[b]);
277		free(sc->rmaps, M_DEVBUF);
278	}
279	if (sc->lbufs != NULL)
280		free(sc->lbufs, M_DEVBUF);
281}
282
283static void
284hatm_init_rmaps(struct hatm_softc *sc)
285{
286	u_int b;
287	int err;
288
289	DBG(sc, ATTACH, ("allocating rmaps and lbuf pointers..."));
290	sc->lbufs = malloc(sizeof(sc->lbufs[0]) * sc->lbufs_size,
291	    M_DEVBUF, M_ZERO | M_WAITOK);
292
293	/* allocate and create the DMA maps for the large pool */
294	sc->rmaps = malloc(sizeof(sc->rmaps[0]) * sc->lbufs_size,
295	    M_DEVBUF, M_WAITOK);
296	for (b = 0; b < sc->lbufs_size; b++) {
297		err = bus_dmamap_create(sc->mbuf_tag, 0, &sc->rmaps[b]);
298		if (err != 0)
299			panic("bus_dmamap_create: %d\n", err);
300	}
301}
302
303/*
304 * Initialize and destroy small mbuf page pointers and pages
305 */
306static void
307hatm_destroy_smbufs(struct hatm_softc *sc)
308{
309	u_int i, b;
310	struct mbuf_page *pg;
311	struct mbuf_chunk_hdr *h;
312
313	if (sc->mbuf_pages != NULL) {
314		for (i = 0; i < sc->mbuf_npages; i++) {
315			pg = sc->mbuf_pages[i];
316			for (b = 0; b < pg->hdr.nchunks; b++) {
317				h = (struct mbuf_chunk_hdr *) ((char *)pg +
318				    b * pg->hdr.chunksize + pg->hdr.hdroff);
319				if (h->flags & MBUF_CARD)
320					if_printf(sc->ifp,
321					    "%s -- mbuf page=%u card buf %u\n",
322					    __func__, i, b);
323				if (h->flags & MBUF_USED)
324					if_printf(sc->ifp,
325					    "%s -- mbuf page=%u used buf %u\n",
326					    __func__, i, b);
327			}
328			bus_dmamap_unload(sc->mbuf_tag, pg->hdr.map);
329			bus_dmamap_destroy(sc->mbuf_tag, pg->hdr.map);
330			free(pg, M_DEVBUF);
331		}
332		free(sc->mbuf_pages, M_DEVBUF);
333	}
334}
335
336static void
337hatm_init_smbufs(struct hatm_softc *sc)
338{
339	sc->mbuf_pages = malloc(sizeof(sc->mbuf_pages[0]) *
340	    sc->mbuf_max_pages, M_DEVBUF, M_WAITOK);
341	sc->mbuf_npages = 0;
342}
343
344/*
345 * Initialize/destroy TPDs. This is called from attach/detach.
346 */
347static void
348hatm_destroy_tpds(struct hatm_softc *sc)
349{
350	struct tpd *t;
351
352	if (sc->tpds.base == NULL)
353		return;
354
355	DBG(sc, ATTACH, ("releasing TPDs ..."));
356	if (sc->tpd_nfree != sc->tpd_total)
357		if_printf(sc->ifp, "%u tpds still in use from %u\n",
358		    sc->tpd_total - sc->tpd_nfree, sc->tpd_total);
359	while ((t = SLIST_FIRST(&sc->tpd_free)) != NULL) {
360		SLIST_REMOVE_HEAD(&sc->tpd_free, link);
361		bus_dmamap_destroy(sc->tx_tag, t->map);
362	}
363	hatm_destroy_dmamem(&sc->tpds);
364	free(sc->tpd_used, M_DEVBUF);
365	DBG(sc, ATTACH, ("... done"));
366}
367static int
368hatm_init_tpds(struct hatm_softc *sc)
369{
370	int error;
371	u_int i;
372	struct tpd *t;
373
374	DBG(sc, ATTACH, ("allocating %u TPDs and maps ...", sc->tpd_total));
375	error = hatm_alloc_dmamem(sc, "TPD memory", &sc->tpds);
376	if (error != 0) {
377		DBG(sc, ATTACH, ("... dmamem error=%d", error));
378		return (error);
379	}
380
381	/* put all the TPDs on the free list and allocate DMA maps */
382	for (i = 0; i < sc->tpd_total; i++) {
383		t = TPD_ADDR(sc, i);
384		t->no = i;
385		t->mbuf = NULL;
386		error = bus_dmamap_create(sc->tx_tag, 0, &t->map);
387		if (error != 0) {
388			DBG(sc, ATTACH, ("... dmamap error=%d", error));
389			while ((t = SLIST_FIRST(&sc->tpd_free)) != NULL) {
390				SLIST_REMOVE_HEAD(&sc->tpd_free, link);
391				bus_dmamap_destroy(sc->tx_tag, t->map);
392			}
393			hatm_destroy_dmamem(&sc->tpds);
394			return (error);
395		}
396
397		SLIST_INSERT_HEAD(&sc->tpd_free, t, link);
398	}
399
400	/* allocate and zero bitmap */
401	sc->tpd_used = malloc(sizeof(uint8_t) * (sc->tpd_total + 7) / 8,
402	    M_DEVBUF, M_ZERO | M_WAITOK);
403	sc->tpd_nfree = sc->tpd_total;
404
405	DBG(sc, ATTACH, ("... done"));
406
407	return (0);
408}
409
410/*
411 * Free all the TPDs that where given to the card.
412 * An mbuf chain may be attached to a TPD - free it also and
413 * unload its associated DMA map.
414 */
415static void
416hatm_stop_tpds(struct hatm_softc *sc)
417{
418	u_int i;
419	struct tpd *t;
420
421	DBG(sc, ATTACH, ("free TPDs ..."));
422	for (i = 0; i < sc->tpd_total; i++) {
423		if (TPD_TST_USED(sc, i)) {
424			t = TPD_ADDR(sc, i);
425			if (t->mbuf) {
426				m_freem(t->mbuf);
427				t->mbuf = NULL;
428				bus_dmamap_unload(sc->tx_tag, t->map);
429			}
430			TPD_CLR_USED(sc, i);
431			SLIST_INSERT_HEAD(&sc->tpd_free, t, link);
432			sc->tpd_nfree++;
433		}
434	}
435}
436
437/*
438 * This frees ALL resources of this interface and leaves the structure
439 * in an indeterminate state. This is called just before detaching or
440 * on a failed attach. No lock should be held.
441 */
442static void
443hatm_destroy(struct hatm_softc *sc)
444{
445	u_int cid;
446
447	bus_teardown_intr(sc->dev, sc->irqres, sc->ih);
448
449	hatm_destroy_rmaps(sc);
450	hatm_destroy_smbufs(sc);
451	hatm_destroy_tpds(sc);
452
453	if (sc->vcc_zone != NULL) {
454		for (cid = 0; cid < HE_MAX_VCCS; cid++)
455			if (sc->vccs[cid] != NULL)
456				uma_zfree(sc->vcc_zone, sc->vccs[cid]);
457		uma_zdestroy(sc->vcc_zone);
458	}
459
460	/*
461	 * Release all memory allocated to the various queues and
462	 * Status pages. These have there own flag which shows whether
463	 * they are really allocated.
464	 */
465	hatm_destroy_dmamem(&sc->irq_0.mem);
466	hatm_destroy_dmamem(&sc->rbp_s0.mem);
467	hatm_destroy_dmamem(&sc->rbp_l0.mem);
468	hatm_destroy_dmamem(&sc->rbp_s1.mem);
469	hatm_destroy_dmamem(&sc->rbrq_0.mem);
470	hatm_destroy_dmamem(&sc->rbrq_1.mem);
471	hatm_destroy_dmamem(&sc->tbrq.mem);
472	hatm_destroy_dmamem(&sc->tpdrq.mem);
473	hatm_destroy_dmamem(&sc->hsp_mem);
474
475	if (sc->irqres != NULL)
476		bus_release_resource(sc->dev, SYS_RES_IRQ,
477		    sc->irqid, sc->irqres);
478
479	if (sc->tx_tag != NULL)
480		if (bus_dma_tag_destroy(sc->tx_tag))
481			if_printf(sc->ifp, "mbuf DMA tag busy\n");
482
483	if (sc->mbuf_tag != NULL)
484		if (bus_dma_tag_destroy(sc->mbuf_tag))
485			if_printf(sc->ifp, "mbuf DMA tag busy\n");
486
487	if (sc->parent_tag != NULL)
488		if (bus_dma_tag_destroy(sc->parent_tag))
489			if_printf(sc->ifp, "parent DMA tag busy\n");
490
491	if (sc->memres != NULL)
492		bus_release_resource(sc->dev, SYS_RES_MEMORY,
493		    sc->memid, sc->memres);
494
495	sysctl_ctx_free(&sc->sysctl_ctx);
496
497	cv_destroy(&sc->cv_rcclose);
498	cv_destroy(&sc->vcc_cv);
499	mtx_destroy(&sc->mtx);
500}
501
502/*
503 * 4.4 Card reset
504 */
505static int
506hatm_reset(struct hatm_softc *sc)
507{
508	u_int v, count;
509
510	WRITE4(sc, HE_REGO_RESET_CNTL, 0x00);
511	BARRIER_W(sc);
512	WRITE4(sc, HE_REGO_RESET_CNTL, 0xff);
513	BARRIER_RW(sc);
514	count = 0;
515	while (((v = READ4(sc, HE_REGO_RESET_CNTL)) & HE_REGM_RESET_STATE) == 0) {
516		BARRIER_R(sc);
517		if (++count == 100) {
518			if_printf(sc->ifp, "reset failed\n");
519			return (ENXIO);
520		}
521		DELAY(1000);
522	}
523	return (0);
524}
525
526/*
527 * 4.5 Set Bus Width
528 */
529static void
530hatm_init_bus_width(struct hatm_softc *sc)
531{
532	uint32_t v, v1;
533
534	v = READ4(sc, HE_REGO_HOST_CNTL);
535	BARRIER_R(sc);
536	if (v & HE_REGM_HOST_BUS64) {
537		sc->pci64 = 1;
538		v1 = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
539		v1 |= HE_PCIM_CTL0_64BIT;
540		pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v1, 4);
541
542		v |= HE_REGM_HOST_DESC_RD64
543		    | HE_REGM_HOST_DATA_RD64
544		    | HE_REGM_HOST_DATA_WR64;
545		WRITE4(sc, HE_REGO_HOST_CNTL, v);
546		BARRIER_W(sc);
547	} else {
548		sc->pci64 = 0;
549		v = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
550		v &= ~HE_PCIM_CTL0_64BIT;
551		pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v, 4);
552	}
553}
554
555/*
556 * 4.6 Set Host Endianess
557 */
558static void
559hatm_init_endianess(struct hatm_softc *sc)
560{
561	uint32_t v;
562
563	v = READ4(sc, HE_REGO_LB_SWAP);
564	BARRIER_R(sc);
565#if BYTE_ORDER == BIG_ENDIAN
566	v |= HE_REGM_LBSWAP_INTR_SWAP |
567	    HE_REGM_LBSWAP_DESC_WR_SWAP |
568	    HE_REGM_LBSWAP_BIG_ENDIAN;
569	v &= ~(HE_REGM_LBSWAP_DATA_WR_SWAP |
570	    HE_REGM_LBSWAP_DESC_RD_SWAP |
571	    HE_REGM_LBSWAP_DATA_RD_SWAP);
572#else
573	v &= ~(HE_REGM_LBSWAP_DATA_WR_SWAP |
574	    HE_REGM_LBSWAP_DESC_RD_SWAP |
575	    HE_REGM_LBSWAP_DATA_RD_SWAP |
576	    HE_REGM_LBSWAP_INTR_SWAP |
577	    HE_REGM_LBSWAP_DESC_WR_SWAP |
578	    HE_REGM_LBSWAP_BIG_ENDIAN);
579#endif
580
581	if (sc->he622)
582		v |= HE_REGM_LBSWAP_XFER_SIZE;
583
584	WRITE4(sc, HE_REGO_LB_SWAP, v);
585	BARRIER_W(sc);
586}
587
588/*
589 * 4.7 Read EEPROM
590 */
591static uint8_t
592hatm_read_prom_byte(struct hatm_softc *sc, u_int addr)
593{
594	uint32_t val, tmp_read, byte_read;
595	u_int i, j;
596	int n;
597
598	val = READ4(sc, HE_REGO_HOST_CNTL);
599	val &= HE_REGM_HOST_PROM_BITS;
600	BARRIER_R(sc);
601
602	val |= HE_REGM_HOST_PROM_WREN;
603	WRITE4(sc, HE_REGO_HOST_CNTL, val);
604	BARRIER_W(sc);
605
606	/* send READ */
607	for (i = 0; i < sizeof(readtab) / sizeof(readtab[0]); i++) {
608		WRITE4(sc, HE_REGO_HOST_CNTL, val | readtab[i]);
609		BARRIER_W(sc);
610		DELAY(EEPROM_DELAY);
611	}
612
613	/* send ADDRESS */
614	for (n = 7, j = 0; n >= 0; n--) {
615		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++] |
616		    (((addr >> n) & 1 ) << HE_REGS_HOST_PROM_DATA_IN));
617		BARRIER_W(sc);
618		DELAY(EEPROM_DELAY);
619		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++] |
620		    (((addr >> n) & 1 ) << HE_REGS_HOST_PROM_DATA_IN));
621		BARRIER_W(sc);
622		DELAY(EEPROM_DELAY);
623	}
624
625	val &= ~HE_REGM_HOST_PROM_WREN;
626	WRITE4(sc, HE_REGO_HOST_CNTL, val);
627	BARRIER_W(sc);
628
629	/* read DATA */
630	byte_read = 0;
631	for (n = 7, j = 0; n >= 0; n--) {
632		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++]);
633		BARRIER_W(sc);
634		DELAY(EEPROM_DELAY);
635		tmp_read = READ4(sc, HE_REGO_HOST_CNTL);
636		byte_read |= (uint8_t)(((tmp_read & HE_REGM_HOST_PROM_DATA_OUT)
637				>> HE_REGS_HOST_PROM_DATA_OUT) << n);
638		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++]);
639		BARRIER_W(sc);
640		DELAY(EEPROM_DELAY);
641	}
642	WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++]);
643	BARRIER_W(sc);
644	DELAY(EEPROM_DELAY);
645
646	return (byte_read);
647}
648
649static void
650hatm_init_read_eeprom(struct hatm_softc *sc)
651{
652	u_int n, count;
653	u_char byte;
654	uint32_t v;
655
656	for (n = count = 0; count < HE_EEPROM_PROD_ID_LEN; count++) {
657		byte = hatm_read_prom_byte(sc, HE_EEPROM_PROD_ID + count);
658		if (n > 0 || byte != ' ')
659			sc->prod_id[n++] = byte;
660	}
661	while (n > 0 && sc->prod_id[n-1] == ' ')
662		n--;
663	sc->prod_id[n] = '\0';
664
665	for (n = count = 0; count < HE_EEPROM_REV_LEN; count++) {
666		byte = hatm_read_prom_byte(sc, HE_EEPROM_REV + count);
667		if (n > 0 || byte != ' ')
668			sc->rev[n++] = byte;
669	}
670	while (n > 0 && sc->rev[n-1] == ' ')
671		n--;
672	sc->rev[n] = '\0';
673	IFP2IFATM(sc->ifp)->mib.hw_version = sc->rev[0];
674
675	IFP2IFATM(sc->ifp)->mib.serial =  hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 0) << 0;
676	IFP2IFATM(sc->ifp)->mib.serial |= hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 1) << 8;
677	IFP2IFATM(sc->ifp)->mib.serial |= hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 2) << 16;
678	IFP2IFATM(sc->ifp)->mib.serial |= hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 3) << 24;
679
680	v =  hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 0) << 0;
681	v |= hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 1) << 8;
682	v |= hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 2) << 16;
683	v |= hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 3) << 24;
684
685	switch (v) {
686	  case HE_MEDIA_UTP155:
687		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UTP_155;
688		IFP2IFATM(sc->ifp)->mib.pcr = ATM_RATE_155M;
689		break;
690
691	  case HE_MEDIA_MMF155:
692		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_MM_155;
693		IFP2IFATM(sc->ifp)->mib.pcr = ATM_RATE_155M;
694		break;
695
696	  case HE_MEDIA_MMF622:
697		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_MM_622;
698		IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_HE622;
699		IFP2IFATM(sc->ifp)->mib.pcr = ATM_RATE_622M;
700		sc->he622 = 1;
701		break;
702
703	  case HE_MEDIA_SMF155:
704		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_SM_155;
705		IFP2IFATM(sc->ifp)->mib.pcr = ATM_RATE_155M;
706		break;
707
708	  case HE_MEDIA_SMF622:
709		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_SM_622;
710		IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_HE622;
711		IFP2IFATM(sc->ifp)->mib.pcr = ATM_RATE_622M;
712		sc->he622 = 1;
713		break;
714	}
715
716	IFP2IFATM(sc->ifp)->mib.esi[0] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 0);
717	IFP2IFATM(sc->ifp)->mib.esi[1] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 1);
718	IFP2IFATM(sc->ifp)->mib.esi[2] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 2);
719	IFP2IFATM(sc->ifp)->mib.esi[3] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 3);
720	IFP2IFATM(sc->ifp)->mib.esi[4] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 4);
721	IFP2IFATM(sc->ifp)->mib.esi[5] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 5);
722}
723
724/*
725 * Clear unused interrupt queue
726 */
727static void
728hatm_clear_irq(struct hatm_softc *sc, u_int group)
729{
730	WRITE4(sc, HE_REGO_IRQ_BASE(group), 0);
731	WRITE4(sc, HE_REGO_IRQ_HEAD(group), 0);
732	WRITE4(sc, HE_REGO_IRQ_CNTL(group), 0);
733	WRITE4(sc, HE_REGO_IRQ_DATA(group), 0);
734}
735
736/*
737 * 4.10 Initialize interrupt queues
738 */
739static void
740hatm_init_irq(struct hatm_softc *sc, struct heirq *q, u_int group)
741{
742	u_int i;
743
744	if (q->size == 0) {
745		hatm_clear_irq(sc, group);
746		return;
747	}
748
749	q->group = group;
750	q->sc = sc;
751	q->irq = q->mem.base;
752	q->head = 0;
753	q->tailp = q->irq + (q->size - 1);
754	*q->tailp = 0;
755
756	for (i = 0; i < q->size; i++)
757		q->irq[i] = HE_REGM_ITYPE_INVALID;
758
759	WRITE4(sc, HE_REGO_IRQ_BASE(group), q->mem.paddr);
760	WRITE4(sc, HE_REGO_IRQ_HEAD(group),
761	    ((q->size - 1) << HE_REGS_IRQ_HEAD_SIZE) |
762	    (q->thresh << HE_REGS_IRQ_HEAD_THRESH));
763	WRITE4(sc, HE_REGO_IRQ_CNTL(group), q->line);
764	WRITE4(sc, HE_REGO_IRQ_DATA(group), 0);
765}
766
767/*
768 * 5.1.3 Initialize connection memory
769 */
770static void
771hatm_init_cm(struct hatm_softc *sc)
772{
773	u_int rsra, mlbm, rabr, numbuffs;
774	u_int tsra, tabr, mtpd;
775	u_int n;
776
777	for (n = 0; n < HE_CONFIG_TXMEM; n++)
778		WRITE_TCM4(sc, n, 0);
779	for (n = 0; n < HE_CONFIG_RXMEM; n++)
780		WRITE_RCM4(sc, n, 0);
781
782	numbuffs = sc->r0_numbuffs + sc->r1_numbuffs + sc->tx_numbuffs;
783
784	rsra = 0;
785	mlbm = ((rsra + IFP2IFATM(sc->ifp)->mib.max_vccs * 8) + 0x7ff) & ~0x7ff;
786	rabr = ((mlbm + numbuffs * 2) + 0x7ff) & ~0x7ff;
787	sc->rsrb = ((rabr + 2048) + (2 * IFP2IFATM(sc->ifp)->mib.max_vccs - 1)) &
788	    ~(2 * IFP2IFATM(sc->ifp)->mib.max_vccs - 1);
789
790	tsra = 0;
791	sc->tsrb = tsra + IFP2IFATM(sc->ifp)->mib.max_vccs * 8;
792	sc->tsrc = sc->tsrb + IFP2IFATM(sc->ifp)->mib.max_vccs * 4;
793	sc->tsrd = sc->tsrc + IFP2IFATM(sc->ifp)->mib.max_vccs * 2;
794	tabr = sc->tsrd + IFP2IFATM(sc->ifp)->mib.max_vccs * 1;
795	mtpd = ((tabr + 1024) + (16 * IFP2IFATM(sc->ifp)->mib.max_vccs - 1)) &
796	    ~(16 * IFP2IFATM(sc->ifp)->mib.max_vccs - 1);
797
798	DBG(sc, ATTACH, ("rsra=%x mlbm=%x rabr=%x rsrb=%x",
799	    rsra, mlbm, rabr, sc->rsrb));
800	DBG(sc, ATTACH, ("tsra=%x tsrb=%x tsrc=%x tsrd=%x tabr=%x mtpd=%x",
801	    tsra, sc->tsrb, sc->tsrc, sc->tsrd, tabr, mtpd));
802
803	WRITE4(sc, HE_REGO_TSRB_BA, sc->tsrb);
804	WRITE4(sc, HE_REGO_TSRC_BA, sc->tsrc);
805	WRITE4(sc, HE_REGO_TSRD_BA, sc->tsrd);
806	WRITE4(sc, HE_REGO_TMABR_BA, tabr);
807	WRITE4(sc, HE_REGO_TPD_BA, mtpd);
808
809	WRITE4(sc, HE_REGO_RCMRSRB_BA, sc->rsrb);
810	WRITE4(sc, HE_REGO_RCMLBM_BA, mlbm);
811	WRITE4(sc, HE_REGO_RCMABR_BA, rabr);
812
813	BARRIER_W(sc);
814}
815
816/*
817 * 5.1.4 Initialize Local buffer Pools
818 */
819static void
820hatm_init_rx_buffer_pool(struct hatm_softc *sc,
821	u_int num,		/* bank */
822	u_int start,		/* start row */
823	u_int numbuffs		/* number of entries */
824)
825{
826	u_int row_size;		/* bytes per row */
827	uint32_t row_addr;	/* start address of this row */
828	u_int lbuf_size;	/* bytes per lbuf */
829	u_int lbufs_per_row;	/* number of lbufs per memory row */
830	uint32_t lbufd_index;	/* index of lbuf descriptor */
831	uint32_t lbufd_addr;	/* address of lbuf descriptor */
832	u_int lbuf_row_cnt;	/* current lbuf in current row */
833	uint32_t lbuf_addr;	/* address of current buffer */
834	u_int i;
835
836	row_size = sc->bytes_per_row;;
837	row_addr = start * row_size;
838	lbuf_size = sc->cells_per_lbuf * 48;
839	lbufs_per_row = sc->cells_per_row / sc->cells_per_lbuf;
840
841	/* descriptor index */
842	lbufd_index = num;
843
844	/* 2 words per entry */
845	lbufd_addr = READ4(sc, HE_REGO_RCMLBM_BA) + lbufd_index * 2;
846
847	/* write head of queue */
848	WRITE4(sc, HE_REGO_RLBF_H(num), lbufd_index);
849
850	lbuf_row_cnt = 0;
851	for (i = 0; i < numbuffs; i++) {
852		lbuf_addr = (row_addr + lbuf_row_cnt * lbuf_size) / 32;
853
854		WRITE_RCM4(sc, lbufd_addr, lbuf_addr);
855
856		lbufd_index += 2;
857		WRITE_RCM4(sc, lbufd_addr + 1, lbufd_index);
858
859		if (++lbuf_row_cnt == lbufs_per_row) {
860			lbuf_row_cnt = 0;
861			row_addr += row_size;
862		}
863
864		lbufd_addr += 2 * 2;
865	}
866
867	WRITE4(sc, HE_REGO_RLBF_T(num), lbufd_index - 2);
868	WRITE4(sc, HE_REGO_RLBF_C(num), numbuffs);
869
870	BARRIER_W(sc);
871}
872
873static void
874hatm_init_tx_buffer_pool(struct hatm_softc *sc,
875	u_int start,		/* start row */
876	u_int numbuffs		/* number of entries */
877)
878{
879	u_int row_size;		/* bytes per row */
880	uint32_t row_addr;	/* start address of this row */
881	u_int lbuf_size;	/* bytes per lbuf */
882	u_int lbufs_per_row;	/* number of lbufs per memory row */
883	uint32_t lbufd_index;	/* index of lbuf descriptor */
884	uint32_t lbufd_addr;	/* address of lbuf descriptor */
885	u_int lbuf_row_cnt;	/* current lbuf in current row */
886	uint32_t lbuf_addr;	/* address of current buffer */
887	u_int i;
888
889	row_size = sc->bytes_per_row;;
890	row_addr = start * row_size;
891	lbuf_size = sc->cells_per_lbuf * 48;
892	lbufs_per_row = sc->cells_per_row / sc->cells_per_lbuf;
893
894	/* descriptor index */
895	lbufd_index = sc->r0_numbuffs + sc->r1_numbuffs;
896
897	/* 2 words per entry */
898	lbufd_addr = READ4(sc, HE_REGO_RCMLBM_BA) + lbufd_index * 2;
899
900	/* write head of queue */
901	WRITE4(sc, HE_REGO_TLBF_H, lbufd_index);
902
903	lbuf_row_cnt = 0;
904	for (i = 0; i < numbuffs; i++) {
905		lbuf_addr = (row_addr + lbuf_row_cnt * lbuf_size) / 32;
906
907		WRITE_RCM4(sc, lbufd_addr, lbuf_addr);
908		lbufd_index++;
909		WRITE_RCM4(sc, lbufd_addr + 1, lbufd_index);
910
911		if (++lbuf_row_cnt == lbufs_per_row) {
912			lbuf_row_cnt = 0;
913			row_addr += row_size;
914		}
915
916		lbufd_addr += 2;
917	}
918
919	WRITE4(sc, HE_REGO_TLBF_T, lbufd_index - 1);
920	BARRIER_W(sc);
921}
922
923/*
924 * 5.1.5 Initialize Intermediate Receive Queues
925 */
926static void
927hatm_init_imed_queues(struct hatm_softc *sc)
928{
929	u_int n;
930
931	if (sc->he622) {
932		for (n = 0; n < 8; n++) {
933			WRITE4(sc, HE_REGO_INMQ_S(n), 0x10*n+0x000f);
934			WRITE4(sc, HE_REGO_INMQ_L(n), 0x10*n+0x200f);
935		}
936	} else {
937		for (n = 0; n < 8; n++) {
938			WRITE4(sc, HE_REGO_INMQ_S(n), n);
939			WRITE4(sc, HE_REGO_INMQ_L(n), n+0x8);
940		}
941	}
942}
943
944/*
945 * 5.1.7 Init CS block
946 */
947static void
948hatm_init_cs_block(struct hatm_softc *sc)
949{
950	u_int n, i;
951	u_int clkfreg, cellrate, decr, tmp;
952	static const uint32_t erthr[2][5][3] = HE_REGT_CS_ERTHR;
953	static const uint32_t erctl[2][3] = HE_REGT_CS_ERCTL;
954	static const uint32_t erstat[2][2] = HE_REGT_CS_ERSTAT;
955	static const uint32_t rtfwr[2] = HE_REGT_CS_RTFWR;
956	static const uint32_t rtatr[2] = HE_REGT_CS_RTATR;
957	static const uint32_t bwalloc[2][6] = HE_REGT_CS_BWALLOC;
958	static const uint32_t orcf[2][2] = HE_REGT_CS_ORCF;
959
960	/* Clear Rate Controller Start Times and Occupied Flags */
961	for (n = 0; n < 32; n++)
962		WRITE_MBOX4(sc, HE_REGO_CS_STTIM(n), 0);
963
964	clkfreg = sc->he622 ? HE_622_CLOCK : HE_155_CLOCK;
965	cellrate = sc->he622 ? ATM_RATE_622M : ATM_RATE_155M;
966	decr = cellrate / 32;
967
968	for (n = 0; n < 16; n++) {
969		tmp = clkfreg / cellrate;
970		WRITE_MBOX4(sc, HE_REGO_CS_TGRLD(n), tmp - 1);
971		cellrate -= decr;
972	}
973
974	i = (sc->cells_per_lbuf == 2) ? 0
975	   :(sc->cells_per_lbuf == 4) ? 1
976	   :                            2;
977
978	/* table 5.2 */
979	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR0, erthr[sc->he622][0][i]);
980	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR1, erthr[sc->he622][1][i]);
981	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR2, erthr[sc->he622][2][i]);
982	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR3, erthr[sc->he622][3][i]);
983	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR4, erthr[sc->he622][4][i]);
984
985	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL0, erctl[sc->he622][0]);
986	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL1, erctl[sc->he622][1]);
987	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL2, erctl[sc->he622][2]);
988
989	WRITE_MBOX4(sc, HE_REGO_CS_ERSTAT0, erstat[sc->he622][0]);
990	WRITE_MBOX4(sc, HE_REGO_CS_ERSTAT1, erstat[sc->he622][1]);
991
992	WRITE_MBOX4(sc, HE_REGO_CS_RTFWR, rtfwr[sc->he622]);
993	WRITE_MBOX4(sc, HE_REGO_CS_RTATR, rtatr[sc->he622]);
994
995	WRITE_MBOX4(sc, HE_REGO_CS_TFBSET, bwalloc[sc->he622][0]);
996	WRITE_MBOX4(sc, HE_REGO_CS_WCRMAX, bwalloc[sc->he622][1]);
997	WRITE_MBOX4(sc, HE_REGO_CS_WCRMIN, bwalloc[sc->he622][2]);
998	WRITE_MBOX4(sc, HE_REGO_CS_WCRINC, bwalloc[sc->he622][3]);
999	WRITE_MBOX4(sc, HE_REGO_CS_WCRDEC, bwalloc[sc->he622][4]);
1000	WRITE_MBOX4(sc, HE_REGO_CS_WCRCEIL, bwalloc[sc->he622][5]);
1001
1002	WRITE_MBOX4(sc, HE_REGO_CS_OTPPER, orcf[sc->he622][0]);
1003	WRITE_MBOX4(sc, HE_REGO_CS_OTWPER, orcf[sc->he622][1]);
1004
1005	WRITE_MBOX4(sc, HE_REGO_CS_OTTLIM, 8);
1006
1007	for (n = 0; n < 8; n++)
1008		WRITE_MBOX4(sc, HE_REGO_CS_HGRRT(n), 0);
1009}
1010
1011/*
1012 * 5.1.8 CS Block Connection Memory Initialisation
1013 */
1014static void
1015hatm_init_cs_block_cm(struct hatm_softc *sc)
1016{
1017	u_int n, i;
1018	u_int expt, mant, etrm, wcr, ttnrm, tnrm;
1019	uint32_t rate;
1020	uint32_t clkfreq, cellrate, decr;
1021	uint32_t *rg, rtg, val = 0;
1022	uint64_t drate;
1023	u_int buf, buf_limit;
1024	uint32_t base = READ4(sc, HE_REGO_RCMABR_BA);
1025
1026	for (n = 0; n < HE_REGL_CM_GQTBL; n++)
1027		WRITE_RCM4(sc, base + HE_REGO_CM_GQTBL + n, 0);
1028	for (n = 0; n < HE_REGL_CM_RGTBL; n++)
1029		WRITE_RCM4(sc, base + HE_REGO_CM_RGTBL + n, 0);
1030
1031	tnrm = 0;
1032	for (n = 0; n < HE_REGL_CM_TNRMTBL * 4; n++) {
1033		expt = (n >> 5) & 0x1f;
1034		mant = ((n & 0x18) << 4) | 0x7f;
1035		wcr = (1 << expt) * (mant + 512) / 512;
1036		etrm = n & 0x7;
1037		ttnrm = wcr / 10 / (1 << etrm);
1038		if (ttnrm > 255)
1039			ttnrm = 255;
1040		else if(ttnrm < 2)
1041			ttnrm = 2;
1042		tnrm = (tnrm << 8) | (ttnrm & 0xff);
1043		if (n % 4 == 0)
1044			WRITE_RCM4(sc, base + HE_REGO_CM_TNRMTBL + (n/4), tnrm);
1045	}
1046
1047	clkfreq = sc->he622 ? HE_622_CLOCK : HE_155_CLOCK;
1048	buf_limit = 4;
1049
1050	cellrate = sc->he622 ? ATM_RATE_622M : ATM_RATE_155M;
1051	decr = cellrate / 32;
1052
1053	/* compute GRID top row in 1000 * cps */
1054	for (n = 0; n < 16; n++) {
1055		u_int interval = clkfreq / cellrate;
1056		sc->rate_grid[0][n] = (u_int64_t)clkfreq * 1000 / interval;
1057		cellrate -= decr;
1058	}
1059
1060	/* compute the other rows according to 2.4 */
1061	for (i = 1; i < 16; i++)
1062		for (n = 0; n < 16; n++)
1063			sc->rate_grid[i][n] = sc->rate_grid[i-1][n] /
1064			    ((i < 14) ? 2 : 4);
1065
1066	/* first entry is line rate */
1067	n = hatm_cps2atmf(sc->he622 ? ATM_RATE_622M : ATM_RATE_155M);
1068	expt = (n >> 9) & 0x1f;
1069	mant = n & 0x1f0;
1070	sc->rate_grid[0][0] = (u_int64_t)(1<<expt) * 1000 * (mant+512) / 512;
1071
1072	/* now build the conversion table - each 32 bit word contains
1073	 * two entries - this gives a total of 0x400 16 bit entries.
1074	 * This table maps the truncated ATMF rate version into a grid index */
1075	cellrate = sc->he622 ? ATM_RATE_622M : ATM_RATE_155M;
1076	rg = &sc->rate_grid[15][15];
1077
1078	for (rate = 0; rate < 2 * HE_REGL_CM_RTGTBL; rate++) {
1079		/* unpack the ATMF rate */
1080		expt = rate >> 5;
1081		mant = (rate & 0x1f) << 4;
1082
1083		/* get the cell rate - minimum is 10 per second */
1084		drate = (uint64_t)(1 << expt) * 1000 * (mant + 512) / 512;
1085		if (drate < 10 * 1000)
1086			drate = 10 * 1000;
1087
1088		/* now look up the grid index */
1089		while (drate >= *rg && rg-- > &sc->rate_grid[0][0])
1090			;
1091		rg++;
1092		rtg = rg - &sc->rate_grid[0][0];
1093
1094		/* now compute the buffer limit */
1095		buf = drate * sc->tx_numbuffs / (cellrate * 2) / 1000;
1096		if (buf == 0)
1097			buf = 1;
1098		else if (buf > buf_limit)
1099			buf = buf_limit;
1100
1101		/* make value */
1102		val = (val << 16) | (rtg << 8) | buf;
1103
1104		/* write */
1105		if (rate % 2 == 1)
1106			WRITE_RCM4(sc, base + HE_REGO_CM_RTGTBL + rate/2, val);
1107	}
1108}
1109
1110/*
1111 * Clear an unused receive group buffer pool
1112 */
1113static void
1114hatm_clear_rpool(struct hatm_softc *sc, u_int group, u_int large)
1115{
1116	WRITE4(sc, HE_REGO_RBP_S(large, group), 0);
1117	WRITE4(sc, HE_REGO_RBP_T(large, group), 0);
1118	WRITE4(sc, HE_REGO_RBP_QI(large, group), 1);
1119	WRITE4(sc, HE_REGO_RBP_BL(large, group), 0);
1120}
1121
1122/*
1123 * Initialize a receive group buffer pool
1124 */
1125static void
1126hatm_init_rpool(struct hatm_softc *sc, struct herbp *q, u_int group,
1127    u_int large)
1128{
1129	if (q->size == 0) {
1130		hatm_clear_rpool(sc, group, large);
1131		return;
1132	}
1133
1134	bzero(q->mem.base, q->mem.size);
1135	q->rbp = q->mem.base;
1136	q->head = q->tail = 0;
1137
1138	DBG(sc, ATTACH, ("RBP%u%c=0x%lx", group, "SL"[large],
1139	    (u_long)q->mem.paddr));
1140
1141	WRITE4(sc, HE_REGO_RBP_S(large, group), q->mem.paddr);
1142	WRITE4(sc, HE_REGO_RBP_T(large, group), 0);
1143	WRITE4(sc, HE_REGO_RBP_QI(large, group),
1144	    ((q->size - 1) << HE_REGS_RBP_SIZE) |
1145	    HE_REGM_RBP_INTR_ENB |
1146	    (q->thresh << HE_REGS_RBP_THRESH));
1147	WRITE4(sc, HE_REGO_RBP_BL(large, group), (q->bsize >> 2) & ~1);
1148}
1149
1150/*
1151 * Clear an unused receive buffer return queue
1152 */
1153static void
1154hatm_clear_rbrq(struct hatm_softc *sc, u_int group)
1155{
1156	WRITE4(sc, HE_REGO_RBRQ_ST(group), 0);
1157	WRITE4(sc, HE_REGO_RBRQ_H(group), 0);
1158	WRITE4(sc, HE_REGO_RBRQ_Q(group), (1 << HE_REGS_RBRQ_THRESH));
1159	WRITE4(sc, HE_REGO_RBRQ_I(group), 0);
1160}
1161
1162/*
1163 * Initialize receive buffer return queue
1164 */
1165static void
1166hatm_init_rbrq(struct hatm_softc *sc, struct herbrq *rq, u_int group)
1167{
1168	if (rq->size == 0) {
1169		hatm_clear_rbrq(sc, group);
1170		return;
1171	}
1172
1173	rq->rbrq = rq->mem.base;
1174	rq->head = 0;
1175
1176	DBG(sc, ATTACH, ("RBRQ%u=0x%lx", group, (u_long)rq->mem.paddr));
1177
1178	WRITE4(sc, HE_REGO_RBRQ_ST(group), rq->mem.paddr);
1179	WRITE4(sc, HE_REGO_RBRQ_H(group), 0);
1180	WRITE4(sc, HE_REGO_RBRQ_Q(group),
1181	    (rq->thresh << HE_REGS_RBRQ_THRESH) |
1182	    ((rq->size - 1) << HE_REGS_RBRQ_SIZE));
1183	WRITE4(sc, HE_REGO_RBRQ_I(group),
1184	    (rq->tout << HE_REGS_RBRQ_TIME) |
1185	    (rq->pcnt << HE_REGS_RBRQ_COUNT));
1186}
1187
1188/*
1189 * Clear an unused transmit buffer return queue N
1190 */
1191static void
1192hatm_clear_tbrq(struct hatm_softc *sc, u_int group)
1193{
1194	WRITE4(sc, HE_REGO_TBRQ_B_T(group), 0);
1195	WRITE4(sc, HE_REGO_TBRQ_H(group), 0);
1196	WRITE4(sc, HE_REGO_TBRQ_S(group), 0);
1197	WRITE4(sc, HE_REGO_TBRQ_THRESH(group), 1);
1198}
1199
1200/*
1201 * Initialize transmit buffer return queue N
1202 */
1203static void
1204hatm_init_tbrq(struct hatm_softc *sc, struct hetbrq *tq, u_int group)
1205{
1206	if (tq->size == 0) {
1207		hatm_clear_tbrq(sc, group);
1208		return;
1209	}
1210
1211	tq->tbrq = tq->mem.base;
1212	tq->head = 0;
1213
1214	DBG(sc, ATTACH, ("TBRQ%u=0x%lx", group, (u_long)tq->mem.paddr));
1215
1216	WRITE4(sc, HE_REGO_TBRQ_B_T(group), tq->mem.paddr);
1217	WRITE4(sc, HE_REGO_TBRQ_H(group), 0);
1218	WRITE4(sc, HE_REGO_TBRQ_S(group), tq->size - 1);
1219	WRITE4(sc, HE_REGO_TBRQ_THRESH(group), tq->thresh);
1220}
1221
1222/*
1223 * Initialize TPDRQ
1224 */
1225static void
1226hatm_init_tpdrq(struct hatm_softc *sc)
1227{
1228	struct hetpdrq *tq;
1229
1230	tq = &sc->tpdrq;
1231	tq->tpdrq = tq->mem.base;
1232	tq->tail = tq->head = 0;
1233
1234	DBG(sc, ATTACH, ("TPDRQ=0x%lx", (u_long)tq->mem.paddr));
1235
1236	WRITE4(sc, HE_REGO_TPDRQ_H, tq->mem.paddr);
1237	WRITE4(sc, HE_REGO_TPDRQ_T, 0);
1238	WRITE4(sc, HE_REGO_TPDRQ_S, tq->size - 1);
1239}
1240
1241/*
1242 * Function can be called by the infrastructure to start the card.
1243 */
1244static void
1245hatm_init(void *p)
1246{
1247	struct hatm_softc *sc = p;
1248
1249	mtx_lock(&sc->mtx);
1250	hatm_stop(sc);
1251	hatm_initialize(sc);
1252	mtx_unlock(&sc->mtx);
1253}
1254
1255enum {
1256	CTL_ISTATS,
1257};
1258
1259/*
1260 * Sysctl handler
1261 */
1262static int
1263hatm_sysctl(SYSCTL_HANDLER_ARGS)
1264{
1265	struct hatm_softc *sc = arg1;
1266	uint32_t *ret;
1267	int error;
1268	size_t len;
1269
1270	switch (arg2) {
1271
1272	  case CTL_ISTATS:
1273		len = sizeof(sc->istats);
1274		break;
1275
1276	  default:
1277		panic("bad control code");
1278	}
1279
1280	ret = malloc(len, M_TEMP, M_WAITOK);
1281	mtx_lock(&sc->mtx);
1282
1283	switch (arg2) {
1284
1285	  case CTL_ISTATS:
1286		sc->istats.mcc += READ4(sc, HE_REGO_MCC);
1287		sc->istats.oec += READ4(sc, HE_REGO_OEC);
1288		sc->istats.dcc += READ4(sc, HE_REGO_DCC);
1289		sc->istats.cec += READ4(sc, HE_REGO_CEC);
1290		bcopy(&sc->istats, ret, sizeof(sc->istats));
1291		break;
1292	}
1293	mtx_unlock(&sc->mtx);
1294
1295	error = SYSCTL_OUT(req, ret, len);
1296	free(ret, M_TEMP);
1297
1298	return (error);
1299}
1300
1301static int
1302kenv_getuint(struct hatm_softc *sc, const char *var,
1303    u_int *ptr, u_int def, int rw)
1304{
1305	char full[IFNAMSIZ + 3 + 20];
1306	char *val, *end;
1307	u_int u;
1308
1309	*ptr = def;
1310
1311	if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1312	    OID_AUTO, var, rw ? CTLFLAG_RW : CTLFLAG_RD, ptr, 0, "") == NULL)
1313		return (ENOMEM);
1314
1315	snprintf(full, sizeof(full), "hw.%s.%s",
1316	    device_get_nameunit(sc->dev), var);
1317
1318	if ((val = getenv(full)) == NULL)
1319		return (0);
1320	u = strtoul(val, &end, 0);
1321	if (end == val || *end != '\0') {
1322		freeenv(val);
1323		return (EINVAL);
1324	}
1325	if (bootverbose)
1326		if_printf(sc->ifp, "%s=%u\n", full, u);
1327	*ptr = u;
1328	return (0);
1329}
1330
1331/*
1332 * Set configurable parameters. Many of these are configurable via
1333 * kenv.
1334 */
1335static int
1336hatm_configure(struct hatm_softc *sc)
1337{
1338	/* Receive buffer pool 0 small */
1339	kenv_getuint(sc, "rbps0_size", &sc->rbp_s0.size,
1340	    HE_CONFIG_RBPS0_SIZE, 0);
1341	kenv_getuint(sc, "rbps0_thresh", &sc->rbp_s0.thresh,
1342	    HE_CONFIG_RBPS0_THRESH, 0);
1343	sc->rbp_s0.bsize = MBUF0_SIZE;
1344
1345	/* Receive buffer pool 0 large */
1346	kenv_getuint(sc, "rbpl0_size", &sc->rbp_l0.size,
1347	    HE_CONFIG_RBPL0_SIZE, 0);
1348	kenv_getuint(sc, "rbpl0_thresh", &sc->rbp_l0.thresh,
1349	    HE_CONFIG_RBPL0_THRESH, 0);
1350	sc->rbp_l0.bsize = MCLBYTES - MBUFL_OFFSET;
1351
1352	/* Receive buffer return queue 0 */
1353	kenv_getuint(sc, "rbrq0_size", &sc->rbrq_0.size,
1354	    HE_CONFIG_RBRQ0_SIZE, 0);
1355	kenv_getuint(sc, "rbrq0_thresh", &sc->rbrq_0.thresh,
1356	    HE_CONFIG_RBRQ0_THRESH, 0);
1357	kenv_getuint(sc, "rbrq0_tout", &sc->rbrq_0.tout,
1358	    HE_CONFIG_RBRQ0_TOUT, 0);
1359	kenv_getuint(sc, "rbrq0_pcnt", &sc->rbrq_0.pcnt,
1360	    HE_CONFIG_RBRQ0_PCNT, 0);
1361
1362	/* Receive buffer pool 1 small */
1363	kenv_getuint(sc, "rbps1_size", &sc->rbp_s1.size,
1364	    HE_CONFIG_RBPS1_SIZE, 0);
1365	kenv_getuint(sc, "rbps1_thresh", &sc->rbp_s1.thresh,
1366	    HE_CONFIG_RBPS1_THRESH, 0);
1367	sc->rbp_s1.bsize = MBUF1_SIZE;
1368
1369	/* Receive buffer return queue 1 */
1370	kenv_getuint(sc, "rbrq1_size", &sc->rbrq_1.size,
1371	    HE_CONFIG_RBRQ1_SIZE, 0);
1372	kenv_getuint(sc, "rbrq1_thresh", &sc->rbrq_1.thresh,
1373	    HE_CONFIG_RBRQ1_THRESH, 0);
1374	kenv_getuint(sc, "rbrq1_tout", &sc->rbrq_1.tout,
1375	    HE_CONFIG_RBRQ1_TOUT, 0);
1376	kenv_getuint(sc, "rbrq1_pcnt", &sc->rbrq_1.pcnt,
1377	    HE_CONFIG_RBRQ1_PCNT, 0);
1378
1379	/* Interrupt queue 0 */
1380	kenv_getuint(sc, "irq0_size", &sc->irq_0.size,
1381	    HE_CONFIG_IRQ0_SIZE, 0);
1382	kenv_getuint(sc, "irq0_thresh", &sc->irq_0.thresh,
1383	    HE_CONFIG_IRQ0_THRESH, 0);
1384	sc->irq_0.line = HE_CONFIG_IRQ0_LINE;
1385
1386	/* Transmit buffer return queue 0 */
1387	kenv_getuint(sc, "tbrq0_size", &sc->tbrq.size,
1388	    HE_CONFIG_TBRQ_SIZE, 0);
1389	kenv_getuint(sc, "tbrq0_thresh", &sc->tbrq.thresh,
1390	    HE_CONFIG_TBRQ_THRESH, 0);
1391
1392	/* Transmit buffer ready queue */
1393	kenv_getuint(sc, "tpdrq_size", &sc->tpdrq.size,
1394	    HE_CONFIG_TPDRQ_SIZE, 0);
1395	/* Max TPDs per VCC */
1396	kenv_getuint(sc, "tpdmax", &sc->max_tpd,
1397	    HE_CONFIG_TPD_MAXCC, 0);
1398
1399	/* external mbuf pages */
1400	kenv_getuint(sc, "max_mbuf_pages", &sc->mbuf_max_pages,
1401	    HE_CONFIG_MAX_MBUF_PAGES, 0);
1402
1403	/* mpsafe */
1404	kenv_getuint(sc, "mpsafe", &sc->mpsafe, 0, 0);
1405	if (sc->mpsafe != 0)
1406		sc->mpsafe = INTR_MPSAFE;
1407
1408	return (0);
1409}
1410
1411#ifdef HATM_DEBUG
1412
1413/*
1414 * Get TSRs from connection memory
1415 */
1416static int
1417hatm_sysctl_tsr(SYSCTL_HANDLER_ARGS)
1418{
1419	struct hatm_softc *sc = arg1;
1420	int error, i, j;
1421	uint32_t *val;
1422
1423	val = malloc(sizeof(uint32_t) * HE_MAX_VCCS * 15, M_TEMP, M_WAITOK);
1424
1425	mtx_lock(&sc->mtx);
1426	for (i = 0; i < HE_MAX_VCCS; i++)
1427		for (j = 0; j <= 14; j++)
1428			val[15 * i + j] = READ_TSR(sc, i, j);
1429	mtx_unlock(&sc->mtx);
1430
1431	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * HE_MAX_VCCS * 15);
1432	free(val, M_TEMP);
1433	if (error != 0 || req->newptr == NULL)
1434		return (error);
1435
1436	return (EPERM);
1437}
1438
1439/*
1440 * Get TPDs from connection memory
1441 */
1442static int
1443hatm_sysctl_tpd(SYSCTL_HANDLER_ARGS)
1444{
1445	struct hatm_softc *sc = arg1;
1446	int error, i, j;
1447	uint32_t *val;
1448
1449	val = malloc(sizeof(uint32_t) * HE_MAX_VCCS * 16, M_TEMP, M_WAITOK);
1450
1451	mtx_lock(&sc->mtx);
1452	for (i = 0; i < HE_MAX_VCCS; i++)
1453		for (j = 0; j < 16; j++)
1454			val[16 * i + j] = READ_TCM4(sc, 16 * i + j);
1455	mtx_unlock(&sc->mtx);
1456
1457	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * HE_MAX_VCCS * 16);
1458	free(val, M_TEMP);
1459	if (error != 0 || req->newptr == NULL)
1460		return (error);
1461
1462	return (EPERM);
1463}
1464
1465/*
1466 * Get mbox registers
1467 */
1468static int
1469hatm_sysctl_mbox(SYSCTL_HANDLER_ARGS)
1470{
1471	struct hatm_softc *sc = arg1;
1472	int error, i;
1473	uint32_t *val;
1474
1475	val = malloc(sizeof(uint32_t) * HE_REGO_CS_END, M_TEMP, M_WAITOK);
1476
1477	mtx_lock(&sc->mtx);
1478	for (i = 0; i < HE_REGO_CS_END; i++)
1479		val[i] = READ_MBOX4(sc, i);
1480	mtx_unlock(&sc->mtx);
1481
1482	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * HE_REGO_CS_END);
1483	free(val, M_TEMP);
1484	if (error != 0 || req->newptr == NULL)
1485		return (error);
1486
1487	return (EPERM);
1488}
1489
1490/*
1491 * Get connection memory
1492 */
1493static int
1494hatm_sysctl_cm(SYSCTL_HANDLER_ARGS)
1495{
1496	struct hatm_softc *sc = arg1;
1497	int error, i;
1498	uint32_t *val;
1499
1500	val = malloc(sizeof(uint32_t) * (HE_CONFIG_RXMEM + 1), M_TEMP, M_WAITOK);
1501
1502	mtx_lock(&sc->mtx);
1503	val[0] = READ4(sc, HE_REGO_RCMABR_BA);
1504	for (i = 0; i < HE_CONFIG_RXMEM; i++)
1505		val[i + 1] = READ_RCM4(sc, i);
1506	mtx_unlock(&sc->mtx);
1507
1508	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * (HE_CONFIG_RXMEM + 1));
1509	free(val, M_TEMP);
1510	if (error != 0 || req->newptr == NULL)
1511		return (error);
1512
1513	return (EPERM);
1514}
1515
1516/*
1517 * Get local buffer memory
1518 */
1519static int
1520hatm_sysctl_lbmem(SYSCTL_HANDLER_ARGS)
1521{
1522	struct hatm_softc *sc = arg1;
1523	int error, i;
1524	uint32_t *val;
1525	u_int bytes = (1 << 21);
1526
1527	val = malloc(bytes, M_TEMP, M_WAITOK);
1528
1529	mtx_lock(&sc->mtx);
1530	for (i = 0; i < bytes / 4; i++)
1531		val[i] = READ_LB4(sc, i);
1532	mtx_unlock(&sc->mtx);
1533
1534	error = SYSCTL_OUT(req, val, bytes);
1535	free(val, M_TEMP);
1536	if (error != 0 || req->newptr == NULL)
1537		return (error);
1538
1539	return (EPERM);
1540}
1541
1542/*
1543 * Get all card registers
1544 */
1545static int
1546hatm_sysctl_heregs(SYSCTL_HANDLER_ARGS)
1547{
1548	struct hatm_softc *sc = arg1;
1549	int error, i;
1550	uint32_t *val;
1551
1552	val = malloc(HE_REGO_END, M_TEMP, M_WAITOK);
1553
1554	mtx_lock(&sc->mtx);
1555	for (i = 0; i < HE_REGO_END; i += 4)
1556		val[i / 4] = READ4(sc, i);
1557	mtx_unlock(&sc->mtx);
1558
1559	error = SYSCTL_OUT(req, val, HE_REGO_END);
1560	free(val, M_TEMP);
1561	if (error != 0 || req->newptr == NULL)
1562		return (error);
1563
1564	return (EPERM);
1565}
1566#endif
1567
1568/*
1569 * Suni register access
1570 */
1571/*
1572 * read at most n SUNI registers starting at reg into val
1573 */
1574static int
1575hatm_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *val, u_int *n)
1576{
1577	u_int i;
1578	struct hatm_softc *sc = ifatm->ifp->if_softc;
1579
1580	if (reg >= (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4)
1581		return (EINVAL);
1582	if (reg + *n > (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4)
1583		*n = reg - (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4;
1584
1585	mtx_assert(&sc->mtx, MA_OWNED);
1586	for (i = 0; i < *n; i++)
1587		val[i] = READ4(sc, HE_REGO_SUNI + 4 * (reg + i));
1588
1589	return (0);
1590}
1591
1592/*
1593 * change the bits given by mask to them in val in register reg
1594 */
1595static int
1596hatm_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
1597{
1598	uint32_t regval;
1599	struct hatm_softc *sc = ifatm->ifp->if_softc;
1600
1601	if (reg >= (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4)
1602		return (EINVAL);
1603
1604	mtx_assert(&sc->mtx, MA_OWNED);
1605	regval = READ4(sc, HE_REGO_SUNI + 4 * reg);
1606	regval = (regval & ~mask) | (val & mask);
1607	WRITE4(sc, HE_REGO_SUNI + 4 * reg, regval);
1608
1609	return (0);
1610}
1611
1612static struct utopia_methods hatm_utopia_methods = {
1613	hatm_utopia_readregs,
1614	hatm_utopia_writereg,
1615};
1616
1617/*
1618 * Detach - if it is running, stop. Destroy.
1619 */
1620static int
1621hatm_detach(device_t dev)
1622{
1623	struct hatm_softc *sc = device_get_softc(dev);
1624
1625	mtx_lock(&sc->mtx);
1626	hatm_stop(sc);
1627	if (sc->utopia.state & UTP_ST_ATTACHED) {
1628		utopia_stop(&sc->utopia);
1629		utopia_detach(&sc->utopia);
1630	}
1631	mtx_unlock(&sc->mtx);
1632
1633	atm_ifdetach(sc->ifp);
1634	if_free(sc->ifp);
1635
1636	hatm_destroy(sc);
1637
1638	return (0);
1639}
1640
1641/*
1642 * Attach to the device. Assume that no locking is needed here.
1643 * All resource we allocate here are freed by calling hatm_destroy.
1644 */
1645static int
1646hatm_attach(device_t dev)
1647{
1648	struct hatm_softc *sc;
1649	int error;
1650	uint32_t v;
1651	struct ifnet *ifp;
1652
1653	sc = device_get_softc(dev);
1654
1655	ifp = sc->ifp = if_alloc(IFT_ATM);
1656	if (ifp == NULL) {
1657		device_printf(dev, "could not if_alloc()\n");
1658		error = ENOSPC;
1659		goto failed;
1660	}
1661
1662	sc->dev = dev;
1663	IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_HE155;
1664	IFP2IFATM(sc->ifp)->mib.serial = 0;
1665	IFP2IFATM(sc->ifp)->mib.hw_version = 0;
1666	IFP2IFATM(sc->ifp)->mib.sw_version = 0;
1667	IFP2IFATM(sc->ifp)->mib.vpi_bits = HE_CONFIG_VPI_BITS;
1668	IFP2IFATM(sc->ifp)->mib.vci_bits = HE_CONFIG_VCI_BITS;
1669	IFP2IFATM(sc->ifp)->mib.max_vpcs = 0;
1670	IFP2IFATM(sc->ifp)->mib.max_vccs = HE_MAX_VCCS;
1671	IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UNKNOWN;
1672	sc->he622 = 0;
1673	IFP2IFATM(sc->ifp)->phy = &sc->utopia;
1674
1675	SLIST_INIT(&sc->tpd_free);
1676
1677	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1678	cv_init(&sc->vcc_cv, "HEVCCcv");
1679	cv_init(&sc->cv_rcclose, "RCClose");
1680
1681	sysctl_ctx_init(&sc->sysctl_ctx);
1682
1683	/*
1684	 * 4.2 BIOS Configuration
1685	 */
1686	v = pci_read_config(dev, PCIR_COMMAND, 2);
1687	v |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN | PCIM_CMD_MWRICEN;
1688	pci_write_config(dev, PCIR_COMMAND, v, 2);
1689
1690	/*
1691	 * 4.3 PCI Bus Controller-Specific Initialisation
1692	 */
1693	v = pci_read_config(dev, HE_PCIR_GEN_CNTL_0, 4);
1694	v |= HE_PCIM_CTL0_MRL | HE_PCIM_CTL0_MRM | HE_PCIM_CTL0_IGNORE_TIMEOUT;
1695#if BYTE_ORDER == BIG_ENDIAN && 0
1696	v |= HE_PCIM_CTL0_BIGENDIAN;
1697#endif
1698	pci_write_config(dev, HE_PCIR_GEN_CNTL_0, v, 4);
1699
1700	/*
1701	 * Map memory
1702	 */
1703	v = pci_read_config(dev, PCIR_COMMAND, 2);
1704	if (!(v & PCIM_CMD_MEMEN)) {
1705		device_printf(dev, "failed to enable memory\n");
1706		error = ENXIO;
1707		goto failed;
1708	}
1709	sc->memid = PCIR_BAR(0);
1710	sc->memres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->memid,
1711	    RF_ACTIVE);
1712	if (sc->memres == NULL) {
1713		device_printf(dev, "could not map memory\n");
1714		error = ENXIO;
1715		goto failed;
1716	}
1717	sc->memh = rman_get_bushandle(sc->memres);
1718	sc->memt = rman_get_bustag(sc->memres);
1719
1720	/*
1721	 * ALlocate a DMA tag for subsequent allocations
1722	 */
1723	if (bus_dma_tag_create(NULL, 1, 0,
1724	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1725	    NULL, NULL,
1726	    BUS_SPACE_MAXSIZE_32BIT, 1,
1727	    BUS_SPACE_MAXSIZE_32BIT, 0,
1728	    NULL, NULL, &sc->parent_tag)) {
1729		device_printf(dev, "could not allocate DMA tag\n");
1730		error = ENOMEM;
1731		goto failed;
1732	}
1733
1734	if (bus_dma_tag_create(sc->parent_tag, 1, 0,
1735	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1736	    NULL, NULL,
1737	    MBUF_ALLOC_SIZE, 1,
1738	    MBUF_ALLOC_SIZE, 0,
1739	    NULL, NULL, &sc->mbuf_tag)) {
1740		device_printf(dev, "could not allocate mbuf DMA tag\n");
1741		error = ENOMEM;
1742		goto failed;
1743	}
1744
1745	/*
1746	 * Allocate a DMA tag for packets to send. Here we have a problem with
1747	 * the specification of the maximum number of segments. Theoretically
1748	 * this would be the size of the transmit ring - 1 multiplied by 3,
1749	 * but this would not work. So make the maximum number of TPDs
1750	 * occupied by one packet a configuration parameter.
1751	 */
1752	if (bus_dma_tag_create(NULL, 1, 0,
1753	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1754	    HE_MAX_PDU, 3 * HE_CONFIG_MAX_TPD_PER_PACKET, HE_MAX_PDU, 0,
1755	    NULL, NULL, &sc->tx_tag)) {
1756		device_printf(dev, "could not allocate TX tag\n");
1757		error = ENOMEM;
1758		goto failed;
1759	}
1760
1761	/*
1762	 * Setup the interrupt
1763	 */
1764	sc->irqid = 0;
1765	sc->irqres = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irqid,
1766	    RF_SHAREABLE | RF_ACTIVE);
1767	if (sc->irqres == 0) {
1768		device_printf(dev, "could not allocate irq\n");
1769		error = ENXIO;
1770		goto failed;
1771	}
1772
1773	ifp->if_softc = sc;
1774	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1775
1776	/*
1777	 * Make the sysctl tree
1778	 */
1779	error = ENOMEM;
1780	if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1781	    SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
1782	    device_get_nameunit(dev), CTLFLAG_RD, 0, "")) == NULL)
1783		goto failed;
1784
1785	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1786	    OID_AUTO, "istats", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, CTL_ISTATS,
1787	    hatm_sysctl, "LU", "internal statistics") == NULL)
1788		goto failed;
1789
1790#ifdef HATM_DEBUG
1791	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1792	    OID_AUTO, "tsr", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1793	    hatm_sysctl_tsr, "S", "transmission status registers") == NULL)
1794		goto failed;
1795
1796	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1797	    OID_AUTO, "tpd", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1798	    hatm_sysctl_tpd, "S", "transmission packet descriptors") == NULL)
1799		goto failed;
1800
1801	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1802	    OID_AUTO, "mbox", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1803	    hatm_sysctl_mbox, "S", "mbox registers") == NULL)
1804		goto failed;
1805
1806	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1807	    OID_AUTO, "cm", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1808	    hatm_sysctl_cm, "S", "connection memory") == NULL)
1809		goto failed;
1810
1811	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1812	    OID_AUTO, "heregs", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1813	    hatm_sysctl_heregs, "S", "card registers") == NULL)
1814		goto failed;
1815
1816	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1817	    OID_AUTO, "lbmem", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1818	    hatm_sysctl_lbmem, "S", "local memory") == NULL)
1819		goto failed;
1820
1821	kenv_getuint(sc, "debug", &sc->debug, HATM_DEBUG, 1);
1822#endif
1823
1824	/*
1825	 * Configure
1826	 */
1827	if ((error = hatm_configure(sc)) != 0)
1828		goto failed;
1829
1830	/*
1831	 * Compute memory parameters
1832	 */
1833	if (sc->rbp_s0.size != 0) {
1834		sc->rbp_s0.mask = (sc->rbp_s0.size - 1) << 3;
1835		sc->rbp_s0.mem.size = sc->rbp_s0.size * 8;
1836		sc->rbp_s0.mem.align = sc->rbp_s0.mem.size;
1837	}
1838	if (sc->rbp_l0.size != 0) {
1839		sc->rbp_l0.mask = (sc->rbp_l0.size - 1) << 3;
1840		sc->rbp_l0.mem.size = sc->rbp_l0.size * 8;
1841		sc->rbp_l0.mem.align = sc->rbp_l0.mem.size;
1842	}
1843	if (sc->rbp_s1.size != 0) {
1844		sc->rbp_s1.mask = (sc->rbp_s1.size - 1) << 3;
1845		sc->rbp_s1.mem.size = sc->rbp_s1.size * 8;
1846		sc->rbp_s1.mem.align = sc->rbp_s1.mem.size;
1847	}
1848	if (sc->rbrq_0.size != 0) {
1849		sc->rbrq_0.mem.size = sc->rbrq_0.size * 8;
1850		sc->rbrq_0.mem.align = sc->rbrq_0.mem.size;
1851	}
1852	if (sc->rbrq_1.size != 0) {
1853		sc->rbrq_1.mem.size = sc->rbrq_1.size * 8;
1854		sc->rbrq_1.mem.align = sc->rbrq_1.mem.size;
1855	}
1856
1857	sc->irq_0.mem.size = sc->irq_0.size * sizeof(uint32_t);
1858	sc->irq_0.mem.align = 4 * 1024;
1859
1860	sc->tbrq.mem.size = sc->tbrq.size * 4;
1861	sc->tbrq.mem.align = 2 * sc->tbrq.mem.size; /* ZZZ */
1862
1863	sc->tpdrq.mem.size = sc->tpdrq.size * 8;
1864	sc->tpdrq.mem.align = sc->tpdrq.mem.size;
1865
1866	sc->hsp_mem.size = sizeof(struct he_hsp);
1867	sc->hsp_mem.align = 1024;
1868
1869	sc->lbufs_size = sc->rbp_l0.size + sc->rbrq_0.size;
1870	sc->tpd_total = sc->tbrq.size + sc->tpdrq.size;
1871	sc->tpds.align = 64;
1872	sc->tpds.size = sc->tpd_total * HE_TPD_SIZE;
1873
1874	hatm_init_rmaps(sc);
1875	hatm_init_smbufs(sc);
1876	if ((error = hatm_init_tpds(sc)) != 0)
1877		goto failed;
1878
1879	/*
1880	 * Allocate memory
1881	 */
1882	if ((error = hatm_alloc_dmamem(sc, "IRQ", &sc->irq_0.mem)) != 0 ||
1883	    (error = hatm_alloc_dmamem(sc, "TBRQ0", &sc->tbrq.mem)) != 0 ||
1884	    (error = hatm_alloc_dmamem(sc, "TPDRQ", &sc->tpdrq.mem)) != 0 ||
1885	    (error = hatm_alloc_dmamem(sc, "HSP", &sc->hsp_mem)) != 0)
1886		goto failed;
1887
1888	if (sc->rbp_s0.mem.size != 0 &&
1889	    (error = hatm_alloc_dmamem(sc, "RBPS0", &sc->rbp_s0.mem)))
1890		goto failed;
1891	if (sc->rbp_l0.mem.size != 0 &&
1892	    (error = hatm_alloc_dmamem(sc, "RBPL0", &sc->rbp_l0.mem)))
1893		goto failed;
1894	if (sc->rbp_s1.mem.size != 0 &&
1895	    (error = hatm_alloc_dmamem(sc, "RBPS1", &sc->rbp_s1.mem)))
1896		goto failed;
1897
1898	if (sc->rbrq_0.mem.size != 0 &&
1899	    (error = hatm_alloc_dmamem(sc, "RBRQ0", &sc->rbrq_0.mem)))
1900		goto failed;
1901	if (sc->rbrq_1.mem.size != 0 &&
1902	    (error = hatm_alloc_dmamem(sc, "RBRQ1", &sc->rbrq_1.mem)))
1903		goto failed;
1904
1905	if ((sc->vcc_zone = uma_zcreate("HE vccs", sizeof(struct hevcc),
1906	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0)) == NULL) {
1907		device_printf(dev, "cannot allocate zone for vccs\n");
1908		goto failed;
1909	}
1910
1911	/*
1912	 * 4.4 Reset the card.
1913	 */
1914	if ((error = hatm_reset(sc)) != 0)
1915		goto failed;
1916
1917	/*
1918	 * Read the prom.
1919	 */
1920	hatm_init_bus_width(sc);
1921	hatm_init_read_eeprom(sc);
1922	hatm_init_endianess(sc);
1923
1924	/*
1925	 * Initialize interface
1926	 */
1927	ifp->if_flags = IFF_SIMPLEX;
1928	ifp->if_ioctl = hatm_ioctl;
1929	ifp->if_start = hatm_start;
1930	ifp->if_watchdog = NULL;
1931	ifp->if_init = hatm_init;
1932
1933	utopia_attach(&sc->utopia, IFP2IFATM(sc->ifp), &sc->media, &sc->mtx,
1934	    &sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1935	    &hatm_utopia_methods);
1936	utopia_init_media(&sc->utopia);
1937
1938	/* these two SUNI routines need the lock */
1939	mtx_lock(&sc->mtx);
1940	/* poll while we are not running */
1941	sc->utopia.flags |= UTP_FL_POLL_CARRIER;
1942	utopia_start(&sc->utopia);
1943	utopia_reset(&sc->utopia);
1944	mtx_unlock(&sc->mtx);
1945
1946	atm_ifattach(ifp);
1947
1948#ifdef ENABLE_BPF
1949	bpfattach(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
1950#endif
1951
1952	error = bus_setup_intr(dev, sc->irqres, sc->mpsafe | INTR_TYPE_NET,
1953	    hatm_intr, &sc->irq_0, &sc->ih);
1954	if (error != 0) {
1955		device_printf(dev, "could not setup interrupt\n");
1956		hatm_detach(dev);
1957		return (error);
1958	}
1959
1960	return (0);
1961
1962  failed:
1963	hatm_destroy(sc);
1964	return (error);
1965}
1966
1967/*
1968 * Start the interface. Assume a state as from attach().
1969 */
1970void
1971hatm_initialize(struct hatm_softc *sc)
1972{
1973	uint32_t v;
1974	u_int cid;
1975	static const u_int layout[2][7] = HE_CONFIG_MEM_LAYOUT;
1976
1977	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING)
1978		return;
1979
1980	hatm_init_bus_width(sc);
1981	hatm_init_endianess(sc);
1982
1983	if_printf(sc->ifp, "%s, Rev. %s, S/N %u, "
1984	    "MAC=%02x:%02x:%02x:%02x:%02x:%02x (%ubit PCI)\n",
1985	    sc->prod_id, sc->rev, IFP2IFATM(sc->ifp)->mib.serial,
1986	    IFP2IFATM(sc->ifp)->mib.esi[0], IFP2IFATM(sc->ifp)->mib.esi[1], IFP2IFATM(sc->ifp)->mib.esi[2],
1987	    IFP2IFATM(sc->ifp)->mib.esi[3], IFP2IFATM(sc->ifp)->mib.esi[4], IFP2IFATM(sc->ifp)->mib.esi[5],
1988	    sc->pci64 ? 64 : 32);
1989
1990	/*
1991	 * 4.8 SDRAM Controller Initialisation
1992	 * 4.9 Initialize RNUM value
1993	 */
1994	if (sc->he622)
1995		WRITE4(sc, HE_REGO_SDRAM_CNTL, HE_REGM_SDRAM_64BIT);
1996	else
1997		WRITE4(sc, HE_REGO_SDRAM_CNTL, 0);
1998	BARRIER_W(sc);
1999
2000	v = READ4(sc, HE_REGO_LB_SWAP);
2001	BARRIER_R(sc);
2002	v |= 0xf << HE_REGS_LBSWAP_RNUM;
2003	WRITE4(sc, HE_REGO_LB_SWAP, v);
2004	BARRIER_W(sc);
2005
2006	hatm_init_irq(sc, &sc->irq_0, 0);
2007	hatm_clear_irq(sc, 1);
2008	hatm_clear_irq(sc, 2);
2009	hatm_clear_irq(sc, 3);
2010
2011	WRITE4(sc, HE_REGO_GRP_1_0_MAP, 0);
2012	WRITE4(sc, HE_REGO_GRP_3_2_MAP, 0);
2013	WRITE4(sc, HE_REGO_GRP_5_4_MAP, 0);
2014	WRITE4(sc, HE_REGO_GRP_7_6_MAP, 0);
2015	BARRIER_W(sc);
2016
2017	/*
2018	 * 4.11 Enable PCI Bus Controller State Machine
2019	 */
2020	v = READ4(sc, HE_REGO_HOST_CNTL);
2021	BARRIER_R(sc);
2022	v |= HE_REGM_HOST_OUTFF_ENB | HE_REGM_HOST_CMDFF_ENB |
2023	    HE_REGM_HOST_QUICK_RD | HE_REGM_HOST_QUICK_WR;
2024	WRITE4(sc, HE_REGO_HOST_CNTL, v);
2025	BARRIER_W(sc);
2026
2027	/*
2028	 * 5.1.1 Generic configuration state
2029	 */
2030	sc->cells_per_row = layout[sc->he622][0];
2031	sc->bytes_per_row = layout[sc->he622][1];
2032	sc->r0_numrows = layout[sc->he622][2];
2033	sc->tx_numrows = layout[sc->he622][3];
2034	sc->r1_numrows = layout[sc->he622][4];
2035	sc->r0_startrow = layout[sc->he622][5];
2036	sc->tx_startrow = sc->r0_startrow + sc->r0_numrows;
2037	sc->r1_startrow = sc->tx_startrow + sc->tx_numrows;
2038	sc->cells_per_lbuf = layout[sc->he622][6];
2039
2040	sc->r0_numbuffs = sc->r0_numrows * (sc->cells_per_row /
2041	    sc->cells_per_lbuf);
2042	sc->r1_numbuffs = sc->r1_numrows * (sc->cells_per_row /
2043	    sc->cells_per_lbuf);
2044	sc->tx_numbuffs = sc->tx_numrows * (sc->cells_per_row /
2045	    sc->cells_per_lbuf);
2046
2047	if (sc->r0_numbuffs > 2560)
2048		sc->r0_numbuffs = 2560;
2049	if (sc->r1_numbuffs > 2560)
2050		sc->r1_numbuffs = 2560;
2051	if (sc->tx_numbuffs > 5120)
2052		sc->tx_numbuffs = 5120;
2053
2054	DBG(sc, ATTACH, ("cells_per_row=%u bytes_per_row=%u r0_numrows=%u "
2055	    "tx_numrows=%u r1_numrows=%u r0_startrow=%u tx_startrow=%u "
2056	    "r1_startrow=%u cells_per_lbuf=%u\nr0_numbuffs=%u r1_numbuffs=%u "
2057	    "tx_numbuffs=%u\n", sc->cells_per_row, sc->bytes_per_row,
2058	    sc->r0_numrows, sc->tx_numrows, sc->r1_numrows, sc->r0_startrow,
2059	    sc->tx_startrow, sc->r1_startrow, sc->cells_per_lbuf,
2060	    sc->r0_numbuffs, sc->r1_numbuffs, sc->tx_numbuffs));
2061
2062	/*
2063	 * 5.1.2 Configure Hardware dependend registers
2064	 */
2065	if (sc->he622) {
2066		WRITE4(sc, HE_REGO_LBARB,
2067		    (0x2 << HE_REGS_LBARB_SLICE) |
2068		    (0xf << HE_REGS_LBARB_RNUM) |
2069		    (0x3 << HE_REGS_LBARB_THPRI) |
2070		    (0x3 << HE_REGS_LBARB_RHPRI) |
2071		    (0x2 << HE_REGS_LBARB_TLPRI) |
2072		    (0x1 << HE_REGS_LBARB_RLPRI) |
2073		    (0x28 << HE_REGS_LBARB_BUS_MULT) |
2074		    (0x50 << HE_REGS_LBARB_NET_PREF));
2075		BARRIER_W(sc);
2076		WRITE4(sc, HE_REGO_SDRAMCON,
2077		    /* HW bug: don't use banking */
2078		    /* HE_REGM_SDRAMCON_BANK | */
2079		    HE_REGM_SDRAMCON_WIDE |
2080		    (0x384 << HE_REGS_SDRAMCON_REF));
2081		BARRIER_W(sc);
2082		WRITE4(sc, HE_REGO_RCMCONFIG,
2083		    (0x1 << HE_REGS_RCMCONFIG_BANK_WAIT) |
2084		    (0x1 << HE_REGS_RCMCONFIG_RW_WAIT) |
2085		    (0x0 << HE_REGS_RCMCONFIG_TYPE));
2086		WRITE4(sc, HE_REGO_TCMCONFIG,
2087		    (0x2 << HE_REGS_TCMCONFIG_BANK_WAIT) |
2088		    (0x1 << HE_REGS_TCMCONFIG_RW_WAIT) |
2089		    (0x0 << HE_REGS_TCMCONFIG_TYPE));
2090	} else {
2091		WRITE4(sc, HE_REGO_LBARB,
2092		    (0x2 << HE_REGS_LBARB_SLICE) |
2093		    (0xf << HE_REGS_LBARB_RNUM) |
2094		    (0x3 << HE_REGS_LBARB_THPRI) |
2095		    (0x3 << HE_REGS_LBARB_RHPRI) |
2096		    (0x2 << HE_REGS_LBARB_TLPRI) |
2097		    (0x1 << HE_REGS_LBARB_RLPRI) |
2098		    (0x46 << HE_REGS_LBARB_BUS_MULT) |
2099		    (0x8C << HE_REGS_LBARB_NET_PREF));
2100		BARRIER_W(sc);
2101		WRITE4(sc, HE_REGO_SDRAMCON,
2102		    /* HW bug: don't use banking */
2103		    /* HE_REGM_SDRAMCON_BANK | */
2104		    (0x150 << HE_REGS_SDRAMCON_REF));
2105		BARRIER_W(sc);
2106		WRITE4(sc, HE_REGO_RCMCONFIG,
2107		    (0x0 << HE_REGS_RCMCONFIG_BANK_WAIT) |
2108		    (0x1 << HE_REGS_RCMCONFIG_RW_WAIT) |
2109		    (0x0 << HE_REGS_RCMCONFIG_TYPE));
2110		WRITE4(sc, HE_REGO_TCMCONFIG,
2111		    (0x1 << HE_REGS_TCMCONFIG_BANK_WAIT) |
2112		    (0x1 << HE_REGS_TCMCONFIG_RW_WAIT) |
2113		    (0x0 << HE_REGS_TCMCONFIG_TYPE));
2114	}
2115	WRITE4(sc, HE_REGO_LBCONFIG, (sc->cells_per_lbuf * 48));
2116
2117	WRITE4(sc, HE_REGO_RLBC_H, 0);
2118	WRITE4(sc, HE_REGO_RLBC_T, 0);
2119	WRITE4(sc, HE_REGO_RLBC_H2, 0);
2120
2121	WRITE4(sc, HE_REGO_RXTHRSH, 512);
2122	WRITE4(sc, HE_REGO_LITHRSH, 256);
2123
2124	WRITE4(sc, HE_REGO_RLBF0_C, sc->r0_numbuffs);
2125	WRITE4(sc, HE_REGO_RLBF1_C, sc->r1_numbuffs);
2126
2127	if (sc->he622) {
2128		WRITE4(sc, HE_REGO_RCCONFIG,
2129		    (8 << HE_REGS_RCCONFIG_UTDELAY) |
2130		    (IFP2IFATM(sc->ifp)->mib.vpi_bits << HE_REGS_RCCONFIG_VP) |
2131		    (IFP2IFATM(sc->ifp)->mib.vci_bits << HE_REGS_RCCONFIG_VC));
2132		WRITE4(sc, HE_REGO_TXCONFIG,
2133		    (32 << HE_REGS_TXCONFIG_THRESH) |
2134		    (IFP2IFATM(sc->ifp)->mib.vci_bits << HE_REGS_TXCONFIG_VCI_MASK) |
2135		    (sc->tx_numbuffs << HE_REGS_TXCONFIG_LBFREE));
2136	} else {
2137		WRITE4(sc, HE_REGO_RCCONFIG,
2138		    (0 << HE_REGS_RCCONFIG_UTDELAY) |
2139		    HE_REGM_RCCONFIG_UT_MODE |
2140		    (IFP2IFATM(sc->ifp)->mib.vpi_bits << HE_REGS_RCCONFIG_VP) |
2141		    (IFP2IFATM(sc->ifp)->mib.vci_bits << HE_REGS_RCCONFIG_VC));
2142		WRITE4(sc, HE_REGO_TXCONFIG,
2143		    (32 << HE_REGS_TXCONFIG_THRESH) |
2144		    HE_REGM_TXCONFIG_UTMODE |
2145		    (IFP2IFATM(sc->ifp)->mib.vci_bits << HE_REGS_TXCONFIG_VCI_MASK) |
2146		    (sc->tx_numbuffs << HE_REGS_TXCONFIG_LBFREE));
2147	}
2148
2149	WRITE4(sc, HE_REGO_TXAAL5_PROTO, 0);
2150
2151	if (sc->rbp_s1.size != 0) {
2152		WRITE4(sc, HE_REGO_RHCONFIG,
2153		    HE_REGM_RHCONFIG_PHYENB |
2154		    ((sc->he622 ? 0x41 : 0x31) << HE_REGS_RHCONFIG_PTMR_PRE) |
2155		    (1 << HE_REGS_RHCONFIG_OAM_GID));
2156	} else {
2157		WRITE4(sc, HE_REGO_RHCONFIG,
2158		    HE_REGM_RHCONFIG_PHYENB |
2159		    ((sc->he622 ? 0x41 : 0x31) << HE_REGS_RHCONFIG_PTMR_PRE) |
2160		    (0 << HE_REGS_RHCONFIG_OAM_GID));
2161	}
2162	BARRIER_W(sc);
2163
2164	hatm_init_cm(sc);
2165
2166	hatm_init_rx_buffer_pool(sc, 0, sc->r0_startrow, sc->r0_numbuffs);
2167	hatm_init_rx_buffer_pool(sc, 1, sc->r1_startrow, sc->r1_numbuffs);
2168	hatm_init_tx_buffer_pool(sc, sc->tx_startrow, sc->tx_numbuffs);
2169
2170	hatm_init_imed_queues(sc);
2171
2172	/*
2173	 * 5.1.6 Application tunable Parameters
2174	 */
2175	WRITE4(sc, HE_REGO_MCC, 0);
2176	WRITE4(sc, HE_REGO_OEC, 0);
2177	WRITE4(sc, HE_REGO_DCC, 0);
2178	WRITE4(sc, HE_REGO_CEC, 0);
2179
2180	hatm_init_cs_block(sc);
2181	hatm_init_cs_block_cm(sc);
2182
2183	hatm_init_rpool(sc, &sc->rbp_s0, 0, 0);
2184	hatm_init_rpool(sc, &sc->rbp_l0, 0, 1);
2185	hatm_init_rpool(sc, &sc->rbp_s1, 1, 0);
2186	hatm_clear_rpool(sc, 1, 1);
2187	hatm_clear_rpool(sc, 2, 0);
2188	hatm_clear_rpool(sc, 2, 1);
2189	hatm_clear_rpool(sc, 3, 0);
2190	hatm_clear_rpool(sc, 3, 1);
2191	hatm_clear_rpool(sc, 4, 0);
2192	hatm_clear_rpool(sc, 4, 1);
2193	hatm_clear_rpool(sc, 5, 0);
2194	hatm_clear_rpool(sc, 5, 1);
2195	hatm_clear_rpool(sc, 6, 0);
2196	hatm_clear_rpool(sc, 6, 1);
2197	hatm_clear_rpool(sc, 7, 0);
2198	hatm_clear_rpool(sc, 7, 1);
2199	hatm_init_rbrq(sc, &sc->rbrq_0, 0);
2200	hatm_init_rbrq(sc, &sc->rbrq_1, 1);
2201	hatm_clear_rbrq(sc, 2);
2202	hatm_clear_rbrq(sc, 3);
2203	hatm_clear_rbrq(sc, 4);
2204	hatm_clear_rbrq(sc, 5);
2205	hatm_clear_rbrq(sc, 6);
2206	hatm_clear_rbrq(sc, 7);
2207
2208	sc->lbufs_next = 0;
2209	bzero(sc->lbufs, sizeof(sc->lbufs[0]) * sc->lbufs_size);
2210
2211	hatm_init_tbrq(sc, &sc->tbrq, 0);
2212	hatm_clear_tbrq(sc, 1);
2213	hatm_clear_tbrq(sc, 2);
2214	hatm_clear_tbrq(sc, 3);
2215	hatm_clear_tbrq(sc, 4);
2216	hatm_clear_tbrq(sc, 5);
2217	hatm_clear_tbrq(sc, 6);
2218	hatm_clear_tbrq(sc, 7);
2219
2220	hatm_init_tpdrq(sc);
2221
2222	WRITE4(sc, HE_REGO_UBUFF_BA, (sc->he622 ? 0x104780 : 0x800));
2223
2224	/*
2225	 * Initialize HSP
2226	 */
2227	bzero(sc->hsp_mem.base, sc->hsp_mem.size);
2228	sc->hsp = sc->hsp_mem.base;
2229	WRITE4(sc, HE_REGO_HSP_BA, sc->hsp_mem.paddr);
2230
2231	/*
2232	 * 5.1.12 Enable transmit and receive
2233	 * Enable bus master and interrupts
2234	 */
2235	v = READ_MBOX4(sc, HE_REGO_CS_ERCTL0);
2236	v |= 0x18000000;
2237	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL0, v);
2238
2239	v = READ4(sc, HE_REGO_RCCONFIG);
2240	v |= HE_REGM_RCCONFIG_RXENB;
2241	WRITE4(sc, HE_REGO_RCCONFIG, v);
2242
2243	v = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
2244	v |= HE_PCIM_CTL0_INIT_ENB | HE_PCIM_CTL0_INT_PROC_ENB;
2245	pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v, 4);
2246
2247	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
2248	sc->ifp->if_baudrate = 53 * 8 * IFP2IFATM(sc->ifp)->mib.pcr;
2249
2250	sc->utopia.flags &= ~UTP_FL_POLL_CARRIER;
2251
2252	/* reopen vccs */
2253	for (cid = 0; cid < HE_MAX_VCCS; cid++)
2254		if (sc->vccs[cid] != NULL)
2255			hatm_load_vc(sc, cid, 1);
2256
2257	ATMEV_SEND_IFSTATE_CHANGED(IFP2IFATM(sc->ifp),
2258	    sc->utopia.carrier == UTP_CARR_OK);
2259}
2260
2261/*
2262 * This functions stops the card and frees all resources allocated after
2263 * the attach. Must have the global lock.
2264 */
2265void
2266hatm_stop(struct hatm_softc *sc)
2267{
2268	uint32_t v;
2269	u_int i, p, cid;
2270	struct mbuf_chunk_hdr *ch;
2271	struct mbuf_page *pg;
2272
2273	mtx_assert(&sc->mtx, MA_OWNED);
2274
2275	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING))
2276		return;
2277	sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2278
2279	ATMEV_SEND_IFSTATE_CHANGED(IFP2IFATM(sc->ifp),
2280	    sc->utopia.carrier == UTP_CARR_OK);
2281
2282	sc->utopia.flags |= UTP_FL_POLL_CARRIER;
2283
2284	/*
2285	 * Stop and reset the hardware so that everything remains
2286	 * stable.
2287	 */
2288	v = READ_MBOX4(sc, HE_REGO_CS_ERCTL0);
2289	v &= ~0x18000000;
2290	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL0, v);
2291
2292	v = READ4(sc, HE_REGO_RCCONFIG);
2293	v &= ~HE_REGM_RCCONFIG_RXENB;
2294	WRITE4(sc, HE_REGO_RCCONFIG, v);
2295
2296	WRITE4(sc, HE_REGO_RHCONFIG, (0x2 << HE_REGS_RHCONFIG_PTMR_PRE));
2297	BARRIER_W(sc);
2298
2299	v = READ4(sc, HE_REGO_HOST_CNTL);
2300	BARRIER_R(sc);
2301	v &= ~(HE_REGM_HOST_OUTFF_ENB | HE_REGM_HOST_CMDFF_ENB);
2302	WRITE4(sc, HE_REGO_HOST_CNTL, v);
2303	BARRIER_W(sc);
2304
2305	/*
2306	 * Disable bust master and interrupts
2307	 */
2308	v = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
2309	v &= ~(HE_PCIM_CTL0_INIT_ENB | HE_PCIM_CTL0_INT_PROC_ENB);
2310	pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v, 4);
2311
2312	(void)hatm_reset(sc);
2313
2314	/*
2315	 * Card resets the SUNI when resetted, so re-initialize it
2316	 */
2317	utopia_reset(&sc->utopia);
2318
2319	/*
2320	 * Give any waiters on closing a VCC a chance. They will stop
2321	 * to wait if they see that IFF_DRV_RUNNING disappeared.
2322	 */
2323	cv_broadcast(&sc->vcc_cv);
2324	cv_broadcast(&sc->cv_rcclose);
2325
2326	/*
2327	 * Now free all resources.
2328	 */
2329
2330	/*
2331	 * Free the large mbufs that are given to the card.
2332	 */
2333	for (i = 0 ; i < sc->lbufs_size; i++) {
2334		if (sc->lbufs[i] != NULL) {
2335			bus_dmamap_unload(sc->mbuf_tag, sc->rmaps[i]);
2336			m_freem(sc->lbufs[i]);
2337			sc->lbufs[i] = NULL;
2338		}
2339	}
2340
2341	/*
2342	 * Free small buffers
2343	 */
2344	for (p = 0; p < sc->mbuf_npages; p++) {
2345		pg = sc->mbuf_pages[p];
2346		for (i = 0; i < pg->hdr.nchunks; i++) {
2347			ch = (struct mbuf_chunk_hdr *) ((char *)pg +
2348			    i * pg->hdr.chunksize + pg->hdr.hdroff);
2349			if (ch->flags & MBUF_CARD) {
2350				ch->flags &= ~MBUF_CARD;
2351				ch->flags |= MBUF_USED;
2352				hatm_ext_free(&sc->mbuf_list[pg->hdr.pool],
2353				    (struct mbufx_free *)((u_char *)ch -
2354				    pg->hdr.hdroff));
2355			}
2356		}
2357	}
2358
2359	hatm_stop_tpds(sc);
2360
2361	/*
2362	 * Free all partial reassembled PDUs on any VCC.
2363	 */
2364	for (cid = 0; cid < HE_MAX_VCCS; cid++) {
2365		if (sc->vccs[cid] != NULL) {
2366			if (sc->vccs[cid]->chain != NULL) {
2367				m_freem(sc->vccs[cid]->chain);
2368				sc->vccs[cid]->chain = NULL;
2369				sc->vccs[cid]->last = NULL;
2370			}
2371			if (!(sc->vccs[cid]->vflags & (HE_VCC_RX_OPEN |
2372			    HE_VCC_TX_OPEN))) {
2373				hatm_tx_vcc_closed(sc, cid);
2374				uma_zfree(sc->vcc_zone, sc->vccs[cid]);
2375				sc->vccs[cid] = NULL;
2376				sc->open_vccs--;
2377			} else {
2378				sc->vccs[cid]->vflags = 0;
2379				sc->vccs[cid]->ntpds = 0;
2380			}
2381		}
2382	}
2383
2384	if (sc->rbp_s0.size != 0)
2385		bzero(sc->rbp_s0.mem.base, sc->rbp_s0.mem.size);
2386	if (sc->rbp_l0.size != 0)
2387		bzero(sc->rbp_l0.mem.base, sc->rbp_l0.mem.size);
2388	if (sc->rbp_s1.size != 0)
2389		bzero(sc->rbp_s1.mem.base, sc->rbp_s1.mem.size);
2390	if (sc->rbrq_0.size != 0)
2391		bzero(sc->rbrq_0.mem.base, sc->rbrq_0.mem.size);
2392	if (sc->rbrq_1.size != 0)
2393		bzero(sc->rbrq_1.mem.base, sc->rbrq_1.mem.size);
2394
2395	bzero(sc->tbrq.mem.base, sc->tbrq.mem.size);
2396	bzero(sc->tpdrq.mem.base, sc->tpdrq.mem.size);
2397	bzero(sc->hsp_mem.base, sc->hsp_mem.size);
2398}
2399
2400/************************************************************
2401 *
2402 * Driver infrastructure
2403 */
2404devclass_t hatm_devclass;
2405
2406static device_method_t hatm_methods[] = {
2407	DEVMETHOD(device_probe,		hatm_probe),
2408	DEVMETHOD(device_attach,	hatm_attach),
2409	DEVMETHOD(device_detach,	hatm_detach),
2410	{0,0}
2411};
2412static driver_t hatm_driver = {
2413	"hatm",
2414	hatm_methods,
2415	sizeof(struct hatm_softc),
2416};
2417DRIVER_MODULE(hatm, pci, hatm_driver, hatm_devclass, NULL, 0);
2418