if_hatm.c revision 119280
1/*
2 * Copyright (c) 2001-2003
3 *	Fraunhofer Institute for Open Communication Systems (FhG Fokus).
4 * 	All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * Author: Hartmut Brandt <harti@freebsd.org>
28 *
29 * ForeHE driver.
30 *
31 * This file contains the module and driver infrastructure stuff as well
32 * as a couple of utility functions and the entire initialisation.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/dev/hatm/if_hatm.c 119280 2003-08-22 06:00:27Z imp $");
37
38#include "opt_inet.h"
39#include "opt_natm.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/bus.h>
47#include <sys/errno.h>
48#include <sys/conf.h>
49#include <sys/module.h>
50#include <sys/queue.h>
51#include <sys/syslog.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/condvar.h>
55#include <sys/sysctl.h>
56#include <vm/uma.h>
57
58#include <sys/sockio.h>
59#include <sys/mbuf.h>
60#include <sys/socket.h>
61
62#include <net/if.h>
63#include <net/if_media.h>
64#include <net/if_atm.h>
65#include <net/route.h>
66#ifdef ENABLE_BPF
67#include <net/bpf.h>
68#endif
69#include <netinet/in.h>
70#include <netinet/if_atm.h>
71
72#include <machine/bus.h>
73#include <machine/resource.h>
74#include <sys/bus.h>
75#include <sys/rman.h>
76#include <dev/pci/pcireg.h>
77#include <dev/pci/pcivar.h>
78
79#include <dev/utopia/utopia.h>
80#include <dev/hatm/if_hatmconf.h>
81#include <dev/hatm/if_hatmreg.h>
82#include <dev/hatm/if_hatmvar.h>
83
84static const struct {
85	uint16_t	vid;
86	uint16_t	did;
87	const char	*name;
88} hatm_devs[] = {
89	{ 0x1127, 0x400,
90	  "FORE HE" },
91	{ 0, 0, NULL }
92};
93
94SYSCTL_DECL(_hw_atm);
95
96MODULE_DEPEND(hatm, utopia, 1, 1, 1);
97MODULE_DEPEND(hatm, pci, 1, 1, 1);
98MODULE_DEPEND(hatm, atm, 1, 1, 1);
99
100#define EEPROM_DELAY	400 /* microseconds */
101
102/* Read from EEPROM 0000 0011b */
103static const uint32_t readtab[] = {
104	HE_REGM_HOST_PROM_SEL | HE_REGM_HOST_PROM_CLOCK,
105	0,
106	HE_REGM_HOST_PROM_CLOCK,
107	0,				/* 0 */
108	HE_REGM_HOST_PROM_CLOCK,
109	0,				/* 0 */
110	HE_REGM_HOST_PROM_CLOCK,
111	0,				/* 0 */
112	HE_REGM_HOST_PROM_CLOCK,
113	0,				/* 0 */
114	HE_REGM_HOST_PROM_CLOCK,
115	0,				/* 0 */
116	HE_REGM_HOST_PROM_CLOCK,
117	HE_REGM_HOST_PROM_DATA_IN,	/* 0 */
118	HE_REGM_HOST_PROM_CLOCK | HE_REGM_HOST_PROM_DATA_IN,
119	HE_REGM_HOST_PROM_DATA_IN,	/* 1 */
120	HE_REGM_HOST_PROM_CLOCK | HE_REGM_HOST_PROM_DATA_IN,
121	HE_REGM_HOST_PROM_DATA_IN,	/* 1 */
122};
123static const uint32_t clocktab[] = {
124	0, HE_REGM_HOST_PROM_CLOCK,
125	0, HE_REGM_HOST_PROM_CLOCK,
126	0, HE_REGM_HOST_PROM_CLOCK,
127	0, HE_REGM_HOST_PROM_CLOCK,
128	0, HE_REGM_HOST_PROM_CLOCK,
129	0, HE_REGM_HOST_PROM_CLOCK,
130	0, HE_REGM_HOST_PROM_CLOCK,
131	0, HE_REGM_HOST_PROM_CLOCK,
132	0
133};
134
135/*
136 * Convert cell rate to ATM Forum format
137 */
138u_int
139hatm_cps2atmf(uint32_t pcr)
140{
141	u_int e;
142
143	if (pcr == 0)
144		return (0);
145	pcr <<= 9;
146	e = 0;
147	while (pcr > (1024 - 1)) {
148		e++;
149		pcr >>= 1;
150	}
151	return ((1 << 14) | (e << 9) | (pcr & 0x1ff));
152}
153u_int
154hatm_atmf2cps(uint32_t fcr)
155{
156	fcr &= 0x7fff;
157
158	return ((1 << ((fcr >> 9) & 0x1f)) * (512 + (fcr & 0x1ff)) / 512
159	  * (fcr >> 14));
160}
161
162/************************************************************
163 *
164 * Initialisation
165 */
166/*
167 * Probe for a HE controller
168 */
169static int
170hatm_probe(device_t dev)
171{
172	int i;
173
174	for (i = 0; hatm_devs[i].name; i++)
175		if (pci_get_vendor(dev) == hatm_devs[i].vid &&
176		    pci_get_device(dev) == hatm_devs[i].did) {
177			device_set_desc(dev, hatm_devs[i].name);
178			return (0);
179		}
180	return (ENXIO);
181}
182
183/*
184 * Allocate and map DMA-able memory. We support only contiguous mappings.
185 */
186static void
187dmaload_helper(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
188{
189	if (error)
190		return;
191	KASSERT(nsegs == 1, ("too many segments for DMA: %d", nsegs));
192	KASSERT(segs[0].ds_addr <= 0xffffffffUL,
193	    ("phys addr too large %lx", (u_long)segs[0].ds_addr));
194
195	*(bus_addr_t *)arg = segs[0].ds_addr;
196}
197static int
198hatm_alloc_dmamem(struct hatm_softc *sc, const char *what, struct dmamem *mem)
199{
200	int error;
201
202	mem->base = NULL;
203
204	/*
205	 * Alignement does not work in the bus_dmamem_alloc function below
206	 * on FreeBSD. malloc seems to align objects at least to the object
207	 * size so increase the size to the alignment if the size is lesser
208	 * than the alignemnt.
209	 * XXX on sparc64 this is (probably) not needed.
210	 */
211	if (mem->size < mem->align)
212		mem->size = mem->align;
213
214	error = bus_dma_tag_create(sc->parent_tag, mem->align, 0,
215	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
216	    NULL, NULL, mem->size, 1,
217	    BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
218	    NULL, NULL, &mem->tag);
219	if (error) {
220		if_printf(&sc->ifatm.ifnet, "DMA tag create (%s)\n", what);
221		return (error);
222	}
223
224	error = bus_dmamem_alloc(mem->tag, &mem->base, 0, &mem->map);
225	if (error) {
226		if_printf(&sc->ifatm.ifnet, "DMA mem alloc (%s): %d\n",
227		    what, error);
228		bus_dma_tag_destroy(mem->tag);
229		mem->base = NULL;
230		return (error);
231	}
232
233	error = bus_dmamap_load(mem->tag, mem->map, mem->base, mem->size,
234	    dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
235	if (error) {
236		if_printf(&sc->ifatm.ifnet, "DMA map load (%s): %d\n",
237		    what, error);
238		bus_dmamem_free(mem->tag, mem->base, mem->map);
239		bus_dma_tag_destroy(mem->tag);
240		mem->base = NULL;
241		return (error);
242	}
243
244	DBG(sc, DMA, ("%s S/A/V/P 0x%x 0x%x %p 0x%lx", what, mem->size,
245	    mem->align, mem->base, (u_long)mem->paddr));
246
247	return (0);
248}
249
250/*
251 * Destroy all the resources of an DMA-able memory region.
252 */
253static void
254hatm_destroy_dmamem(struct dmamem *mem)
255{
256	if (mem->base != NULL) {
257		bus_dmamap_unload(mem->tag, mem->map);
258		bus_dmamem_free(mem->tag, mem->base, mem->map);
259		(void)bus_dma_tag_destroy(mem->tag);
260		mem->base = NULL;
261	}
262}
263
264/*
265 * Initialize/destroy DMA maps for the large pool 0
266 */
267static void
268hatm_destroy_rmaps(struct hatm_softc *sc)
269{
270	u_int b;
271
272	DBG(sc, ATTACH, ("destroying rmaps and lbuf pointers..."));
273	if (sc->rmaps != NULL) {
274		for (b = 0; b < sc->lbufs_size; b++)
275			bus_dmamap_destroy(sc->mbuf_tag, sc->rmaps[b]);
276		free(sc->rmaps, M_DEVBUF);
277	}
278	if (sc->lbufs != NULL)
279		free(sc->lbufs, M_DEVBUF);
280}
281
282static void
283hatm_init_rmaps(struct hatm_softc *sc)
284{
285	u_int b;
286	int err;
287
288	DBG(sc, ATTACH, ("allocating rmaps and lbuf pointers..."));
289	sc->lbufs = malloc(sizeof(sc->lbufs[0]) * sc->lbufs_size,
290	    M_DEVBUF, M_ZERO | M_WAITOK);
291
292	/* allocate and create the DMA maps for the large pool */
293	sc->rmaps = malloc(sizeof(sc->rmaps[0]) * sc->lbufs_size,
294	    M_DEVBUF, M_WAITOK);
295	for (b = 0; b < sc->lbufs_size; b++) {
296		err = bus_dmamap_create(sc->mbuf_tag, 0, &sc->rmaps[b]);
297		if (err != 0)
298			panic("bus_dmamap_create: %d\n", err);
299	}
300}
301
302/*
303 * Initialize and destroy small mbuf page pointers and pages
304 */
305static void
306hatm_destroy_smbufs(struct hatm_softc *sc)
307{
308	u_int i, b;
309	struct mbuf_page *pg;
310
311	if (sc->mbuf_pages != NULL) {
312		for (i = 0; i < sc->mbuf_npages; i++) {
313			pg = sc->mbuf_pages[i];
314			for (b = 0; b < pg->hdr.nchunks; b++) {
315				if (MBUF_TST_BIT(pg->hdr.card, b))
316					if_printf(&sc->ifatm.ifnet,
317					    "%s -- mbuf page=%u card buf %u\n",
318					    __func__, i, b);
319				if (MBUF_TST_BIT(pg->hdr.used, b))
320					if_printf(&sc->ifatm.ifnet,
321					    "%s -- mbuf page=%u used buf %u\n",
322					    __func__, i, b);
323			}
324			bus_dmamap_unload(sc->mbuf_tag, pg->hdr.map);
325			bus_dmamap_destroy(sc->mbuf_tag, pg->hdr.map);
326			free(pg, M_DEVBUF);
327		}
328		free(sc->mbuf_pages, M_DEVBUF);
329	}
330}
331
332static void
333hatm_init_smbufs(struct hatm_softc *sc)
334{
335	sc->mbuf_pages = malloc(sizeof(sc->mbuf_pages[0]) *
336	    HE_CONFIG_MAX_MBUF_PAGES, M_DEVBUF, M_WAITOK);
337	sc->mbuf_npages = 0;
338}
339
340/*
341 * Initialize/destroy TPDs. This is called from attach/detach.
342 */
343static void
344hatm_destroy_tpds(struct hatm_softc *sc)
345{
346	struct tpd *t;
347
348	if (sc->tpds.base == NULL)
349		return;
350
351	DBG(sc, ATTACH, ("releasing TPDs ..."));
352	if (sc->tpd_nfree != sc->tpd_total)
353		if_printf(&sc->ifatm.ifnet, "%u tpds still in use from %u\n",
354		    sc->tpd_total - sc->tpd_nfree, sc->tpd_total);
355	while ((t = SLIST_FIRST(&sc->tpd_free)) != NULL) {
356		SLIST_REMOVE_HEAD(&sc->tpd_free, link);
357		bus_dmamap_destroy(sc->tx_tag, t->map);
358	}
359	hatm_destroy_dmamem(&sc->tpds);
360	free(sc->tpd_used, M_DEVBUF);
361	DBG(sc, ATTACH, ("... done"));
362}
363static int
364hatm_init_tpds(struct hatm_softc *sc)
365{
366	int error;
367	u_int i;
368	struct tpd *t;
369
370	DBG(sc, ATTACH, ("allocating %u TPDs and maps ...", sc->tpd_total));
371	error = hatm_alloc_dmamem(sc, "TPD memory", &sc->tpds);
372	if (error != 0) {
373		DBG(sc, ATTACH, ("... dmamem error=%d", error));
374		return (error);
375	}
376
377	/* put all the TPDs on the free list and allocate DMA maps */
378	for (i = 0; i < sc->tpd_total; i++) {
379		t = TPD_ADDR(sc, i);
380		t->no = i;
381		t->mbuf = NULL;
382		error = bus_dmamap_create(sc->tx_tag, 0, &t->map);
383		if (error != 0) {
384			DBG(sc, ATTACH, ("... dmamap error=%d", error));
385			while ((t = SLIST_FIRST(&sc->tpd_free)) != NULL) {
386				SLIST_REMOVE_HEAD(&sc->tpd_free, link);
387				bus_dmamap_destroy(sc->tx_tag, t->map);
388			}
389			hatm_destroy_dmamem(&sc->tpds);
390			return (error);
391		}
392
393		SLIST_INSERT_HEAD(&sc->tpd_free, t, link);
394	}
395
396	/* allocate and zero bitmap */
397	sc->tpd_used = malloc(sizeof(uint8_t) * (sc->tpd_total + 7) / 8,
398	    M_DEVBUF, M_ZERO | M_WAITOK);
399	sc->tpd_nfree = sc->tpd_total;
400
401	DBG(sc, ATTACH, ("... done"));
402
403	return (0);
404}
405
406/*
407 * Free all the TPDs that where given to the card.
408 * An mbuf chain may be attached to a TPD - free it also and
409 * unload its associated DMA map.
410 */
411static void
412hatm_stop_tpds(struct hatm_softc *sc)
413{
414	u_int i;
415	struct tpd *t;
416
417	DBG(sc, ATTACH, ("free TPDs ..."));
418	for (i = 0; i < sc->tpd_total; i++) {
419		if (TPD_TST_USED(sc, i)) {
420			t = TPD_ADDR(sc, i);
421			if (t->mbuf) {
422				m_freem(t->mbuf);
423				t->mbuf = NULL;
424				bus_dmamap_unload(sc->tx_tag, t->map);
425			}
426			TPD_CLR_USED(sc, i);
427			SLIST_INSERT_HEAD(&sc->tpd_free, t, link);
428			sc->tpd_nfree++;
429		}
430	}
431}
432
433/*
434 * This frees ALL resources of this interface and leaves the structure
435 * in an indeterminate state. This is called just before detaching or
436 * on a failed attach. No lock should be held.
437 */
438static void
439hatm_destroy(struct hatm_softc *sc)
440{
441	u_int cid;
442
443	bus_teardown_intr(sc->dev, sc->irqres, sc->ih);
444
445	hatm_destroy_rmaps(sc);
446	hatm_destroy_smbufs(sc);
447	hatm_destroy_tpds(sc);
448
449	if (sc->vcc_zone != NULL) {
450		for (cid = 0; cid < HE_MAX_VCCS; cid++)
451			if (sc->vccs[cid] != NULL)
452				uma_zfree(sc->vcc_zone, sc->vccs[cid]);
453		uma_zdestroy(sc->vcc_zone);
454	}
455
456	/*
457	 * Release all memory allocated to the various queues and
458	 * Status pages. These have there own flag which shows whether
459	 * they are really allocated.
460	 */
461	hatm_destroy_dmamem(&sc->irq_0.mem);
462	hatm_destroy_dmamem(&sc->rbp_s0.mem);
463	hatm_destroy_dmamem(&sc->rbp_l0.mem);
464	hatm_destroy_dmamem(&sc->rbp_s1.mem);
465	hatm_destroy_dmamem(&sc->rbrq_0.mem);
466	hatm_destroy_dmamem(&sc->rbrq_1.mem);
467	hatm_destroy_dmamem(&sc->tbrq.mem);
468	hatm_destroy_dmamem(&sc->tpdrq.mem);
469	hatm_destroy_dmamem(&sc->hsp_mem);
470
471	if (sc->irqres != NULL)
472		bus_release_resource(sc->dev, SYS_RES_IRQ,
473		    sc->irqid, sc->irqres);
474
475	if (sc->tx_tag != NULL)
476		if (bus_dma_tag_destroy(sc->tx_tag))
477			if_printf(&sc->ifatm.ifnet, "mbuf DMA tag busy\n");
478
479	if (sc->mbuf_tag != NULL)
480		if (bus_dma_tag_destroy(sc->mbuf_tag))
481			if_printf(&sc->ifatm.ifnet, "mbuf DMA tag busy\n");
482
483	if (sc->parent_tag != NULL)
484		if (bus_dma_tag_destroy(sc->parent_tag))
485			if_printf(&sc->ifatm.ifnet, "parent DMA tag busy\n");
486
487	if (sc->memres != NULL)
488		bus_release_resource(sc->dev, SYS_RES_MEMORY,
489		    sc->memid, sc->memres);
490
491	sysctl_ctx_free(&sc->sysctl_ctx);
492
493	cv_destroy(&sc->cv_rcclose);
494	cv_destroy(&sc->vcc_cv);
495	mtx_destroy(&sc->mbuf0_mtx);
496	mtx_destroy(&sc->mbuf1_mtx);
497	mtx_destroy(&sc->mtx);
498}
499
500/*
501 * 4.4 Card reset
502 */
503static int
504hatm_reset(struct hatm_softc *sc)
505{
506	u_int v, count;
507
508	WRITE4(sc, HE_REGO_RESET_CNTL, 0x00);
509	BARRIER_W(sc);
510	WRITE4(sc, HE_REGO_RESET_CNTL, 0xff);
511	BARRIER_RW(sc);
512	count = 0;
513	while (((v = READ4(sc, HE_REGO_RESET_CNTL)) & HE_REGM_RESET_STATE) == 0) {
514		BARRIER_R(sc);
515		if (++count == 100) {
516			if_printf(&sc->ifatm.ifnet, "reset failed\n");
517			return (ENXIO);
518		}
519		DELAY(1000);
520	}
521	return (0);
522}
523
524/*
525 * 4.5 Set Bus Width
526 */
527static void
528hatm_init_bus_width(struct hatm_softc *sc)
529{
530	uint32_t v, v1;
531
532	v = READ4(sc, HE_REGO_HOST_CNTL);
533	BARRIER_R(sc);
534	if (v & HE_REGM_HOST_BUS64) {
535		sc->pci64 = 1;
536		v1 = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
537		v1 |= HE_PCIM_CTL0_64BIT;
538		pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v1, 4);
539
540		v |= HE_REGM_HOST_DESC_RD64
541		    | HE_REGM_HOST_DATA_RD64
542		    | HE_REGM_HOST_DATA_WR64;
543		WRITE4(sc, HE_REGO_HOST_CNTL, v);
544		BARRIER_W(sc);
545	} else {
546		sc->pci64 = 0;
547		v = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
548		v &= ~HE_PCIM_CTL0_64BIT;
549		pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v, 4);
550	}
551}
552
553/*
554 * 4.6 Set Host Endianess
555 */
556static void
557hatm_init_endianess(struct hatm_softc *sc)
558{
559	uint32_t v;
560
561	v = READ4(sc, HE_REGO_LB_SWAP);
562	BARRIER_R(sc);
563#if BYTE_ORDER == BIG_ENDIAN
564	v |= HE_REGM_LBSWAP_INTR_SWAP |
565	    HE_REGM_LBSWAP_DESC_WR_SWAP |
566	    HE_REGM_LBSWAP_BIG_ENDIAN;
567	v &= ~(HE_REGM_LBSWAP_DATA_WR_SWAP |
568	    HE_REGM_LBSWAP_DESC_RD_SWAP |
569	    HE_REGM_LBSWAP_DATA_RD_SWAP);
570#else
571	v &= ~(HE_REGM_LBSWAP_DATA_WR_SWAP |
572	    HE_REGM_LBSWAP_DESC_RD_SWAP |
573	    HE_REGM_LBSWAP_DATA_RD_SWAP |
574	    HE_REGM_LBSWAP_INTR_SWAP |
575	    HE_REGM_LBSWAP_DESC_WR_SWAP |
576	    HE_REGM_LBSWAP_BIG_ENDIAN);
577#endif
578
579	if (sc->he622)
580		v |= HE_REGM_LBSWAP_XFER_SIZE;
581
582	WRITE4(sc, HE_REGO_LB_SWAP, v);
583	BARRIER_W(sc);
584}
585
586/*
587 * 4.7 Read EEPROM
588 */
589static uint8_t
590hatm_read_prom_byte(struct hatm_softc *sc, u_int addr)
591{
592	uint32_t val, tmp_read, byte_read;
593	u_int i, j;
594	int n;
595
596	val = READ4(sc, HE_REGO_HOST_CNTL);
597	val &= HE_REGM_HOST_PROM_BITS;
598	BARRIER_R(sc);
599
600	val |= HE_REGM_HOST_PROM_WREN;
601	WRITE4(sc, HE_REGO_HOST_CNTL, val);
602	BARRIER_W(sc);
603
604	/* send READ */
605	for (i = 0; i < sizeof(readtab) / sizeof(readtab[0]); i++) {
606		WRITE4(sc, HE_REGO_HOST_CNTL, val | readtab[i]);
607		BARRIER_W(sc);
608		DELAY(EEPROM_DELAY);
609	}
610
611	/* send ADDRESS */
612	for (n = 7, j = 0; n >= 0; n--) {
613		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++] |
614		    (((addr >> n) & 1 ) << HE_REGS_HOST_PROM_DATA_IN));
615		BARRIER_W(sc);
616		DELAY(EEPROM_DELAY);
617		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++] |
618		    (((addr >> n) & 1 ) << HE_REGS_HOST_PROM_DATA_IN));
619		BARRIER_W(sc);
620		DELAY(EEPROM_DELAY);
621	}
622
623	val &= ~HE_REGM_HOST_PROM_WREN;
624	WRITE4(sc, HE_REGO_HOST_CNTL, val);
625	BARRIER_W(sc);
626
627	/* read DATA */
628	byte_read = 0;
629	for (n = 7, j = 0; n >= 0; n--) {
630		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++]);
631		BARRIER_W(sc);
632		DELAY(EEPROM_DELAY);
633		tmp_read = READ4(sc, HE_REGO_HOST_CNTL);
634		byte_read |= (uint8_t)(((tmp_read & HE_REGM_HOST_PROM_DATA_OUT)
635				>> HE_REGS_HOST_PROM_DATA_OUT) << n);
636		WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++]);
637		BARRIER_W(sc);
638		DELAY(EEPROM_DELAY);
639	}
640	WRITE4(sc, HE_REGO_HOST_CNTL, val | clocktab[j++]);
641	BARRIER_W(sc);
642	DELAY(EEPROM_DELAY);
643
644	return (byte_read);
645}
646
647static void
648hatm_init_read_eeprom(struct hatm_softc *sc)
649{
650	u_int n, count;
651	u_char byte;
652	uint32_t v;
653
654	for (n = count = 0; count < HE_EEPROM_PROD_ID_LEN; count++) {
655		byte = hatm_read_prom_byte(sc, HE_EEPROM_PROD_ID + count);
656		if (n > 0 || byte != ' ')
657			sc->prod_id[n++] = byte;
658	}
659	while (n > 0 && sc->prod_id[n-1] == ' ')
660		n--;
661	sc->prod_id[n] = '\0';
662
663	for (n = count = 0; count < HE_EEPROM_REV_LEN; count++) {
664		byte = hatm_read_prom_byte(sc, HE_EEPROM_REV + count);
665		if (n > 0 || byte != ' ')
666			sc->rev[n++] = byte;
667	}
668	while (n > 0 && sc->rev[n-1] == ' ')
669		n--;
670	sc->rev[n] = '\0';
671	sc->ifatm.mib.hw_version = sc->rev[0];
672
673	sc->ifatm.mib.serial =  hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 0) << 0;
674	sc->ifatm.mib.serial |= hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 1) << 8;
675	sc->ifatm.mib.serial |= hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 2) << 16;
676	sc->ifatm.mib.serial |= hatm_read_prom_byte(sc, HE_EEPROM_M_SN + 3) << 24;
677
678	v =  hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 0) << 0;
679	v |= hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 1) << 8;
680	v |= hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 2) << 16;
681	v |= hatm_read_prom_byte(sc, HE_EEPROM_MEDIA + 3) << 24;
682
683	switch (v) {
684	  case HE_MEDIA_UTP155:
685		sc->ifatm.mib.media = IFM_ATM_UTP_155;
686		sc->ifatm.mib.pcr = ATM_RATE_155M;
687		break;
688
689	  case HE_MEDIA_MMF155:
690		sc->ifatm.mib.media = IFM_ATM_MM_155;
691		sc->ifatm.mib.pcr = ATM_RATE_155M;
692		break;
693
694	  case HE_MEDIA_MMF622:
695		sc->ifatm.mib.media = IFM_ATM_MM_622;
696		sc->ifatm.mib.device = ATM_DEVICE_HE622;
697		sc->ifatm.mib.pcr = ATM_RATE_622M;
698		sc->he622 = 1;
699		break;
700
701	  case HE_MEDIA_SMF155:
702		sc->ifatm.mib.media = IFM_ATM_SM_155;
703		sc->ifatm.mib.pcr = ATM_RATE_155M;
704		break;
705
706	  case HE_MEDIA_SMF622:
707		sc->ifatm.mib.media = IFM_ATM_SM_622;
708		sc->ifatm.mib.device = ATM_DEVICE_HE622;
709		sc->ifatm.mib.pcr = ATM_RATE_622M;
710		sc->he622 = 1;
711		break;
712	}
713
714	sc->ifatm.mib.esi[0] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 0);
715	sc->ifatm.mib.esi[1] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 1);
716	sc->ifatm.mib.esi[2] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 2);
717	sc->ifatm.mib.esi[3] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 3);
718	sc->ifatm.mib.esi[4] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 4);
719	sc->ifatm.mib.esi[5] = hatm_read_prom_byte(sc, HE_EEPROM_MAC + 5);
720}
721
722/*
723 * Clear unused interrupt queue
724 */
725static void
726hatm_clear_irq(struct hatm_softc *sc, u_int group)
727{
728	WRITE4(sc, HE_REGO_IRQ_BASE(group), 0);
729	WRITE4(sc, HE_REGO_IRQ_HEAD(group), 0);
730	WRITE4(sc, HE_REGO_IRQ_CNTL(group), 0);
731	WRITE4(sc, HE_REGO_IRQ_DATA(group), 0);
732}
733
734/*
735 * 4.10 Initialize interrupt queues
736 */
737static void
738hatm_init_irq(struct hatm_softc *sc, struct heirq *q, u_int group)
739{
740	u_int i;
741
742	if (q->size == 0) {
743		hatm_clear_irq(sc, group);
744		return;
745	}
746
747	q->group = group;
748	q->sc = sc;
749	q->irq = q->mem.base;
750	q->head = 0;
751	q->tailp = q->irq + (q->size - 1);
752	*q->tailp = 0;
753
754	for (i = 0; i < q->size; i++)
755		q->irq[i] = HE_REGM_ITYPE_INVALID;
756
757	WRITE4(sc, HE_REGO_IRQ_BASE(group), q->mem.paddr);
758	WRITE4(sc, HE_REGO_IRQ_HEAD(group),
759	    ((q->size - 1) << HE_REGS_IRQ_HEAD_SIZE) |
760	    (q->thresh << HE_REGS_IRQ_HEAD_THRESH));
761	WRITE4(sc, HE_REGO_IRQ_CNTL(group), q->line);
762	WRITE4(sc, HE_REGO_IRQ_DATA(group), 0);
763}
764
765/*
766 * 5.1.3 Initialize connection memory
767 */
768static void
769hatm_init_cm(struct hatm_softc *sc)
770{
771	u_int rsra, mlbm, rabr, numbuffs;
772	u_int tsra, tabr, mtpd;
773	u_int n;
774
775	for (n = 0; n < HE_CONFIG_TXMEM; n++)
776		WRITE_TCM4(sc, n, 0);
777	for (n = 0; n < HE_CONFIG_RXMEM; n++)
778		WRITE_RCM4(sc, n, 0);
779
780	numbuffs = sc->r0_numbuffs + sc->r1_numbuffs + sc->tx_numbuffs;
781
782	rsra = 0;
783	mlbm = ((rsra + sc->ifatm.mib.max_vccs * 8) + 0x7ff) & ~0x7ff;
784	rabr = ((mlbm + numbuffs * 2) + 0x7ff) & ~0x7ff;
785	sc->rsrb = ((rabr + 2048) + (2 * sc->ifatm.mib.max_vccs - 1)) &
786	    ~(2 * sc->ifatm.mib.max_vccs - 1);
787
788	tsra = 0;
789	sc->tsrb = tsra + sc->ifatm.mib.max_vccs * 8;
790	sc->tsrc = sc->tsrb + sc->ifatm.mib.max_vccs * 4;
791	sc->tsrd = sc->tsrc + sc->ifatm.mib.max_vccs * 2;
792	tabr = sc->tsrd + sc->ifatm.mib.max_vccs * 1;
793	mtpd = ((tabr + 1024) + (16 * sc->ifatm.mib.max_vccs - 1)) &
794	    ~(16 * sc->ifatm.mib.max_vccs - 1);
795
796	DBG(sc, ATTACH, ("rsra=%x mlbm=%x rabr=%x rsrb=%x",
797	    rsra, mlbm, rabr, sc->rsrb));
798	DBG(sc, ATTACH, ("tsra=%x tsrb=%x tsrc=%x tsrd=%x tabr=%x mtpd=%x",
799	    tsra, sc->tsrb, sc->tsrc, sc->tsrd, tabr, mtpd));
800
801	WRITE4(sc, HE_REGO_TSRB_BA, sc->tsrb);
802	WRITE4(sc, HE_REGO_TSRC_BA, sc->tsrc);
803	WRITE4(sc, HE_REGO_TSRD_BA, sc->tsrd);
804	WRITE4(sc, HE_REGO_TMABR_BA, tabr);
805	WRITE4(sc, HE_REGO_TPD_BA, mtpd);
806
807	WRITE4(sc, HE_REGO_RCMRSRB_BA, sc->rsrb);
808	WRITE4(sc, HE_REGO_RCMLBM_BA, mlbm);
809	WRITE4(sc, HE_REGO_RCMABR_BA, rabr);
810
811	BARRIER_W(sc);
812}
813
814/*
815 * 5.1.4 Initialize Local buffer Pools
816 */
817static void
818hatm_init_rx_buffer_pool(struct hatm_softc *sc,
819	u_int num,		/* bank */
820	u_int start,		/* start row */
821	u_int numbuffs		/* number of entries */
822)
823{
824	u_int row_size;		/* bytes per row */
825	uint32_t row_addr;	/* start address of this row */
826	u_int lbuf_size;	/* bytes per lbuf */
827	u_int lbufs_per_row;	/* number of lbufs per memory row */
828	uint32_t lbufd_index;	/* index of lbuf descriptor */
829	uint32_t lbufd_addr;	/* address of lbuf descriptor */
830	u_int lbuf_row_cnt;	/* current lbuf in current row */
831	uint32_t lbuf_addr;	/* address of current buffer */
832	u_int i;
833
834	row_size = sc->bytes_per_row;;
835	row_addr = start * row_size;
836	lbuf_size = sc->cells_per_lbuf * 48;
837	lbufs_per_row = sc->cells_per_row / sc->cells_per_lbuf;
838
839	/* descriptor index */
840	lbufd_index = num;
841
842	/* 2 words per entry */
843	lbufd_addr = READ4(sc, HE_REGO_RCMLBM_BA) + lbufd_index * 2;
844
845	/* write head of queue */
846	WRITE4(sc, HE_REGO_RLBF_H(num), lbufd_index);
847
848	lbuf_row_cnt = 0;
849	for (i = 0; i < numbuffs; i++) {
850		lbuf_addr = (row_addr + lbuf_row_cnt * lbuf_size) / 32;
851
852		WRITE_RCM4(sc, lbufd_addr, lbuf_addr);
853
854		lbufd_index += 2;
855		WRITE_RCM4(sc, lbufd_addr + 1, lbufd_index);
856
857		if (++lbuf_row_cnt == lbufs_per_row) {
858			lbuf_row_cnt = 0;
859			row_addr += row_size;
860		}
861
862		lbufd_addr += 2 * 2;
863	}
864
865	WRITE4(sc, HE_REGO_RLBF_T(num), lbufd_index - 2);
866	WRITE4(sc, HE_REGO_RLBF_C(num), numbuffs);
867
868	BARRIER_W(sc);
869}
870
871static void
872hatm_init_tx_buffer_pool(struct hatm_softc *sc,
873	u_int start,		/* start row */
874	u_int numbuffs		/* number of entries */
875)
876{
877	u_int row_size;		/* bytes per row */
878	uint32_t row_addr;	/* start address of this row */
879	u_int lbuf_size;	/* bytes per lbuf */
880	u_int lbufs_per_row;	/* number of lbufs per memory row */
881	uint32_t lbufd_index;	/* index of lbuf descriptor */
882	uint32_t lbufd_addr;	/* address of lbuf descriptor */
883	u_int lbuf_row_cnt;	/* current lbuf in current row */
884	uint32_t lbuf_addr;	/* address of current buffer */
885	u_int i;
886
887	row_size = sc->bytes_per_row;;
888	row_addr = start * row_size;
889	lbuf_size = sc->cells_per_lbuf * 48;
890	lbufs_per_row = sc->cells_per_row / sc->cells_per_lbuf;
891
892	/* descriptor index */
893	lbufd_index = sc->r0_numbuffs + sc->r1_numbuffs;
894
895	/* 2 words per entry */
896	lbufd_addr = READ4(sc, HE_REGO_RCMLBM_BA) + lbufd_index * 2;
897
898	/* write head of queue */
899	WRITE4(sc, HE_REGO_TLBF_H, lbufd_index);
900
901	lbuf_row_cnt = 0;
902	for (i = 0; i < numbuffs; i++) {
903		lbuf_addr = (row_addr + lbuf_row_cnt * lbuf_size) / 32;
904
905		WRITE_RCM4(sc, lbufd_addr, lbuf_addr);
906		lbufd_index++;
907		WRITE_RCM4(sc, lbufd_addr + 1, lbufd_index);
908
909		if (++lbuf_row_cnt == lbufs_per_row) {
910			lbuf_row_cnt = 0;
911			row_addr += row_size;
912		}
913
914		lbufd_addr += 2;
915	}
916
917	WRITE4(sc, HE_REGO_TLBF_T, lbufd_index - 1);
918	BARRIER_W(sc);
919}
920
921/*
922 * 5.1.5 Initialize Intermediate Receive Queues
923 */
924static void
925hatm_init_imed_queues(struct hatm_softc *sc)
926{
927	u_int n;
928
929	if (sc->he622) {
930		for (n = 0; n < 8; n++) {
931			WRITE4(sc, HE_REGO_INMQ_S(n), 0x10*n+0x000f);
932			WRITE4(sc, HE_REGO_INMQ_L(n), 0x10*n+0x200f);
933		}
934	} else {
935		for (n = 0; n < 8; n++) {
936			WRITE4(sc, HE_REGO_INMQ_S(n), n);
937			WRITE4(sc, HE_REGO_INMQ_L(n), n+0x8);
938		}
939	}
940}
941
942/*
943 * 5.1.7 Init CS block
944 */
945static void
946hatm_init_cs_block(struct hatm_softc *sc)
947{
948	u_int n, i;
949	u_int clkfreg, cellrate, decr, tmp;
950	static const uint32_t erthr[2][5][3] = HE_REGT_CS_ERTHR;
951	static const uint32_t erctl[2][3] = HE_REGT_CS_ERCTL;
952	static const uint32_t erstat[2][2] = HE_REGT_CS_ERSTAT;
953	static const uint32_t rtfwr[2] = HE_REGT_CS_RTFWR;
954	static const uint32_t rtatr[2] = HE_REGT_CS_RTATR;
955	static const uint32_t bwalloc[2][6] = HE_REGT_CS_BWALLOC;
956	static const uint32_t orcf[2][2] = HE_REGT_CS_ORCF;
957
958	/* Clear Rate Controller Start Times and Occupied Flags */
959	for (n = 0; n < 32; n++)
960		WRITE_MBOX4(sc, HE_REGO_CS_STTIM(n), 0);
961
962	clkfreg = sc->he622 ? HE_622_CLOCK : HE_155_CLOCK;
963	cellrate = sc->he622 ? ATM_RATE_622M : ATM_RATE_155M;
964	decr = cellrate / 32;
965
966	for (n = 0; n < 16; n++) {
967		tmp = clkfreg / cellrate;
968		WRITE_MBOX4(sc, HE_REGO_CS_TGRLD(n), tmp - 1);
969		cellrate -= decr;
970	}
971
972	i = (sc->cells_per_lbuf == 2) ? 0
973	   :(sc->cells_per_lbuf == 4) ? 1
974	   :                            2;
975
976	/* table 5.2 */
977	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR0, erthr[sc->he622][0][i]);
978	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR1, erthr[sc->he622][1][i]);
979	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR2, erthr[sc->he622][2][i]);
980	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR3, erthr[sc->he622][3][i]);
981	WRITE_MBOX4(sc, HE_REGO_CS_ERTHR4, erthr[sc->he622][4][i]);
982
983	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL0, erctl[sc->he622][0]);
984	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL1, erctl[sc->he622][1]);
985	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL2, erctl[sc->he622][2]);
986
987	WRITE_MBOX4(sc, HE_REGO_CS_ERSTAT0, erstat[sc->he622][0]);
988	WRITE_MBOX4(sc, HE_REGO_CS_ERSTAT1, erstat[sc->he622][1]);
989
990	WRITE_MBOX4(sc, HE_REGO_CS_RTFWR, rtfwr[sc->he622]);
991	WRITE_MBOX4(sc, HE_REGO_CS_RTATR, rtatr[sc->he622]);
992
993	WRITE_MBOX4(sc, HE_REGO_CS_TFBSET, bwalloc[sc->he622][0]);
994	WRITE_MBOX4(sc, HE_REGO_CS_WCRMAX, bwalloc[sc->he622][1]);
995	WRITE_MBOX4(sc, HE_REGO_CS_WCRMIN, bwalloc[sc->he622][2]);
996	WRITE_MBOX4(sc, HE_REGO_CS_WCRINC, bwalloc[sc->he622][3]);
997	WRITE_MBOX4(sc, HE_REGO_CS_WCRDEC, bwalloc[sc->he622][4]);
998	WRITE_MBOX4(sc, HE_REGO_CS_WCRCEIL, bwalloc[sc->he622][5]);
999
1000	WRITE_MBOX4(sc, HE_REGO_CS_OTPPER, orcf[sc->he622][0]);
1001	WRITE_MBOX4(sc, HE_REGO_CS_OTWPER, orcf[sc->he622][1]);
1002
1003	WRITE_MBOX4(sc, HE_REGO_CS_OTTLIM, 8);
1004
1005	for (n = 0; n < 8; n++)
1006		WRITE_MBOX4(sc, HE_REGO_CS_HGRRT(n), 0);
1007}
1008
1009/*
1010 * 5.1.8 CS Block Connection Memory Initialisation
1011 */
1012static void
1013hatm_init_cs_block_cm(struct hatm_softc *sc)
1014{
1015	u_int n, i;
1016	u_int expt, mant, etrm, wcr, ttnrm, tnrm;
1017	uint32_t rate;
1018	uint32_t clkfreq, cellrate, decr;
1019	uint32_t *rg, rtg, val = 0;
1020	uint64_t drate;
1021	u_int buf, buf_limit;
1022	uint32_t base = READ4(sc, HE_REGO_RCMABR_BA);
1023
1024	for (n = 0; n < HE_REGL_CM_GQTBL; n++)
1025		WRITE_RCM4(sc, base + HE_REGO_CM_GQTBL + n, 0);
1026	for (n = 0; n < HE_REGL_CM_RGTBL; n++)
1027		WRITE_RCM4(sc, base + HE_REGO_CM_RGTBL + n, 0);
1028
1029	tnrm = 0;
1030	for (n = 0; n < HE_REGL_CM_TNRMTBL * 4; n++) {
1031		expt = (n >> 5) & 0x1f;
1032		mant = ((n & 0x18) << 4) | 0x7f;
1033		wcr = (1 << expt) * (mant + 512) / 512;
1034		etrm = n & 0x7;
1035		ttnrm = wcr / 10 / (1 << etrm);
1036		if (ttnrm > 255)
1037			ttnrm = 255;
1038		else if(ttnrm < 2)
1039			ttnrm = 2;
1040		tnrm = (tnrm << 8) | (ttnrm & 0xff);
1041		if (n % 4 == 0)
1042			WRITE_RCM4(sc, base + HE_REGO_CM_TNRMTBL + (n/4), tnrm);
1043	}
1044
1045	clkfreq = sc->he622 ? HE_622_CLOCK : HE_155_CLOCK;
1046	buf_limit = 4;
1047
1048	cellrate = sc->he622 ? ATM_RATE_622M : ATM_RATE_155M;
1049	decr = cellrate / 32;
1050
1051	/* compute GRID top row in 1000 * cps */
1052	for (n = 0; n < 16; n++) {
1053		u_int interval = clkfreq / cellrate;
1054		sc->rate_grid[0][n] = (u_int64_t)clkfreq * 1000 / interval;
1055		cellrate -= decr;
1056	}
1057
1058	/* compute the other rows according to 2.4 */
1059	for (i = 1; i < 16; i++)
1060		for (n = 0; n < 16; n++)
1061			sc->rate_grid[i][n] = sc->rate_grid[i-1][n] /
1062			    ((i < 14) ? 2 : 4);
1063
1064	/* first entry is line rate */
1065	n = hatm_cps2atmf(sc->he622 ? ATM_RATE_622M : ATM_RATE_155M);
1066	expt = (n >> 9) & 0x1f;
1067	mant = n & 0x1f0;
1068	sc->rate_grid[0][0] = (u_int64_t)(1<<expt) * 1000 * (mant+512) / 512;
1069
1070	/* now build the conversion table - each 32 bit word contains
1071	 * two entries - this gives a total of 0x400 16 bit entries.
1072	 * This table maps the truncated ATMF rate version into a grid index */
1073	cellrate = sc->he622 ? ATM_RATE_622M : ATM_RATE_155M;
1074	rg = &sc->rate_grid[15][15];
1075
1076	for (rate = 0; rate < 2 * HE_REGL_CM_RTGTBL; rate++) {
1077		/* unpack the ATMF rate */
1078		expt = rate >> 5;
1079		mant = (rate & 0x1f) << 4;
1080
1081		/* get the cell rate - minimum is 10 per second */
1082		drate = (uint64_t)(1 << expt) * 1000 * (mant + 512) / 512;
1083		if (drate < 10 * 1000)
1084			drate = 10 * 1000;
1085
1086		/* now look up the grid index */
1087		while (drate >= *rg && rg-- > &sc->rate_grid[0][0])
1088			;
1089		rg++;
1090		rtg = rg - &sc->rate_grid[0][0];
1091
1092		/* now compute the buffer limit */
1093		buf = drate * sc->tx_numbuffs / (cellrate * 2) / 1000;
1094		if (buf == 0)
1095			buf = 1;
1096		else if (buf > buf_limit)
1097			buf = buf_limit;
1098
1099		/* make value */
1100		val = (val << 16) | (rtg << 8) | buf;
1101
1102		/* write */
1103		if (rate % 2 == 1)
1104			WRITE_RCM4(sc, base + HE_REGO_CM_RTGTBL + rate/2, val);
1105	}
1106}
1107
1108/*
1109 * Clear an unused receive group buffer pool
1110 */
1111static void
1112hatm_clear_rpool(struct hatm_softc *sc, u_int group, u_int large)
1113{
1114	WRITE4(sc, HE_REGO_RBP_S(large, group), 0);
1115	WRITE4(sc, HE_REGO_RBP_T(large, group), 0);
1116	WRITE4(sc, HE_REGO_RBP_QI(large, group), 1);
1117	WRITE4(sc, HE_REGO_RBP_BL(large, group), 0);
1118}
1119
1120/*
1121 * Initialize a receive group buffer pool
1122 */
1123static void
1124hatm_init_rpool(struct hatm_softc *sc, struct herbp *q, u_int group,
1125    u_int large)
1126{
1127	if (q->size == 0) {
1128		hatm_clear_rpool(sc, group, large);
1129		return;
1130	}
1131
1132	bzero(q->mem.base, q->mem.size);
1133	q->rbp = q->mem.base;
1134	q->head = q->tail = 0;
1135
1136	DBG(sc, ATTACH, ("RBP%u%c=0x%lx", group, "SL"[large],
1137	    (u_long)q->mem.paddr));
1138
1139	WRITE4(sc, HE_REGO_RBP_S(large, group), q->mem.paddr);
1140	WRITE4(sc, HE_REGO_RBP_T(large, group), 0);
1141	WRITE4(sc, HE_REGO_RBP_QI(large, group),
1142	    ((q->size - 1) << HE_REGS_RBP_SIZE) |
1143	    HE_REGM_RBP_INTR_ENB |
1144	    (q->thresh << HE_REGS_RBP_THRESH));
1145	WRITE4(sc, HE_REGO_RBP_BL(large, group), (q->bsize >> 2) & ~1);
1146}
1147
1148/*
1149 * Clear an unused receive buffer return queue
1150 */
1151static void
1152hatm_clear_rbrq(struct hatm_softc *sc, u_int group)
1153{
1154	WRITE4(sc, HE_REGO_RBRQ_ST(group), 0);
1155	WRITE4(sc, HE_REGO_RBRQ_H(group), 0);
1156	WRITE4(sc, HE_REGO_RBRQ_Q(group), (1 << HE_REGS_RBRQ_THRESH));
1157	WRITE4(sc, HE_REGO_RBRQ_I(group), 0);
1158}
1159
1160/*
1161 * Initialize receive buffer return queue
1162 */
1163static void
1164hatm_init_rbrq(struct hatm_softc *sc, struct herbrq *rq, u_int group)
1165{
1166	if (rq->size == 0) {
1167		hatm_clear_rbrq(sc, group);
1168		return;
1169	}
1170
1171	rq->rbrq = rq->mem.base;
1172	rq->head = 0;
1173
1174	DBG(sc, ATTACH, ("RBRQ%u=0x%lx", group, (u_long)rq->mem.paddr));
1175
1176	WRITE4(sc, HE_REGO_RBRQ_ST(group), rq->mem.paddr);
1177	WRITE4(sc, HE_REGO_RBRQ_H(group), 0);
1178	WRITE4(sc, HE_REGO_RBRQ_Q(group),
1179	    (rq->thresh << HE_REGS_RBRQ_THRESH) |
1180	    ((rq->size - 1) << HE_REGS_RBRQ_SIZE));
1181	WRITE4(sc, HE_REGO_RBRQ_I(group),
1182	    (rq->tout << HE_REGS_RBRQ_TIME) |
1183	    (rq->pcnt << HE_REGS_RBRQ_COUNT));
1184}
1185
1186/*
1187 * Clear an unused transmit buffer return queue N
1188 */
1189static void
1190hatm_clear_tbrq(struct hatm_softc *sc, u_int group)
1191{
1192	WRITE4(sc, HE_REGO_TBRQ_B_T(group), 0);
1193	WRITE4(sc, HE_REGO_TBRQ_H(group), 0);
1194	WRITE4(sc, HE_REGO_TBRQ_S(group), 0);
1195	WRITE4(sc, HE_REGO_TBRQ_THRESH(group), 1);
1196}
1197
1198/*
1199 * Initialize transmit buffer return queue N
1200 */
1201static void
1202hatm_init_tbrq(struct hatm_softc *sc, struct hetbrq *tq, u_int group)
1203{
1204	if (tq->size == 0) {
1205		hatm_clear_tbrq(sc, group);
1206		return;
1207	}
1208
1209	tq->tbrq = tq->mem.base;
1210	tq->head = 0;
1211
1212	DBG(sc, ATTACH, ("TBRQ%u=0x%lx", group, (u_long)tq->mem.paddr));
1213
1214	WRITE4(sc, HE_REGO_TBRQ_B_T(group), tq->mem.paddr);
1215	WRITE4(sc, HE_REGO_TBRQ_H(group), 0);
1216	WRITE4(sc, HE_REGO_TBRQ_S(group), tq->size - 1);
1217	WRITE4(sc, HE_REGO_TBRQ_THRESH(group), tq->thresh);
1218}
1219
1220/*
1221 * Initialize TPDRQ
1222 */
1223static void
1224hatm_init_tpdrq(struct hatm_softc *sc)
1225{
1226	struct hetpdrq *tq;
1227
1228	tq = &sc->tpdrq;
1229	tq->tpdrq = tq->mem.base;
1230	tq->tail = tq->head = 0;
1231
1232	DBG(sc, ATTACH, ("TPDRQ=0x%lx", (u_long)tq->mem.paddr));
1233
1234	WRITE4(sc, HE_REGO_TPDRQ_H, tq->mem.paddr);
1235	WRITE4(sc, HE_REGO_TPDRQ_T, 0);
1236	WRITE4(sc, HE_REGO_TPDRQ_S, tq->size - 1);
1237}
1238
1239/*
1240 * Function can be called by the infrastructure to start the card.
1241 */
1242static void
1243hatm_init(void *p)
1244{
1245	struct hatm_softc *sc = p;
1246
1247	mtx_lock(&sc->mtx);
1248	hatm_stop(sc);
1249	hatm_initialize(sc);
1250	mtx_unlock(&sc->mtx);
1251}
1252
1253enum {
1254	CTL_ISTATS,
1255};
1256
1257/*
1258 * Sysctl handler
1259 */
1260static int
1261hatm_sysctl(SYSCTL_HANDLER_ARGS)
1262{
1263	struct hatm_softc *sc = arg1;
1264	uint32_t *ret;
1265	int error;
1266	size_t len;
1267
1268	switch (arg2) {
1269
1270	  case CTL_ISTATS:
1271		len = sizeof(sc->istats);
1272		break;
1273
1274	  default:
1275		panic("bad control code");
1276	}
1277
1278	ret = malloc(len, M_TEMP, M_WAITOK);
1279	mtx_lock(&sc->mtx);
1280
1281	switch (arg2) {
1282
1283	  case CTL_ISTATS:
1284		sc->istats.mcc += READ4(sc, HE_REGO_MCC);
1285		sc->istats.oec += READ4(sc, HE_REGO_OEC);
1286		sc->istats.dcc += READ4(sc, HE_REGO_DCC);
1287		sc->istats.cec += READ4(sc, HE_REGO_CEC);
1288		bcopy(&sc->istats, ret, sizeof(sc->istats));
1289		break;
1290	}
1291	mtx_unlock(&sc->mtx);
1292
1293	error = SYSCTL_OUT(req, ret, len);
1294	free(ret, M_TEMP);
1295
1296	return (error);
1297}
1298
1299static int
1300kenv_getuint(struct hatm_softc *sc, const char *var,
1301    u_int *ptr, u_int def, int rw)
1302{
1303	char full[IFNAMSIZ + 3 + 20];
1304	char *val, *end;
1305	u_int u;
1306
1307	*ptr = def;
1308
1309	if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1310	    OID_AUTO, var, rw ? CTLFLAG_RW : CTLFLAG_RD, ptr, 0, "") == NULL)
1311		return (ENOMEM);
1312
1313	snprintf(full, sizeof(full), "hw.%s.%s",
1314	    device_get_nameunit(sc->dev), var);
1315
1316	if ((val = getenv(full)) == NULL)
1317		return (0);
1318	u = strtoul(val, &end, 0);
1319	if (end == val || *end != '\0') {
1320		freeenv(val);
1321		return (EINVAL);
1322	}
1323	if (bootverbose)
1324		if_printf(&sc->ifatm.ifnet, "%s=%u\n", full, u);
1325	*ptr = u;
1326	return (0);
1327}
1328
1329/*
1330 * Set configurable parameters. Many of these are configurable via
1331 * kenv.
1332 */
1333static int
1334hatm_configure(struct hatm_softc *sc)
1335{
1336	/* Receive buffer pool 0 small */
1337	kenv_getuint(sc, "rbps0.size", &sc->rbp_s0.size,
1338	    HE_CONFIG_RBPS0_SIZE, 0);
1339	kenv_getuint(sc, "rbps0.thresh", &sc->rbp_s0.thresh,
1340	    HE_CONFIG_RBPS0_THRESH, 0);
1341	sc->rbp_s0.bsize = MBUF0_SIZE;
1342
1343	/* Receive buffer pool 0 large */
1344	kenv_getuint(sc, "rbpl0.size", &sc->rbp_l0.size,
1345	    HE_CONFIG_RBPL0_SIZE, 0);
1346	kenv_getuint(sc, "rbpl0.thresh", &sc->rbp_l0.thresh,
1347	    HE_CONFIG_RBPL0_THRESH, 0);
1348	sc->rbp_l0.bsize = MCLBYTES - MBUFL_OFFSET;
1349
1350	/* Receive buffer return queue 0 */
1351	kenv_getuint(sc, "rbrq0.size", &sc->rbrq_0.size,
1352	    HE_CONFIG_RBRQ0_SIZE, 0);
1353	kenv_getuint(sc, "rbrq0.thresh", &sc->rbrq_0.thresh,
1354	    HE_CONFIG_RBRQ0_THRESH, 0);
1355	kenv_getuint(sc, "rbrq0.tout", &sc->rbrq_0.tout,
1356	    HE_CONFIG_RBRQ0_TOUT, 0);
1357	kenv_getuint(sc, "rbrq0.pcnt", &sc->rbrq_0.pcnt,
1358	    HE_CONFIG_RBRQ0_PCNT, 0);
1359
1360	/* Receive buffer pool 1 small */
1361	kenv_getuint(sc, "rbps1.size", &sc->rbp_s1.size,
1362	    HE_CONFIG_RBPS1_SIZE, 0);
1363	kenv_getuint(sc, "rbps1.thresh", &sc->rbp_s1.thresh,
1364	    HE_CONFIG_RBPS1_THRESH, 0);
1365	sc->rbp_s1.bsize = MBUF1_SIZE;
1366
1367	/* Receive buffer return queue 1 */
1368	kenv_getuint(sc, "rbrq1.size", &sc->rbrq_1.size,
1369	    HE_CONFIG_RBRQ1_SIZE, 0);
1370	kenv_getuint(sc, "rbrq1.thresh", &sc->rbrq_1.thresh,
1371	    HE_CONFIG_RBRQ1_THRESH, 0);
1372	kenv_getuint(sc, "rbrq1.tout", &sc->rbrq_1.tout,
1373	    HE_CONFIG_RBRQ1_TOUT, 0);
1374	kenv_getuint(sc, "rbrq1.pcnt", &sc->rbrq_1.pcnt,
1375	    HE_CONFIG_RBRQ1_PCNT, 0);
1376
1377	/* Interrupt queue 0 */
1378	kenv_getuint(sc, "irq0.size", &sc->irq_0.size,
1379	    HE_CONFIG_IRQ0_SIZE, 0);
1380	kenv_getuint(sc, "irq0.thresh", &sc->irq_0.thresh,
1381	    HE_CONFIG_IRQ0_THRESH, 0);
1382	sc->irq_0.line = HE_CONFIG_IRQ0_LINE;
1383
1384	/* Transmit buffer return queue 0 */
1385	kenv_getuint(sc, "tbrq0.size", &sc->tbrq.size,
1386	    HE_CONFIG_TBRQ_SIZE, 0);
1387	kenv_getuint(sc, "tbrq0.thresh", &sc->tbrq.thresh,
1388	    HE_CONFIG_TBRQ_THRESH, 0);
1389
1390	/* Transmit buffer ready queue */
1391	kenv_getuint(sc, "tpdrq.size", &sc->tpdrq.size,
1392	    HE_CONFIG_TPDRQ_SIZE, 0);
1393	/* Max TPDs per VCC */
1394	kenv_getuint(sc, "tpdmax", &sc->max_tpd,
1395	    HE_CONFIG_TPD_MAXCC, 0);
1396
1397	return (0);
1398}
1399
1400#ifdef HATM_DEBUG
1401
1402/*
1403 * Get TSRs from connection memory
1404 */
1405static int
1406hatm_sysctl_tsr(SYSCTL_HANDLER_ARGS)
1407{
1408	struct hatm_softc *sc = arg1;
1409	int error, i, j;
1410	uint32_t *val;
1411
1412	val = malloc(sizeof(uint32_t) * HE_MAX_VCCS * 15, M_TEMP, M_WAITOK);
1413
1414	mtx_lock(&sc->mtx);
1415	for (i = 0; i < HE_MAX_VCCS; i++)
1416		for (j = 0; j <= 14; j++)
1417			val[15 * i + j] = READ_TSR(sc, i, j);
1418	mtx_unlock(&sc->mtx);
1419
1420	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * HE_MAX_VCCS * 15);
1421	free(val, M_TEMP);
1422	if (error != 0 || req->newptr == NULL)
1423		return (error);
1424
1425	return (EPERM);
1426}
1427
1428/*
1429 * Get TPDs from connection memory
1430 */
1431static int
1432hatm_sysctl_tpd(SYSCTL_HANDLER_ARGS)
1433{
1434	struct hatm_softc *sc = arg1;
1435	int error, i, j;
1436	uint32_t *val;
1437
1438	val = malloc(sizeof(uint32_t) * HE_MAX_VCCS * 16, M_TEMP, M_WAITOK);
1439
1440	mtx_lock(&sc->mtx);
1441	for (i = 0; i < HE_MAX_VCCS; i++)
1442		for (j = 0; j < 16; j++)
1443			val[16 * i + j] = READ_TCM4(sc, 16 * i + j);
1444	mtx_unlock(&sc->mtx);
1445
1446	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * HE_MAX_VCCS * 16);
1447	free(val, M_TEMP);
1448	if (error != 0 || req->newptr == NULL)
1449		return (error);
1450
1451	return (EPERM);
1452}
1453
1454/*
1455 * Get mbox registers
1456 */
1457static int
1458hatm_sysctl_mbox(SYSCTL_HANDLER_ARGS)
1459{
1460	struct hatm_softc *sc = arg1;
1461	int error, i;
1462	uint32_t *val;
1463
1464	val = malloc(sizeof(uint32_t) * HE_REGO_CS_END, M_TEMP, M_WAITOK);
1465
1466	mtx_lock(&sc->mtx);
1467	for (i = 0; i < HE_REGO_CS_END; i++)
1468		val[i] = READ_MBOX4(sc, i);
1469	mtx_unlock(&sc->mtx);
1470
1471	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * HE_REGO_CS_END);
1472	free(val, M_TEMP);
1473	if (error != 0 || req->newptr == NULL)
1474		return (error);
1475
1476	return (EPERM);
1477}
1478
1479/*
1480 * Get connection memory
1481 */
1482static int
1483hatm_sysctl_cm(SYSCTL_HANDLER_ARGS)
1484{
1485	struct hatm_softc *sc = arg1;
1486	int error, i;
1487	uint32_t *val;
1488
1489	val = malloc(sizeof(uint32_t) * (HE_CONFIG_RXMEM + 1), M_TEMP, M_WAITOK);
1490
1491	mtx_lock(&sc->mtx);
1492	val[0] = READ4(sc, HE_REGO_RCMABR_BA);
1493	for (i = 0; i < HE_CONFIG_RXMEM; i++)
1494		val[i + 1] = READ_RCM4(sc, i);
1495	mtx_unlock(&sc->mtx);
1496
1497	error = SYSCTL_OUT(req, val, sizeof(uint32_t) * (HE_CONFIG_RXMEM + 1));
1498	free(val, M_TEMP);
1499	if (error != 0 || req->newptr == NULL)
1500		return (error);
1501
1502	return (EPERM);
1503}
1504
1505/*
1506 * Get local buffer memory
1507 */
1508static int
1509hatm_sysctl_lbmem(SYSCTL_HANDLER_ARGS)
1510{
1511	struct hatm_softc *sc = arg1;
1512	int error, i;
1513	uint32_t *val;
1514	u_int bytes = (1 << 21);
1515
1516	val = malloc(bytes, M_TEMP, M_WAITOK);
1517
1518	mtx_lock(&sc->mtx);
1519	for (i = 0; i < bytes / 4; i++)
1520		val[i] = READ_LB4(sc, i);
1521	mtx_unlock(&sc->mtx);
1522
1523	error = SYSCTL_OUT(req, val, bytes);
1524	free(val, M_TEMP);
1525	if (error != 0 || req->newptr == NULL)
1526		return (error);
1527
1528	return (EPERM);
1529}
1530
1531/*
1532 * Get all card registers
1533 */
1534static int
1535hatm_sysctl_heregs(SYSCTL_HANDLER_ARGS)
1536{
1537	struct hatm_softc *sc = arg1;
1538	int error, i;
1539	uint32_t *val;
1540
1541	val = malloc(HE_REGO_END, M_TEMP, M_WAITOK);
1542
1543	mtx_lock(&sc->mtx);
1544	for (i = 0; i < HE_REGO_END; i += 4)
1545		val[i / 4] = READ4(sc, i);
1546	mtx_unlock(&sc->mtx);
1547
1548	error = SYSCTL_OUT(req, val, HE_REGO_END);
1549	free(val, M_TEMP);
1550	if (error != 0 || req->newptr == NULL)
1551		return (error);
1552
1553	return (EPERM);
1554}
1555#endif
1556
1557/*
1558 * Suni register access
1559 */
1560/*
1561 * read at most n SUNI registers starting at reg into val
1562 */
1563static int
1564hatm_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *val, u_int *n)
1565{
1566	u_int i;
1567	struct hatm_softc *sc = (struct hatm_softc *)ifatm;
1568
1569	if (reg >= (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4)
1570		return (EINVAL);
1571	if (reg + *n > (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4)
1572		*n = reg - (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4;
1573
1574	mtx_assert(&sc->mtx, MA_OWNED);
1575	for (i = 0; i < *n; i++)
1576		val[i] = READ4(sc, HE_REGO_SUNI + 4 * (reg + i));
1577
1578	return (0);
1579}
1580
1581/*
1582 * change the bits given by mask to them in val in register reg
1583 */
1584static int
1585hatm_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
1586{
1587	uint32_t regval;
1588	struct hatm_softc *sc = (struct hatm_softc *)ifatm;
1589
1590	if (reg >= (HE_REGO_SUNI_END - HE_REGO_SUNI) / 4)
1591		return (EINVAL);
1592
1593	mtx_assert(&sc->mtx, MA_OWNED);
1594	regval = READ4(sc, HE_REGO_SUNI + 4 * reg);
1595	regval = (regval & ~mask) | (val & mask);
1596	WRITE4(sc, HE_REGO_SUNI + 4 * reg, regval);
1597
1598	return (0);
1599}
1600
1601static struct utopia_methods hatm_utopia_methods = {
1602	hatm_utopia_readregs,
1603	hatm_utopia_writereg,
1604};
1605
1606/*
1607 * Detach - if it is running, stop. Destroy.
1608 */
1609static int
1610hatm_detach(device_t dev)
1611{
1612	struct hatm_softc *sc = (struct hatm_softc *)device_get_softc(dev);
1613
1614	mtx_lock(&sc->mtx);
1615	hatm_stop(sc);
1616	if (sc->utopia.state & UTP_ST_ATTACHED) {
1617		utopia_stop(&sc->utopia);
1618		utopia_detach(&sc->utopia);
1619	}
1620	mtx_unlock(&sc->mtx);
1621
1622	atm_ifdetach(&sc->ifatm.ifnet);
1623
1624	hatm_destroy(sc);
1625
1626	return (0);
1627}
1628
1629/*
1630 * Attach to the device. Assume that no locking is needed here.
1631 * All resource we allocate here are freed by calling hatm_destroy.
1632 */
1633static int
1634hatm_attach(device_t dev)
1635{
1636	struct hatm_softc *sc;
1637	int unit;
1638	int error;
1639	uint32_t v;
1640	struct ifnet *ifp;
1641
1642	sc = device_get_softc(dev);
1643	unit = device_get_unit(dev);
1644
1645	sc->dev = dev;
1646	sc->ifatm.mib.device = ATM_DEVICE_HE155;
1647	sc->ifatm.mib.serial = 0;
1648	sc->ifatm.mib.hw_version = 0;
1649	sc->ifatm.mib.sw_version = 0;
1650	sc->ifatm.mib.vpi_bits = HE_CONFIG_VPI_BITS;
1651	sc->ifatm.mib.vci_bits = HE_CONFIG_VCI_BITS;
1652	sc->ifatm.mib.max_vpcs = 0;
1653	sc->ifatm.mib.max_vccs = HE_MAX_VCCS;
1654	sc->ifatm.mib.media = IFM_ATM_UNKNOWN;
1655	sc->he622 = 0;
1656	sc->ifatm.phy = &sc->utopia;
1657
1658	SLIST_INIT(&sc->mbuf0_list);
1659	SLIST_INIT(&sc->mbuf1_list);
1660	SLIST_INIT(&sc->tpd_free);
1661
1662	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1663	mtx_init(&sc->mbuf0_mtx, device_get_nameunit(dev), "HEb0", MTX_DEF);
1664	mtx_init(&sc->mbuf1_mtx, device_get_nameunit(dev), "HEb1", MTX_DEF);
1665	cv_init(&sc->vcc_cv, "HEVCCcv");
1666	cv_init(&sc->cv_rcclose, "RCClose");
1667
1668	sysctl_ctx_init(&sc->sysctl_ctx);
1669
1670	/*
1671	 * 4.2 BIOS Configuration
1672	 */
1673	v = pci_read_config(dev, PCIR_COMMAND, 2);
1674	v |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN | PCIM_CMD_MWRICEN;
1675	pci_write_config(dev, PCIR_COMMAND, v, 2);
1676
1677	/*
1678	 * 4.3 PCI Bus Controller-Specific Initialisation
1679	 */
1680	v = pci_read_config(dev, HE_PCIR_GEN_CNTL_0, 4);
1681	v |= HE_PCIM_CTL0_MRL | HE_PCIM_CTL0_MRM | HE_PCIM_CTL0_IGNORE_TIMEOUT;
1682#if BYTE_ORDER == BIG_ENDIAN && 0
1683	v |= HE_PCIM_CTL0_BIGENDIAN;
1684#endif
1685	pci_write_config(dev, HE_PCIR_GEN_CNTL_0, v, 4);
1686
1687	/*
1688	 * Map memory
1689	 */
1690	v = pci_read_config(dev, PCIR_COMMAND, 2);
1691	if (!(v & PCIM_CMD_MEMEN)) {
1692		device_printf(dev, "failed to enable memory\n");
1693		error = ENXIO;
1694		goto failed;
1695	}
1696	sc->memid = PCIR_MAPS;
1697	sc->memres = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->memid,
1698	    0, ~0, 1, RF_ACTIVE);
1699	if (sc->memres == NULL) {
1700		device_printf(dev, "could not map memory\n");
1701		error = ENXIO;
1702		goto failed;
1703	}
1704	sc->memh = rman_get_bushandle(sc->memres);
1705	sc->memt = rman_get_bustag(sc->memres);
1706
1707	/*
1708	 * ALlocate a DMA tag for subsequent allocations
1709	 */
1710	if (bus_dma_tag_create(NULL, 1, 0,
1711	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1712	    NULL, NULL,
1713	    BUS_SPACE_MAXSIZE_32BIT, 1,
1714	    BUS_SPACE_MAXSIZE_32BIT, 0,
1715	    NULL, NULL, &sc->parent_tag)) {
1716		device_printf(dev, "could not allocate DMA tag\n");
1717		error = ENOMEM;
1718		goto failed;
1719	}
1720
1721	if (bus_dma_tag_create(sc->parent_tag, 1, 0,
1722	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1723	    NULL, NULL,
1724	    MBUF_ALLOC_SIZE, 1,
1725	    MBUF_ALLOC_SIZE, 0,
1726	    NULL, NULL, &sc->mbuf_tag)) {
1727		device_printf(dev, "could not allocate mbuf DMA tag\n");
1728		error = ENOMEM;
1729		goto failed;
1730	}
1731
1732	/*
1733	 * Allocate a DMA tag for packets to send. Here we have a problem with
1734	 * the specification of the maximum number of segments. Theoretically
1735	 * this would be the size of the transmit ring - 1 multiplied by 3,
1736	 * but this would not work. So make the maximum number of TPDs
1737	 * occupied by one packet a configuration parameter.
1738	 */
1739	if (bus_dma_tag_create(NULL, 1, 0,
1740	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1741	    HE_MAX_PDU, 3 * HE_CONFIG_MAX_TPD_PER_PACKET, HE_MAX_PDU, 0,
1742	    NULL, NULL, &sc->tx_tag)) {
1743		device_printf(dev, "could not allocate TX tag\n");
1744		error = ENOMEM;
1745		goto failed;
1746	}
1747
1748	/*
1749	 * Setup the interrupt
1750	 */
1751	sc->irqid = 0;
1752	sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irqid,
1753	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
1754	if (sc->irqres == 0) {
1755		device_printf(dev, "could not allocate irq\n");
1756		error = ENXIO;
1757		goto failed;
1758	}
1759
1760	ifp = &sc->ifatm.ifnet;
1761	ifp->if_softc = sc;
1762	ifp->if_unit = unit;
1763	ifp->if_name = "hatm";
1764
1765	/*
1766	 * Make the sysctl tree
1767	 */
1768	error = ENOMEM;
1769	if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1770	    SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
1771	    device_get_nameunit(dev), CTLFLAG_RD, 0, "")) == NULL)
1772		goto failed;
1773
1774	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1775	    OID_AUTO, "istats", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, CTL_ISTATS,
1776	    hatm_sysctl, "LU", "internal statistics") == NULL)
1777		goto failed;
1778
1779#ifdef HATM_DEBUG
1780	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1781	    OID_AUTO, "tsr", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1782	    hatm_sysctl_tsr, "S", "transmission status registers") == NULL)
1783		goto failed;
1784
1785	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1786	    OID_AUTO, "tpd", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1787	    hatm_sysctl_tpd, "S", "transmission packet descriptors") == NULL)
1788		goto failed;
1789
1790	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1791	    OID_AUTO, "mbox", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1792	    hatm_sysctl_mbox, "S", "mbox registers") == NULL)
1793		goto failed;
1794
1795	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1796	    OID_AUTO, "cm", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1797	    hatm_sysctl_cm, "S", "connection memory") == NULL)
1798		goto failed;
1799
1800	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1801	    OID_AUTO, "heregs", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1802	    hatm_sysctl_heregs, "S", "card registers") == NULL)
1803		goto failed;
1804
1805	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1806	    OID_AUTO, "lbmem", CTLFLAG_RD | CTLTYPE_OPAQUE, sc, 0,
1807	    hatm_sysctl_lbmem, "S", "local memory") == NULL)
1808		goto failed;
1809
1810	kenv_getuint(sc, "debug", &sc->debug, 0, 1);
1811#endif
1812
1813	/*
1814	 * Configure
1815	 */
1816	if ((error = hatm_configure(sc)) != 0)
1817		goto failed;
1818
1819	/*
1820	 * Compute memory parameters
1821	 */
1822	if (sc->rbp_s0.size != 0) {
1823		sc->rbp_s0.mask = (sc->rbp_s0.size - 1) << 3;
1824		sc->rbp_s0.mem.size = sc->rbp_s0.size * 8;
1825		sc->rbp_s0.mem.align = sc->rbp_s0.mem.size;
1826	}
1827	if (sc->rbp_l0.size != 0) {
1828		sc->rbp_l0.mask = (sc->rbp_l0.size - 1) << 3;
1829		sc->rbp_l0.mem.size = sc->rbp_l0.size * 8;
1830		sc->rbp_l0.mem.align = sc->rbp_l0.mem.size;
1831	}
1832	if (sc->rbp_s1.size != 0) {
1833		sc->rbp_s1.mask = (sc->rbp_s1.size - 1) << 3;
1834		sc->rbp_s1.mem.size = sc->rbp_s1.size * 8;
1835		sc->rbp_s1.mem.align = sc->rbp_s1.mem.size;
1836	}
1837	if (sc->rbrq_0.size != 0) {
1838		sc->rbrq_0.mem.size = sc->rbrq_0.size * 8;
1839		sc->rbrq_0.mem.align = sc->rbrq_0.mem.size;
1840	}
1841	if (sc->rbrq_1.size != 0) {
1842		sc->rbrq_1.mem.size = sc->rbrq_1.size * 8;
1843		sc->rbrq_1.mem.align = sc->rbrq_1.mem.size;
1844	}
1845
1846	sc->irq_0.mem.size = sc->irq_0.size * sizeof(uint32_t);
1847	sc->irq_0.mem.align = 4 * 1024;
1848
1849	sc->tbrq.mem.size = sc->tbrq.size * 4;
1850	sc->tbrq.mem.align = 2 * sc->tbrq.mem.size; /* ZZZ */
1851
1852	sc->tpdrq.mem.size = sc->tpdrq.size * 8;
1853	sc->tpdrq.mem.align = sc->tpdrq.mem.size;
1854
1855	sc->hsp_mem.size = sizeof(struct he_hsp);
1856	sc->hsp_mem.align = 1024;
1857
1858	sc->lbufs_size = sc->rbp_l0.size + sc->rbrq_0.size;
1859	sc->tpd_total = sc->tbrq.size + sc->tpdrq.size;
1860	sc->tpds.align = 64;
1861	sc->tpds.size = sc->tpd_total * HE_TPD_SIZE;
1862
1863	hatm_init_rmaps(sc);
1864	hatm_init_smbufs(sc);
1865	if ((error = hatm_init_tpds(sc)) != 0)
1866		goto failed;
1867
1868	/*
1869	 * Allocate memory
1870	 */
1871	if ((error = hatm_alloc_dmamem(sc, "IRQ", &sc->irq_0.mem)) != 0 ||
1872	    (error = hatm_alloc_dmamem(sc, "TBRQ0", &sc->tbrq.mem)) != 0 ||
1873	    (error = hatm_alloc_dmamem(sc, "TPDRQ", &sc->tpdrq.mem)) != 0 ||
1874	    (error = hatm_alloc_dmamem(sc, "HSP", &sc->hsp_mem)) != 0)
1875		goto failed;
1876
1877	if (sc->rbp_s0.mem.size != 0 &&
1878	    (error = hatm_alloc_dmamem(sc, "RBPS0", &sc->rbp_s0.mem)))
1879		goto failed;
1880	if (sc->rbp_l0.mem.size != 0 &&
1881	    (error = hatm_alloc_dmamem(sc, "RBPL0", &sc->rbp_l0.mem)))
1882		goto failed;
1883	if (sc->rbp_s1.mem.size != 0 &&
1884	    (error = hatm_alloc_dmamem(sc, "RBPS1", &sc->rbp_s1.mem)))
1885		goto failed;
1886
1887	if (sc->rbrq_0.mem.size != 0 &&
1888	    (error = hatm_alloc_dmamem(sc, "RBRQ0", &sc->rbrq_0.mem)))
1889		goto failed;
1890	if (sc->rbrq_1.mem.size != 0 &&
1891	    (error = hatm_alloc_dmamem(sc, "RBRQ1", &sc->rbrq_1.mem)))
1892		goto failed;
1893
1894	if ((sc->vcc_zone = uma_zcreate("HE vccs", sizeof(struct hevcc),
1895	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0)) == NULL) {
1896		device_printf(dev, "cannot allocate zone for vccs\n");
1897		goto failed;
1898	}
1899
1900	/*
1901	 * 4.4 Reset the card.
1902	 */
1903	if ((error = hatm_reset(sc)) != 0)
1904		goto failed;
1905
1906	/*
1907	 * Read the prom.
1908	 */
1909	hatm_init_bus_width(sc);
1910	hatm_init_read_eeprom(sc);
1911	hatm_init_endianess(sc);
1912
1913	/*
1914	 * Initialize interface
1915	 */
1916	ifp->if_flags = IFF_SIMPLEX;
1917	ifp->if_ioctl = hatm_ioctl;
1918	ifp->if_start = hatm_start;
1919	ifp->if_watchdog = NULL;
1920	ifp->if_init = hatm_init;
1921
1922	utopia_attach(&sc->utopia, &sc->ifatm, &sc->media, &sc->mtx,
1923	    &sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1924	    &hatm_utopia_methods);
1925	utopia_init_media(&sc->utopia);
1926
1927	/* these two SUNI routines need the lock */
1928	mtx_lock(&sc->mtx);
1929	/* poll while we are not running */
1930	sc->utopia.flags |= UTP_FL_POLL_CARRIER;
1931	utopia_start(&sc->utopia);
1932	utopia_reset(&sc->utopia);
1933	mtx_unlock(&sc->mtx);
1934
1935	atm_ifattach(ifp);
1936
1937#ifdef ENABLE_BPF
1938	bpfattach(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
1939#endif
1940
1941	error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_NET, hatm_intr,
1942	    &sc->irq_0, &sc->ih);
1943	if (error != 0) {
1944		device_printf(dev, "could not setup interrupt\n");
1945		hatm_detach(dev);
1946		return (error);
1947	}
1948
1949	return (0);
1950
1951  failed:
1952	hatm_destroy(sc);
1953	return (error);
1954}
1955
1956/*
1957 * Start the interface. Assume a state as from attach().
1958 */
1959void
1960hatm_initialize(struct hatm_softc *sc)
1961{
1962	uint32_t v;
1963	u_int cid;
1964	static const u_int layout[2][7] = HE_CONFIG_MEM_LAYOUT;
1965
1966	if (sc->ifatm.ifnet.if_flags & IFF_RUNNING)
1967		return;
1968
1969	hatm_init_bus_width(sc);
1970	hatm_init_endianess(sc);
1971
1972	if_printf(&sc->ifatm.ifnet, "%s, Rev. %s, S/N %u, "
1973	    "MAC=%02x:%02x:%02x:%02x:%02x:%02x (%ubit PCI)\n",
1974	    sc->prod_id, sc->rev, sc->ifatm.mib.serial,
1975	    sc->ifatm.mib.esi[0], sc->ifatm.mib.esi[1], sc->ifatm.mib.esi[2],
1976	    sc->ifatm.mib.esi[3], sc->ifatm.mib.esi[4], sc->ifatm.mib.esi[5],
1977	    sc->pci64 ? 64 : 32);
1978
1979	/*
1980	 * 4.8 SDRAM Controller Initialisation
1981	 * 4.9 Initialize RNUM value
1982	 */
1983	if (sc->he622)
1984		WRITE4(sc, HE_REGO_SDRAM_CNTL, HE_REGM_SDRAM_64BIT);
1985	else
1986		WRITE4(sc, HE_REGO_SDRAM_CNTL, 0);
1987	BARRIER_W(sc);
1988
1989	v = READ4(sc, HE_REGO_LB_SWAP);
1990	BARRIER_R(sc);
1991	v |= 0xf << HE_REGS_LBSWAP_RNUM;
1992	WRITE4(sc, HE_REGO_LB_SWAP, v);
1993	BARRIER_W(sc);
1994
1995	hatm_init_irq(sc, &sc->irq_0, 0);
1996	hatm_clear_irq(sc, 1);
1997	hatm_clear_irq(sc, 2);
1998	hatm_clear_irq(sc, 3);
1999
2000	WRITE4(sc, HE_REGO_GRP_1_0_MAP, 0);
2001	WRITE4(sc, HE_REGO_GRP_3_2_MAP, 0);
2002	WRITE4(sc, HE_REGO_GRP_5_4_MAP, 0);
2003	WRITE4(sc, HE_REGO_GRP_7_6_MAP, 0);
2004	BARRIER_W(sc);
2005
2006	/*
2007	 * 4.11 Enable PCI Bus Controller State Machine
2008	 */
2009	v = READ4(sc, HE_REGO_HOST_CNTL);
2010	BARRIER_R(sc);
2011	v |= HE_REGM_HOST_OUTFF_ENB | HE_REGM_HOST_CMDFF_ENB |
2012	    HE_REGM_HOST_QUICK_RD | HE_REGM_HOST_QUICK_WR;
2013	WRITE4(sc, HE_REGO_HOST_CNTL, v);
2014	BARRIER_W(sc);
2015
2016	/*
2017	 * 5.1.1 Generic configuration state
2018	 */
2019	sc->cells_per_row = layout[sc->he622][0];
2020	sc->bytes_per_row = layout[sc->he622][1];
2021	sc->r0_numrows = layout[sc->he622][2];
2022	sc->tx_numrows = layout[sc->he622][3];
2023	sc->r1_numrows = layout[sc->he622][4];
2024	sc->r0_startrow = layout[sc->he622][5];
2025	sc->tx_startrow = sc->r0_startrow + sc->r0_numrows;
2026	sc->r1_startrow = sc->tx_startrow + sc->tx_numrows;
2027	sc->cells_per_lbuf = layout[sc->he622][6];
2028
2029	sc->r0_numbuffs = sc->r0_numrows * (sc->cells_per_row /
2030	    sc->cells_per_lbuf);
2031	sc->r1_numbuffs = sc->r1_numrows * (sc->cells_per_row /
2032	    sc->cells_per_lbuf);
2033	sc->tx_numbuffs = sc->tx_numrows * (sc->cells_per_row /
2034	    sc->cells_per_lbuf);
2035
2036	if (sc->r0_numbuffs > 2560)
2037		sc->r0_numbuffs = 2560;
2038	if (sc->r1_numbuffs > 2560)
2039		sc->r1_numbuffs = 2560;
2040	if (sc->tx_numbuffs > 5120)
2041		sc->tx_numbuffs = 5120;
2042
2043	DBG(sc, ATTACH, ("cells_per_row=%u bytes_per_row=%u r0_numrows=%u "
2044	    "tx_numrows=%u r1_numrows=%u r0_startrow=%u tx_startrow=%u "
2045	    "r1_startrow=%u cells_per_lbuf=%u\nr0_numbuffs=%u r1_numbuffs=%u "
2046	    "tx_numbuffs=%u\n", sc->cells_per_row, sc->bytes_per_row,
2047	    sc->r0_numrows, sc->tx_numrows, sc->r1_numrows, sc->r0_startrow,
2048	    sc->tx_startrow, sc->r1_startrow, sc->cells_per_lbuf,
2049	    sc->r0_numbuffs, sc->r1_numbuffs, sc->tx_numbuffs));
2050
2051	/*
2052	 * 5.1.2 Configure Hardware dependend registers
2053	 */
2054	if (sc->he622) {
2055		WRITE4(sc, HE_REGO_LBARB,
2056		    (0x2 << HE_REGS_LBARB_SLICE) |
2057		    (0xf << HE_REGS_LBARB_RNUM) |
2058		    (0x3 << HE_REGS_LBARB_THPRI) |
2059		    (0x3 << HE_REGS_LBARB_RHPRI) |
2060		    (0x2 << HE_REGS_LBARB_TLPRI) |
2061		    (0x1 << HE_REGS_LBARB_RLPRI) |
2062		    (0x28 << HE_REGS_LBARB_BUS_MULT) |
2063		    (0x50 << HE_REGS_LBARB_NET_PREF));
2064		BARRIER_W(sc);
2065		WRITE4(sc, HE_REGO_SDRAMCON,
2066		    /* HW bug: don't use banking */
2067		    /* HE_REGM_SDRAMCON_BANK | */
2068		    HE_REGM_SDRAMCON_WIDE |
2069		    (0x384 << HE_REGS_SDRAMCON_REF));
2070		BARRIER_W(sc);
2071		WRITE4(sc, HE_REGO_RCMCONFIG,
2072		    (0x1 << HE_REGS_RCMCONFIG_BANK_WAIT) |
2073		    (0x1 << HE_REGS_RCMCONFIG_RW_WAIT) |
2074		    (0x0 << HE_REGS_RCMCONFIG_TYPE));
2075		WRITE4(sc, HE_REGO_TCMCONFIG,
2076		    (0x2 << HE_REGS_TCMCONFIG_BANK_WAIT) |
2077		    (0x1 << HE_REGS_TCMCONFIG_RW_WAIT) |
2078		    (0x0 << HE_REGS_TCMCONFIG_TYPE));
2079	} else {
2080		WRITE4(sc, HE_REGO_LBARB,
2081		    (0x2 << HE_REGS_LBARB_SLICE) |
2082		    (0xf << HE_REGS_LBARB_RNUM) |
2083		    (0x3 << HE_REGS_LBARB_THPRI) |
2084		    (0x3 << HE_REGS_LBARB_RHPRI) |
2085		    (0x2 << HE_REGS_LBARB_TLPRI) |
2086		    (0x1 << HE_REGS_LBARB_RLPRI) |
2087		    (0x46 << HE_REGS_LBARB_BUS_MULT) |
2088		    (0x8C << HE_REGS_LBARB_NET_PREF));
2089		BARRIER_W(sc);
2090		WRITE4(sc, HE_REGO_SDRAMCON,
2091		    /* HW bug: don't use banking */
2092		    /* HE_REGM_SDRAMCON_BANK | */
2093		    (0x150 << HE_REGS_SDRAMCON_REF));
2094		BARRIER_W(sc);
2095		WRITE4(sc, HE_REGO_RCMCONFIG,
2096		    (0x0 << HE_REGS_RCMCONFIG_BANK_WAIT) |
2097		    (0x1 << HE_REGS_RCMCONFIG_RW_WAIT) |
2098		    (0x0 << HE_REGS_RCMCONFIG_TYPE));
2099		WRITE4(sc, HE_REGO_TCMCONFIG,
2100		    (0x1 << HE_REGS_TCMCONFIG_BANK_WAIT) |
2101		    (0x1 << HE_REGS_TCMCONFIG_RW_WAIT) |
2102		    (0x0 << HE_REGS_TCMCONFIG_TYPE));
2103	}
2104	WRITE4(sc, HE_REGO_LBCONFIG, (sc->cells_per_lbuf * 48));
2105
2106	WRITE4(sc, HE_REGO_RLBC_H, 0);
2107	WRITE4(sc, HE_REGO_RLBC_T, 0);
2108	WRITE4(sc, HE_REGO_RLBC_H2, 0);
2109
2110	WRITE4(sc, HE_REGO_RXTHRSH, 512);
2111	WRITE4(sc, HE_REGO_LITHRSH, 256);
2112
2113	WRITE4(sc, HE_REGO_RLBF0_C, sc->r0_numbuffs);
2114	WRITE4(sc, HE_REGO_RLBF1_C, sc->r1_numbuffs);
2115
2116	if (sc->he622) {
2117		WRITE4(sc, HE_REGO_RCCONFIG,
2118		    (8 << HE_REGS_RCCONFIG_UTDELAY) |
2119		    (sc->ifatm.mib.vpi_bits << HE_REGS_RCCONFIG_VP) |
2120		    (sc->ifatm.mib.vci_bits << HE_REGS_RCCONFIG_VC));
2121		WRITE4(sc, HE_REGO_TXCONFIG,
2122		    (32 << HE_REGS_TXCONFIG_THRESH) |
2123		    (sc->ifatm.mib.vci_bits << HE_REGS_TXCONFIG_VCI_MASK) |
2124		    (sc->tx_numbuffs << HE_REGS_TXCONFIG_LBFREE));
2125	} else {
2126		WRITE4(sc, HE_REGO_RCCONFIG,
2127		    (0 << HE_REGS_RCCONFIG_UTDELAY) |
2128		    HE_REGM_RCCONFIG_UT_MODE |
2129		    (sc->ifatm.mib.vpi_bits << HE_REGS_RCCONFIG_VP) |
2130		    (sc->ifatm.mib.vci_bits << HE_REGS_RCCONFIG_VC));
2131		WRITE4(sc, HE_REGO_TXCONFIG,
2132		    (32 << HE_REGS_TXCONFIG_THRESH) |
2133		    HE_REGM_TXCONFIG_UTMODE |
2134		    (sc->ifatm.mib.vci_bits << HE_REGS_TXCONFIG_VCI_MASK) |
2135		    (sc->tx_numbuffs << HE_REGS_TXCONFIG_LBFREE));
2136	}
2137
2138	WRITE4(sc, HE_REGO_TXAAL5_PROTO, 0);
2139
2140	if (sc->rbp_s1.size != 0) {
2141		WRITE4(sc, HE_REGO_RHCONFIG,
2142		    HE_REGM_RHCONFIG_PHYENB |
2143		    ((sc->he622 ? 0x41 : 0x31) << HE_REGS_RHCONFIG_PTMR_PRE) |
2144		    (1 << HE_REGS_RHCONFIG_OAM_GID));
2145	} else {
2146		WRITE4(sc, HE_REGO_RHCONFIG,
2147		    HE_REGM_RHCONFIG_PHYENB |
2148		    ((sc->he622 ? 0x41 : 0x31) << HE_REGS_RHCONFIG_PTMR_PRE) |
2149		    (0 << HE_REGS_RHCONFIG_OAM_GID));
2150	}
2151	BARRIER_W(sc);
2152
2153	hatm_init_cm(sc);
2154
2155	hatm_init_rx_buffer_pool(sc, 0, sc->r0_startrow, sc->r0_numbuffs);
2156	hatm_init_rx_buffer_pool(sc, 1, sc->r1_startrow, sc->r1_numbuffs);
2157	hatm_init_tx_buffer_pool(sc, sc->tx_startrow, sc->tx_numbuffs);
2158
2159	hatm_init_imed_queues(sc);
2160
2161	/*
2162	 * 5.1.6 Application tunable Parameters
2163	 */
2164	WRITE4(sc, HE_REGO_MCC, 0);
2165	WRITE4(sc, HE_REGO_OEC, 0);
2166	WRITE4(sc, HE_REGO_DCC, 0);
2167	WRITE4(sc, HE_REGO_CEC, 0);
2168
2169	hatm_init_cs_block(sc);
2170	hatm_init_cs_block_cm(sc);
2171
2172	hatm_init_rpool(sc, &sc->rbp_s0, 0, 0);
2173	hatm_init_rpool(sc, &sc->rbp_l0, 0, 1);
2174	hatm_init_rpool(sc, &sc->rbp_s1, 1, 0);
2175	hatm_clear_rpool(sc, 1, 1);
2176	hatm_clear_rpool(sc, 2, 0);
2177	hatm_clear_rpool(sc, 2, 1);
2178	hatm_clear_rpool(sc, 3, 0);
2179	hatm_clear_rpool(sc, 3, 1);
2180	hatm_clear_rpool(sc, 4, 0);
2181	hatm_clear_rpool(sc, 4, 1);
2182	hatm_clear_rpool(sc, 5, 0);
2183	hatm_clear_rpool(sc, 5, 1);
2184	hatm_clear_rpool(sc, 6, 0);
2185	hatm_clear_rpool(sc, 6, 1);
2186	hatm_clear_rpool(sc, 7, 0);
2187	hatm_clear_rpool(sc, 7, 1);
2188	hatm_init_rbrq(sc, &sc->rbrq_0, 0);
2189	hatm_init_rbrq(sc, &sc->rbrq_1, 1);
2190	hatm_clear_rbrq(sc, 2);
2191	hatm_clear_rbrq(sc, 3);
2192	hatm_clear_rbrq(sc, 4);
2193	hatm_clear_rbrq(sc, 5);
2194	hatm_clear_rbrq(sc, 6);
2195	hatm_clear_rbrq(sc, 7);
2196
2197	sc->lbufs_next = 0;
2198	bzero(sc->lbufs, sizeof(sc->lbufs[0]) * sc->lbufs_size);
2199
2200	hatm_init_tbrq(sc, &sc->tbrq, 0);
2201	hatm_clear_tbrq(sc, 1);
2202	hatm_clear_tbrq(sc, 2);
2203	hatm_clear_tbrq(sc, 3);
2204	hatm_clear_tbrq(sc, 4);
2205	hatm_clear_tbrq(sc, 5);
2206	hatm_clear_tbrq(sc, 6);
2207	hatm_clear_tbrq(sc, 7);
2208
2209	hatm_init_tpdrq(sc);
2210
2211	WRITE4(sc, HE_REGO_UBUFF_BA, (sc->he622 ? 0x104780 : 0x800));
2212
2213	/*
2214	 * Initialize HSP
2215	 */
2216	bzero(sc->hsp_mem.base, sc->hsp_mem.size);
2217	sc->hsp = sc->hsp_mem.base;
2218	WRITE4(sc, HE_REGO_HSP_BA, sc->hsp_mem.paddr);
2219
2220	/*
2221	 * 5.1.12 Enable transmit and receive
2222	 * Enable bus master and interrupts
2223	 */
2224	v = READ_MBOX4(sc, HE_REGO_CS_ERCTL0);
2225	v |= 0x18000000;
2226	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL0, v);
2227
2228	v = READ4(sc, HE_REGO_RCCONFIG);
2229	v |= HE_REGM_RCCONFIG_RXENB;
2230	WRITE4(sc, HE_REGO_RCCONFIG, v);
2231
2232	v = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
2233	v |= HE_PCIM_CTL0_INIT_ENB | HE_PCIM_CTL0_INT_PROC_ENB;
2234	pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v, 4);
2235
2236	sc->ifatm.ifnet.if_flags |= IFF_RUNNING;
2237	sc->ifatm.ifnet.if_baudrate = 53 * 8 * sc->ifatm.mib.pcr;
2238
2239	sc->utopia.flags &= ~UTP_FL_POLL_CARRIER;
2240
2241	/* reopen vccs */
2242	for (cid = 0; cid < HE_MAX_VCCS; cid++)
2243		if (sc->vccs[cid] != NULL)
2244			hatm_load_vc(sc, cid, 1);
2245
2246	ATMEV_SEND_IFSTATE_CHANGED(&sc->ifatm,
2247	    sc->utopia.carrier == UTP_CARR_OK);
2248}
2249
2250/*
2251 * This functions stops the card and frees all resources allocated after
2252 * the attach. Must have the global lock.
2253 */
2254void
2255hatm_stop(struct hatm_softc *sc)
2256{
2257	uint32_t v;
2258	u_int i, p, cid;
2259	struct mbuf_chunk_hdr *ch;
2260	struct mbuf_page *pg;
2261
2262	mtx_assert(&sc->mtx, MA_OWNED);
2263
2264	if (!(sc->ifatm.ifnet.if_flags & IFF_RUNNING))
2265		return;
2266	sc->ifatm.ifnet.if_flags &= ~IFF_RUNNING;
2267
2268	ATMEV_SEND_IFSTATE_CHANGED(&sc->ifatm,
2269	    sc->utopia.carrier == UTP_CARR_OK);
2270
2271	sc->utopia.flags |= UTP_FL_POLL_CARRIER;
2272
2273	/*
2274	 * Stop and reset the hardware so that everything remains
2275	 * stable.
2276	 */
2277	v = READ_MBOX4(sc, HE_REGO_CS_ERCTL0);
2278	v &= ~0x18000000;
2279	WRITE_MBOX4(sc, HE_REGO_CS_ERCTL0, v);
2280
2281	v = READ4(sc, HE_REGO_RCCONFIG);
2282	v &= ~HE_REGM_RCCONFIG_RXENB;
2283	WRITE4(sc, HE_REGO_RCCONFIG, v);
2284
2285	WRITE4(sc, HE_REGO_RHCONFIG, (0x2 << HE_REGS_RHCONFIG_PTMR_PRE));
2286	BARRIER_W(sc);
2287
2288	v = READ4(sc, HE_REGO_HOST_CNTL);
2289	BARRIER_R(sc);
2290	v &= ~(HE_REGM_HOST_OUTFF_ENB | HE_REGM_HOST_CMDFF_ENB);
2291	WRITE4(sc, HE_REGO_HOST_CNTL, v);
2292	BARRIER_W(sc);
2293
2294	/*
2295	 * Disable bust master and interrupts
2296	 */
2297	v = pci_read_config(sc->dev, HE_PCIR_GEN_CNTL_0, 4);
2298	v &= ~(HE_PCIM_CTL0_INIT_ENB | HE_PCIM_CTL0_INT_PROC_ENB);
2299	pci_write_config(sc->dev, HE_PCIR_GEN_CNTL_0, v, 4);
2300
2301	(void)hatm_reset(sc);
2302
2303	/*
2304	 * Card resets the SUNI when resetted, so re-initialize it
2305	 */
2306	utopia_reset(&sc->utopia);
2307
2308	/*
2309	 * Give any waiters on closing a VCC a chance. They will stop
2310	 * to wait if they see that IFF_RUNNING disappeared.
2311	 */
2312	while (!(cv_waitq_empty(&sc->vcc_cv))) {
2313		cv_broadcast(&sc->vcc_cv);
2314		DELAY(100);
2315	}
2316	while (!(cv_waitq_empty(&sc->cv_rcclose))) {
2317		cv_broadcast(&sc->cv_rcclose);
2318	}
2319
2320	/*
2321	 * Now free all resources.
2322	 */
2323
2324	/*
2325	 * Free the large mbufs that are given to the card.
2326	 */
2327	for (i = 0 ; i < sc->lbufs_size; i++) {
2328		if (sc->lbufs[i] != NULL) {
2329			bus_dmamap_unload(sc->mbuf_tag, sc->rmaps[i]);
2330			m_freem(sc->lbufs[i]);
2331			sc->lbufs[i] = NULL;
2332		}
2333	}
2334
2335	/*
2336	 * Free small buffers
2337	 */
2338	for (p = 0; p < sc->mbuf_npages; p++) {
2339		pg = sc->mbuf_pages[p];
2340		for (i = 0; i < pg->hdr.nchunks; i++) {
2341			if (MBUF_TST_BIT(pg->hdr.card, i)) {
2342				MBUF_CLR_BIT(pg->hdr.card, i);
2343				MBUF_CLR_BIT(pg->hdr.used, i);
2344				ch = (struct mbuf_chunk_hdr *) ((char *)pg +
2345				    i * pg->hdr.chunksize + pg->hdr.hdroff);
2346				m_freem(ch->mbuf);
2347			}
2348		}
2349	}
2350
2351	hatm_stop_tpds(sc);
2352
2353	/*
2354	 * Free all partial reassembled PDUs on any VCC.
2355	 */
2356	for (cid = 0; cid < HE_MAX_VCCS; cid++) {
2357		if (sc->vccs[cid] != NULL) {
2358			if (sc->vccs[cid]->chain != NULL) {
2359				m_freem(sc->vccs[cid]->chain);
2360				sc->vccs[cid]->chain = NULL;
2361				sc->vccs[cid]->last = NULL;
2362			}
2363			if (!(sc->vccs[cid]->vflags & (HE_VCC_RX_OPEN |
2364			    HE_VCC_TX_OPEN))) {
2365				hatm_tx_vcc_closed(sc, cid);
2366				uma_zfree(sc->vcc_zone, sc->vccs[cid]);
2367				sc->vccs[cid] = NULL;
2368				sc->open_vccs--;
2369			} else {
2370				sc->vccs[cid]->vflags = 0;
2371				sc->vccs[cid]->ntpds = 0;
2372			}
2373		}
2374	}
2375
2376	if (sc->rbp_s0.size != 0)
2377		bzero(sc->rbp_s0.mem.base, sc->rbp_s0.mem.size);
2378	if (sc->rbp_l0.size != 0)
2379		bzero(sc->rbp_l0.mem.base, sc->rbp_l0.mem.size);
2380	if (sc->rbp_s1.size != 0)
2381		bzero(sc->rbp_s1.mem.base, sc->rbp_s1.mem.size);
2382	if (sc->rbrq_0.size != 0)
2383		bzero(sc->rbrq_0.mem.base, sc->rbrq_0.mem.size);
2384	if (sc->rbrq_1.size != 0)
2385		bzero(sc->rbrq_1.mem.base, sc->rbrq_1.mem.size);
2386
2387	bzero(sc->tbrq.mem.base, sc->tbrq.mem.size);
2388	bzero(sc->tpdrq.mem.base, sc->tpdrq.mem.size);
2389	bzero(sc->hsp_mem.base, sc->hsp_mem.size);
2390}
2391
2392/************************************************************
2393 *
2394 * Driver infrastructure
2395 */
2396devclass_t hatm_devclass;
2397
2398static device_method_t hatm_methods[] = {
2399	DEVMETHOD(device_probe,		hatm_probe),
2400	DEVMETHOD(device_attach,	hatm_attach),
2401	DEVMETHOD(device_detach,	hatm_detach),
2402	{0,0}
2403};
2404static driver_t hatm_driver = {
2405	"hatm",
2406	hatm_methods,
2407	sizeof(struct hatm_softc),
2408};
2409DRIVER_MODULE(hatm, pci, hatm_driver, hatm_devclass, NULL, 0);
2410