ah_regdomain.c revision 188264
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2005-2006 Atheros Communications, Inc.
4 * All rights reserved.
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 * $FreeBSD: head/sys/dev/ath/ath_hal/ah_regdomain.c 188264 2009-02-07 01:54:57Z sam $
19 */
20#include "opt_ah.h"
21
22#include "ah.h"
23
24#include <net80211/_ieee80211.h>
25#include <net80211/ieee80211_regdomain.h>
26
27#include "ah_internal.h"
28#include "ah_eeprom.h"
29#include "ah_devid.h"
30
31/*
32 * XXX this code needs a audit+review
33 */
34
35/* used throughout this file... */
36#define	N(a)	(sizeof (a) / sizeof (a[0]))
37
38#define HAL_MODE_11A_TURBO	HAL_MODE_108A
39#define HAL_MODE_11G_TURBO	HAL_MODE_108G
40
41/*
42 * BMLEN defines the size of the bitmask used to hold frequency
43 * band specifications.  Note this must agree with the BM macro
44 * definition that's used to setup initializers.  See also further
45 * comments below.
46 */
47#define BMLEN 2		/* 2 x 64 bits in each channel bitmask */
48typedef uint64_t chanbmask_t[BMLEN];
49
50#define	W0(_a) \
51	(((_a) >= 0 && (_a) < 64 ? (((uint64_t) 1)<<(_a)) : (uint64_t) 0))
52#define	W1(_a) \
53	(((_a) > 63 && (_a) < 128 ? (((uint64_t) 1)<<((_a)-64)) : (uint64_t) 0))
54#define BM1(_fa)	{ W0(_fa), W1(_fa) }
55#define BM2(_fa, _fb)	{ W0(_fa) | W0(_fb), W1(_fa) | W1(_fb) }
56#define BM3(_fa, _fb, _fc) \
57	{ W0(_fa) | W0(_fb) | W0(_fc), W1(_fa) | W1(_fb) | W1(_fc) }
58#define BM4(_fa, _fb, _fc, _fd)						\
59	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd),			\
60	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) }
61#define BM5(_fa, _fb, _fc, _fd, _fe)					\
62	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe),		\
63	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) }
64#define BM6(_fa, _fb, _fc, _fd, _fe, _ff)				\
65	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff),	\
66	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) }
67#define BM7(_fa, _fb, _fc, _fd, _fe, _ff, _fg)	\
68	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) |	\
69	  W0(_fg),\
70	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) |	\
71	  W1(_fg) }
72#define BM8(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh)	\
73	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) |	\
74	  W0(_fg) | W0(_fh) ,	\
75	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) |	\
76	  W1(_fg) | W1(_fh) }
77#define BM9(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh, _fi)	\
78	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) |	\
79	  W0(_fg) | W0(_fh) | W0(_fi) ,	\
80	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) |	\
81	  W1(_fg) | W1(_fh) | W1(_fi) }
82
83/*
84 * Mask to check whether a domain is a multidomain or a single domain
85 */
86#define MULTI_DOMAIN_MASK 0xFF00
87
88/*
89 * Enumerated Regulatory Domain Information 8 bit values indicate that
90 * the regdomain is really a pair of unitary regdomains.  12 bit values
91 * are the real unitary regdomains and are the only ones which have the
92 * frequency bitmasks and flags set.
93 */
94enum {
95	/*
96	 * The following regulatory domain definitions are
97	 * found in the EEPROM. Each regulatory domain
98	 * can operate in either a 5GHz or 2.4GHz wireless mode or
99	 * both 5GHz and 2.4GHz wireless modes.
100	 * In general, the value holds no special
101	 * meaning and is used to decode into either specific
102	 * 2.4GHz or 5GHz wireless mode for that particular
103	 * regulatory domain.
104	 */
105	NO_ENUMRD	= 0x00,
106	NULL1_WORLD	= 0x03,		/* For 11b-only countries (no 11a allowed) */
107	NULL1_ETSIB	= 0x07,		/* Israel */
108	NULL1_ETSIC	= 0x08,
109	FCC1_FCCA	= 0x10,		/* USA */
110	FCC1_WORLD	= 0x11,		/* Hong Kong */
111	FCC4_FCCA	= 0x12,		/* USA - Public Safety */
112	FCC5_FCCB	= 0x13,		/* USA w/ 1/2 and 1/4 width channels */
113
114	FCC2_FCCA	= 0x20,		/* Canada */
115	FCC2_WORLD	= 0x21,		/* Australia & HK */
116	FCC2_ETSIC	= 0x22,
117	FRANCE_RES	= 0x31,		/* Legacy France for OEM */
118	FCC3_FCCA	= 0x3A,		/* USA & Canada w/5470 band, 11h, DFS enabled */
119	FCC3_WORLD	= 0x3B,		/* USA & Canada w/5470 band, 11h, DFS enabled */
120
121	ETSI1_WORLD	= 0x37,
122	ETSI3_ETSIA	= 0x32,		/* France (optional) */
123	ETSI2_WORLD	= 0x35,		/* Hungary & others */
124	ETSI3_WORLD	= 0x36,		/* France & others */
125	ETSI4_WORLD	= 0x30,
126	ETSI4_ETSIC	= 0x38,
127	ETSI5_WORLD	= 0x39,
128	ETSI6_WORLD	= 0x34,		/* Bulgaria */
129	ETSI_RESERVED	= 0x33,		/* Reserved (Do not used) */
130
131	MKK1_MKKA	= 0x40,		/* Japan (JP1) */
132	MKK1_MKKB	= 0x41,		/* Japan (JP0) */
133	APL4_WORLD	= 0x42,		/* Singapore */
134	MKK2_MKKA	= 0x43,		/* Japan with 4.9G channels */
135	APL_RESERVED	= 0x44,		/* Reserved (Do not used)  */
136	APL2_WORLD	= 0x45,		/* Korea */
137	APL2_APLC	= 0x46,
138	APL3_WORLD	= 0x47,
139	MKK1_FCCA	= 0x48,		/* Japan (JP1-1) */
140	APL2_APLD	= 0x49,		/* Korea with 2.3G channels */
141	MKK1_MKKA1	= 0x4A,		/* Japan (JE1) */
142	MKK1_MKKA2	= 0x4B,		/* Japan (JE2) */
143	MKK1_MKKC	= 0x4C,		/* Japan (MKK1_MKKA,except Ch14) */
144
145	APL3_FCCA       = 0x50,
146	APL1_WORLD	= 0x52,		/* Latin America */
147	APL1_FCCA	= 0x53,
148	APL1_APLA	= 0x54,
149	APL1_ETSIC	= 0x55,
150	APL2_ETSIC	= 0x56,		/* Venezuela */
151	APL5_WORLD	= 0x58,		/* Chile */
152	APL6_WORLD	= 0x5B,		/* Singapore */
153	APL7_FCCA   	= 0x5C,     	/* Taiwan 5.47 Band */
154	APL8_WORLD  	= 0x5D,     	/* Malaysia 5GHz */
155	APL9_WORLD  	= 0x5E,     	/* Korea 5GHz */
156
157	/*
158	 * World mode SKUs
159	 */
160	WOR0_WORLD	= 0x60,		/* World0 (WO0 SKU) */
161	WOR1_WORLD	= 0x61,		/* World1 (WO1 SKU) */
162	WOR2_WORLD	= 0x62,		/* World2 (WO2 SKU) */
163	WOR3_WORLD	= 0x63,		/* World3 (WO3 SKU) */
164	WOR4_WORLD	= 0x64,		/* World4 (WO4 SKU) */
165	WOR5_ETSIC	= 0x65,		/* World5 (WO5 SKU) */
166
167	WOR01_WORLD	= 0x66,		/* World0-1 (WW0-1 SKU) */
168	WOR02_WORLD	= 0x67,		/* World0-2 (WW0-2 SKU) */
169	EU1_WORLD	= 0x68,		/* Same as World0-2 (WW0-2 SKU), except active scan ch1-13. No ch14 */
170
171	WOR9_WORLD	= 0x69,		/* World9 (WO9 SKU) */
172	WORA_WORLD	= 0x6A,		/* WorldA (WOA SKU) */
173
174	MKK3_MKKB	= 0x80,		/* Japan UNI-1 even + MKKB */
175	MKK3_MKKA2	= 0x81,		/* Japan UNI-1 even + MKKA2 */
176	MKK3_MKKC	= 0x82,		/* Japan UNI-1 even + MKKC */
177
178	MKK4_MKKB	= 0x83,		/* Japan UNI-1 even + UNI-2 + MKKB */
179	MKK4_MKKA2	= 0x84,		/* Japan UNI-1 even + UNI-2 + MKKA2 */
180	MKK4_MKKC	= 0x85,		/* Japan UNI-1 even + UNI-2 + MKKC */
181
182	MKK5_MKKB	= 0x86,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKB */
183	MKK5_MKKA2	= 0x87,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKA2 */
184	MKK5_MKKC	= 0x88,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKC */
185
186	MKK6_MKKB	= 0x89,		/* Japan UNI-1 even + UNI-1 odd MKKB */
187	MKK6_MKKA2	= 0x8A,		/* Japan UNI-1 even + UNI-1 odd + MKKA2 */
188	MKK6_MKKC	= 0x8B,		/* Japan UNI-1 even + UNI-1 odd + MKKC */
189
190	MKK7_MKKB	= 0x8C,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKB */
191	MKK7_MKKA2	= 0x8D,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKA2 */
192	MKK7_MKKC	= 0x8E,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKC */
193
194	MKK8_MKKB	= 0x8F,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKB */
195	MKK8_MKKA2	= 0x90,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKA2 */
196	MKK8_MKKC	= 0x91,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKC */
197
198	/* Following definitions are used only by s/w to map old
199 	 * Japan SKUs.
200	 */
201	MKK3_MKKA       = 0xF0,         /* Japan UNI-1 even + MKKA */
202	MKK3_MKKA1      = 0xF1,         /* Japan UNI-1 even + MKKA1 */
203	MKK3_FCCA       = 0xF2,         /* Japan UNI-1 even + FCCA */
204	MKK4_MKKA       = 0xF3,         /* Japan UNI-1 even + UNI-2 + MKKA */
205	MKK4_MKKA1      = 0xF4,         /* Japan UNI-1 even + UNI-2 + MKKA1 */
206	MKK4_FCCA       = 0xF5,         /* Japan UNI-1 even + UNI-2 + FCCA */
207	MKK9_MKKA       = 0xF6,         /* Japan UNI-1 even + 4.9GHz */
208	MKK10_MKKA      = 0xF7,         /* Japan UNI-1 even + UNI-2 + 4.9GHz */
209
210	/*
211	 * Regulator domains ending in a number (e.g. APL1,
212	 * MK1, ETSI4, etc) apply to 5GHz channel and power
213	 * information.  Regulator domains ending in a letter
214	 * (e.g. APLA, FCCA, etc) apply to 2.4GHz channel and
215	 * power information.
216	 */
217	APL1		= 0x0150,	/* LAT & Asia */
218	APL2		= 0x0250,	/* LAT & Asia */
219	APL3		= 0x0350,	/* Taiwan */
220	APL4		= 0x0450,	/* Jordan */
221	APL5		= 0x0550,	/* Chile */
222	APL6		= 0x0650,	/* Singapore */
223	APL8		= 0x0850,	/* Malaysia */
224	APL9		= 0x0950,	/* Korea (South) ROC 3 */
225
226	ETSI1		= 0x0130,	/* Europe & others */
227	ETSI2		= 0x0230,	/* Europe & others */
228	ETSI3		= 0x0330,	/* Europe & others */
229	ETSI4		= 0x0430,	/* Europe & others */
230	ETSI5		= 0x0530,	/* Europe & others */
231	ETSI6		= 0x0630,	/* Europe & others */
232	ETSIA		= 0x0A30,	/* France */
233	ETSIB		= 0x0B30,	/* Israel */
234	ETSIC		= 0x0C30,	/* Latin America */
235
236	FCC1		= 0x0110,	/* US & others */
237	FCC2		= 0x0120,	/* Canada, Australia & New Zealand */
238	FCC3		= 0x0160,	/* US w/new middle band & DFS */
239	FCC4          	= 0x0165,     	/* US Public Safety */
240	FCC5          	= 0x0166,     	/* US w/ 1/2 and 1/4 width channels */
241	FCCA		= 0x0A10,
242	FCCB		= 0x0A11,	/* US w/ 1/2 and 1/4 width channels */
243
244	APLD		= 0x0D50,	/* South Korea */
245
246	MKK1		= 0x0140,	/* Japan (UNI-1 odd)*/
247	MKK2		= 0x0240,	/* Japan (4.9 GHz + UNI-1 odd) */
248	MKK3		= 0x0340,	/* Japan (UNI-1 even) */
249	MKK4		= 0x0440,	/* Japan (UNI-1 even + UNI-2) */
250	MKK5		= 0x0540,	/* Japan (UNI-1 even + UNI-2 + mid-band) */
251	MKK6		= 0x0640,	/* Japan (UNI-1 odd + UNI-1 even) */
252	MKK7		= 0x0740,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 */
253	MKK8		= 0x0840,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 + mid-band) */
254	MKK9            = 0x0940,       /* Japan (UNI-1 even + 4.9 GHZ) */
255	MKK10           = 0x0B40,       /* Japan (UNI-1 even + UNI-2 + 4.9 GHZ) */
256	MKKA		= 0x0A40,	/* Japan */
257	MKKC		= 0x0A50,
258
259	NULL1		= 0x0198,
260	WORLD		= 0x0199,
261	DEBUG_REG_DMN	= 0x01ff,
262};
263
264#define	WORLD_SKU_MASK		0x00F0
265#define	WORLD_SKU_PREFIX	0x0060
266
267enum {					/* conformance test limits */
268	FCC	= 0x10,
269	MKK	= 0x40,
270	ETSI	= 0x30,
271};
272
273/*
274 * The following are flags for different requirements per reg domain.
275 * These requirements are either inhereted from the reg domain pair or
276 * from the unitary reg domain if the reg domain pair flags value is 0
277 */
278enum {
279	NO_REQ			= 0x00000000,	/* NB: must be zero */
280	DISALLOW_ADHOC_11A	= 0x00000001,	/* adhoc not allowed in 5GHz */
281	DISALLOW_ADHOC_11A_TURB	= 0x00000002,	/* not allowed w/ 5GHz turbo */
282	NEED_NFC		= 0x00000004,	/* need noise floor check */
283	ADHOC_PER_11D		= 0x00000008,	/* must receive 11d beacon */
284	LIMIT_FRAME_4MS 	= 0x00000020,	/* 4msec tx burst limit */
285	NO_HOSTAP		= 0x00000040,	/* No HOSTAP mode opereation */
286};
287
288/*
289 * The following describe the bit masks for different passive scan
290 * capability/requirements per regdomain.
291 */
292#define	NO_PSCAN	0x0ULL			/* NB: must be zero */
293#define	PSCAN_FCC	0x0000000000000001ULL
294#define	PSCAN_FCC_T	0x0000000000000002ULL
295#define	PSCAN_ETSI	0x0000000000000004ULL
296#define	PSCAN_MKK1	0x0000000000000008ULL
297#define	PSCAN_MKK2	0x0000000000000010ULL
298#define	PSCAN_MKKA	0x0000000000000020ULL
299#define	PSCAN_MKKA_G	0x0000000000000040ULL
300#define	PSCAN_ETSIA	0x0000000000000080ULL
301#define	PSCAN_ETSIB	0x0000000000000100ULL
302#define	PSCAN_ETSIC	0x0000000000000200ULL
303#define	PSCAN_WWR	0x0000000000000400ULL
304#define	PSCAN_MKKA1	0x0000000000000800ULL
305#define	PSCAN_MKKA1_G	0x0000000000001000ULL
306#define	PSCAN_MKKA2	0x0000000000002000ULL
307#define	PSCAN_MKKA2_G	0x0000000000004000ULL
308#define	PSCAN_MKK3	0x0000000000008000ULL
309#define	PSCAN_DEFER	0x7FFFFFFFFFFFFFFFULL
310#define	IS_ECM_CHAN	0x8000000000000000ULL
311
312/*
313 * THE following table is the mapping of regdomain pairs specified by
314 * an 8 bit regdomain value to the individual unitary reg domains
315 */
316typedef struct regDomainPair {
317	HAL_REG_DOMAIN regDmnEnum;	/* 16 bit reg domain pair */
318	HAL_REG_DOMAIN regDmn5GHz;	/* 5GHz reg domain */
319	HAL_REG_DOMAIN regDmn2GHz;	/* 2GHz reg domain */
320	uint32_t flags5GHz;		/* Requirements flags (AdHoc
321					   disallow, noise floor cal needed,
322					   etc) */
323	uint32_t flags2GHz;		/* Requirements flags (AdHoc
324					   disallow, noise floor cal needed,
325					   etc) */
326	uint64_t pscanMask;		/* Passive Scan flags which
327					   can override unitary domain
328					   passive scan flags.  This
329					   value is used as a mask on
330					   the unitary flags*/
331	uint16_t singleCC;		/* Country code of single country if
332					   a one-on-one mapping exists */
333}  REG_DMN_PAIR_MAPPING;
334
335static REG_DMN_PAIR_MAPPING regDomainPairs[] = {
336	{NO_ENUMRD,	DEBUG_REG_DMN,	DEBUG_REG_DMN, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
337	{NULL1_WORLD,	NULL1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
338	{NULL1_ETSIB,	NULL1,		ETSIB,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
339	{NULL1_ETSIC,	NULL1,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
340
341	{FCC2_FCCA,	FCC2,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
342	{FCC2_WORLD,	FCC2,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
343	{FCC2_ETSIC,	FCC2,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
344	{FCC3_FCCA,	FCC3,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
345	{FCC3_WORLD,	FCC3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
346	{FCC4_FCCA,	FCC4,		FCCA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
347	{FCC5_FCCB,	FCC5,		FCCB,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
348
349	{ETSI1_WORLD,	ETSI1,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
350	{ETSI2_WORLD,	ETSI2,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
351	{ETSI3_WORLD,	ETSI3,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
352	{ETSI4_WORLD,	ETSI4,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
353	{ETSI5_WORLD,	ETSI5,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
354	{ETSI6_WORLD,	ETSI6,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
355
356	{ETSI3_ETSIA,	ETSI3,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
357	{FRANCE_RES,	ETSI3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
358
359	{FCC1_WORLD,	FCC1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
360	{FCC1_FCCA,	FCC1,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
361	{APL1_WORLD,	APL1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
362	{APL2_WORLD,	APL2,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
363	{APL3_WORLD,	APL3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
364	{APL4_WORLD,	APL4,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
365	{APL5_WORLD,	APL5,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
366	{APL6_WORLD,	APL6,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
367	{APL8_WORLD,	APL8,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
368	{APL9_WORLD,	APL9,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
369
370	{APL3_FCCA,	APL3,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
371	{APL1_ETSIC,	APL1,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
372	{APL2_ETSIC,	APL2,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
373	{APL2_APLD,	APL2,		APLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
374
375	{MKK1_MKKA,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA, CTRY_JAPAN },
376	{MKK1_MKKB,	MKK1,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN1 },
377	{MKK1_FCCA,	MKK1,		FCCA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN2 },
378	{MKK1_MKKA1,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_JAPAN4 },
379	{MKK1_MKKA2,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN5 },
380	{MKK1_MKKC,	MKK1,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN6 },
381
382	/* MKK2 */
383	{MKK2_MKKA,	MKK2,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK2 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN3 },
384
385	/* MKK3 */
386	{MKK3_MKKA,	MKK3,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC , PSCAN_MKKA, CTRY_DEFAULT },
387	{MKK3_MKKB,	MKK3,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN7 },
388	{MKK3_MKKA1,	MKK3,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
389	{MKK3_MKKA2,MKK3,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN8 },
390	{MKK3_MKKC,	MKK3,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_JAPAN9 },
391	{MKK3_FCCA,	MKK3,	FCCA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_DEFAULT },
392
393	/* MKK4 */
394	{MKK4_MKKB,	MKK4,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN10 },
395	{MKK4_MKKA1,	MKK4,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
396	{MKK4_MKKA2,	MKK4,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 |PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN11 },
397	{MKK4_MKKC,	MKK4,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN12 },
398	{MKK4_FCCA,	MKK4,	FCCA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_DEFAULT },
399
400	/* MKK5 */
401	{MKK5_MKKB,	MKK5,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN13 },
402	{MKK5_MKKA2,MKK5,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN14 },
403	{MKK5_MKKC,	MKK5,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN15 },
404
405	/* MKK6 */
406	{MKK6_MKKB,	MKK6,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN16 },
407	{MKK6_MKKA2,	MKK6,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN17 },
408	{MKK6_MKKC,	MKK6,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN18 },
409
410	/* MKK7 */
411	{MKK7_MKKB,	MKK7,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN19 },
412	{MKK7_MKKA2, MKK7,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN20 },
413	{MKK7_MKKC,	MKK7,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3, CTRY_JAPAN21 },
414
415	/* MKK8 */
416	{MKK8_MKKB,	MKK8,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN22 },
417	{MKK8_MKKA2,MKK8,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN23 },
418	{MKK8_MKKC,	MKK8,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 , CTRY_JAPAN24 },
419
420	{MKK9_MKKA,	MKK9,	MKKA,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
421	{MKK10_MKKA,	MKK10,	MKKA,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
422
423		/* These are super domains */
424	{WOR0_WORLD,	WOR0_WORLD,	WOR0_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
425	{WOR1_WORLD,	WOR1_WORLD,	WOR1_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
426	{WOR2_WORLD,	WOR2_WORLD,	WOR2_WORLD,	DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
427	{WOR3_WORLD,	WOR3_WORLD,	WOR3_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
428	{WOR4_WORLD,	WOR4_WORLD,	WOR4_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
429	{WOR5_ETSIC,	WOR5_ETSIC,	WOR5_ETSIC,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
430	{WOR01_WORLD,	WOR01_WORLD,	WOR01_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
431	{WOR02_WORLD,	WOR02_WORLD,	WOR02_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
432	{EU1_WORLD,	EU1_WORLD,	EU1_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
433	{WOR9_WORLD,	WOR9_WORLD,	WOR9_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
434	{WORA_WORLD,	WORA_WORLD,	WORA_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
435};
436
437/*
438 * The following tables are the master list for all different freqeuncy
439 * bands with the complete matrix of all possible flags and settings
440 * for each band if it is used in ANY reg domain.
441 */
442
443#define DEF_REGDMN		FCC1_FCCA
444#define	COUNTRY_ERD_FLAG        0x8000
445#define WORLDWIDE_ROAMING_FLAG  0x4000
446
447typedef struct {
448	HAL_CTRY_CODE		countryCode;
449	HAL_REG_DOMAIN		regDmnEnum;
450} COUNTRY_CODE_TO_ENUM_RD;
451
452static COUNTRY_CODE_TO_ENUM_RD allCountries[] = {
453	{ CTRY_DEBUG,       NO_ENUMRD },
454	{ CTRY_DEFAULT,     DEF_REGDMN },
455	{ CTRY_ALBANIA,     NULL1_WORLD },
456	{ CTRY_ALGERIA,     NULL1_WORLD },
457	{ CTRY_ARGENTINA,   APL3_WORLD },
458	{ CTRY_ARMENIA,     ETSI4_WORLD },
459	{ CTRY_AUSTRALIA,   FCC2_WORLD },
460	{ CTRY_AUSTRIA,     ETSI1_WORLD },
461	{ CTRY_AZERBAIJAN,  ETSI4_WORLD },
462	{ CTRY_BAHRAIN,     APL6_WORLD },
463	{ CTRY_BELARUS,     NULL1_WORLD },
464	{ CTRY_BELGIUM,     ETSI1_WORLD },
465	{ CTRY_BELIZE,      APL1_ETSIC },
466	{ CTRY_BOLIVIA,     APL1_ETSIC },
467	{ CTRY_BRAZIL,      FCC3_WORLD },
468	{ CTRY_BRUNEI_DARUSSALAM,APL1_WORLD },
469	{ CTRY_BULGARIA,    ETSI6_WORLD },
470	{ CTRY_CANADA,      FCC2_FCCA },
471	{ CTRY_CHILE,       APL6_WORLD },
472	{ CTRY_CHINA,       APL1_WORLD },
473	{ CTRY_COLOMBIA,    FCC1_FCCA },
474	{ CTRY_COSTA_RICA,  NULL1_WORLD },
475	{ CTRY_CROATIA,     ETSI3_WORLD },
476	{ CTRY_CYPRUS,      ETSI1_WORLD },
477	{ CTRY_CZECH,       ETSI1_WORLD },
478	{ CTRY_DENMARK,     ETSI1_WORLD },
479	{ CTRY_DOMINICAN_REPUBLIC,FCC1_FCCA },
480	{ CTRY_ECUADOR,     NULL1_WORLD },
481	{ CTRY_EGYPT,       ETSI3_WORLD },
482	{ CTRY_EL_SALVADOR, NULL1_WORLD },
483	{ CTRY_ESTONIA,     ETSI1_WORLD },
484	{ CTRY_FINLAND,     ETSI1_WORLD },
485	{ CTRY_FRANCE,      ETSI1_WORLD },
486	{ CTRY_FRANCE2,     ETSI3_WORLD },
487	{ CTRY_GEORGIA,     ETSI4_WORLD },
488	{ CTRY_GERMANY,     ETSI1_WORLD },
489	{ CTRY_GREECE,      ETSI1_WORLD },
490	{ CTRY_GUATEMALA,   FCC1_FCCA },
491	{ CTRY_HONDURAS,    NULL1_WORLD },
492	{ CTRY_HONG_KONG,   FCC2_WORLD },
493	{ CTRY_HUNGARY,     ETSI1_WORLD },
494	{ CTRY_ICELAND,     ETSI1_WORLD },
495	{ CTRY_INDIA,       APL6_WORLD },
496	{ CTRY_INDONESIA,   APL1_WORLD },
497	{ CTRY_IRAN,        APL1_WORLD },
498	{ CTRY_IRELAND,     ETSI1_WORLD },
499	{ CTRY_ISRAEL,      NULL1_WORLD },
500	{ CTRY_ITALY,       ETSI1_WORLD },
501	{ CTRY_JAPAN,       MKK1_MKKA },
502	{ CTRY_JAPAN1,      MKK1_MKKB },
503	{ CTRY_JAPAN2,      MKK1_FCCA },
504	{ CTRY_JAPAN3,      MKK2_MKKA },
505	{ CTRY_JAPAN4,      MKK1_MKKA1 },
506	{ CTRY_JAPAN5,      MKK1_MKKA2 },
507	{ CTRY_JAPAN6,      MKK1_MKKC },
508
509	{ CTRY_JAPAN7,      MKK3_MKKB },
510	{ CTRY_JAPAN8,      MKK3_MKKA2 },
511	{ CTRY_JAPAN9,      MKK3_MKKC },
512
513	{ CTRY_JAPAN10,     MKK4_MKKB },
514	{ CTRY_JAPAN11,     MKK4_MKKA2 },
515	{ CTRY_JAPAN12,     MKK4_MKKC },
516
517	{ CTRY_JAPAN13,     MKK5_MKKB },
518	{ CTRY_JAPAN14,     MKK5_MKKA2 },
519	{ CTRY_JAPAN15,     MKK5_MKKC },
520
521	{ CTRY_JAPAN16,     MKK6_MKKB },
522	{ CTRY_JAPAN17,     MKK6_MKKA2 },
523	{ CTRY_JAPAN18,     MKK6_MKKC },
524
525	{ CTRY_JAPAN19,     MKK7_MKKB },
526	{ CTRY_JAPAN20,     MKK7_MKKA2 },
527	{ CTRY_JAPAN21,     MKK7_MKKC },
528
529	{ CTRY_JAPAN22,     MKK8_MKKB },
530	{ CTRY_JAPAN23,     MKK8_MKKA2 },
531	{ CTRY_JAPAN24,     MKK8_MKKC },
532
533	{ CTRY_JORDAN,      APL4_WORLD },
534	{ CTRY_KAZAKHSTAN,  NULL1_WORLD },
535	{ CTRY_KOREA_NORTH, APL2_WORLD },
536	{ CTRY_KOREA_ROC,   APL2_WORLD },
537	{ CTRY_KOREA_ROC2,  APL2_WORLD },
538	{ CTRY_KOREA_ROC3,  APL9_WORLD },
539	{ CTRY_KUWAIT,      NULL1_WORLD },
540	{ CTRY_LATVIA,      ETSI1_WORLD },
541	{ CTRY_LEBANON,     NULL1_WORLD },
542	{ CTRY_LIECHTENSTEIN,ETSI1_WORLD },
543	{ CTRY_LITHUANIA,   ETSI1_WORLD },
544	{ CTRY_LUXEMBOURG,  ETSI1_WORLD },
545	{ CTRY_MACAU,       FCC2_WORLD },
546	{ CTRY_MACEDONIA,   NULL1_WORLD },
547	{ CTRY_MALAYSIA,    APL8_WORLD },
548	{ CTRY_MALTA,       ETSI1_WORLD },
549	{ CTRY_MEXICO,      FCC1_FCCA },
550	{ CTRY_MONACO,      ETSI4_WORLD },
551	{ CTRY_MOROCCO,     NULL1_WORLD },
552	{ CTRY_NETHERLANDS, ETSI1_WORLD },
553	{ CTRY_NEW_ZEALAND, FCC2_ETSIC },
554	{ CTRY_NORWAY,      ETSI1_WORLD },
555	{ CTRY_OMAN,        APL6_WORLD },
556	{ CTRY_PAKISTAN,    NULL1_WORLD },
557	{ CTRY_PANAMA,      FCC1_FCCA },
558	{ CTRY_PERU,        APL1_WORLD },
559	{ CTRY_PHILIPPINES, FCC3_WORLD },
560	{ CTRY_POLAND,      ETSI1_WORLD },
561	{ CTRY_PORTUGAL,    ETSI1_WORLD },
562	{ CTRY_PUERTO_RICO, FCC1_FCCA },
563	{ CTRY_QATAR,       NULL1_WORLD },
564	{ CTRY_ROMANIA,     NULL1_WORLD },
565	{ CTRY_RUSSIA,      NULL1_WORLD },
566	{ CTRY_SAUDI_ARABIA,FCC2_WORLD },
567	{ CTRY_SINGAPORE,   APL6_WORLD },
568	{ CTRY_SLOVAKIA,    ETSI1_WORLD },
569	{ CTRY_SLOVENIA,    ETSI1_WORLD },
570	{ CTRY_SOUTH_AFRICA,FCC3_WORLD },
571	{ CTRY_SPAIN,       ETSI1_WORLD },
572	{ CTRY_SWEDEN,      ETSI1_WORLD },
573	{ CTRY_SWITZERLAND, ETSI1_WORLD },
574	{ CTRY_SYRIA,       NULL1_WORLD },
575	{ CTRY_TAIWAN,      APL3_FCCA },
576	{ CTRY_THAILAND,    NULL1_WORLD },
577	{ CTRY_TRINIDAD_Y_TOBAGO,ETSI4_WORLD },
578	{ CTRY_TUNISIA,     ETSI3_WORLD },
579	{ CTRY_TURKEY,      ETSI3_WORLD },
580	{ CTRY_UKRAINE,     NULL1_WORLD },
581	{ CTRY_UAE,         NULL1_WORLD },
582	{ CTRY_UNITED_KINGDOM, ETSI1_WORLD },
583	{ CTRY_UNITED_STATES, FCC1_FCCA },
584	{ CTRY_UNITED_STATES_FCC49,FCC4_FCCA },
585	{ CTRY_URUGUAY,     FCC1_WORLD },
586	{ CTRY_UZBEKISTAN,  FCC3_FCCA },
587	{ CTRY_VENEZUELA,   APL2_ETSIC },
588	{ CTRY_VIET_NAM,    NULL1_WORLD },
589	{ CTRY_ZIMBABWE,    NULL1_WORLD }
590};
591
592/* Bit masks for DFS per regdomain */
593enum {
594	NO_DFS   = 0x0000000000000000ULL,	/* NB: must be zero */
595	DFS_FCC3 = 0x0000000000000001ULL,
596	DFS_ETSI = 0x0000000000000002ULL,
597	DFS_MKK4 = 0x0000000000000004ULL,
598};
599
600#define	AFTER(x)	((x)+1)
601
602/*
603 * Frequency band collections are defined using bitmasks.  Each bit
604 * in a mask is the index of an entry in one of the following tables.
605 * Bitmasks are BMLEN*64 bits so if a table grows beyond that the bit
606 * vectors must be enlarged or the tables split somehow (e.g. split
607 * 1/2 and 1/4 rate channels into a separate table).
608 *
609 * Beware of ordering; the indices are defined relative to the preceding
610 * entry so if things get off there will be confusion.  A good way to
611 * check the indices is to collect them in a switch statement in a stub
612 * function so the compiler checks for duplicates.
613 */
614
615typedef struct {
616	uint16_t	lowChannel;	/* Low channel center in MHz */
617	uint16_t	highChannel;	/* High Channel center in MHz */
618	uint8_t		powerDfs;	/* Max power (dBm) for channel
619					   range when using DFS */
620	uint8_t		antennaMax;	/* Max allowed antenna gain */
621	uint8_t		channelBW;	/* Bandwidth of the channel */
622	uint8_t		channelSep;	/* Channel separation within
623					   the band */
624	uint64_t	useDfs;		/* Use DFS in the RegDomain
625					   if corresponding bit is set */
626	uint64_t	usePassScan;	/* Use Passive Scan in the RegDomain
627					   if corresponding bit is set */
628} REG_DMN_FREQ_BAND;
629
630/*
631 * 5GHz 11A channel tags
632 */
633static REG_DMN_FREQ_BAND regDmn5GhzFreq[] = {
634	{ 4915, 4925, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
635#define	F1_4915_4925	0
636	{ 4935, 4945, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
637#define	F1_4935_4945	AFTER(F1_4915_4925)
638	{ 4920, 4980, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
639#define	F1_4920_4980	AFTER(F1_4935_4945)
640	{ 4942, 4987, 27, 6,  5,  5, NO_DFS, PSCAN_FCC },
641#define	F1_4942_4987	AFTER(F1_4920_4980)
642	{ 4945, 4985, 30, 6, 10,  5, NO_DFS, PSCAN_FCC },
643#define	F1_4945_4985	AFTER(F1_4942_4987)
644	{ 4950, 4980, 33, 6, 20,  5, NO_DFS, PSCAN_FCC },
645#define	F1_4950_4980	AFTER(F1_4945_4985)
646	{ 5035, 5040, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
647#define	F1_5035_5040	AFTER(F1_4950_4980)
648	{ 5040, 5080, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
649#define	F1_5040_5080	AFTER(F1_5035_5040)
650	{ 5055, 5055, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
651#define	F1_5055_5055	AFTER(F1_5040_5080)
652
653	{ 5120, 5240, 5,  6, 20, 20, NO_DFS, NO_PSCAN },
654#define	F1_5120_5240	AFTER(F1_5055_5055)
655	{ 5120, 5240, 5,  6, 10, 10, NO_DFS, NO_PSCAN },
656#define	F2_5120_5240	AFTER(F1_5120_5240)
657	{ 5120, 5240, 5,  6,  5,  5, NO_DFS, NO_PSCAN },
658#define	F3_5120_5240	AFTER(F2_5120_5240)
659
660	{ 5170, 5230, 23, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
661#define	F1_5170_5230	AFTER(F3_5120_5240)
662	{ 5170, 5230, 20, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
663#define	F2_5170_5230	AFTER(F1_5170_5230)
664
665	{ 5180, 5240, 15, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
666#define	F1_5180_5240	AFTER(F2_5170_5230)
667	{ 5180, 5240, 17, 6, 20, 20, NO_DFS, PSCAN_FCC },
668#define	F2_5180_5240	AFTER(F1_5180_5240)
669	{ 5180, 5240, 18, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
670#define	F3_5180_5240	AFTER(F2_5180_5240)
671	{ 5180, 5240, 20, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
672#define	F4_5180_5240	AFTER(F3_5180_5240)
673	{ 5180, 5240, 23, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
674#define	F5_5180_5240	AFTER(F4_5180_5240)
675	{ 5180, 5240, 23, 6, 20, 20, NO_DFS, PSCAN_FCC },
676#define	F6_5180_5240	AFTER(F5_5180_5240)
677	{ 5180, 5240, 17, 6, 20, 10, NO_DFS, PSCAN_FCC },
678#define	F7_5180_5240	AFTER(F6_5180_5240)
679	{ 5180, 5240, 17, 6, 20,  5, NO_DFS, PSCAN_FCC },
680#define	F8_5180_5240	AFTER(F7_5180_5240)
681	{ 5180, 5320, 20, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
682
683#define	F1_5180_5320	AFTER(F8_5180_5240)
684	{ 5240, 5280, 23, 0, 20, 20, DFS_FCC3, PSCAN_FCC | PSCAN_ETSI },
685
686#define	F1_5240_5280	AFTER(F1_5180_5320)
687	{ 5260, 5280, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
688
689#define	F1_5260_5280	AFTER(F1_5240_5280)
690	{ 5260, 5320, 18, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
691
692#define	F1_5260_5320	AFTER(F1_5260_5280)
693	{ 5260, 5320, 20, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_FCC | PSCAN_ETSI | PSCAN_MKK3  },
694#define	F2_5260_5320	AFTER(F1_5260_5320)
695
696	{ 5260, 5320, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
697#define	F3_5260_5320	AFTER(F2_5260_5320)
698	{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
699#define	F4_5260_5320	AFTER(F3_5260_5320)
700	{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
701#define	F5_5260_5320	AFTER(F4_5260_5320)
702	{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
703#define	F6_5260_5320	AFTER(F5_5260_5320)
704	{ 5260, 5320, 23, 6, 20, 10, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
705#define	F7_5260_5320	AFTER(F6_5260_5320)
706	{ 5260, 5320, 23, 6, 20,  5, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
707#define	F8_5260_5320	AFTER(F7_5260_5320)
708
709	{ 5260, 5700, 5,  6, 20, 20, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
710#define	F1_5260_5700	AFTER(F8_5260_5320)
711	{ 5260, 5700, 5,  6, 10, 10, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
712#define	F2_5260_5700	AFTER(F1_5260_5700)
713	{ 5260, 5700, 5,  6,  5,  5, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
714#define	F3_5260_5700	AFTER(F2_5260_5700)
715
716	{ 5280, 5320, 17, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
717#define	F1_5280_5320	AFTER(F3_5260_5700)
718
719	{ 5500, 5620, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
720#define	F1_5500_5620	AFTER(F1_5280_5320)
721
722	{ 5500, 5700, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
723#define	F1_5500_5700	AFTER(F1_5500_5620)
724	{ 5500, 5700, 27, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
725#define	F2_5500_5700	AFTER(F1_5500_5700)
726	{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
727#define	F3_5500_5700	AFTER(F2_5500_5700)
728	{ 5500, 5700, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_MKK3 | PSCAN_FCC },
729#define	F4_5500_5700	AFTER(F3_5500_5700)
730
731	{ 5745, 5805, 23, 0, 20, 20, NO_DFS, NO_PSCAN },
732#define	F1_5745_5805	AFTER(F4_5500_5700)
733	{ 5745, 5805, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
734#define	F2_5745_5805	AFTER(F1_5745_5805)
735	{ 5745, 5805, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
736#define	F3_5745_5805	AFTER(F2_5745_5805)
737	{ 5745, 5825, 5,  6, 20, 20, NO_DFS, NO_PSCAN },
738#define	F1_5745_5825	AFTER(F3_5745_5805)
739	{ 5745, 5825, 17, 0, 20, 20, NO_DFS, NO_PSCAN },
740#define	F2_5745_5825	AFTER(F1_5745_5825)
741	{ 5745, 5825, 20, 0, 20, 20, NO_DFS, NO_PSCAN },
742#define	F3_5745_5825	AFTER(F2_5745_5825)
743	{ 5745, 5825, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
744#define	F4_5745_5825	AFTER(F3_5745_5825)
745	{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
746#define	F5_5745_5825	AFTER(F4_5745_5825)
747	{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
748#define	F6_5745_5825	AFTER(F5_5745_5825)
749	{ 5745, 5825, 5,  6, 10, 10, NO_DFS, NO_PSCAN },
750#define	F7_5745_5825	AFTER(F6_5745_5825)
751	{ 5745, 5825, 5,  6,  5,  5, NO_DFS, NO_PSCAN },
752#define	F8_5745_5825	AFTER(F7_5745_5825)
753	{ 5745, 5825, 30, 6, 20, 10, NO_DFS, NO_PSCAN },
754#define	F9_5745_5825	AFTER(F8_5745_5825)
755	{ 5745, 5825, 30, 6, 20,  5, NO_DFS, NO_PSCAN },
756#define	F10_5745_5825	AFTER(F9_5745_5825)
757
758	/*
759	 * Below are the world roaming channels
760	 * All WWR domains have no power limit, instead use the card's CTL
761	 * or max power settings.
762	 */
763	{ 4920, 4980, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
764#define	W1_4920_4980	AFTER(F10_5745_5825)
765	{ 5040, 5080, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
766#define	W1_5040_5080	AFTER(W1_4920_4980)
767	{ 5170, 5230, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
768#define	W1_5170_5230	AFTER(W1_5040_5080)
769	{ 5180, 5240, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
770#define	W1_5180_5240	AFTER(W1_5170_5230)
771	{ 5260, 5320, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
772#define	W1_5260_5320	AFTER(W1_5180_5240)
773	{ 5745, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
774#define	W1_5745_5825	AFTER(W1_5260_5320)
775	{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
776#define	W1_5500_5700	AFTER(W1_5745_5825)
777	{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
778#define	W2_5260_5320	AFTER(W1_5500_5700)
779	{ 5180, 5240, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
780#define	W2_5180_5240	AFTER(W2_5260_5320)
781	{ 5825, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
782#define	W2_5825_5825	AFTER(W2_5180_5240)
783};
784
785/*
786 * 5GHz Turbo (dynamic & static) tags
787 */
788static REG_DMN_FREQ_BAND regDmn5GhzTurboFreq[] = {
789	{ 5130, 5210, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
790#define	T1_5130_5210	0
791	{ 5250, 5330, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
792#define	T1_5250_5330	AFTER(T1_5130_5210)
793	{ 5370, 5490, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
794#define	T1_5370_5490	AFTER(T1_5250_5330)
795	{ 5530, 5650, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
796#define	T1_5530_5650	AFTER(T1_5370_5490)
797
798	{ 5150, 5190, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
799#define	T1_5150_5190	AFTER(T1_5530_5650)
800	{ 5230, 5310, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
801#define	T1_5230_5310	AFTER(T1_5150_5190)
802	{ 5350, 5470, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
803#define	T1_5350_5470	AFTER(T1_5230_5310)
804	{ 5510, 5670, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
805#define	T1_5510_5670	AFTER(T1_5350_5470)
806
807	{ 5200, 5240, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
808#define	T1_5200_5240	AFTER(T1_5510_5670)
809	{ 5200, 5240, 23, 6, 40, 40, NO_DFS, NO_PSCAN },
810#define	T2_5200_5240	AFTER(T1_5200_5240)
811	{ 5210, 5210, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
812#define	T1_5210_5210	AFTER(T2_5200_5240)
813	{ 5210, 5210, 23, 0, 40, 40, NO_DFS, NO_PSCAN },
814#define	T2_5210_5210	AFTER(T1_5210_5210)
815
816	{ 5280, 5280, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
817#define	T1_5280_5280	AFTER(T2_5210_5210)
818	{ 5280, 5280, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
819#define	T2_5280_5280	AFTER(T1_5280_5280)
820	{ 5250, 5250, 17, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
821#define	T1_5250_5250	AFTER(T2_5280_5280)
822	{ 5290, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
823#define	T1_5290_5290	AFTER(T1_5250_5250)
824	{ 5250, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
825#define	T1_5250_5290	AFTER(T1_5290_5290)
826	{ 5250, 5290, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
827#define	T2_5250_5290	AFTER(T1_5250_5290)
828
829	{ 5540, 5660, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
830#define	T1_5540_5660	AFTER(T2_5250_5290)
831	{ 5760, 5800, 20, 0, 40, 40, NO_DFS, NO_PSCAN },
832#define	T1_5760_5800	AFTER(T1_5540_5660)
833	{ 5760, 5800, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
834#define	T2_5760_5800	AFTER(T1_5760_5800)
835
836	{ 5765, 5805, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
837#define	T1_5765_5805	AFTER(T2_5760_5800)
838
839	/*
840	 * Below are the WWR frequencies
841	 */
842	{ 5210, 5250, 15, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
843#define	WT1_5210_5250	AFTER(T1_5765_5805)
844	{ 5290, 5290, 18, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
845#define	WT1_5290_5290	AFTER(WT1_5210_5250)
846	{ 5540, 5660, 20, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
847#define	WT1_5540_5660	AFTER(WT1_5290_5290)
848	{ 5760, 5800, 20, 0, 40, 40, NO_DFS, PSCAN_WWR },
849#define	WT1_5760_5800	AFTER(WT1_5540_5660)
850};
851
852/*
853 * 2GHz 11b channel tags
854 */
855static REG_DMN_FREQ_BAND regDmn2GhzFreq[] = {
856	{ 2312, 2372, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
857#define	F1_2312_2372	0
858	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
859#define	F2_2312_2372	AFTER(F1_2312_2372)
860
861	{ 2412, 2472, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
862#define	F1_2412_2472	AFTER(F2_2312_2372)
863	{ 2412, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
864#define	F2_2412_2472	AFTER(F1_2412_2472)
865	{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
866#define	F3_2412_2472	AFTER(F2_2412_2472)
867
868	{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
869#define	F1_2412_2462	AFTER(F3_2412_2472)
870	{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
871#define	F2_2412_2462	AFTER(F1_2412_2462)
872
873	{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
874#define	F1_2432_2442	AFTER(F2_2412_2462)
875
876	{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
877#define	F1_2457_2472	AFTER(F1_2432_2442)
878
879	{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
880#define	F1_2467_2472	AFTER(F1_2457_2472)
881
882	{ 2484, 2484, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
883#define	F1_2484_2484	AFTER(F1_2467_2472)
884	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA | PSCAN_MKKA1 | PSCAN_MKKA2 },
885#define	F2_2484_2484	AFTER(F1_2484_2484)
886
887	{ 2512, 2732, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
888#define	F1_2512_2732	AFTER(F2_2484_2484)
889
890	/*
891	 * WWR have powers opened up to 20dBm.
892	 * Limits should often come from CTL/Max powers
893	 */
894	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
895#define	W1_2312_2372	AFTER(F1_2512_2732)
896	{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
897#define	W1_2412_2412	AFTER(W1_2312_2372)
898	{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
899#define	W1_2417_2432	AFTER(W1_2412_2412)
900	{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
901#define	W1_2437_2442	AFTER(W1_2417_2432)
902	{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
903#define	W1_2447_2457	AFTER(W1_2437_2442)
904	{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
905#define	W1_2462_2462	AFTER(W1_2447_2457)
906	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
907#define	W1_2467_2467	AFTER(W1_2462_2462)
908	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
909#define	W2_2467_2467	AFTER(W1_2467_2467)
910	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
911#define	W1_2472_2472	AFTER(W2_2467_2467)
912	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
913#define	W2_2472_2472	AFTER(W1_2472_2472)
914	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
915#define	W1_2484_2484	AFTER(W2_2472_2472)
916	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
917#define	W2_2484_2484	AFTER(W1_2484_2484)
918};
919
920/*
921 * 2GHz 11g channel tags
922 */
923static REG_DMN_FREQ_BAND regDmn2Ghz11gFreq[] = {
924	{ 2312, 2372, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
925#define	G1_2312_2372	0
926	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
927#define	G2_2312_2372	AFTER(G1_2312_2372)
928	{ 2312, 2372, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
929#define	G3_2312_2372	AFTER(G2_2312_2372)
930	{ 2312, 2372, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
931#define	G4_2312_2372	AFTER(G3_2312_2372)
932
933	{ 2412, 2472, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
934#define	G1_2412_2472	AFTER(G4_2312_2372)
935	{ 2412, 2472, 20, 0, 20, 5,  NO_DFS, PSCAN_MKKA_G },
936#define	G2_2412_2472	AFTER(G1_2412_2472)
937	{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
938#define	G3_2412_2472	AFTER(G2_2412_2472)
939	{ 2412, 2472, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
940#define	G4_2412_2472	AFTER(G3_2412_2472)
941	{ 2412, 2472, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
942#define	G5_2412_2472	AFTER(G4_2412_2472)
943
944	{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
945#define	G1_2412_2462	AFTER(G5_2412_2472)
946	{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA_G },
947#define	G2_2412_2462	AFTER(G1_2412_2462)
948	{ 2412, 2462, 27, 6, 10, 5, NO_DFS, NO_PSCAN },
949#define	G3_2412_2462	AFTER(G2_2412_2462)
950	{ 2412, 2462, 27, 6,  5, 5, NO_DFS, NO_PSCAN },
951#define	G4_2412_2462	AFTER(G3_2412_2462)
952
953	{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
954#define	G1_2432_2442	AFTER(G4_2412_2462)
955
956	{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
957#define	G1_2457_2472	AFTER(G1_2432_2442)
958
959	{ 2512, 2732, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
960#define	G1_2512_2732	AFTER(G1_2457_2472)
961	{ 2512, 2732, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
962#define	G2_2512_2732	AFTER(G1_2512_2732)
963	{ 2512, 2732, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
964#define	G3_2512_2732	AFTER(G2_2512_2732)
965
966	{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
967#define	G1_2467_2472	AFTER(G3_2512_2732)
968
969	/*
970	 * WWR open up the power to 20dBm
971	 */
972	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
973#define	WG1_2312_2372	AFTER(G1_2467_2472)
974	{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
975#define	WG1_2412_2412	AFTER(WG1_2312_2372)
976	{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
977#define	WG1_2417_2432	AFTER(WG1_2412_2412)
978	{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
979#define	WG1_2437_2442	AFTER(WG1_2417_2432)
980	{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
981#define	WG1_2447_2457	AFTER(WG1_2437_2442)
982	{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
983#define	WG1_2462_2462	AFTER(WG1_2447_2457)
984	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
985#define	WG1_2467_2467	AFTER(WG1_2462_2462)
986	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
987#define	WG2_2467_2467	AFTER(WG1_2467_2467)
988	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
989#define	WG1_2472_2472	AFTER(WG2_2467_2467)
990	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
991#define	WG2_2472_2472	AFTER(WG1_2472_2472)
992};
993
994/*
995 * 2GHz Dynamic turbo tags
996 */
997static REG_DMN_FREQ_BAND regDmn2Ghz11gTurboFreq[] = {
998	{ 2312, 2372, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
999#define	T1_2312_2372	0
1000	{ 2437, 2437, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
1001#define	T1_2437_2437	AFTER(T1_2312_2372)
1002	{ 2437, 2437, 20, 6, 40, 40, NO_DFS, NO_PSCAN },
1003#define	T2_2437_2437	AFTER(T1_2437_2437)
1004	{ 2437, 2437, 18, 6, 40, 40, NO_DFS, PSCAN_WWR },
1005#define	T3_2437_2437	AFTER(T2_2437_2437)
1006	{ 2512, 2732, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
1007#define	T1_2512_2732	AFTER(T3_2437_2437)
1008};
1009
1010typedef struct regDomain {
1011	uint16_t regDmnEnum;		/* value from EnumRd table */
1012	uint8_t conformanceTestLimit;
1013	uint32_t flags;			/* Requirement flags (AdHoc disallow,
1014					   noise floor cal needed, etc) */
1015	uint64_t dfsMask;		/* DFS bitmask for 5Ghz tables */
1016	uint64_t pscan;			/* Bitmask for passive scan */
1017	chanbmask_t chan11a;		/* 11a channels */
1018	chanbmask_t chan11a_turbo;	/* 11a static turbo channels */
1019	chanbmask_t chan11a_dyn_turbo;	/* 11a dynamic turbo channels */
1020	chanbmask_t chan11a_half;	/* 11a 1/2 width channels */
1021	chanbmask_t chan11a_quarter;	/* 11a 1/4 width channels */
1022	chanbmask_t chan11b;		/* 11b channels */
1023	chanbmask_t chan11g;		/* 11g channels */
1024	chanbmask_t chan11g_turbo;	/* 11g dynamic turbo channels */
1025	chanbmask_t chan11g_half;	/* 11g 1/2 width channels */
1026	chanbmask_t chan11g_quarter;	/* 11g 1/4 width channels */
1027} REG_DOMAIN;
1028
1029static REG_DOMAIN regDomains[] = {
1030
1031	{.regDmnEnum		= DEBUG_REG_DMN,
1032	 .conformanceTestLimit	= FCC,
1033	 .dfsMask		= DFS_FCC3,
1034	 .chan11a		= BM4(F1_4950_4980,
1035				      F1_5120_5240,
1036				      F1_5260_5700,
1037				      F1_5745_5825),
1038	 .chan11a_half		= BM4(F1_4945_4985,
1039				      F2_5120_5240,
1040				      F2_5260_5700,
1041				      F7_5745_5825),
1042	 .chan11a_quarter	= BM4(F1_4942_4987,
1043				      F3_5120_5240,
1044				      F3_5260_5700,
1045				      F8_5745_5825),
1046	 .chan11a_turbo		= BM8(T1_5130_5210,
1047				      T1_5250_5330,
1048				      T1_5370_5490,
1049				      T1_5530_5650,
1050				      T1_5150_5190,
1051				      T1_5230_5310,
1052				      T1_5350_5470,
1053				      T1_5510_5670),
1054	 .chan11a_dyn_turbo	= BM4(T1_5200_5240,
1055				      T1_5280_5280,
1056				      T1_5540_5660,
1057				      T1_5765_5805),
1058	 .chan11b		= BM4(F1_2312_2372,
1059				      F1_2412_2472,
1060				      F1_2484_2484,
1061				      F1_2512_2732),
1062	 .chan11g		= BM3(G1_2312_2372, G1_2412_2472, G1_2512_2732),
1063	 .chan11g_turbo		= BM3(T1_2312_2372, T1_2437_2437, T1_2512_2732),
1064	 .chan11g_half		= BM3(G2_2312_2372, G4_2412_2472, G2_2512_2732),
1065	 .chan11g_quarter	= BM3(G3_2312_2372, G5_2412_2472, G3_2512_2732),
1066	},
1067
1068	{.regDmnEnum		= APL1,
1069	 .conformanceTestLimit	= FCC,
1070	 .chan11a		= BM1(F4_5745_5825),
1071	},
1072
1073	{.regDmnEnum		= APL2,
1074	 .conformanceTestLimit	= FCC,
1075	 .chan11a		= BM1(F1_5745_5805),
1076	},
1077
1078	{.regDmnEnum		= APL3,
1079	 .conformanceTestLimit	= FCC,
1080	 .chan11a		= BM2(F1_5280_5320, F2_5745_5805),
1081	},
1082
1083	{.regDmnEnum		= APL4,
1084	 .conformanceTestLimit	= FCC,
1085	 .chan11a		= BM2(F4_5180_5240, F3_5745_5825),
1086	},
1087
1088	{.regDmnEnum		= APL5,
1089	 .conformanceTestLimit	= FCC,
1090	 .chan11a		= BM1(F2_5745_5825),
1091	},
1092
1093	{.regDmnEnum		= APL6,
1094	 .conformanceTestLimit	= ETSI,
1095	 .dfsMask		= DFS_ETSI,
1096	 .pscan			= PSCAN_FCC_T | PSCAN_FCC,
1097	 .chan11a		= BM3(F4_5180_5240, F2_5260_5320, F3_5745_5825),
1098	 .chan11a_turbo		= BM3(T2_5210_5210, T1_5250_5290, T1_5760_5800),
1099	},
1100
1101	{.regDmnEnum		= APL8,
1102	 .conformanceTestLimit	= ETSI,
1103	 .flags			= DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1104	 .chan11a		= BM2(F6_5260_5320, F4_5745_5825),
1105	},
1106
1107	{.regDmnEnum		= APL9,
1108	 .conformanceTestLimit	= ETSI,
1109	 .dfsMask		= DFS_ETSI,
1110	 .pscan			= PSCAN_ETSI,
1111	 .flags			= DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1112	 .chan11a		= BM3(F1_5180_5320, F1_5500_5620, F3_5745_5805),
1113	},
1114
1115	{.regDmnEnum		= ETSI1,
1116	 .conformanceTestLimit	= ETSI,
1117	 .dfsMask		= DFS_ETSI,
1118	 .pscan			= PSCAN_ETSI,
1119	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1120	 .chan11a		= BM3(W2_5180_5240, F2_5260_5320, F2_5500_5700),
1121	},
1122
1123	{.regDmnEnum		= ETSI2,
1124	 .conformanceTestLimit	= ETSI,
1125	 .dfsMask		= DFS_ETSI,
1126	 .pscan			= PSCAN_ETSI,
1127	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1128	 .chan11a		= BM1(F3_5180_5240),
1129	},
1130
1131	{.regDmnEnum		= ETSI3,
1132	 .conformanceTestLimit	= ETSI,
1133	 .dfsMask		= DFS_ETSI,
1134	 .pscan			= PSCAN_ETSI,
1135	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1136	 .chan11a		= BM2(W2_5180_5240, F2_5260_5320),
1137	},
1138
1139	{.regDmnEnum		= ETSI4,
1140	 .conformanceTestLimit	= ETSI,
1141	 .dfsMask		= DFS_ETSI,
1142	 .pscan			= PSCAN_ETSI,
1143	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1144	 .chan11a		= BM2(F3_5180_5240, F1_5260_5320),
1145	},
1146
1147	{.regDmnEnum		= ETSI5,
1148	 .conformanceTestLimit	= ETSI,
1149	 .dfsMask		= DFS_ETSI,
1150	 .pscan			= PSCAN_ETSI,
1151	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1152	 .chan11a		= BM1(F1_5180_5240),
1153	},
1154
1155	{.regDmnEnum		= ETSI6,
1156	 .conformanceTestLimit	= ETSI,
1157	 .dfsMask		= DFS_ETSI,
1158	 .pscan			= PSCAN_ETSI,
1159	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1160	 .chan11a		= BM3(F5_5180_5240, F1_5260_5280, F3_5500_5700),
1161	},
1162
1163	{.regDmnEnum		= FCC1,
1164	 .conformanceTestLimit	= FCC,
1165	 .chan11a		= BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1166	 .chan11a_turbo		= BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1167	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1168	},
1169
1170	{.regDmnEnum		= FCC2,
1171	 .conformanceTestLimit	= FCC,
1172	 .chan11a		= BM3(F6_5180_5240, F5_5260_5320, F6_5745_5825),
1173	 .chan11a_dyn_turbo	= BM3(T2_5200_5240, T1_5280_5280, T1_5765_5805),
1174	},
1175
1176	{.regDmnEnum		= FCC3,
1177	 .conformanceTestLimit	= FCC,
1178	 .dfsMask		= DFS_FCC3,
1179	 .pscan			= PSCAN_FCC | PSCAN_FCC_T,
1180	 .chan11a		= BM4(F2_5180_5240,
1181				      F3_5260_5320,
1182				      F1_5500_5700,
1183				      F5_5745_5825),
1184	 .chan11a_turbo		= BM4(T1_5210_5210,
1185				      T1_5250_5250,
1186				      T1_5290_5290,
1187				      T2_5760_5800),
1188	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T2_5280_5280, T1_5540_5660),
1189	},
1190
1191	{.regDmnEnum		= FCC4,
1192	 .conformanceTestLimit	= FCC,
1193	 .dfsMask		= DFS_FCC3,
1194	 .pscan			= PSCAN_FCC | PSCAN_FCC_T,
1195	 .chan11a		= BM1(F1_4950_4980),
1196	 .chan11a_half		= BM1(F1_4945_4985),
1197	 .chan11a_quarter	= BM1(F1_4942_4987),
1198	},
1199
1200	/* FCC1 w/ 1/2 and 1/4 width channels */
1201	{.regDmnEnum		= FCC5,
1202	 .conformanceTestLimit	= FCC,
1203	 .chan11a		= BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1204	 .chan11a_turbo		= BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1205	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1206	 .chan11a_half		= BM3(F7_5180_5240, F7_5260_5320, F9_5745_5825),
1207	 .chan11a_quarter	= BM3(F8_5180_5240, F8_5260_5320,F10_5745_5825),
1208	},
1209
1210	{.regDmnEnum		= MKK1,
1211	 .conformanceTestLimit	= MKK,
1212	 .pscan			= PSCAN_MKK1,
1213	 .flags			= DISALLOW_ADHOC_11A_TURB,
1214	 .chan11a		= BM1(F1_5170_5230),
1215	},
1216
1217	{.regDmnEnum		= MKK2,
1218	 .conformanceTestLimit	= MKK,
1219	 .pscan			= PSCAN_MKK2,
1220	 .flags			= DISALLOW_ADHOC_11A_TURB,
1221	 .chan11a		= BM3(F1_4920_4980, F1_5040_5080, F1_5170_5230),
1222	 .chan11a_half		= BM4(F1_4915_4925,
1223				      F1_4935_4945,
1224				      F1_5035_5040,
1225				      F1_5055_5055),
1226	},
1227
1228	/* UNI-1 even */
1229	{.regDmnEnum		= MKK3,
1230	 .conformanceTestLimit	= MKK,
1231	 .pscan			= PSCAN_MKK3,
1232	 .flags			= DISALLOW_ADHOC_11A_TURB,
1233	 .chan11a		= BM1(F4_5180_5240),
1234	},
1235
1236	/* UNI-1 even + UNI-2 */
1237	{.regDmnEnum		= MKK4,
1238	 .conformanceTestLimit	= MKK,
1239	 .dfsMask		= DFS_MKK4,
1240	 .pscan			= PSCAN_MKK3,
1241	 .flags			= DISALLOW_ADHOC_11A_TURB,
1242	 .chan11a		= BM2(F4_5180_5240, F2_5260_5320),
1243	},
1244
1245	/* UNI-1 even + UNI-2 + mid-band */
1246	{.regDmnEnum		= MKK5,
1247	 .conformanceTestLimit	= MKK,
1248	 .dfsMask		= DFS_MKK4,
1249	 .pscan			= PSCAN_MKK3,
1250	 .flags			= DISALLOW_ADHOC_11A_TURB,
1251	 .chan11a		= BM3(F4_5180_5240, F2_5260_5320, F4_5500_5700),
1252	},
1253
1254	/* UNI-1 odd + even */
1255	{.regDmnEnum		= MKK6,
1256	 .conformanceTestLimit	= MKK,
1257	 .pscan			= PSCAN_MKK1,
1258	 .flags			= DISALLOW_ADHOC_11A_TURB,
1259	 .chan11a		= BM2(F2_5170_5230, F4_5180_5240),
1260	},
1261
1262	/* UNI-1 odd + UNI-1 even + UNI-2 */
1263	{.regDmnEnum		= MKK7,
1264	 .conformanceTestLimit	= MKK,
1265	 .dfsMask		= DFS_MKK4,
1266	 .pscan			= PSCAN_MKK1 | PSCAN_MKK3,
1267	 .flags			= DISALLOW_ADHOC_11A_TURB,
1268	 .chan11a		= BM3(F1_5170_5230, F4_5180_5240, F2_5260_5320),
1269	},
1270
1271	/* UNI-1 odd + UNI-1 even + UNI-2 + mid-band */
1272	{.regDmnEnum		= MKK8,
1273	 .conformanceTestLimit	= MKK,
1274	 .dfsMask		= DFS_MKK4,
1275	 .pscan			= PSCAN_MKK1 | PSCAN_MKK3,
1276	 .flags			= DISALLOW_ADHOC_11A_TURB,
1277	 .chan11a		= BM4(F1_5170_5230,
1278				      F4_5180_5240,
1279				      F2_5260_5320,
1280				      F4_5500_5700),
1281	},
1282
1283        /* UNI-1 even + 4.9 GHZ */
1284        {.regDmnEnum		= MKK9,
1285	 .conformanceTestLimit	= MKK,
1286	 .pscan			= PSCAN_MKK3,
1287	 .flags			= DISALLOW_ADHOC_11A_TURB,
1288         .chan11a		= BM7(F1_4915_4925,
1289				      F1_4935_4945,
1290				      F1_4920_4980,
1291				      F1_5035_5040,
1292				      F1_5055_5055,
1293				      F1_5040_5080,
1294				      F4_5180_5240),
1295        },
1296
1297        /* UNI-1 even + UNI-2 + 4.9 GHZ */
1298        {.regDmnEnum		= MKK10,
1299	 .conformanceTestLimit	= MKK,
1300	 .dfsMask		= DFS_MKK4,
1301	 .pscan			= PSCAN_MKK3,
1302	 .flags			= DISALLOW_ADHOC_11A_TURB,
1303         .chan11a		= BM8(F1_4915_4925,
1304				      F1_4935_4945,
1305				      F1_4920_4980,
1306				      F1_5035_5040,
1307				      F1_5055_5055,
1308				      F1_5040_5080,
1309				      F4_5180_5240,
1310				      F2_5260_5320),
1311        },
1312
1313	/* Defined here to use when 2G channels are authorised for country K2 */
1314	{.regDmnEnum		= APLD,
1315	 .conformanceTestLimit	= NO_CTL,
1316	 .chan11b		= BM2(F2_2312_2372,F2_2412_2472),
1317	 .chan11g		= BM2(G2_2312_2372,G2_2412_2472),
1318	},
1319
1320	{.regDmnEnum		= ETSIA,
1321	 .conformanceTestLimit	= NO_CTL,
1322	 .pscan			= PSCAN_ETSIA,
1323	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1324	 .chan11b		= BM1(F1_2457_2472),
1325	 .chan11g		= BM1(G1_2457_2472),
1326	 .chan11g_turbo		= BM1(T2_2437_2437)
1327	},
1328
1329	{.regDmnEnum		= ETSIB,
1330	 .conformanceTestLimit	= ETSI,
1331	 .pscan			= PSCAN_ETSIB,
1332	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1333	 .chan11b		= BM1(F1_2432_2442),
1334	 .chan11g		= BM1(G1_2432_2442),
1335	 .chan11g_turbo		= BM1(T2_2437_2437)
1336	},
1337
1338	{.regDmnEnum		= ETSIC,
1339	 .conformanceTestLimit	= ETSI,
1340	 .pscan			= PSCAN_ETSIC,
1341	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1342	 .chan11b		= BM1(F3_2412_2472),
1343	 .chan11g		= BM1(G3_2412_2472),
1344	 .chan11g_turbo		= BM1(T2_2437_2437)
1345	},
1346
1347	{.regDmnEnum		= FCCA,
1348	 .conformanceTestLimit	= FCC,
1349	 .chan11b		= BM1(F1_2412_2462),
1350	 .chan11g		= BM1(G1_2412_2462),
1351	 .chan11g_turbo		= BM1(T2_2437_2437),
1352	},
1353
1354	/* FCCA w/ 1/2 and 1/4 width channels */
1355	{.regDmnEnum		= FCCB,
1356	 .conformanceTestLimit	= FCC,
1357	 .chan11b		= BM1(F1_2412_2462),
1358	 .chan11g		= BM1(G1_2412_2462),
1359	 .chan11g_turbo		= BM1(T2_2437_2437),
1360	 .chan11g_half		= BM1(G3_2412_2462),
1361	 .chan11g_quarter	= BM1(G4_2412_2462),
1362	},
1363
1364	{.regDmnEnum		= MKKA,
1365	 .conformanceTestLimit	= MKK,
1366	 .pscan			= PSCAN_MKKA | PSCAN_MKKA_G
1367				| PSCAN_MKKA1 | PSCAN_MKKA1_G
1368				| PSCAN_MKKA2 | PSCAN_MKKA2_G,
1369	 .flags			= DISALLOW_ADHOC_11A_TURB,
1370	 .chan11b		= BM3(F2_2412_2462, F1_2467_2472, F2_2484_2484),
1371	 .chan11g		= BM2(G2_2412_2462, G1_2467_2472),
1372	 .chan11g_turbo		= BM1(T2_2437_2437)
1373	},
1374
1375	{.regDmnEnum		= MKKC,
1376	 .conformanceTestLimit	= MKK,
1377	 .chan11b		= BM1(F2_2412_2472),
1378	 .chan11g		= BM1(G2_2412_2472),
1379	 .chan11g_turbo		= BM1(T2_2437_2437)
1380	},
1381
1382	{.regDmnEnum		= WORLD,
1383	 .conformanceTestLimit	= ETSI,
1384	 .chan11b		= BM1(F2_2412_2472),
1385	 .chan11g		= BM1(G2_2412_2472),
1386	 .chan11g_turbo		= BM1(T2_2437_2437)
1387	},
1388
1389	{.regDmnEnum		= WOR0_WORLD,
1390	 .conformanceTestLimit	= NO_CTL,
1391	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1392	 .pscan			= PSCAN_WWR,
1393	 .flags			= ADHOC_PER_11D,
1394	 .chan11a		= BM5(W1_5260_5320,
1395				      W1_5180_5240,
1396				      W1_5170_5230,
1397				      W1_5745_5825,
1398				      W1_5500_5700),
1399	 .chan11a_turbo		= BM3(WT1_5210_5250,
1400				      WT1_5290_5290,
1401				      WT1_5760_5800),
1402	 .chan11b		= BM8(W1_2412_2412,
1403				      W1_2437_2442,
1404				      W1_2462_2462,
1405				      W1_2472_2472,
1406				      W1_2417_2432,
1407				      W1_2447_2457,
1408				      W1_2467_2467,
1409				      W1_2484_2484),
1410	 .chan11g		= BM7(WG1_2412_2412,
1411				      WG1_2437_2442,
1412				      WG1_2462_2462,
1413				      WG1_2472_2472,
1414				      WG1_2417_2432,
1415				      WG1_2447_2457,
1416				      WG1_2467_2467),
1417	 .chan11g_turbo		= BM1(T3_2437_2437)
1418	},
1419
1420	{.regDmnEnum		= WOR01_WORLD,
1421	 .conformanceTestLimit	= NO_CTL,
1422	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1423	 .pscan			= PSCAN_WWR,
1424	 .flags			= ADHOC_PER_11D,
1425	 .chan11a		= BM5(W1_5260_5320,
1426				      W1_5180_5240,
1427				      W1_5170_5230,
1428				      W1_5745_5825,
1429				      W1_5500_5700),
1430	 .chan11a_turbo		= BM3(WT1_5210_5250,
1431				      WT1_5290_5290,
1432				      WT1_5760_5800),
1433	 .chan11b		= BM5(W1_2412_2412,
1434				      W1_2437_2442,
1435				      W1_2462_2462,
1436				      W1_2417_2432,
1437				      W1_2447_2457),
1438	 .chan11g		= BM5(WG1_2412_2412,
1439				      WG1_2437_2442,
1440				      WG1_2462_2462,
1441				      WG1_2417_2432,
1442				      WG1_2447_2457),
1443	 .chan11g_turbo		= BM1(T3_2437_2437)},
1444
1445	{.regDmnEnum		= WOR02_WORLD,
1446	 .conformanceTestLimit	= NO_CTL,
1447	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1448	 .pscan			= PSCAN_WWR,
1449	 .flags			= ADHOC_PER_11D,
1450	 .chan11a		= BM5(W1_5260_5320,
1451				      W1_5180_5240,
1452				      W1_5170_5230,
1453				      W1_5745_5825,
1454				      W1_5500_5700),
1455	 .chan11a_turbo		= BM3(WT1_5210_5250,
1456				      WT1_5290_5290,
1457				      WT1_5760_5800),
1458	 .chan11b		= BM7(W1_2412_2412,
1459				      W1_2437_2442,
1460				      W1_2462_2462,
1461				      W1_2472_2472,
1462				      W1_2417_2432,
1463				      W1_2447_2457,
1464				      W1_2467_2467),
1465	 .chan11g		= BM7(WG1_2412_2412,
1466				      WG1_2437_2442,
1467				      WG1_2462_2462,
1468				      WG1_2472_2472,
1469				      WG1_2417_2432,
1470				      WG1_2447_2457,
1471				      WG1_2467_2467),
1472	 .chan11g_turbo		= BM1(T3_2437_2437)},
1473
1474	{.regDmnEnum		= EU1_WORLD,
1475	 .conformanceTestLimit	= NO_CTL,
1476	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1477	 .pscan			= PSCAN_WWR,
1478	 .flags			= ADHOC_PER_11D,
1479	 .chan11a		= BM5(W1_5260_5320,
1480				      W1_5180_5240,
1481				      W1_5170_5230,
1482				      W1_5745_5825,
1483				      W1_5500_5700),
1484	 .chan11a_turbo		= BM3(WT1_5210_5250,
1485				      WT1_5290_5290,
1486				      WT1_5760_5800),
1487	 .chan11b		= BM7(W1_2412_2412,
1488				      W1_2437_2442,
1489				      W1_2462_2462,
1490				      W2_2472_2472,
1491				      W1_2417_2432,
1492				      W1_2447_2457,
1493				      W2_2467_2467),
1494	 .chan11g		= BM7(WG1_2412_2412,
1495				      WG1_2437_2442,
1496				      WG1_2462_2462,
1497				      WG2_2472_2472,
1498				      WG1_2417_2432,
1499				      WG1_2447_2457,
1500				      WG2_2467_2467),
1501	 .chan11g_turbo		= BM1(T3_2437_2437)},
1502
1503	{.regDmnEnum		= WOR1_WORLD,
1504	 .conformanceTestLimit	= NO_CTL,
1505	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1506	 .pscan			= PSCAN_WWR,
1507	 .flags			= DISALLOW_ADHOC_11A,
1508	 .chan11a		= BM5(W1_5260_5320,
1509				      W1_5180_5240,
1510				      W1_5170_5230,
1511				      W1_5745_5825,
1512				      W1_5500_5700),
1513	 .chan11b		= BM8(W1_2412_2412,
1514				      W1_2437_2442,
1515				      W1_2462_2462,
1516				      W1_2472_2472,
1517				      W1_2417_2432,
1518				      W1_2447_2457,
1519				      W1_2467_2467,
1520				      W1_2484_2484),
1521	 .chan11g		= BM7(WG1_2412_2412,
1522				      WG1_2437_2442,
1523				      WG1_2462_2462,
1524				      WG1_2472_2472,
1525				      WG1_2417_2432,
1526				      WG1_2447_2457,
1527				      WG1_2467_2467),
1528	 .chan11g_turbo		= BM1(T3_2437_2437)
1529	},
1530
1531	{.regDmnEnum		= WOR2_WORLD,
1532	 .conformanceTestLimit	= NO_CTL,
1533	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1534	 .pscan			= PSCAN_WWR,
1535	 .flags			= DISALLOW_ADHOC_11A,
1536	 .chan11a		= BM5(W1_5260_5320,
1537				      W1_5180_5240,
1538				      W1_5170_5230,
1539				      W1_5745_5825,
1540				      W1_5500_5700),
1541	 .chan11a_turbo		= BM3(WT1_5210_5250,
1542				      WT1_5290_5290,
1543				      WT1_5760_5800),
1544	 .chan11b		= BM8(W1_2412_2412,
1545				      W1_2437_2442,
1546				      W1_2462_2462,
1547				      W1_2472_2472,
1548				      W1_2417_2432,
1549				      W1_2447_2457,
1550				      W1_2467_2467,
1551				      W1_2484_2484),
1552	 .chan11g		= BM7(WG1_2412_2412,
1553				      WG1_2437_2442,
1554				      WG1_2462_2462,
1555				      WG1_2472_2472,
1556				      WG1_2417_2432,
1557				      WG1_2447_2457,
1558				      WG1_2467_2467),
1559	 .chan11g_turbo		= BM1(T3_2437_2437)},
1560
1561	{.regDmnEnum		= WOR3_WORLD,
1562	 .conformanceTestLimit	= NO_CTL,
1563	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1564	 .pscan			= PSCAN_WWR,
1565	 .flags			= ADHOC_PER_11D,
1566	 .chan11a		= BM4(W1_5260_5320,
1567				      W1_5180_5240,
1568				      W1_5170_5230,
1569				      W1_5745_5825),
1570	 .chan11a_turbo		= BM3(WT1_5210_5250,
1571				      WT1_5290_5290,
1572				      WT1_5760_5800),
1573	 .chan11b		= BM7(W1_2412_2412,
1574				      W1_2437_2442,
1575				      W1_2462_2462,
1576				      W1_2472_2472,
1577				      W1_2417_2432,
1578				      W1_2447_2457,
1579				      W1_2467_2467),
1580	 .chan11g		= BM7(WG1_2412_2412,
1581				      WG1_2437_2442,
1582				      WG1_2462_2462,
1583				      WG1_2472_2472,
1584				      WG1_2417_2432,
1585				      WG1_2447_2457,
1586				      WG1_2467_2467),
1587	 .chan11g_turbo		= BM1(T3_2437_2437)},
1588
1589	{.regDmnEnum		= WOR4_WORLD,
1590	 .conformanceTestLimit	= NO_CTL,
1591	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1592	 .pscan			= PSCAN_WWR,
1593	 .flags			= DISALLOW_ADHOC_11A,
1594	 .chan11a		= BM4(W2_5260_5320,
1595				      W2_5180_5240,
1596				      F2_5745_5805,
1597				      W2_5825_5825),
1598	 .chan11a_turbo		= BM3(WT1_5210_5250,
1599				      WT1_5290_5290,
1600				      WT1_5760_5800),
1601	 .chan11b		= BM5(W1_2412_2412,
1602				      W1_2437_2442,
1603				      W1_2462_2462,
1604				      W1_2417_2432,
1605				      W1_2447_2457),
1606	 .chan11g		= BM5(WG1_2412_2412,
1607				      WG1_2437_2442,
1608				      WG1_2462_2462,
1609				      WG1_2417_2432,
1610				      WG1_2447_2457),
1611	 .chan11g_turbo		= BM1(T3_2437_2437)},
1612
1613	{.regDmnEnum		= WOR5_ETSIC,
1614	 .conformanceTestLimit	= NO_CTL,
1615	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1616	 .pscan			= PSCAN_WWR,
1617	 .flags			= DISALLOW_ADHOC_11A,
1618	 .chan11a		= BM3(W1_5260_5320, W2_5180_5240, F6_5745_5825),
1619	 .chan11b		= BM7(W1_2412_2412,
1620				      W1_2437_2442,
1621				      W1_2462_2462,
1622				      W2_2472_2472,
1623				      W1_2417_2432,
1624				      W1_2447_2457,
1625				      W2_2467_2467),
1626	 .chan11g		= BM7(WG1_2412_2412,
1627				      WG1_2437_2442,
1628				      WG1_2462_2462,
1629				      WG2_2472_2472,
1630				      WG1_2417_2432,
1631				      WG1_2447_2457,
1632				      WG2_2467_2467),
1633	 .chan11g_turbo		= BM1(T3_2437_2437)},
1634
1635	{.regDmnEnum		= WOR9_WORLD,
1636	 .conformanceTestLimit	= NO_CTL,
1637	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1638	 .pscan			= PSCAN_WWR,
1639	 .flags			= DISALLOW_ADHOC_11A,
1640	 .chan11a		= BM4(W1_5260_5320,
1641				      W1_5180_5240,
1642				      W1_5745_5825,
1643				      W1_5500_5700),
1644	 .chan11a_turbo		= BM3(WT1_5210_5250,
1645				      WT1_5290_5290,
1646				      WT1_5760_5800),
1647	 .chan11b		= BM5(W1_2412_2412,
1648				      W1_2437_2442,
1649				      W1_2462_2462,
1650				      W1_2417_2432,
1651				      W1_2447_2457),
1652	 .chan11g		= BM5(WG1_2412_2412,
1653				      WG1_2437_2442,
1654				      WG1_2462_2462,
1655				      WG1_2417_2432,
1656				      WG1_2447_2457),
1657	 .chan11g_turbo		= BM1(T3_2437_2437)},
1658
1659	{.regDmnEnum		= WORA_WORLD,
1660	 .conformanceTestLimit	= NO_CTL,
1661	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1662	 .pscan			= PSCAN_WWR,
1663	 .flags			= DISALLOW_ADHOC_11A,
1664	 .chan11a		= BM4(W1_5260_5320,
1665				      W1_5180_5240,
1666				      W1_5745_5825,
1667				      W1_5500_5700),
1668	 .chan11b		= BM7(W1_2412_2412,
1669				      W1_2437_2442,
1670				      W1_2462_2462,
1671				      W1_2472_2472,
1672				      W1_2417_2432,
1673				      W1_2447_2457,
1674				      W1_2467_2467),
1675	 .chan11g		= BM7(WG1_2412_2412,
1676				      WG1_2437_2442,
1677				      WG1_2462_2462,
1678				      WG1_2472_2472,
1679				      WG1_2417_2432,
1680				      WG1_2447_2457,
1681				      WG1_2467_2467),
1682	 .chan11g_turbo		= BM1(T3_2437_2437)},
1683
1684	{.regDmnEnum		= NULL1,
1685	 .conformanceTestLimit	= NO_CTL,
1686	}
1687};
1688
1689struct cmode {
1690	u_int	mode;
1691	u_int	flags;
1692};
1693
1694static const struct cmode modes[] = {
1695	{ HAL_MODE_TURBO,	IEEE80211_CHAN_ST },
1696	{ HAL_MODE_11A,		IEEE80211_CHAN_A },
1697	{ HAL_MODE_11B,		IEEE80211_CHAN_B },
1698	{ HAL_MODE_11G,		IEEE80211_CHAN_G },
1699	{ HAL_MODE_11G_TURBO,	IEEE80211_CHAN_108G },
1700	{ HAL_MODE_11A_TURBO,	IEEE80211_CHAN_108A },
1701	{ HAL_MODE_11A_QUARTER_RATE,
1702	  IEEE80211_CHAN_A | IEEE80211_CHAN_QUARTER },
1703	{ HAL_MODE_11A_HALF_RATE,
1704	  IEEE80211_CHAN_A | IEEE80211_CHAN_HALF },
1705	{ HAL_MODE_11G_QUARTER_RATE,
1706	  IEEE80211_CHAN_G | IEEE80211_CHAN_QUARTER },
1707	{ HAL_MODE_11G_HALF_RATE,
1708	  IEEE80211_CHAN_G | IEEE80211_CHAN_HALF },
1709	{ HAL_MODE_11NG_HT20,	IEEE80211_CHAN_G | IEEE80211_CHAN_HT20 },
1710	{ HAL_MODE_11NG_HT40PLUS,
1711	  IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U },
1712	{ HAL_MODE_11NG_HT40MINUS,
1713	  IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D },
1714	{ HAL_MODE_11NA_HT20,	IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 },
1715	{ HAL_MODE_11NA_HT40PLUS,
1716	  IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U },
1717	{ HAL_MODE_11NA_HT40MINUS,
1718	  IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D },
1719};
1720
1721static OS_INLINE uint16_t
1722getEepromRD(struct ath_hal *ah)
1723{
1724	return AH_PRIVATE(ah)->ah_currentRD &~ WORLDWIDE_ROAMING_FLAG;
1725}
1726
1727/*
1728 * Test to see if the bitmask array is all zeros
1729 */
1730static HAL_BOOL
1731isChanBitMaskZero(const uint64_t *bitmask)
1732{
1733#if BMLEN > 2
1734#error	"add more cases"
1735#endif
1736#if BMLEN > 1
1737	if (bitmask[1] != 0)
1738		return AH_FALSE;
1739#endif
1740	return (bitmask[0] == 0);
1741}
1742
1743/*
1744 * Return whether or not the regulatory domain/country in EEPROM
1745 * is acceptable.
1746 */
1747static HAL_BOOL
1748isEepromValid(struct ath_hal *ah)
1749{
1750	uint16_t rd = getEepromRD(ah);
1751	int i;
1752
1753	if (rd & COUNTRY_ERD_FLAG) {
1754		uint16_t cc = rd &~ COUNTRY_ERD_FLAG;
1755		for (i = 0; i < N(allCountries); i++)
1756			if (allCountries[i].countryCode == cc)
1757				return AH_TRUE;
1758	} else {
1759		for (i = 0; i < N(regDomainPairs); i++)
1760			if (regDomainPairs[i].regDmnEnum == rd)
1761				return AH_TRUE;
1762	}
1763	HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1764	    "%s: invalid regulatory domain/country code 0x%x\n", __func__, rd);
1765	return AH_FALSE;
1766}
1767
1768/*
1769 * Find the pointer to the country element in the country table
1770 * corresponding to the country code
1771 */
1772static COUNTRY_CODE_TO_ENUM_RD*
1773findCountry(HAL_CTRY_CODE countryCode)
1774{
1775	int i;
1776
1777	for (i = 0; i < N(allCountries); i++) {
1778		if (allCountries[i].countryCode == countryCode)
1779			return &allCountries[i];
1780	}
1781	return AH_NULL;
1782}
1783
1784static REG_DOMAIN *
1785findRegDmn(int regDmn)
1786{
1787	int i;
1788
1789	for (i = 0; i < N(regDomains); i++) {
1790		if (regDomains[i].regDmnEnum == regDmn)
1791			return &regDomains[i];
1792	}
1793	return AH_NULL;
1794}
1795
1796static REG_DMN_PAIR_MAPPING *
1797findRegDmnPair(int regDmnPair)
1798{
1799	int i;
1800
1801	if (regDmnPair != NO_ENUMRD) {
1802		for (i = 0; i < N(regDomainPairs); i++) {
1803			if (regDomainPairs[i].regDmnEnum == regDmnPair)
1804				return &regDomainPairs[i];
1805		}
1806	}
1807	return AH_NULL;
1808}
1809
1810/*
1811 * Calculate a default country based on the EEPROM setting.
1812 */
1813static HAL_CTRY_CODE
1814getDefaultCountry(struct ath_hal *ah)
1815{
1816	REG_DMN_PAIR_MAPPING *regpair;
1817	uint16_t rd;
1818
1819	rd = getEepromRD(ah);
1820	if (rd & COUNTRY_ERD_FLAG) {
1821		COUNTRY_CODE_TO_ENUM_RD *country;
1822		uint16_t cc = rd & ~COUNTRY_ERD_FLAG;
1823		country = findCountry(cc);
1824		if (country != AH_NULL)
1825			return cc;
1826	}
1827	/*
1828	 * Check reg domains that have only one country
1829	 */
1830	regpair = findRegDmnPair(rd);
1831	return (regpair != AH_NULL) ? regpair->singleCC : CTRY_DEFAULT;
1832}
1833
1834static HAL_BOOL
1835IS_BIT_SET(int bit, const uint64_t bitmask[])
1836{
1837	int byteOffset, bitnum;
1838	uint64_t val;
1839
1840	byteOffset = bit/64;
1841	bitnum = bit - byteOffset*64;
1842	val = ((uint64_t) 1) << bitnum;
1843	return (bitmask[byteOffset] & val) != 0;
1844}
1845
1846static HAL_STATUS
1847getregstate(struct ath_hal *ah, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
1848    COUNTRY_CODE_TO_ENUM_RD **pcountry,
1849    REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
1850{
1851	COUNTRY_CODE_TO_ENUM_RD *country;
1852	REG_DOMAIN *rd5GHz, *rd2GHz;
1853
1854	if (cc == CTRY_DEFAULT && regDmn == SKU_NONE) {
1855		/*
1856		 * Validate the EEPROM setting and setup defaults
1857		 */
1858		if (!isEepromValid(ah)) {
1859			/*
1860			 * Don't return any channels if the EEPROM has an
1861			 * invalid regulatory domain/country code setting.
1862			 */
1863			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1864			    "%s: invalid EEPROM contents\n",__func__);
1865			return HAL_EEBADREG;
1866		}
1867
1868		cc = getDefaultCountry(ah);
1869		country = findCountry(cc);
1870		if (country == AH_NULL) {
1871			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1872			    "NULL Country!, cc %d\n", cc);
1873			return HAL_EEBADCC;
1874		}
1875		regDmn = country->regDmnEnum;
1876		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: EEPROM cc %u rd 0x%x\n",
1877		    __func__, cc, regDmn);
1878
1879		if (country->countryCode == CTRY_DEFAULT) {
1880			/*
1881			 * Check EEPROM; SKU may be for a country, single
1882			 * domain, or multiple domains (WWR).
1883			 */
1884			uint16_t rdnum = getEepromRD(ah);
1885			if ((rdnum & COUNTRY_ERD_FLAG) == 0 &&
1886			    (findRegDmn(rdnum) != AH_NULL ||
1887			     findRegDmnPair(rdnum) != AH_NULL)) {
1888				regDmn = rdnum;
1889				HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1890				    "%s: EEPROM rd 0x%x\n", __func__, rdnum);
1891			}
1892		}
1893	} else {
1894		country = findCountry(cc);
1895		if (country == AH_NULL) {
1896			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1897			    "unknown country, cc %d\n", cc);
1898			return HAL_EINVAL;
1899		}
1900		if (regDmn == SKU_NONE)
1901			regDmn = country->regDmnEnum;
1902		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u rd 0x%x\n",
1903		    __func__, cc, regDmn);
1904	}
1905
1906	/*
1907	 * Setup per-band state.
1908	 */
1909	if ((regDmn & MULTI_DOMAIN_MASK) == 0) {
1910		REG_DMN_PAIR_MAPPING *regpair = findRegDmnPair(regDmn);
1911		if (regpair == AH_NULL) {
1912			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1913			    "%s: no reg domain pair %u for country %u\n",
1914			    __func__, regDmn, country->countryCode);
1915			return HAL_EINVAL;
1916		}
1917		rd5GHz = findRegDmn(regpair->regDmn5GHz);
1918		if (rd5GHz == AH_NULL) {
1919			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1920			    "%s: no 5GHz reg domain %u for country %u\n",
1921			    __func__, regpair->regDmn5GHz, country->countryCode);
1922			return HAL_EINVAL;
1923		}
1924		rd2GHz = findRegDmn(regpair->regDmn2GHz);
1925		if (rd2GHz == AH_NULL) {
1926			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1927			    "%s: no 2GHz reg domain %u for country %u\n",
1928			    __func__, regpair->regDmn2GHz, country->countryCode);
1929			return HAL_EINVAL;
1930		}
1931	} else {
1932		rd5GHz = rd2GHz = findRegDmn(regDmn);
1933		if (rd2GHz == AH_NULL) {
1934			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1935			    "%s: no unitary reg domain %u for country %u\n",
1936			    __func__, regDmn, country->countryCode);
1937			return HAL_EINVAL;
1938		}
1939	}
1940	if (pcountry != AH_NULL)
1941		*pcountry = country;
1942	*prd2GHz = rd2GHz;
1943	*prd5GHz = rd5GHz;
1944	return HAL_OK;
1945}
1946
1947/*
1948 * Construct the channel list for the specified regulatory config.
1949 */
1950static HAL_STATUS
1951getchannels(struct ath_hal *ah,
1952    struct ieee80211_channel chans[], u_int maxchans, int *nchans,
1953    u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
1954    HAL_BOOL enableExtendedChannels,
1955    COUNTRY_CODE_TO_ENUM_RD **pcountry,
1956    REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
1957{
1958#define CHANNEL_HALF_BW		10
1959#define CHANNEL_QUARTER_BW	5
1960#define	HAL_MODE_11A_ALL \
1961	(HAL_MODE_11A | HAL_MODE_11A_TURBO | HAL_MODE_TURBO | \
1962	 HAL_MODE_11A_QUARTER_RATE | HAL_MODE_11A_HALF_RATE)
1963	REG_DOMAIN *rd5GHz, *rd2GHz;
1964	u_int modesAvail;
1965	const struct cmode *cm;
1966	struct ieee80211_channel *ic;
1967	int next, b;
1968	HAL_STATUS status;
1969
1970	HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u regDmn 0x%x mode 0x%x%s\n",
1971	    __func__, cc, regDmn, modeSelect,
1972	    enableExtendedChannels ? " ecm" : "");
1973
1974	status = getregstate(ah, cc, regDmn, pcountry, &rd2GHz, &rd5GHz);
1975	if (status != HAL_OK)
1976		return status;
1977
1978	/* get modes that HW is capable of */
1979	modesAvail = ath_hal_getWirelessModes(ah);
1980	/* optimize work below if no 11a channels */
1981	if (isChanBitMaskZero(rd5GHz->chan11a) &&
1982	    (modesAvail & HAL_MODE_11A_ALL)) {
1983		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1984		    "%s: disallow all 11a\n", __func__);
1985		modesAvail &= ~HAL_MODE_11A_ALL;
1986	}
1987
1988	next = 0;
1989	ic = &chans[0];
1990	for (cm = modes; cm < &modes[N(modes)]; cm++) {
1991		uint16_t c, c_hi, c_lo;
1992		uint64_t *channelBM = AH_NULL;
1993		REG_DMN_FREQ_BAND *fband = AH_NULL,*freqs;
1994		int low_adj, hi_adj, channelSep, lastc;
1995		uint32_t rdflags;
1996		uint64_t dfsMask;
1997		uint64_t pscan;
1998
1999		if ((cm->mode & modeSelect) == 0) {
2000			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2001			    "%s: skip mode 0x%x flags 0x%x\n",
2002			    __func__, cm->mode, cm->flags);
2003			continue;
2004		}
2005		if ((cm->mode & modesAvail) == 0) {
2006			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2007			    "%s: !avail mode 0x%x (0x%x) flags 0x%x\n",
2008			    __func__, modesAvail, cm->mode, cm->flags);
2009			continue;
2010		}
2011		if (!ath_hal_getChannelEdges(ah, cm->flags, &c_lo, &c_hi)) {
2012			/* channel not supported by hardware, skip it */
2013			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2014			    "%s: channels 0x%x not supported by hardware\n",
2015			    __func__,cm->flags);
2016			continue;
2017		}
2018		switch (cm->mode) {
2019		case HAL_MODE_TURBO:
2020		case HAL_MODE_11A_TURBO:
2021			rdflags = rd5GHz->flags;
2022			dfsMask = rd5GHz->dfsMask;
2023			pscan = rd5GHz->pscan;
2024			if (cm->mode == HAL_MODE_TURBO)
2025				channelBM = rd5GHz->chan11a_turbo;
2026			else
2027				channelBM = rd5GHz->chan11a_dyn_turbo;
2028			freqs = &regDmn5GhzTurboFreq[0];
2029			break;
2030		case HAL_MODE_11G_TURBO:
2031			rdflags = rd2GHz->flags;
2032			dfsMask = rd2GHz->dfsMask;
2033			pscan = rd2GHz->pscan;
2034			channelBM = rd2GHz->chan11g_turbo;
2035			freqs = &regDmn2Ghz11gTurboFreq[0];
2036			break;
2037		case HAL_MODE_11A:
2038		case HAL_MODE_11A_HALF_RATE:
2039		case HAL_MODE_11A_QUARTER_RATE:
2040		case HAL_MODE_11NA_HT20:
2041		case HAL_MODE_11NA_HT40PLUS:
2042		case HAL_MODE_11NA_HT40MINUS:
2043			rdflags = rd5GHz->flags;
2044			dfsMask = rd5GHz->dfsMask;
2045			pscan = rd5GHz->pscan;
2046			if (cm->mode == HAL_MODE_11A_HALF_RATE)
2047				channelBM = rd5GHz->chan11a_half;
2048			else if (cm->mode == HAL_MODE_11A_QUARTER_RATE)
2049				channelBM = rd5GHz->chan11a_quarter;
2050			else
2051				channelBM = rd5GHz->chan11a;
2052			freqs = &regDmn5GhzFreq[0];
2053			break;
2054		case HAL_MODE_11B:
2055		case HAL_MODE_11G:
2056		case HAL_MODE_11G_HALF_RATE:
2057		case HAL_MODE_11G_QUARTER_RATE:
2058		case HAL_MODE_11NG_HT20:
2059		case HAL_MODE_11NG_HT40PLUS:
2060		case HAL_MODE_11NG_HT40MINUS:
2061			rdflags = rd2GHz->flags;
2062			dfsMask = rd2GHz->dfsMask;
2063			pscan = rd2GHz->pscan;
2064			if (cm->mode == HAL_MODE_11G_HALF_RATE)
2065				channelBM = rd2GHz->chan11g_half;
2066			else if (cm->mode == HAL_MODE_11G_QUARTER_RATE)
2067				channelBM = rd2GHz->chan11g_quarter;
2068			else if (cm->mode == HAL_MODE_11B)
2069				channelBM = rd2GHz->chan11b;
2070			else
2071				channelBM = rd2GHz->chan11g;
2072			if (cm->mode == HAL_MODE_11B)
2073				freqs = &regDmn2GhzFreq[0];
2074			else
2075				freqs = &regDmn2Ghz11gFreq[0];
2076			break;
2077		default:
2078			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2079			    "%s: Unkonwn HAL mode 0x%x\n", __func__, cm->mode);
2080			continue;
2081		}
2082		if (isChanBitMaskZero(channelBM))
2083			continue;
2084		/*
2085		 * Setup special handling for HT40 channels; e.g.
2086		 * 5G HT40 channels require 40Mhz channel separation.
2087		 */
2088		hi_adj = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2089		    cm->mode == HAL_MODE_11NG_HT40PLUS) ? -20 : 0;
2090		low_adj = (cm->mode == HAL_MODE_11NA_HT40MINUS ||
2091		    cm->mode == HAL_MODE_11NG_HT40MINUS) ? 20 : 0;
2092		channelSep = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2093		    cm->mode == HAL_MODE_11NA_HT40MINUS) ? 40 : 0;
2094
2095		for (b = 0; b < 64*BMLEN; b++) {
2096			if (!IS_BIT_SET(b, channelBM))
2097				continue;
2098			fband = &freqs[b];
2099			lastc = 0;
2100
2101			for (c = fband->lowChannel + low_adj;
2102			     c <= fband->highChannel + hi_adj;
2103			     c += fband->channelSep) {
2104				if (!(c_lo <= c && c <= c_hi)) {
2105					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2106					    "%s: c %u out of range [%u..%u]\n",
2107					    __func__, c, c_lo, c_hi);
2108					continue;
2109				}
2110				if (next >= maxchans){
2111					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2112					    "%s: too many channels for channel table\n",
2113					    __func__);
2114					goto done;
2115				}
2116				if ((fband->usePassScan & IS_ECM_CHAN) &&
2117				    !enableExtendedChannels) {
2118					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2119					    "skip ecm channel\n");
2120					continue;
2121				}
2122				if ((fband->useDfs & dfsMask) &&
2123				    (cm->flags & IEEE80211_CHAN_HT40)) {
2124					/* NB: DFS and HT40 don't mix */
2125					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2126					    "skip HT40 chan, DFS required\n");
2127					continue;
2128				}
2129				/*
2130				 * Make sure that channel separation
2131				 * meets the requirement.
2132				 */
2133				if (lastc && channelSep &&
2134				    (c-lastc) < channelSep)
2135					continue;
2136				lastc = c;
2137
2138				OS_MEMZERO(ic, sizeof(*ic));
2139				ic->ic_freq = c;
2140				ic->ic_flags = cm->flags;
2141				ic->ic_maxregpower = fband->powerDfs;
2142				ath_hal_getpowerlimits(ah, ic);
2143				ic->ic_maxantgain = fband->antennaMax;
2144				if (fband->usePassScan & pscan)
2145					ic->ic_flags |= IEEE80211_CHAN_PASSIVE;
2146				if (fband->useDfs & dfsMask)
2147					ic->ic_flags |= IEEE80211_CHAN_DFS;
2148				if (IEEE80211_IS_CHAN_5GHZ(ic) &&
2149				    (rdflags & DISALLOW_ADHOC_11A))
2150					ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
2151				if (IEEE80211_IS_CHAN_TURBO(ic) &&
2152				    (rdflags & DISALLOW_ADHOC_11A_TURB))
2153					ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
2154				if (rdflags & NO_HOSTAP)
2155					ic->ic_flags |= IEEE80211_CHAN_NOHOSTAP;
2156				if (rdflags & LIMIT_FRAME_4MS)
2157					ic->ic_flags |= IEEE80211_CHAN_4MSXMIT;
2158				if (rdflags & NEED_NFC)
2159					ic->ic_flags |= CHANNEL_NFCREQUIRED;
2160
2161				ic++, next++;
2162			}
2163		}
2164	}
2165done:
2166	*nchans = next;
2167	/* NB: pcountry set above by getregstate */
2168	if (prd2GHz != AH_NULL)
2169		*prd2GHz = rd2GHz;
2170	if (prd5GHz != AH_NULL)
2171		*prd5GHz = rd5GHz;
2172	return HAL_OK;
2173#undef HAL_MODE_11A_ALL
2174#undef CHANNEL_HALF_BW
2175#undef CHANNEL_QUARTER_BW
2176}
2177
2178/*
2179 * Retrieve a channel list without affecting runtime state.
2180 */
2181HAL_STATUS
2182ath_hal_getchannels(struct ath_hal *ah,
2183    struct ieee80211_channel chans[], u_int maxchans, int *nchans,
2184    u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
2185    HAL_BOOL enableExtendedChannels)
2186{
2187	return getchannels(ah, chans, maxchans, nchans, modeSelect,
2188	    cc, regDmn, enableExtendedChannels, AH_NULL, AH_NULL, AH_NULL);
2189}
2190
2191/*
2192 * Handle frequency mapping from 900Mhz range to 2.4GHz range
2193 * for GSM radios.  This is done when we need the h/w frequency
2194 * and the channel is marked IEEE80211_CHAN_GSM.
2195 */
2196static int
2197ath_hal_mapgsm(int sku, int freq)
2198{
2199	if (sku == SKU_XR9)
2200		return 1520 + freq;
2201	if (sku == SKU_GZ901)
2202		return 1544 + freq;
2203	if (sku == SKU_SR9)
2204		return 3344 - freq;
2205	HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
2206	    "%s: cannot map freq %u unknown gsm sku %u\n",
2207	    __func__, freq, sku);
2208	return freq;
2209}
2210
2211/*
2212 * Setup the internal/private channel state given a table of
2213 * net80211 channels.  We collapse entries for the same frequency
2214 * and record the frequency for doing noise floor processing
2215 * where we don't have net80211 channel context.
2216 */
2217static HAL_BOOL
2218assignPrivateChannels(struct ath_hal *ah,
2219	struct ieee80211_channel chans[], int nchans, int sku)
2220{
2221	HAL_CHANNEL_INTERNAL *ic;
2222	int i, j, next, freq;
2223
2224	next = 0;
2225	for (i = 0; i < nchans; i++) {
2226		struct ieee80211_channel *c = &chans[i];
2227		for (j = i-1; j >= 0; j--)
2228			if (chans[j].ic_freq == c->ic_freq) {
2229				c->ic_devdata = chans[j].ic_devdata;
2230				break;
2231			}
2232		if (j < 0) {
2233			/* new entry, assign a private channel entry */
2234			if (next >= N(AH_PRIVATE(ah)->ah_channels)) {
2235				HALDEBUG(ah, HAL_DEBUG_ANY,
2236				    "%s: too many channels, max %zu\n",
2237				    __func__, N(AH_PRIVATE(ah)->ah_channels));
2238				return AH_FALSE;
2239			}
2240			/*
2241			 * Handle frequency mapping for 900MHz devices.
2242			 * The hardware uses 2.4GHz frequencies that are
2243			 * down-converted.  The 802.11 layer uses the
2244			 * true frequencies.
2245			 */
2246			freq = IEEE80211_IS_CHAN_GSM(c) ?
2247			    ath_hal_mapgsm(sku, c->ic_freq) : c->ic_freq;
2248
2249			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2250			    "%s: private[%3u] %u/0x%x -> channel %u\n",
2251			    __func__, next, c->ic_freq, c->ic_flags, freq);
2252
2253			ic = &AH_PRIVATE(ah)->ah_channels[next];
2254			/*
2255			 * NB: This clears privFlags which means ancillary
2256			 *     code like ANI and IQ calibration will be
2257			 *     restarted and re-setup any per-channel state.
2258			 */
2259			OS_MEMZERO(ic, sizeof(*ic));
2260			ic->channel = freq;
2261			c->ic_devdata = next;
2262			next++;
2263		}
2264	}
2265	AH_PRIVATE(ah)->ah_nchan = next;
2266	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: %u public, %u private channels\n",
2267	    __func__, nchans, next);
2268	return AH_TRUE;
2269}
2270
2271/*
2272 * Setup the channel list based on the information in the EEPROM.
2273 */
2274HAL_STATUS
2275ath_hal_init_channels(struct ath_hal *ah,
2276    struct ieee80211_channel chans[], u_int maxchans, int *nchans,
2277    u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
2278    HAL_BOOL enableExtendedChannels)
2279{
2280	COUNTRY_CODE_TO_ENUM_RD *country;
2281	REG_DOMAIN *rd5GHz, *rd2GHz;
2282	HAL_STATUS status;
2283
2284	status = getchannels(ah, chans, maxchans, nchans, modeSelect,
2285	    cc, regDmn, enableExtendedChannels, &country, &rd2GHz, &rd5GHz);
2286	if (status == HAL_OK &&
2287	    assignPrivateChannels(ah, chans, *nchans, AH_PRIVATE(ah)->ah_currentRD)) {
2288		AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
2289		AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
2290
2291		ah->ah_countryCode = country->countryCode;
2292		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
2293		    __func__, ah->ah_countryCode);
2294	} else
2295		status = HAL_EINVAL;
2296	return status;
2297}
2298
2299/*
2300 * Set the channel list.
2301 */
2302HAL_STATUS
2303ath_hal_set_channels(struct ath_hal *ah,
2304    struct ieee80211_channel chans[], int nchans,
2305    HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd)
2306{
2307	COUNTRY_CODE_TO_ENUM_RD *country;
2308	REG_DOMAIN *rd5GHz, *rd2GHz;
2309	HAL_STATUS status;
2310
2311	switch (rd) {
2312	case SKU_SR9:
2313	case SKU_XR9:
2314	case SKU_GZ901:
2315		/*
2316		 * Map 900MHz sku's.  The frequencies will be mapped
2317		 * according to the sku to compensate for the down-converter.
2318		 * We use the FCC for these sku's as the mapped channel
2319		 * list is known compatible (will need to change if/when
2320		 * vendors do different mapping in different locales).
2321		 */
2322		status = getregstate(ah, CTRY_DEFAULT, SKU_FCC,
2323		    &country, &rd2GHz, &rd5GHz);
2324		break;
2325	default:
2326		status = getregstate(ah, cc, rd,
2327		    &country, &rd2GHz, &rd5GHz);
2328		rd = AH_PRIVATE(ah)->ah_currentRD;
2329		break;
2330	}
2331	if (status == HAL_OK && assignPrivateChannels(ah, chans, nchans, rd)) {
2332		AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
2333		AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
2334
2335		ah->ah_countryCode = country->countryCode;
2336		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
2337		    __func__, ah->ah_countryCode);
2338	} else
2339		status = HAL_EINVAL;
2340	return status;
2341}
2342
2343#ifdef AH_DEBUG
2344/*
2345 * Return the internal channel corresponding to a public channel.
2346 * NB: normally this routine is inline'd (see ah_internal.h)
2347 */
2348HAL_CHANNEL_INTERNAL *
2349ath_hal_checkchannel(struct ath_hal *ah, const struct ieee80211_channel *c)
2350{
2351	HAL_CHANNEL_INTERNAL *cc = &AH_PRIVATE(ah)->ah_channels[c->ic_devdata];
2352
2353	if (c->ic_devdata < AH_PRIVATE(ah)->ah_nchan &&
2354	    (c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c)))
2355		return cc;
2356	if (c->ic_devdata >= AH_PRIVATE(ah)->ah_nchan) {
2357		HALDEBUG(ah, HAL_DEBUG_ANY,
2358		    "%s: bad mapping, devdata %u nchans %u\n",
2359		   __func__, c->ic_devdata, AH_PRIVATE(ah)->ah_nchan);
2360		HALASSERT(c->ic_devdata < AH_PRIVATE(ah)->ah_nchan);
2361	} else {
2362		HALDEBUG(ah, HAL_DEBUG_ANY,
2363		    "%s: no match for %u/0x%x devdata %u channel %u\n",
2364		   __func__, c->ic_freq, c->ic_flags, c->ic_devdata,
2365		   cc->channel);
2366		HALASSERT(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c));
2367	}
2368	return AH_NULL;
2369}
2370#endif /* AH_DEBUG */
2371
2372#define isWwrSKU(_ah) \
2373	((getEepromRD((_ah)) & WORLD_SKU_MASK) == WORLD_SKU_PREFIX || \
2374	  getEepromRD(_ah) == WORLD)
2375
2376/*
2377 * Return the test group for the specific channel based on
2378 * the current regulatory setup.
2379 */
2380u_int
2381ath_hal_getctl(struct ath_hal *ah, const struct ieee80211_channel *c)
2382{
2383	u_int ctl;
2384
2385	if (AH_PRIVATE(ah)->ah_rd2GHz == AH_PRIVATE(ah)->ah_rd5GHz ||
2386	    (ah->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)))
2387		ctl = SD_NO_CTL;
2388	else if (IEEE80211_IS_CHAN_2GHZ(c))
2389		ctl = AH_PRIVATE(ah)->ah_rd2GHz->conformanceTestLimit;
2390	else
2391		ctl = AH_PRIVATE(ah)->ah_rd5GHz->conformanceTestLimit;
2392	if (IEEE80211_IS_CHAN_B(c))
2393		return ctl | CTL_11B;
2394	if (IEEE80211_IS_CHAN_G(c))
2395		return ctl | CTL_11G;
2396	if (IEEE80211_IS_CHAN_108G(c))
2397		return ctl | CTL_108G;
2398	if (IEEE80211_IS_CHAN_TURBO(c))
2399		return ctl | CTL_TURBO;
2400	if (IEEE80211_IS_CHAN_A(c))
2401		return ctl | CTL_11A;
2402	return ctl;
2403}
2404
2405/*
2406 * Return the max allowed antenna gain and apply any regulatory
2407 * domain specific changes.
2408 *
2409 * NOTE: a negative reduction is possible in RD's that only
2410 * measure radiated power (e.g., ETSI) which would increase
2411 * that actual conducted output power (though never beyond
2412 * the calibrated target power).
2413 */
2414u_int
2415ath_hal_getantennareduction(struct ath_hal *ah,
2416    const struct ieee80211_channel *chan, u_int twiceGain)
2417{
2418	int8_t antennaMax = twiceGain - chan->ic_maxantgain*2;
2419	return (antennaMax < 0) ? 0 : antennaMax;
2420}
2421