ah_regdomain.c revision 188213
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2005-2006 Atheros Communications, Inc.
4 * All rights reserved.
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 * $FreeBSD: head/sys/dev/ath/ath_hal/ah_regdomain.c 188213 2009-02-06 00:48:56Z sam $
19 */
20#include "opt_ah.h"
21
22#include "ah.h"
23
24#include <net80211/_ieee80211.h>
25#include <net80211/ieee80211_regdomain.h>
26
27#include "ah_internal.h"
28#include "ah_eeprom.h"
29#include "ah_devid.h"
30
31/*
32 * XXX this code needs a audit+review
33 */
34
35/* used throughout this file... */
36#define	N(a)	(sizeof (a) / sizeof (a[0]))
37
38#define HAL_MODE_11A_TURBO	HAL_MODE_108A
39#define HAL_MODE_11G_TURBO	HAL_MODE_108G
40
41/*
42 * BMLEN defines the size of the bitmask used to hold frequency
43 * band specifications.  Note this must agree with the BM macro
44 * definition that's used to setup initializers.  See also further
45 * comments below.
46 */
47#define BMLEN 2		/* 2 x 64 bits in each channel bitmask */
48typedef uint64_t chanbmask_t[BMLEN];
49
50#define	W0(_a) \
51	(((_a) >= 0 && (_a) < 64 ? (((uint64_t) 1)<<(_a)) : (uint64_t) 0))
52#define	W1(_a) \
53	(((_a) > 63 && (_a) < 128 ? (((uint64_t) 1)<<((_a)-64)) : (uint64_t) 0))
54#define BM1(_fa)	{ W0(_fa), W1(_fa) }
55#define BM2(_fa, _fb)	{ W0(_fa) | W0(_fb), W1(_fa) | W1(_fb) }
56#define BM3(_fa, _fb, _fc) \
57	{ W0(_fa) | W0(_fb) | W0(_fc), W1(_fa) | W1(_fb) | W1(_fc) }
58#define BM4(_fa, _fb, _fc, _fd)						\
59	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd),			\
60	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) }
61#define BM5(_fa, _fb, _fc, _fd, _fe)					\
62	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe),		\
63	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) }
64#define BM6(_fa, _fb, _fc, _fd, _fe, _ff)				\
65	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff),	\
66	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) }
67#define BM7(_fa, _fb, _fc, _fd, _fe, _ff, _fg)	\
68	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) |	\
69	  W0(_fg),\
70	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) |	\
71	  W1(_fg) }
72#define BM8(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh)	\
73	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) |	\
74	  W0(_fg) | W0(_fh) ,	\
75	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) |	\
76	  W1(_fg) | W1(_fh) }
77
78/*
79 * Mask to check whether a domain is a multidomain or a single domain
80 */
81#define MULTI_DOMAIN_MASK 0xFF00
82
83/*
84 * Enumerated Regulatory Domain Information 8 bit values indicate that
85 * the regdomain is really a pair of unitary regdomains.  12 bit values
86 * are the real unitary regdomains and are the only ones which have the
87 * frequency bitmasks and flags set.
88 */
89enum {
90	/*
91	 * The following regulatory domain definitions are
92	 * found in the EEPROM. Each regulatory domain
93	 * can operate in either a 5GHz or 2.4GHz wireless mode or
94	 * both 5GHz and 2.4GHz wireless modes.
95	 * In general, the value holds no special
96	 * meaning and is used to decode into either specific
97	 * 2.4GHz or 5GHz wireless mode for that particular
98	 * regulatory domain.
99	 */
100	NO_ENUMRD	= 0x00,
101	NULL1_WORLD	= 0x03,		/* For 11b-only countries (no 11a allowed) */
102	NULL1_ETSIB	= 0x07,		/* Israel */
103	NULL1_ETSIC	= 0x08,
104	FCC1_FCCA	= 0x10,		/* USA */
105	FCC1_WORLD	= 0x11,		/* Hong Kong */
106	FCC4_FCCA	= 0x12,		/* USA - Public Safety */
107	FCC5_FCCB	= 0x13,		/* USA w/ 1/2 and 1/4 width channels */
108
109	FCC2_FCCA	= 0x20,		/* Canada */
110	FCC2_WORLD	= 0x21,		/* Australia & HK */
111	FCC2_ETSIC	= 0x22,
112	FRANCE_RES	= 0x31,		/* Legacy France for OEM */
113	FCC3_FCCA	= 0x3A,		/* USA & Canada w/5470 band, 11h, DFS enabled */
114	FCC3_WORLD	= 0x3B,		/* USA & Canada w/5470 band, 11h, DFS enabled */
115
116	ETSI1_WORLD	= 0x37,
117	ETSI3_ETSIA	= 0x32,		/* France (optional) */
118	ETSI2_WORLD	= 0x35,		/* Hungary & others */
119	ETSI3_WORLD	= 0x36,		/* France & others */
120	ETSI4_WORLD	= 0x30,
121	ETSI4_ETSIC	= 0x38,
122	ETSI5_WORLD	= 0x39,
123	ETSI6_WORLD	= 0x34,		/* Bulgaria */
124	ETSI_RESERVED	= 0x33,		/* Reserved (Do not used) */
125
126	MKK1_MKKA	= 0x40,		/* Japan (JP1) */
127	MKK1_MKKB	= 0x41,		/* Japan (JP0) */
128	APL4_WORLD	= 0x42,		/* Singapore */
129	MKK2_MKKA	= 0x43,		/* Japan with 4.9G channels */
130	APL_RESERVED	= 0x44,		/* Reserved (Do not used)  */
131	APL2_WORLD	= 0x45,		/* Korea */
132	APL2_APLC	= 0x46,
133	APL3_WORLD	= 0x47,
134	MKK1_FCCA	= 0x48,		/* Japan (JP1-1) */
135	APL2_APLD	= 0x49,		/* Korea with 2.3G channels */
136	MKK1_MKKA1	= 0x4A,		/* Japan (JE1) */
137	MKK1_MKKA2	= 0x4B,		/* Japan (JE2) */
138	MKK1_MKKC	= 0x4C,		/* Japan (MKK1_MKKA,except Ch14) */
139
140	APL3_FCCA       = 0x50,
141	APL1_WORLD	= 0x52,		/* Latin America */
142	APL1_FCCA	= 0x53,
143	APL1_APLA	= 0x54,
144	APL1_ETSIC	= 0x55,
145	APL2_ETSIC	= 0x56,		/* Venezuela */
146	APL5_WORLD	= 0x58,		/* Chile */
147	APL6_WORLD	= 0x5B,		/* Singapore */
148	APL7_FCCA   	= 0x5C,     	/* Taiwan 5.47 Band */
149	APL8_WORLD  	= 0x5D,     	/* Malaysia 5GHz */
150	APL9_WORLD  	= 0x5E,     	/* Korea 5GHz */
151
152	/*
153	 * World mode SKUs
154	 */
155	WOR0_WORLD	= 0x60,		/* World0 (WO0 SKU) */
156	WOR1_WORLD	= 0x61,		/* World1 (WO1 SKU) */
157	WOR2_WORLD	= 0x62,		/* World2 (WO2 SKU) */
158	WOR3_WORLD	= 0x63,		/* World3 (WO3 SKU) */
159	WOR4_WORLD	= 0x64,		/* World4 (WO4 SKU) */
160	WOR5_ETSIC	= 0x65,		/* World5 (WO5 SKU) */
161
162	WOR01_WORLD	= 0x66,		/* World0-1 (WW0-1 SKU) */
163	WOR02_WORLD	= 0x67,		/* World0-2 (WW0-2 SKU) */
164	EU1_WORLD	= 0x68,		/* Same as World0-2 (WW0-2 SKU), except active scan ch1-13. No ch14 */
165
166	WOR9_WORLD	= 0x69,		/* World9 (WO9 SKU) */
167	WORA_WORLD	= 0x6A,		/* WorldA (WOA SKU) */
168
169	MKK3_MKKB	= 0x80,		/* Japan UNI-1 even + MKKB */
170	MKK3_MKKA2	= 0x81,		/* Japan UNI-1 even + MKKA2 */
171	MKK3_MKKC	= 0x82,		/* Japan UNI-1 even + MKKC */
172
173	MKK4_MKKB	= 0x83,		/* Japan UNI-1 even + UNI-2 + MKKB */
174	MKK4_MKKA2	= 0x84,		/* Japan UNI-1 even + UNI-2 + MKKA2 */
175	MKK4_MKKC	= 0x85,		/* Japan UNI-1 even + UNI-2 + MKKC */
176
177	MKK5_MKKB	= 0x86,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKB */
178	MKK5_MKKA2	= 0x87,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKA2 */
179	MKK5_MKKC	= 0x88,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKC */
180
181	MKK6_MKKB	= 0x89,		/* Japan UNI-1 even + UNI-1 odd MKKB */
182	MKK6_MKKA2	= 0x8A,		/* Japan UNI-1 even + UNI-1 odd + MKKA2 */
183	MKK6_MKKC	= 0x8B,		/* Japan UNI-1 even + UNI-1 odd + MKKC */
184
185	MKK7_MKKB	= 0x8C,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKB */
186	MKK7_MKKA2	= 0x8D,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKA2 */
187	MKK7_MKKC	= 0x8E,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKC */
188
189	MKK8_MKKB	= 0x8F,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKB */
190	MKK8_MKKA2	= 0x90,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKA2 */
191	MKK8_MKKC	= 0x91,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKC */
192
193	/* Following definitions are used only by s/w to map old
194 	 * Japan SKUs.
195	 */
196	MKK3_MKKA       = 0xF0,         /* Japan UNI-1 even + MKKA */
197	MKK3_MKKA1      = 0xF1,         /* Japan UNI-1 even + MKKA1 */
198	MKK3_FCCA       = 0xF2,         /* Japan UNI-1 even + FCCA */
199	MKK4_MKKA       = 0xF3,         /* Japan UNI-1 even + UNI-2 + MKKA */
200	MKK4_MKKA1      = 0xF4,         /* Japan UNI-1 even + UNI-2 + MKKA1 */
201	MKK4_FCCA       = 0xF5,         /* Japan UNI-1 even + UNI-2 + FCCA */
202	MKK9_MKKA       = 0xF6,         /* Japan UNI-1 even + 4.9GHz */
203	MKK10_MKKA      = 0xF7,         /* Japan UNI-1 even + UNI-2 + 4.9GHz */
204
205	/*
206	 * Regulator domains ending in a number (e.g. APL1,
207	 * MK1, ETSI4, etc) apply to 5GHz channel and power
208	 * information.  Regulator domains ending in a letter
209	 * (e.g. APLA, FCCA, etc) apply to 2.4GHz channel and
210	 * power information.
211	 */
212	APL1		= 0x0150,	/* LAT & Asia */
213	APL2		= 0x0250,	/* LAT & Asia */
214	APL3		= 0x0350,	/* Taiwan */
215	APL4		= 0x0450,	/* Jordan */
216	APL5		= 0x0550,	/* Chile */
217	APL6		= 0x0650,	/* Singapore */
218	APL8		= 0x0850,	/* Malaysia */
219	APL9		= 0x0950,	/* Korea (South) ROC 3 */
220
221	ETSI1		= 0x0130,	/* Europe & others */
222	ETSI2		= 0x0230,	/* Europe & others */
223	ETSI3		= 0x0330,	/* Europe & others */
224	ETSI4		= 0x0430,	/* Europe & others */
225	ETSI5		= 0x0530,	/* Europe & others */
226	ETSI6		= 0x0630,	/* Europe & others */
227	ETSIA		= 0x0A30,	/* France */
228	ETSIB		= 0x0B30,	/* Israel */
229	ETSIC		= 0x0C30,	/* Latin America */
230
231	FCC1		= 0x0110,	/* US & others */
232	FCC2		= 0x0120,	/* Canada, Australia & New Zealand */
233	FCC3		= 0x0160,	/* US w/new middle band & DFS */
234	FCC4          	= 0x0165,     	/* US Public Safety */
235	FCC5          	= 0x0166,     	/* US w/ 1/2 and 1/4 width channels */
236	FCCA		= 0x0A10,
237	FCCB		= 0x0A11,	/* US w/ 1/2 and 1/4 width channels */
238
239	APLD		= 0x0D50,	/* South Korea */
240
241	MKK1		= 0x0140,	/* Japan (UNI-1 odd)*/
242	MKK2		= 0x0240,	/* Japan (4.9 GHz + UNI-1 odd) */
243	MKK3		= 0x0340,	/* Japan (UNI-1 even) */
244	MKK4		= 0x0440,	/* Japan (UNI-1 even + UNI-2) */
245	MKK5		= 0x0540,	/* Japan (UNI-1 even + UNI-2 + mid-band) */
246	MKK6		= 0x0640,	/* Japan (UNI-1 odd + UNI-1 even) */
247	MKK7		= 0x0740,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 */
248	MKK8		= 0x0840,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 + mid-band) */
249	MKK9            = 0x0940,       /* Japan (UNI-1 even + 4.9 GHZ) */
250	MKK10           = 0x0B40,       /* Japan (UNI-1 even + UNI-2 + 4.9 GHZ) */
251	MKKA		= 0x0A40,	/* Japan */
252	MKKC		= 0x0A50,
253
254	NULL1		= 0x0198,
255	WORLD		= 0x0199,
256	DEBUG_REG_DMN	= 0x01ff,
257};
258
259#define	WORLD_SKU_MASK		0x00F0
260#define	WORLD_SKU_PREFIX	0x0060
261
262enum {					/* conformance test limits */
263	FCC	= 0x10,
264	MKK	= 0x40,
265	ETSI	= 0x30,
266};
267
268/*
269 * The following are flags for different requirements per reg domain.
270 * These requirements are either inhereted from the reg domain pair or
271 * from the unitary reg domain if the reg domain pair flags value is 0
272 */
273enum {
274	NO_REQ			= 0x00000000,	/* NB: must be zero */
275	DISALLOW_ADHOC_11A	= 0x00000001,	/* adhoc not allowed in 5GHz */
276	DISALLOW_ADHOC_11A_TURB	= 0x00000002,	/* not allowed w/ 5GHz turbo */
277	NEED_NFC		= 0x00000004,	/* need noise floor check */
278	ADHOC_PER_11D		= 0x00000008,	/* must receive 11d beacon */
279	LIMIT_FRAME_4MS 	= 0x00000020,	/* 4msec tx burst limit */
280	NO_HOSTAP		= 0x00000040,	/* No HOSTAP mode opereation */
281};
282
283/*
284 * The following describe the bit masks for different passive scan
285 * capability/requirements per regdomain.
286 */
287#define	NO_PSCAN	0x0ULL			/* NB: must be zero */
288#define	PSCAN_FCC	0x0000000000000001ULL
289#define	PSCAN_FCC_T	0x0000000000000002ULL
290#define	PSCAN_ETSI	0x0000000000000004ULL
291#define	PSCAN_MKK1	0x0000000000000008ULL
292#define	PSCAN_MKK2	0x0000000000000010ULL
293#define	PSCAN_MKKA	0x0000000000000020ULL
294#define	PSCAN_MKKA_G	0x0000000000000040ULL
295#define	PSCAN_ETSIA	0x0000000000000080ULL
296#define	PSCAN_ETSIB	0x0000000000000100ULL
297#define	PSCAN_ETSIC	0x0000000000000200ULL
298#define	PSCAN_WWR	0x0000000000000400ULL
299#define	PSCAN_MKKA1	0x0000000000000800ULL
300#define	PSCAN_MKKA1_G	0x0000000000001000ULL
301#define	PSCAN_MKKA2	0x0000000000002000ULL
302#define	PSCAN_MKKA2_G	0x0000000000004000ULL
303#define	PSCAN_MKK3	0x0000000000008000ULL
304#define	PSCAN_DEFER	0x7FFFFFFFFFFFFFFFULL
305#define	IS_ECM_CHAN	0x8000000000000000ULL
306
307/*
308 * THE following table is the mapping of regdomain pairs specified by
309 * an 8 bit regdomain value to the individual unitary reg domains
310 */
311typedef struct regDomainPair {
312	HAL_REG_DOMAIN regDmnEnum;	/* 16 bit reg domain pair */
313	HAL_REG_DOMAIN regDmn5GHz;	/* 5GHz reg domain */
314	HAL_REG_DOMAIN regDmn2GHz;	/* 2GHz reg domain */
315	uint32_t flags5GHz;		/* Requirements flags (AdHoc
316					   disallow, noise floor cal needed,
317					   etc) */
318	uint32_t flags2GHz;		/* Requirements flags (AdHoc
319					   disallow, noise floor cal needed,
320					   etc) */
321	uint64_t pscanMask;		/* Passive Scan flags which
322					   can override unitary domain
323					   passive scan flags.  This
324					   value is used as a mask on
325					   the unitary flags*/
326	uint16_t singleCC;		/* Country code of single country if
327					   a one-on-one mapping exists */
328}  REG_DMN_PAIR_MAPPING;
329
330static REG_DMN_PAIR_MAPPING regDomainPairs[] = {
331	{NO_ENUMRD,	DEBUG_REG_DMN,	DEBUG_REG_DMN, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
332	{NULL1_WORLD,	NULL1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
333	{NULL1_ETSIB,	NULL1,		ETSIB,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
334	{NULL1_ETSIC,	NULL1,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
335
336	{FCC2_FCCA,	FCC2,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
337	{FCC2_WORLD,	FCC2,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
338	{FCC2_ETSIC,	FCC2,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
339	{FCC3_FCCA,	FCC3,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
340	{FCC3_WORLD,	FCC3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
341	{FCC4_FCCA,	FCC4,		FCCA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
342	{FCC5_FCCB,	FCC5,		FCCB,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
343
344	{ETSI1_WORLD,	ETSI1,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
345	{ETSI2_WORLD,	ETSI2,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
346	{ETSI3_WORLD,	ETSI3,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
347	{ETSI4_WORLD,	ETSI4,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
348	{ETSI5_WORLD,	ETSI5,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
349	{ETSI6_WORLD,	ETSI6,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
350
351	{ETSI3_ETSIA,	ETSI3,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
352	{FRANCE_RES,	ETSI3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
353
354	{FCC1_WORLD,	FCC1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
355	{FCC1_FCCA,	FCC1,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
356	{APL1_WORLD,	APL1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
357	{APL2_WORLD,	APL2,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
358	{APL3_WORLD,	APL3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
359	{APL4_WORLD,	APL4,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
360	{APL5_WORLD,	APL5,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
361	{APL6_WORLD,	APL6,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
362	{APL8_WORLD,	APL8,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
363	{APL9_WORLD,	APL9,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
364
365	{APL3_FCCA,	APL3,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
366	{APL1_ETSIC,	APL1,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
367	{APL2_ETSIC,	APL2,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
368	{APL2_APLD,	APL2,		APLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
369
370	{MKK1_MKKA,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA, CTRY_JAPAN },
371	{MKK1_MKKB,	MKK1,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN1 },
372	{MKK1_FCCA,	MKK1,		FCCA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN2 },
373	{MKK1_MKKA1,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_JAPAN4 },
374	{MKK1_MKKA2,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN5 },
375	{MKK1_MKKC,	MKK1,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN6 },
376
377	/* MKK2 */
378	{MKK2_MKKA,	MKK2,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK2 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN3 },
379
380	/* MKK3 */
381	{MKK3_MKKA,	MKK3,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC , PSCAN_MKKA, CTRY_DEFAULT },
382	{MKK3_MKKB,	MKK3,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN7 },
383	{MKK3_MKKA1,	MKK3,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
384	{MKK3_MKKA2,MKK3,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN8 },
385	{MKK3_MKKC,	MKK3,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_JAPAN9 },
386	{MKK3_FCCA,	MKK3,	FCCA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_DEFAULT },
387
388	/* MKK4 */
389	{MKK4_MKKB,	MKK4,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN10 },
390	{MKK4_MKKA1,	MKK4,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
391	{MKK4_MKKA2,	MKK4,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 |PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN11 },
392	{MKK4_MKKC,	MKK4,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN12 },
393	{MKK4_FCCA,	MKK4,	FCCA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_DEFAULT },
394
395	/* MKK5 */
396	{MKK5_MKKB,	MKK5,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN13 },
397	{MKK5_MKKA2,MKK5,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN14 },
398	{MKK5_MKKC,	MKK5,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN15 },
399
400	/* MKK6 */
401	{MKK6_MKKB,	MKK6,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN16 },
402	{MKK6_MKKA2,	MKK6,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN17 },
403	{MKK6_MKKC,	MKK6,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN18 },
404
405	/* MKK7 */
406	{MKK7_MKKB,	MKK7,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN19 },
407	{MKK7_MKKA2, MKK7,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN20 },
408	{MKK7_MKKC,	MKK7,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3, CTRY_JAPAN21 },
409
410	/* MKK8 */
411	{MKK8_MKKB,	MKK8,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN22 },
412	{MKK8_MKKA2,MKK8,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN23 },
413	{MKK8_MKKC,	MKK8,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 , CTRY_JAPAN24 },
414
415	{MKK9_MKKA,	MKK9,	MKKA,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
416	{MKK10_MKKA,	MKK10,	MKKA,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
417
418		/* These are super domains */
419	{WOR0_WORLD,	WOR0_WORLD,	WOR0_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
420	{WOR1_WORLD,	WOR1_WORLD,	WOR1_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
421	{WOR2_WORLD,	WOR2_WORLD,	WOR2_WORLD,	DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
422	{WOR3_WORLD,	WOR3_WORLD,	WOR3_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
423	{WOR4_WORLD,	WOR4_WORLD,	WOR4_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
424	{WOR5_ETSIC,	WOR5_ETSIC,	WOR5_ETSIC,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
425	{WOR01_WORLD,	WOR01_WORLD,	WOR01_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
426	{WOR02_WORLD,	WOR02_WORLD,	WOR02_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
427	{EU1_WORLD,	EU1_WORLD,	EU1_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
428	{WOR9_WORLD,	WOR9_WORLD,	WOR9_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
429	{WORA_WORLD,	WORA_WORLD,	WORA_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
430};
431
432/*
433 * The following tables are the master list for all different freqeuncy
434 * bands with the complete matrix of all possible flags and settings
435 * for each band if it is used in ANY reg domain.
436 */
437
438#define DEF_REGDMN		FCC1_FCCA
439#define	COUNTRY_ERD_FLAG        0x8000
440#define WORLDWIDE_ROAMING_FLAG  0x4000
441
442typedef struct {
443	HAL_CTRY_CODE		countryCode;
444	HAL_REG_DOMAIN		regDmnEnum;
445} COUNTRY_CODE_TO_ENUM_RD;
446
447static COUNTRY_CODE_TO_ENUM_RD allCountries[] = {
448	{ CTRY_DEBUG,       NO_ENUMRD },
449	{ CTRY_DEFAULT,     DEF_REGDMN },
450	{ CTRY_ALBANIA,     NULL1_WORLD },
451	{ CTRY_ALGERIA,     NULL1_WORLD },
452	{ CTRY_ARGENTINA,   APL3_WORLD },
453	{ CTRY_ARMENIA,     ETSI4_WORLD },
454	{ CTRY_AUSTRALIA,   FCC2_WORLD },
455	{ CTRY_AUSTRIA,     ETSI1_WORLD },
456	{ CTRY_AZERBAIJAN,  ETSI4_WORLD },
457	{ CTRY_BAHRAIN,     APL6_WORLD },
458	{ CTRY_BELARUS,     NULL1_WORLD },
459	{ CTRY_BELGIUM,     ETSI1_WORLD },
460	{ CTRY_BELIZE,      APL1_ETSIC },
461	{ CTRY_BOLIVIA,     APL1_ETSIC },
462	{ CTRY_BRAZIL,      FCC3_WORLD },
463	{ CTRY_BRUNEI_DARUSSALAM,APL1_WORLD },
464	{ CTRY_BULGARIA,    ETSI6_WORLD },
465	{ CTRY_CANADA,      FCC2_FCCA },
466	{ CTRY_CHILE,       APL6_WORLD },
467	{ CTRY_CHINA,       APL1_WORLD },
468	{ CTRY_COLOMBIA,    FCC1_FCCA },
469	{ CTRY_COSTA_RICA,  NULL1_WORLD },
470	{ CTRY_CROATIA,     ETSI3_WORLD },
471	{ CTRY_CYPRUS,      ETSI1_WORLD },
472	{ CTRY_CZECH,       ETSI1_WORLD },
473	{ CTRY_DENMARK,     ETSI1_WORLD },
474	{ CTRY_DOMINICAN_REPUBLIC,FCC1_FCCA },
475	{ CTRY_ECUADOR,     NULL1_WORLD },
476	{ CTRY_EGYPT,       ETSI3_WORLD },
477	{ CTRY_EL_SALVADOR, NULL1_WORLD },
478	{ CTRY_ESTONIA,     ETSI1_WORLD },
479	{ CTRY_FINLAND,     ETSI1_WORLD },
480	{ CTRY_FRANCE,      ETSI1_WORLD },
481	{ CTRY_FRANCE2,     ETSI3_WORLD },
482	{ CTRY_GEORGIA,     ETSI4_WORLD },
483	{ CTRY_GERMANY,     ETSI1_WORLD },
484	{ CTRY_GREECE,      ETSI1_WORLD },
485	{ CTRY_GUATEMALA,   FCC1_FCCA },
486	{ CTRY_HONDURAS,    NULL1_WORLD },
487	{ CTRY_HONG_KONG,   FCC2_WORLD },
488	{ CTRY_HUNGARY,     ETSI1_WORLD },
489	{ CTRY_ICELAND,     ETSI1_WORLD },
490	{ CTRY_INDIA,       APL6_WORLD },
491	{ CTRY_INDONESIA,   APL1_WORLD },
492	{ CTRY_IRAN,        APL1_WORLD },
493	{ CTRY_IRELAND,     ETSI1_WORLD },
494	{ CTRY_ISRAEL,      NULL1_WORLD },
495	{ CTRY_ITALY,       ETSI1_WORLD },
496	{ CTRY_JAPAN,       MKK1_MKKA },
497	{ CTRY_JAPAN1,      MKK1_MKKB },
498	{ CTRY_JAPAN2,      MKK1_FCCA },
499	{ CTRY_JAPAN3,      MKK2_MKKA },
500	{ CTRY_JAPAN4,      MKK1_MKKA1 },
501	{ CTRY_JAPAN5,      MKK1_MKKA2 },
502	{ CTRY_JAPAN6,      MKK1_MKKC },
503
504	{ CTRY_JAPAN7,      MKK3_MKKB },
505	{ CTRY_JAPAN8,      MKK3_MKKA2 },
506	{ CTRY_JAPAN9,      MKK3_MKKC },
507
508	{ CTRY_JAPAN10,     MKK4_MKKB },
509	{ CTRY_JAPAN11,     MKK4_MKKA2 },
510	{ CTRY_JAPAN12,     MKK4_MKKC },
511
512	{ CTRY_JAPAN13,     MKK5_MKKB },
513	{ CTRY_JAPAN14,     MKK5_MKKA2 },
514	{ CTRY_JAPAN15,     MKK5_MKKC },
515
516	{ CTRY_JAPAN16,     MKK6_MKKB },
517	{ CTRY_JAPAN17,     MKK6_MKKA2 },
518	{ CTRY_JAPAN18,     MKK6_MKKC },
519
520	{ CTRY_JAPAN19,     MKK7_MKKB },
521	{ CTRY_JAPAN20,     MKK7_MKKA2 },
522	{ CTRY_JAPAN21,     MKK7_MKKC },
523
524	{ CTRY_JAPAN22,     MKK8_MKKB },
525	{ CTRY_JAPAN23,     MKK8_MKKA2 },
526	{ CTRY_JAPAN24,     MKK8_MKKC },
527
528	{ CTRY_JORDAN,      APL4_WORLD },
529	{ CTRY_KAZAKHSTAN,  NULL1_WORLD },
530	{ CTRY_KOREA_NORTH, APL2_WORLD },
531	{ CTRY_KOREA_ROC,   APL2_WORLD },
532	{ CTRY_KOREA_ROC2,  APL2_WORLD },
533	{ CTRY_KOREA_ROC3,  APL9_WORLD },
534	{ CTRY_KUWAIT,      NULL1_WORLD },
535	{ CTRY_LATVIA,      ETSI1_WORLD },
536	{ CTRY_LEBANON,     NULL1_WORLD },
537	{ CTRY_LIECHTENSTEIN,ETSI1_WORLD },
538	{ CTRY_LITHUANIA,   ETSI1_WORLD },
539	{ CTRY_LUXEMBOURG,  ETSI1_WORLD },
540	{ CTRY_MACAU,       FCC2_WORLD },
541	{ CTRY_MACEDONIA,   NULL1_WORLD },
542	{ CTRY_MALAYSIA,    APL8_WORLD },
543	{ CTRY_MALTA,       ETSI1_WORLD },
544	{ CTRY_MEXICO,      FCC1_FCCA },
545	{ CTRY_MONACO,      ETSI4_WORLD },
546	{ CTRY_MOROCCO,     NULL1_WORLD },
547	{ CTRY_NETHERLANDS, ETSI1_WORLD },
548	{ CTRY_NEW_ZEALAND, FCC2_ETSIC },
549	{ CTRY_NORWAY,      ETSI1_WORLD },
550	{ CTRY_OMAN,        APL6_WORLD },
551	{ CTRY_PAKISTAN,    NULL1_WORLD },
552	{ CTRY_PANAMA,      FCC1_FCCA },
553	{ CTRY_PERU,        APL1_WORLD },
554	{ CTRY_PHILIPPINES, FCC3_WORLD },
555	{ CTRY_POLAND,      ETSI1_WORLD },
556	{ CTRY_PORTUGAL,    ETSI1_WORLD },
557	{ CTRY_PUERTO_RICO, FCC1_FCCA },
558	{ CTRY_QATAR,       NULL1_WORLD },
559	{ CTRY_ROMANIA,     NULL1_WORLD },
560	{ CTRY_RUSSIA,      NULL1_WORLD },
561	{ CTRY_SAUDI_ARABIA,FCC2_WORLD },
562	{ CTRY_SINGAPORE,   APL6_WORLD },
563	{ CTRY_SLOVAKIA,    ETSI1_WORLD },
564	{ CTRY_SLOVENIA,    ETSI1_WORLD },
565	{ CTRY_SOUTH_AFRICA,FCC3_WORLD },
566	{ CTRY_SPAIN,       ETSI1_WORLD },
567	{ CTRY_SWEDEN,      ETSI1_WORLD },
568	{ CTRY_SWITZERLAND, ETSI1_WORLD },
569	{ CTRY_SYRIA,       NULL1_WORLD },
570	{ CTRY_TAIWAN,      APL3_FCCA },
571	{ CTRY_THAILAND,    NULL1_WORLD },
572	{ CTRY_TRINIDAD_Y_TOBAGO,ETSI4_WORLD },
573	{ CTRY_TUNISIA,     ETSI3_WORLD },
574	{ CTRY_TURKEY,      ETSI3_WORLD },
575	{ CTRY_UKRAINE,     NULL1_WORLD },
576	{ CTRY_UAE,         NULL1_WORLD },
577	{ CTRY_UNITED_KINGDOM, ETSI1_WORLD },
578	{ CTRY_UNITED_STATES, FCC1_FCCA },
579	{ CTRY_UNITED_STATES_FCC49,FCC4_FCCA },
580	{ CTRY_URUGUAY,     FCC1_WORLD },
581	{ CTRY_UZBEKISTAN,  FCC3_FCCA },
582	{ CTRY_VENEZUELA,   APL2_ETSIC },
583	{ CTRY_VIET_NAM,    NULL1_WORLD },
584	{ CTRY_ZIMBABWE,    NULL1_WORLD }
585};
586
587/* Bit masks for DFS per regdomain */
588enum {
589	NO_DFS   = 0x0000000000000000ULL,	/* NB: must be zero */
590	DFS_FCC3 = 0x0000000000000001ULL,
591	DFS_ETSI = 0x0000000000000002ULL,
592	DFS_MKK4 = 0x0000000000000004ULL,
593};
594
595#define	AFTER(x)	((x)+1)
596
597/*
598 * Frequency band collections are defined using bitmasks.  Each bit
599 * in a mask is the index of an entry in one of the following tables.
600 * Bitmasks are BMLEN*64 bits so if a table grows beyond that the bit
601 * vectors must be enlarged or the tables split somehow (e.g. split
602 * 1/2 and 1/4 rate channels into a separate table).
603 *
604 * Beware of ordering; the indices are defined relative to the preceding
605 * entry so if things get off there will be confusion.  A good way to
606 * check the indices is to collect them in a switch statement in a stub
607 * function so the compiler checks for duplicates.
608 */
609
610typedef struct {
611	uint16_t	lowChannel;	/* Low channel center in MHz */
612	uint16_t	highChannel;	/* High Channel center in MHz */
613	uint8_t		powerDfs;	/* Max power (dBm) for channel
614					   range when using DFS */
615	uint8_t		antennaMax;	/* Max allowed antenna gain */
616	uint8_t		channelBW;	/* Bandwidth of the channel */
617	uint8_t		channelSep;	/* Channel separation within
618					   the band */
619	uint64_t	useDfs;		/* Use DFS in the RegDomain
620					   if corresponding bit is set */
621	uint64_t	usePassScan;	/* Use Passive Scan in the RegDomain
622					   if corresponding bit is set */
623} REG_DMN_FREQ_BAND;
624
625/*
626 * 5GHz 11A channel tags
627 */
628static REG_DMN_FREQ_BAND regDmn5GhzFreq[] = {
629	{ 4915, 4925, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
630#define	F1_4915_4925	0
631	{ 4935, 4945, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
632#define	F1_4935_4945	AFTER(F1_4915_4925)
633	{ 4920, 4980, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
634#define	F1_4920_4980	AFTER(F1_4935_4945)
635	{ 4942, 4987, 27, 6,  5,  5, NO_DFS, PSCAN_FCC },
636#define	F1_4942_4987	AFTER(F1_4920_4980)
637	{ 4945, 4985, 30, 6, 10,  5, NO_DFS, PSCAN_FCC },
638#define	F1_4945_4985	AFTER(F1_4942_4987)
639	{ 4950, 4980, 33, 6, 20,  5, NO_DFS, PSCAN_FCC },
640#define	F1_4950_4980	AFTER(F1_4945_4985)
641	{ 5035, 5040, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
642#define	F1_5035_5040	AFTER(F1_4950_4980)
643	{ 5040, 5080, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
644#define	F1_5040_5080	AFTER(F1_5035_5040)
645	{ 5055, 5055, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
646#define	F1_5055_5055	AFTER(F1_5040_5080)
647
648	{ 5120, 5240, 5,  6, 20, 20, NO_DFS, NO_PSCAN },
649#define	F1_5120_5240	AFTER(F1_5055_5055)
650	{ 5120, 5240, 5,  6, 10, 10, NO_DFS, NO_PSCAN },
651#define	F2_5120_5240	AFTER(F1_5120_5240)
652	{ 5120, 5240, 5,  6,  5,  5, NO_DFS, NO_PSCAN },
653#define	F3_5120_5240	AFTER(F2_5120_5240)
654
655	{ 5170, 5230, 23, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
656#define	F1_5170_5230	AFTER(F3_5120_5240)
657	{ 5170, 5230, 20, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
658#define	F2_5170_5230	AFTER(F1_5170_5230)
659
660	{ 5180, 5240, 15, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
661#define	F1_5180_5240	AFTER(F2_5170_5230)
662	{ 5180, 5240, 17, 6, 20, 20, NO_DFS, PSCAN_FCC },
663#define	F2_5180_5240	AFTER(F1_5180_5240)
664	{ 5180, 5240, 18, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
665#define	F3_5180_5240	AFTER(F2_5180_5240)
666	{ 5180, 5240, 20, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
667#define	F4_5180_5240	AFTER(F3_5180_5240)
668	{ 5180, 5240, 23, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
669#define	F5_5180_5240	AFTER(F4_5180_5240)
670	{ 5180, 5240, 23, 6, 20, 20, NO_DFS, PSCAN_FCC },
671#define	F6_5180_5240	AFTER(F5_5180_5240)
672	{ 5180, 5240, 17, 6, 20, 10, NO_DFS, PSCAN_FCC },
673#define	F7_5180_5240	AFTER(F6_5180_5240)
674	{ 5180, 5240, 17, 6, 20,  5, NO_DFS, PSCAN_FCC },
675#define	F8_5180_5240	AFTER(F7_5180_5240)
676	{ 5180, 5320, 20, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
677
678#define	F1_5180_5320	AFTER(F8_5180_5240)
679	{ 5240, 5280, 23, 0, 20, 20, DFS_FCC3, PSCAN_FCC | PSCAN_ETSI },
680
681#define	F1_5240_5280	AFTER(F1_5180_5320)
682	{ 5260, 5280, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
683
684#define	F1_5260_5280	AFTER(F1_5240_5280)
685	{ 5260, 5320, 18, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
686
687#define	F1_5260_5320	AFTER(F1_5260_5280)
688	{ 5260, 5320, 20, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_FCC | PSCAN_ETSI | PSCAN_MKK3  },
689#define	F2_5260_5320	AFTER(F1_5260_5320)
690
691	{ 5260, 5320, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
692#define	F3_5260_5320	AFTER(F2_5260_5320)
693	{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
694#define	F4_5260_5320	AFTER(F3_5260_5320)
695	{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
696#define	F5_5260_5320	AFTER(F4_5260_5320)
697	{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
698#define	F6_5260_5320	AFTER(F5_5260_5320)
699	{ 5260, 5320, 23, 6, 20, 10, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
700#define	F7_5260_5320	AFTER(F6_5260_5320)
701	{ 5260, 5320, 23, 6, 20,  5, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
702#define	F8_5260_5320	AFTER(F7_5260_5320)
703
704	{ 5260, 5700, 5,  6, 20, 20, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
705#define	F1_5260_5700	AFTER(F8_5260_5320)
706	{ 5260, 5700, 5,  6, 10, 10, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
707#define	F2_5260_5700	AFTER(F1_5260_5700)
708	{ 5260, 5700, 5,  6,  5,  5, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
709#define	F3_5260_5700	AFTER(F2_5260_5700)
710
711	{ 5280, 5320, 17, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
712#define	F1_5280_5320	AFTER(F3_5260_5700)
713
714	{ 5500, 5620, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
715#define	F1_5500_5620	AFTER(F1_5280_5320)
716
717	{ 5500, 5700, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
718#define	F1_5500_5700	AFTER(F1_5500_5620)
719	{ 5500, 5700, 27, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
720#define	F2_5500_5700	AFTER(F1_5500_5700)
721	{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
722#define	F3_5500_5700	AFTER(F2_5500_5700)
723	{ 5500, 5700, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_MKK3 | PSCAN_FCC },
724#define	F4_5500_5700	AFTER(F3_5500_5700)
725
726	{ 5745, 5805, 23, 0, 20, 20, NO_DFS, NO_PSCAN },
727#define	F1_5745_5805	AFTER(F4_5500_5700)
728	{ 5745, 5805, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
729#define	F2_5745_5805	AFTER(F1_5745_5805)
730	{ 5745, 5805, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
731#define	F3_5745_5805	AFTER(F2_5745_5805)
732	{ 5745, 5825, 5,  6, 20, 20, NO_DFS, NO_PSCAN },
733#define	F1_5745_5825	AFTER(F3_5745_5805)
734	{ 5745, 5825, 17, 0, 20, 20, NO_DFS, NO_PSCAN },
735#define	F2_5745_5825	AFTER(F1_5745_5825)
736	{ 5745, 5825, 20, 0, 20, 20, NO_DFS, NO_PSCAN },
737#define	F3_5745_5825	AFTER(F2_5745_5825)
738	{ 5745, 5825, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
739#define	F4_5745_5825	AFTER(F3_5745_5825)
740	{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
741#define	F5_5745_5825	AFTER(F4_5745_5825)
742	{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
743#define	F6_5745_5825	AFTER(F5_5745_5825)
744	{ 5745, 5825, 5,  6, 10, 10, NO_DFS, NO_PSCAN },
745#define	F7_5745_5825	AFTER(F6_5745_5825)
746	{ 5745, 5825, 5,  6,  5,  5, NO_DFS, NO_PSCAN },
747#define	F8_5745_5825	AFTER(F7_5745_5825)
748	{ 5745, 5825, 30, 6, 20, 10, NO_DFS, NO_PSCAN },
749#define	F9_5745_5825	AFTER(F8_5745_5825)
750	{ 5745, 5825, 30, 6, 20,  5, NO_DFS, NO_PSCAN },
751#define	F10_5745_5825	AFTER(F9_5745_5825)
752
753	/*
754	 * Below are the world roaming channels
755	 * All WWR domains have no power limit, instead use the card's CTL
756	 * or max power settings.
757	 */
758	{ 4920, 4980, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
759#define	W1_4920_4980	AFTER(F10_5745_5825)
760	{ 5040, 5080, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
761#define	W1_5040_5080	AFTER(W1_4920_4980)
762	{ 5170, 5230, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
763#define	W1_5170_5230	AFTER(W1_5040_5080)
764	{ 5180, 5240, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
765#define	W1_5180_5240	AFTER(W1_5170_5230)
766	{ 5260, 5320, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
767#define	W1_5260_5320	AFTER(W1_5180_5240)
768	{ 5745, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
769#define	W1_5745_5825	AFTER(W1_5260_5320)
770	{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
771#define	W1_5500_5700	AFTER(W1_5745_5825)
772	{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
773#define	W2_5260_5320	AFTER(W1_5500_5700)
774	{ 5180, 5240, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
775#define	W2_5180_5240	AFTER(W2_5260_5320)
776	{ 5825, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
777#define	W2_5825_5825	AFTER(W2_5180_5240)
778};
779
780/*
781 * 5GHz Turbo (dynamic & static) tags
782 */
783static REG_DMN_FREQ_BAND regDmn5GhzTurboFreq[] = {
784	{ 5130, 5210, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
785#define	T1_5130_5210	0
786	{ 5250, 5330, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
787#define	T1_5250_5330	AFTER(T1_5130_5210)
788	{ 5370, 5490, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
789#define	T1_5370_5490	AFTER(T1_5250_5330)
790	{ 5530, 5650, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
791#define	T1_5530_5650	AFTER(T1_5370_5490)
792
793	{ 5150, 5190, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
794#define	T1_5150_5190	AFTER(T1_5530_5650)
795	{ 5230, 5310, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
796#define	T1_5230_5310	AFTER(T1_5150_5190)
797	{ 5350, 5470, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
798#define	T1_5350_5470	AFTER(T1_5230_5310)
799	{ 5510, 5670, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
800#define	T1_5510_5670	AFTER(T1_5350_5470)
801
802	{ 5200, 5240, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
803#define	T1_5200_5240	AFTER(T1_5510_5670)
804	{ 5200, 5240, 23, 6, 40, 40, NO_DFS, NO_PSCAN },
805#define	T2_5200_5240	AFTER(T1_5200_5240)
806	{ 5210, 5210, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
807#define	T1_5210_5210	AFTER(T2_5200_5240)
808	{ 5210, 5210, 23, 0, 40, 40, NO_DFS, NO_PSCAN },
809#define	T2_5210_5210	AFTER(T1_5210_5210)
810
811	{ 5280, 5280, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
812#define	T1_5280_5280	AFTER(T2_5210_5210)
813	{ 5280, 5280, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
814#define	T2_5280_5280	AFTER(T1_5280_5280)
815	{ 5250, 5250, 17, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
816#define	T1_5250_5250	AFTER(T2_5280_5280)
817	{ 5290, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
818#define	T1_5290_5290	AFTER(T1_5250_5250)
819	{ 5250, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
820#define	T1_5250_5290	AFTER(T1_5290_5290)
821	{ 5250, 5290, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
822#define	T2_5250_5290	AFTER(T1_5250_5290)
823
824	{ 5540, 5660, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
825#define	T1_5540_5660	AFTER(T2_5250_5290)
826	{ 5760, 5800, 20, 0, 40, 40, NO_DFS, NO_PSCAN },
827#define	T1_5760_5800	AFTER(T1_5540_5660)
828	{ 5760, 5800, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
829#define	T2_5760_5800	AFTER(T1_5760_5800)
830
831	{ 5765, 5805, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
832#define	T1_5765_5805	AFTER(T2_5760_5800)
833
834	/*
835	 * Below are the WWR frequencies
836	 */
837	{ 5210, 5250, 15, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
838#define	WT1_5210_5250	AFTER(T1_5765_5805)
839	{ 5290, 5290, 18, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
840#define	WT1_5290_5290	AFTER(WT1_5210_5250)
841	{ 5540, 5660, 20, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
842#define	WT1_5540_5660	AFTER(WT1_5290_5290)
843	{ 5760, 5800, 20, 0, 40, 40, NO_DFS, PSCAN_WWR },
844#define	WT1_5760_5800	AFTER(WT1_5540_5660)
845};
846
847/*
848 * 2GHz 11b channel tags
849 */
850static REG_DMN_FREQ_BAND regDmn2GhzFreq[] = {
851	{ 2312, 2372, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
852#define	F1_2312_2372	0
853	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
854#define	F2_2312_2372	AFTER(F1_2312_2372)
855
856	{ 2412, 2472, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
857#define	F1_2412_2472	AFTER(F2_2312_2372)
858	{ 2412, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
859#define	F2_2412_2472	AFTER(F1_2412_2472)
860	{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
861#define	F3_2412_2472	AFTER(F2_2412_2472)
862
863	{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
864#define	F1_2412_2462	AFTER(F3_2412_2472)
865	{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
866#define	F2_2412_2462	AFTER(F1_2412_2462)
867
868	{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
869#define	F1_2432_2442	AFTER(F2_2412_2462)
870
871	{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
872#define	F1_2457_2472	AFTER(F1_2432_2442)
873
874	{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
875#define	F1_2467_2472	AFTER(F1_2457_2472)
876
877	{ 2484, 2484, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
878#define	F1_2484_2484	AFTER(F1_2467_2472)
879	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA | PSCAN_MKKA1 | PSCAN_MKKA2 },
880#define	F2_2484_2484	AFTER(F1_2484_2484)
881
882	{ 2512, 2732, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
883#define	F1_2512_2732	AFTER(F2_2484_2484)
884
885	/*
886	 * WWR have powers opened up to 20dBm.
887	 * Limits should often come from CTL/Max powers
888	 */
889	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
890#define	W1_2312_2372	AFTER(F1_2512_2732)
891	{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
892#define	W1_2412_2412	AFTER(W1_2312_2372)
893	{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
894#define	W1_2417_2432	AFTER(W1_2412_2412)
895	{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
896#define	W1_2437_2442	AFTER(W1_2417_2432)
897	{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
898#define	W1_2447_2457	AFTER(W1_2437_2442)
899	{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
900#define	W1_2462_2462	AFTER(W1_2447_2457)
901	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
902#define	W1_2467_2467	AFTER(W1_2462_2462)
903	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
904#define	W2_2467_2467	AFTER(W1_2467_2467)
905	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
906#define	W1_2472_2472	AFTER(W2_2467_2467)
907	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
908#define	W2_2472_2472	AFTER(W1_2472_2472)
909	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
910#define	W1_2484_2484	AFTER(W2_2472_2472)
911	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
912#define	W2_2484_2484	AFTER(W1_2484_2484)
913};
914
915/*
916 * 2GHz 11g channel tags
917 */
918static REG_DMN_FREQ_BAND regDmn2Ghz11gFreq[] = {
919	{ 2312, 2372, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
920#define	G1_2312_2372	0
921	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
922#define	G2_2312_2372	AFTER(G1_2312_2372)
923	{ 2312, 2372, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
924#define	G3_2312_2372	AFTER(G2_2312_2372)
925	{ 2312, 2372, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
926#define	G4_2312_2372	AFTER(G3_2312_2372)
927
928	{ 2412, 2472, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
929#define	G1_2412_2472	AFTER(G4_2312_2372)
930	{ 2412, 2472, 20, 0, 20, 5,  NO_DFS, PSCAN_MKKA_G },
931#define	G2_2412_2472	AFTER(G1_2412_2472)
932	{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
933#define	G3_2412_2472	AFTER(G2_2412_2472)
934	{ 2412, 2472, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
935#define	G4_2412_2472	AFTER(G3_2412_2472)
936	{ 2412, 2472, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
937#define	G5_2412_2472	AFTER(G4_2412_2472)
938
939	{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
940#define	G1_2412_2462	AFTER(G5_2412_2472)
941	{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA_G },
942#define	G2_2412_2462	AFTER(G1_2412_2462)
943	{ 2412, 2462, 27, 6, 10, 5, NO_DFS, NO_PSCAN },
944#define	G3_2412_2462	AFTER(G2_2412_2462)
945	{ 2412, 2462, 27, 6,  5, 5, NO_DFS, NO_PSCAN },
946#define	G4_2412_2462	AFTER(G3_2412_2462)
947
948	{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
949#define	G1_2432_2442	AFTER(G4_2412_2462)
950
951	{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
952#define	G1_2457_2472	AFTER(G1_2432_2442)
953
954	{ 2512, 2732, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
955#define	G1_2512_2732	AFTER(G1_2457_2472)
956	{ 2512, 2732, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
957#define	G2_2512_2732	AFTER(G1_2512_2732)
958	{ 2512, 2732, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
959#define	G3_2512_2732	AFTER(G2_2512_2732)
960
961	{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
962#define	G1_2467_2472	AFTER(G3_2512_2732)
963
964	/*
965	 * WWR open up the power to 20dBm
966	 */
967	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
968#define	WG1_2312_2372	AFTER(G1_2467_2472)
969	{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
970#define	WG1_2412_2412	AFTER(WG1_2312_2372)
971	{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
972#define	WG1_2417_2432	AFTER(WG1_2412_2412)
973	{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
974#define	WG1_2437_2442	AFTER(WG1_2417_2432)
975	{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
976#define	WG1_2447_2457	AFTER(WG1_2437_2442)
977	{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
978#define	WG1_2462_2462	AFTER(WG1_2447_2457)
979	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
980#define	WG1_2467_2467	AFTER(WG1_2462_2462)
981	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
982#define	WG2_2467_2467	AFTER(WG1_2467_2467)
983	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
984#define	WG1_2472_2472	AFTER(WG2_2467_2467)
985	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
986#define	WG2_2472_2472	AFTER(WG1_2472_2472)
987};
988
989/*
990 * 2GHz Dynamic turbo tags
991 */
992static REG_DMN_FREQ_BAND regDmn2Ghz11gTurboFreq[] = {
993	{ 2312, 2372, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
994#define	T1_2312_2372	0
995	{ 2437, 2437, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
996#define	T1_2437_2437	AFTER(T1_2312_2372)
997	{ 2437, 2437, 20, 6, 40, 40, NO_DFS, NO_PSCAN },
998#define	T2_2437_2437	AFTER(T1_2437_2437)
999	{ 2437, 2437, 18, 6, 40, 40, NO_DFS, PSCAN_WWR },
1000#define	T3_2437_2437	AFTER(T2_2437_2437)
1001	{ 2512, 2732, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
1002#define	T1_2512_2732	AFTER(T3_2437_2437)
1003};
1004
1005typedef struct regDomain {
1006	uint16_t regDmnEnum;		/* value from EnumRd table */
1007	uint8_t conformanceTestLimit;
1008	uint32_t flags;			/* Requirement flags (AdHoc disallow,
1009					   noise floor cal needed, etc) */
1010	uint64_t dfsMask;		/* DFS bitmask for 5Ghz tables */
1011	uint64_t pscan;			/* Bitmask for passive scan */
1012	chanbmask_t chan11a;		/* 11a channels */
1013	chanbmask_t chan11a_turbo;	/* 11a static turbo channels */
1014	chanbmask_t chan11a_dyn_turbo;	/* 11a dynamic turbo channels */
1015	chanbmask_t chan11a_half;	/* 11a 1/2 width channels */
1016	chanbmask_t chan11a_quarter;	/* 11a 1/4 width channels */
1017	chanbmask_t chan11b;		/* 11b channels */
1018	chanbmask_t chan11g;		/* 11g channels */
1019	chanbmask_t chan11g_turbo;	/* 11g dynamic turbo channels */
1020	chanbmask_t chan11g_half;	/* 11g 1/2 width channels */
1021	chanbmask_t chan11g_quarter;	/* 11g 1/4 width channels */
1022} REG_DOMAIN;
1023
1024static REG_DOMAIN regDomains[] = {
1025
1026	{.regDmnEnum		= DEBUG_REG_DMN,
1027	 .conformanceTestLimit	= FCC,
1028	 .dfsMask		= DFS_FCC3,
1029	 .chan11a		= BM4(F1_4950_4980,
1030				      F1_5120_5240,
1031				      F1_5260_5700,
1032				      F1_5745_5825),
1033	 .chan11a_half		= BM4(F1_4945_4985,
1034				      F2_5120_5240,
1035				      F2_5260_5700,
1036				      F7_5745_5825),
1037	 .chan11a_quarter	= BM4(F1_4942_4987,
1038				      F3_5120_5240,
1039				      F3_5260_5700,
1040				      F8_5745_5825),
1041	 .chan11a_turbo		= BM8(T1_5130_5210,
1042				      T1_5250_5330,
1043				      T1_5370_5490,
1044				      T1_5530_5650,
1045				      T1_5150_5190,
1046				      T1_5230_5310,
1047				      T1_5350_5470,
1048				      T1_5510_5670),
1049	 .chan11a_dyn_turbo	= BM4(T1_5200_5240,
1050				      T1_5280_5280,
1051				      T1_5540_5660,
1052				      T1_5765_5805),
1053	 .chan11b		= BM4(F1_2312_2372,
1054				      F1_2412_2472,
1055				      F1_2484_2484,
1056				      F1_2512_2732),
1057	 .chan11g		= BM3(G1_2312_2372, G1_2412_2472, G1_2512_2732),
1058	 .chan11g_turbo		= BM3(T1_2312_2372, T1_2437_2437, T1_2512_2732),
1059	 .chan11g_half		= BM3(G2_2312_2372, G4_2412_2472, G2_2512_2732),
1060	 .chan11g_quarter	= BM3(G3_2312_2372, G5_2412_2472, G3_2512_2732),
1061	},
1062
1063	{.regDmnEnum		= APL1,
1064	 .conformanceTestLimit	= FCC,
1065	 .chan11a		= BM1(F4_5745_5825),
1066	},
1067
1068	{.regDmnEnum		= APL2,
1069	 .conformanceTestLimit	= FCC,
1070	 .chan11a		= BM1(F1_5745_5805),
1071	},
1072
1073	{.regDmnEnum		= APL3,
1074	 .conformanceTestLimit	= FCC,
1075	 .chan11a		= BM2(F1_5280_5320, F2_5745_5805),
1076	},
1077
1078	{.regDmnEnum		= APL4,
1079	 .conformanceTestLimit	= FCC,
1080	 .chan11a		= BM2(F4_5180_5240, F3_5745_5825),
1081	},
1082
1083	{.regDmnEnum		= APL5,
1084	 .conformanceTestLimit	= FCC,
1085	 .chan11a		= BM1(F2_5745_5825),
1086	},
1087
1088	{.regDmnEnum		= APL6,
1089	 .conformanceTestLimit	= ETSI,
1090	 .dfsMask		= DFS_ETSI,
1091	 .pscan			= PSCAN_FCC_T | PSCAN_FCC,
1092	 .chan11a		= BM3(F4_5180_5240, F2_5260_5320, F3_5745_5825),
1093	 .chan11a_turbo		= BM3(T2_5210_5210, T1_5250_5290, T1_5760_5800),
1094	},
1095
1096	{.regDmnEnum		= APL8,
1097	 .conformanceTestLimit	= ETSI,
1098	 .flags			= DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1099	 .chan11a		= BM2(F6_5260_5320, F4_5745_5825),
1100	},
1101
1102	{.regDmnEnum		= APL9,
1103	 .conformanceTestLimit	= ETSI,
1104	 .dfsMask		= DFS_ETSI,
1105	 .pscan			= PSCAN_ETSI,
1106	 .flags			= DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1107	 .chan11a		= BM3(F1_5180_5320, F1_5500_5620, F3_5745_5805),
1108	},
1109
1110	{.regDmnEnum		= ETSI1,
1111	 .conformanceTestLimit	= ETSI,
1112	 .dfsMask		= DFS_ETSI,
1113	 .pscan			= PSCAN_ETSI,
1114	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1115	 .chan11a		= BM3(W2_5180_5240, F2_5260_5320, F2_5500_5700),
1116	},
1117
1118	{.regDmnEnum		= ETSI2,
1119	 .conformanceTestLimit	= ETSI,
1120	 .dfsMask		= DFS_ETSI,
1121	 .pscan			= PSCAN_ETSI,
1122	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1123	 .chan11a		= BM1(F3_5180_5240),
1124	},
1125
1126	{.regDmnEnum		= ETSI3,
1127	 .conformanceTestLimit	= ETSI,
1128	 .dfsMask		= DFS_ETSI,
1129	 .pscan			= PSCAN_ETSI,
1130	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1131	 .chan11a		= BM2(W2_5180_5240, F2_5260_5320),
1132	},
1133
1134	{.regDmnEnum		= ETSI4,
1135	 .conformanceTestLimit	= ETSI,
1136	 .dfsMask		= DFS_ETSI,
1137	 .pscan			= PSCAN_ETSI,
1138	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1139	 .chan11a		= BM2(F3_5180_5240, F1_5260_5320),
1140	},
1141
1142	{.regDmnEnum		= ETSI5,
1143	 .conformanceTestLimit	= ETSI,
1144	 .dfsMask		= DFS_ETSI,
1145	 .pscan			= PSCAN_ETSI,
1146	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1147	 .chan11a		= BM1(F1_5180_5240),
1148	},
1149
1150	{.regDmnEnum		= ETSI6,
1151	 .conformanceTestLimit	= ETSI,
1152	 .dfsMask		= DFS_ETSI,
1153	 .pscan			= PSCAN_ETSI,
1154	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1155	 .chan11a		= BM3(F5_5180_5240, F1_5260_5280, F3_5500_5700),
1156	},
1157
1158	{.regDmnEnum		= FCC1,
1159	 .conformanceTestLimit	= FCC,
1160	 .chan11a		= BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1161	 .chan11a_turbo		= BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1162	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1163	},
1164
1165	{.regDmnEnum		= FCC2,
1166	 .conformanceTestLimit	= FCC,
1167	 .chan11a		= BM3(F6_5180_5240, F5_5260_5320, F6_5745_5825),
1168	 .chan11a_dyn_turbo	= BM3(T2_5200_5240, T1_5280_5280, T1_5765_5805),
1169	},
1170
1171	{.regDmnEnum		= FCC3,
1172	 .conformanceTestLimit	= FCC,
1173	 .dfsMask		= DFS_FCC3,
1174	 .pscan			= PSCAN_FCC | PSCAN_FCC_T,
1175	 .chan11a		= BM4(F2_5180_5240,
1176				      F3_5260_5320,
1177				      F1_5500_5700,
1178				      F5_5745_5825),
1179	 .chan11a_turbo		= BM4(T1_5210_5210,
1180				      T1_5250_5250,
1181				      T1_5290_5290,
1182				      T2_5760_5800),
1183	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T2_5280_5280, T1_5540_5660),
1184	},
1185
1186	{.regDmnEnum		= FCC4,
1187	 .conformanceTestLimit	= FCC,
1188	 .dfsMask		= DFS_FCC3,
1189	 .pscan			= PSCAN_FCC | PSCAN_FCC_T,
1190	 .chan11a		= BM1(F1_4950_4980),
1191	 .chan11a_half		= BM1(F1_4945_4985),
1192	 .chan11a_quarter	= BM1(F1_4942_4987),
1193	},
1194
1195	/* FCC1 w/ 1/2 and 1/4 width channels */
1196	{.regDmnEnum		= FCC5,
1197	 .conformanceTestLimit	= FCC,
1198	 .chan11a		= BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1199	 .chan11a_turbo		= BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1200	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1201	 .chan11a_half		= BM3(F7_5180_5240, F7_5260_5320, F9_5745_5825),
1202	 .chan11a_quarter	= BM3(F8_5180_5240, F8_5260_5320,F10_5745_5825),
1203	},
1204
1205	{.regDmnEnum		= MKK1,
1206	 .conformanceTestLimit	= MKK,
1207	 .pscan			= PSCAN_MKK1,
1208	 .flags			= DISALLOW_ADHOC_11A_TURB,
1209	 .chan11a		= BM1(F1_5170_5230),
1210	},
1211
1212	{.regDmnEnum		= MKK2,
1213	 .conformanceTestLimit	= MKK,
1214	 .pscan			= PSCAN_MKK2,
1215	 .flags			= DISALLOW_ADHOC_11A_TURB,
1216	 .chan11a		= BM3(F1_4920_4980, F1_5040_5080, F1_5170_5230),
1217	 .chan11a_half		= BM4(F1_4915_4925,
1218				      F1_4935_4945,
1219				      F1_5035_5040,
1220				      F1_5055_5055),
1221	},
1222
1223	/* UNI-1 even */
1224	{.regDmnEnum		= MKK3,
1225	 .conformanceTestLimit	= MKK,
1226	 .pscan			= PSCAN_MKK3,
1227	 .flags			= DISALLOW_ADHOC_11A_TURB,
1228	 .chan11a		= BM1(F4_5180_5240),
1229	},
1230
1231	/* UNI-1 even + UNI-2 */
1232	{.regDmnEnum		= MKK4,
1233	 .conformanceTestLimit	= MKK,
1234	 .dfsMask		= DFS_MKK4,
1235	 .pscan			= PSCAN_MKK3,
1236	 .flags			= DISALLOW_ADHOC_11A_TURB,
1237	 .chan11a		= BM2(F4_5180_5240, F2_5260_5320),
1238	},
1239
1240	/* UNI-1 even + UNI-2 + mid-band */
1241	{.regDmnEnum		= MKK5,
1242	 .conformanceTestLimit	= MKK,
1243	 .dfsMask		= DFS_MKK4,
1244	 .pscan			= PSCAN_MKK3,
1245	 .flags			= DISALLOW_ADHOC_11A_TURB,
1246	 .chan11a		= BM3(F4_5180_5240, F2_5260_5320, F4_5500_5700),
1247	},
1248
1249	/* UNI-1 odd + even */
1250	{.regDmnEnum		= MKK6,
1251	 .conformanceTestLimit	= MKK,
1252	 .pscan			= PSCAN_MKK1,
1253	 .flags			= DISALLOW_ADHOC_11A_TURB,
1254	 .chan11a		= BM2(F2_5170_5230, F4_5180_5240),
1255	},
1256
1257	/* UNI-1 odd + UNI-1 even + UNI-2 */
1258	{.regDmnEnum		= MKK7,
1259	 .conformanceTestLimit	= MKK,
1260	 .dfsMask		= DFS_MKK4,
1261	 .pscan			= PSCAN_MKK1 | PSCAN_MKK3,
1262	 .flags			= DISALLOW_ADHOC_11A_TURB,
1263	 .chan11a		= BM3(F1_5170_5230, F4_5180_5240, F2_5260_5320),
1264	},
1265
1266	/* UNI-1 odd + UNI-1 even + UNI-2 + mid-band */
1267	{.regDmnEnum		= MKK8,
1268	 .conformanceTestLimit	= MKK,
1269	 .dfsMask		= DFS_MKK4,
1270	 .pscan			= PSCAN_MKK1 | PSCAN_MKK3,
1271	 .flags			= DISALLOW_ADHOC_11A_TURB,
1272	 .chan11a		= BM4(F1_5170_5230,
1273				      F4_5180_5240,
1274				      F2_5260_5320,
1275				      F4_5500_5700),
1276	},
1277
1278        /* UNI-1 even + 4.9 GHZ */
1279        {.regDmnEnum		= MKK9,
1280	 .conformanceTestLimit	= MKK,
1281	 .pscan			= PSCAN_MKK3,
1282	 .flags			= DISALLOW_ADHOC_11A_TURB,
1283         .chan11a		= BM7(F1_4915_4925,
1284				      F1_4935_4945,
1285				      F1_4920_4980,
1286				      F1_5035_5040,
1287				      F1_5055_5055,
1288				      F1_5040_5080,
1289				      F4_5180_5240),
1290        },
1291
1292        /* UNI-1 even + UNI-2 + 4.9 GHZ */
1293        {.regDmnEnum		= MKK10,
1294	 .conformanceTestLimit	= MKK,
1295	 .dfsMask		= DFS_MKK4,
1296	 .pscan			= PSCAN_MKK3,
1297	 .flags			= DISALLOW_ADHOC_11A_TURB,
1298         .chan11a		= BM8(F1_4915_4925,
1299				      F1_4935_4945,
1300				      F1_4920_4980,
1301				      F1_5035_5040,
1302				      F1_5055_5055,
1303				      F1_5040_5080,
1304				      F4_5180_5240,
1305				      F2_5260_5320),
1306        },
1307
1308	/* Defined here to use when 2G channels are authorised for country K2 */
1309	{.regDmnEnum		= APLD,
1310	 .conformanceTestLimit	= NO_CTL,
1311	 .chan11b		= BM2(F2_2312_2372,F2_2412_2472),
1312	 .chan11g		= BM2(G2_2312_2372,G2_2412_2472),
1313	},
1314
1315	{.regDmnEnum		= ETSIA,
1316	 .conformanceTestLimit	= NO_CTL,
1317	 .pscan			= PSCAN_ETSIA,
1318	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1319	 .chan11b		= BM1(F1_2457_2472),
1320	 .chan11g		= BM1(G1_2457_2472),
1321	 .chan11g_turbo		= BM1(T2_2437_2437)
1322	},
1323
1324	{.regDmnEnum		= ETSIB,
1325	 .conformanceTestLimit	= ETSI,
1326	 .pscan			= PSCAN_ETSIB,
1327	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1328	 .chan11b		= BM1(F1_2432_2442),
1329	 .chan11g		= BM1(G1_2432_2442),
1330	 .chan11g_turbo		= BM1(T2_2437_2437)
1331	},
1332
1333	{.regDmnEnum		= ETSIC,
1334	 .conformanceTestLimit	= ETSI,
1335	 .pscan			= PSCAN_ETSIC,
1336	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1337	 .chan11b		= BM1(F3_2412_2472),
1338	 .chan11g		= BM1(G3_2412_2472),
1339	 .chan11g_turbo		= BM1(T2_2437_2437)
1340	},
1341
1342	{.regDmnEnum		= FCCA,
1343	 .conformanceTestLimit	= FCC,
1344	 .chan11b		= BM1(F1_2412_2462),
1345	 .chan11g		= BM1(G1_2412_2462),
1346	 .chan11g_turbo		= BM1(T2_2437_2437),
1347	},
1348
1349	/* FCCA w/ 1/2 and 1/4 width channels */
1350	{.regDmnEnum		= FCCB,
1351	 .conformanceTestLimit	= FCC,
1352	 .chan11b		= BM1(F1_2412_2462),
1353	 .chan11g		= BM1(G1_2412_2462),
1354	 .chan11g_turbo		= BM1(T2_2437_2437),
1355	 .chan11g_half		= BM1(G3_2412_2462),
1356	 .chan11g_quarter	= BM1(G4_2412_2462),
1357	},
1358
1359	{.regDmnEnum		= MKKA,
1360	 .conformanceTestLimit	= MKK,
1361	 .pscan			= PSCAN_MKKA | PSCAN_MKKA_G
1362				| PSCAN_MKKA1 | PSCAN_MKKA1_G
1363				| PSCAN_MKKA2 | PSCAN_MKKA2_G,
1364	 .flags			= DISALLOW_ADHOC_11A_TURB,
1365	 .chan11b		= BM3(F2_2412_2462, F1_2467_2472, F2_2484_2484),
1366	 .chan11g		= BM2(G2_2412_2462, G1_2467_2472),
1367	 .chan11g_turbo		= BM1(T2_2437_2437)
1368	},
1369
1370	{.regDmnEnum		= MKKC,
1371	 .conformanceTestLimit	= MKK,
1372	 .chan11b		= BM1(F2_2412_2472),
1373	 .chan11g		= BM1(G2_2412_2472),
1374	 .chan11g_turbo		= BM1(T2_2437_2437)
1375	},
1376
1377	{.regDmnEnum		= WORLD,
1378	 .conformanceTestLimit	= ETSI,
1379	 .chan11b		= BM1(F2_2412_2472),
1380	 .chan11g		= BM1(G2_2412_2472),
1381	 .chan11g_turbo		= BM1(T2_2437_2437)
1382	},
1383
1384	{.regDmnEnum		= WOR0_WORLD,
1385	 .conformanceTestLimit	= NO_CTL,
1386	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1387	 .pscan			= PSCAN_WWR,
1388	 .flags			= ADHOC_PER_11D,
1389	 .chan11a		= BM5(W1_5260_5320,
1390				      W1_5180_5240,
1391				      W1_5170_5230,
1392				      W1_5745_5825,
1393				      W1_5500_5700),
1394	 .chan11a_turbo		= BM3(WT1_5210_5250,
1395				      WT1_5290_5290,
1396				      WT1_5760_5800),
1397	 .chan11b		= BM8(W1_2412_2412,
1398				      W1_2437_2442,
1399				      W1_2462_2462,
1400				      W1_2472_2472,
1401				      W1_2417_2432,
1402				      W1_2447_2457,
1403				      W1_2467_2467,
1404				      W1_2484_2484),
1405	 .chan11g		= BM7(WG1_2412_2412,
1406				      WG1_2437_2442,
1407				      WG1_2462_2462,
1408				      WG1_2472_2472,
1409				      WG1_2417_2432,
1410				      WG1_2447_2457,
1411				      WG1_2467_2467),
1412	 .chan11g_turbo		= BM1(T3_2437_2437)
1413	},
1414
1415	{.regDmnEnum		= WOR01_WORLD,
1416	 .conformanceTestLimit	= NO_CTL,
1417	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1418	 .pscan			= PSCAN_WWR,
1419	 .flags			= ADHOC_PER_11D,
1420	 .chan11a		= BM5(W1_5260_5320,
1421				      W1_5180_5240,
1422				      W1_5170_5230,
1423				      W1_5745_5825,
1424				      W1_5500_5700),
1425	 .chan11a_turbo		= BM3(WT1_5210_5250,
1426				      WT1_5290_5290,
1427				      WT1_5760_5800),
1428	 .chan11b		= BM5(W1_2412_2412,
1429				      W1_2437_2442,
1430				      W1_2462_2462,
1431				      W1_2417_2432,
1432				      W1_2447_2457),
1433	 .chan11g		= BM5(WG1_2412_2412,
1434				      WG1_2437_2442,
1435				      WG1_2462_2462,
1436				      WG1_2417_2432,
1437				      WG1_2447_2457),
1438	 .chan11g_turbo		= BM1(T3_2437_2437)},
1439
1440	{.regDmnEnum		= WOR02_WORLD,
1441	 .conformanceTestLimit	= NO_CTL,
1442	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1443	 .pscan			= PSCAN_WWR,
1444	 .flags			= ADHOC_PER_11D,
1445	 .chan11a		= BM5(W1_5260_5320,
1446				      W1_5180_5240,
1447				      W1_5170_5230,
1448				      W1_5745_5825,
1449				      W1_5500_5700),
1450	 .chan11a_turbo		= BM3(WT1_5210_5250,
1451				      WT1_5290_5290,
1452				      WT1_5760_5800),
1453	 .chan11b		= BM7(W1_2412_2412,
1454				      W1_2437_2442,
1455				      W1_2462_2462,
1456				      W1_2472_2472,
1457				      W1_2417_2432,
1458				      W1_2447_2457,
1459				      W1_2467_2467),
1460	 .chan11g		= BM7(WG1_2412_2412,
1461				      WG1_2437_2442,
1462				      WG1_2462_2462,
1463				      WG1_2472_2472,
1464				      WG1_2417_2432,
1465				      WG1_2447_2457,
1466				      WG1_2467_2467),
1467	 .chan11g_turbo		= BM1(T3_2437_2437)},
1468
1469	{.regDmnEnum		= EU1_WORLD,
1470	 .conformanceTestLimit	= NO_CTL,
1471	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1472	 .pscan			= PSCAN_WWR,
1473	 .flags			= ADHOC_PER_11D,
1474	 .chan11a		= BM5(W1_5260_5320,
1475				      W1_5180_5240,
1476				      W1_5170_5230,
1477				      W1_5745_5825,
1478				      W1_5500_5700),
1479	 .chan11a_turbo		= BM3(WT1_5210_5250,
1480				      WT1_5290_5290,
1481				      WT1_5760_5800),
1482	 .chan11b		= BM7(W1_2412_2412,
1483				      W1_2437_2442,
1484				      W1_2462_2462,
1485				      W2_2472_2472,
1486				      W1_2417_2432,
1487				      W1_2447_2457,
1488				      W2_2467_2467),
1489	 .chan11g		= BM7(WG1_2412_2412,
1490				      WG1_2437_2442,
1491				      WG1_2462_2462,
1492				      WG2_2472_2472,
1493				      WG1_2417_2432,
1494				      WG1_2447_2457,
1495				      WG2_2467_2467),
1496	 .chan11g_turbo		= BM1(T3_2437_2437)},
1497
1498	{.regDmnEnum		= WOR1_WORLD,
1499	 .conformanceTestLimit	= NO_CTL,
1500	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1501	 .pscan			= PSCAN_WWR,
1502	 .flags			= DISALLOW_ADHOC_11A,
1503	 .chan11a		= BM5(W1_5260_5320,
1504				      W1_5180_5240,
1505				      W1_5170_5230,
1506				      W1_5745_5825,
1507				      W1_5500_5700),
1508	 .chan11b		= BM8(W1_2412_2412,
1509				      W1_2437_2442,
1510				      W1_2462_2462,
1511				      W1_2472_2472,
1512				      W1_2417_2432,
1513				      W1_2447_2457,
1514				      W1_2467_2467,
1515				      W1_2484_2484),
1516	 .chan11g		= BM7(WG1_2412_2412,
1517				      WG1_2437_2442,
1518				      WG1_2462_2462,
1519				      WG1_2472_2472,
1520				      WG1_2417_2432,
1521				      WG1_2447_2457,
1522				      WG1_2467_2467),
1523	 .chan11g_turbo		= BM1(T3_2437_2437)
1524	},
1525
1526	{.regDmnEnum		= WOR2_WORLD,
1527	 .conformanceTestLimit	= NO_CTL,
1528	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1529	 .pscan			= PSCAN_WWR,
1530	 .flags			= DISALLOW_ADHOC_11A,
1531	 .chan11a		= BM5(W1_5260_5320,
1532				      W1_5180_5240,
1533				      W1_5170_5230,
1534				      W1_5745_5825,
1535				      W1_5500_5700),
1536	 .chan11a_turbo		= BM3(WT1_5210_5250,
1537				      WT1_5290_5290,
1538				      WT1_5760_5800),
1539	 .chan11b		= BM8(W1_2412_2412,
1540				      W1_2437_2442,
1541				      W1_2462_2462,
1542				      W1_2472_2472,
1543				      W1_2417_2432,
1544				      W1_2447_2457,
1545				      W1_2467_2467,
1546				      W1_2484_2484),
1547	 .chan11g		= BM7(WG1_2412_2412,
1548				      WG1_2437_2442,
1549				      WG1_2462_2462,
1550				      WG1_2472_2472,
1551				      WG1_2417_2432,
1552				      WG1_2447_2457,
1553				      WG1_2467_2467),
1554	 .chan11g_turbo		= BM1(T3_2437_2437)},
1555
1556	{.regDmnEnum		= WOR3_WORLD,
1557	 .conformanceTestLimit	= NO_CTL,
1558	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1559	 .pscan			= PSCAN_WWR,
1560	 .flags			= ADHOC_PER_11D,
1561	 .chan11a		= BM4(W1_5260_5320,
1562				      W1_5180_5240,
1563				      W1_5170_5230,
1564				      W1_5745_5825),
1565	 .chan11a_turbo		= BM3(WT1_5210_5250,
1566				      WT1_5290_5290,
1567				      WT1_5760_5800),
1568	 .chan11b		= BM7(W1_2412_2412,
1569				      W1_2437_2442,
1570				      W1_2462_2462,
1571				      W1_2472_2472,
1572				      W1_2417_2432,
1573				      W1_2447_2457,
1574				      W1_2467_2467),
1575	 .chan11g		= BM7(WG1_2412_2412,
1576				      WG1_2437_2442,
1577				      WG1_2462_2462,
1578				      WG1_2472_2472,
1579				      WG1_2417_2432,
1580				      WG1_2447_2457,
1581				      WG1_2467_2467),
1582	 .chan11g_turbo		= BM1(T3_2437_2437)},
1583
1584	{.regDmnEnum		= WOR4_WORLD,
1585	 .conformanceTestLimit	= NO_CTL,
1586	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1587	 .pscan			= PSCAN_WWR,
1588	 .flags			= DISALLOW_ADHOC_11A,
1589	 .chan11a		= BM4(W2_5260_5320,
1590				      W2_5180_5240,
1591				      F2_5745_5805,
1592				      W2_5825_5825),
1593	 .chan11a_turbo		= BM3(WT1_5210_5250,
1594				      WT1_5290_5290,
1595				      WT1_5760_5800),
1596	 .chan11b		= BM5(W1_2412_2412,
1597				      W1_2437_2442,
1598				      W1_2462_2462,
1599				      W1_2417_2432,
1600				      W1_2447_2457),
1601	 .chan11g		= BM5(WG1_2412_2412,
1602				      WG1_2437_2442,
1603				      WG1_2462_2462,
1604				      WG1_2417_2432,
1605				      WG1_2447_2457),
1606	 .chan11g_turbo		= BM1(T3_2437_2437)},
1607
1608	{.regDmnEnum		= WOR5_ETSIC,
1609	 .conformanceTestLimit	= NO_CTL,
1610	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1611	 .pscan			= PSCAN_WWR,
1612	 .flags			= DISALLOW_ADHOC_11A,
1613	 .chan11a		= BM3(W1_5260_5320, W2_5180_5240, F6_5745_5825),
1614	 .chan11b		= BM7(W1_2412_2412,
1615				      W1_2437_2442,
1616				      W1_2462_2462,
1617				      W2_2472_2472,
1618				      W1_2417_2432,
1619				      W1_2447_2457,
1620				      W2_2467_2467),
1621	 .chan11g		= BM7(WG1_2412_2412,
1622				      WG1_2437_2442,
1623				      WG1_2462_2462,
1624				      WG2_2472_2472,
1625				      WG1_2417_2432,
1626				      WG1_2447_2457,
1627				      WG2_2467_2467),
1628	 .chan11g_turbo		= BM1(T3_2437_2437)},
1629
1630	{.regDmnEnum		= WOR9_WORLD,
1631	 .conformanceTestLimit	= NO_CTL,
1632	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1633	 .pscan			= PSCAN_WWR,
1634	 .flags			= DISALLOW_ADHOC_11A,
1635	 .chan11a		= BM4(W1_5260_5320,
1636				      W1_5180_5240,
1637				      W1_5745_5825,
1638				      W1_5500_5700),
1639	 .chan11a_turbo		= BM3(WT1_5210_5250,
1640				      WT1_5290_5290,
1641				      WT1_5760_5800),
1642	 .chan11b		= BM5(W1_2412_2412,
1643				      W1_2437_2442,
1644				      W1_2462_2462,
1645				      W1_2417_2432,
1646				      W1_2447_2457),
1647	 .chan11g		= BM5(WG1_2412_2412,
1648				      WG1_2437_2442,
1649				      WG1_2462_2462,
1650				      WG1_2417_2432,
1651				      WG1_2447_2457),
1652	 .chan11g_turbo		= BM1(T3_2437_2437)},
1653
1654	{.regDmnEnum		= WORA_WORLD,
1655	 .conformanceTestLimit	= NO_CTL,
1656	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1657	 .pscan			= PSCAN_WWR,
1658	 .flags			= DISALLOW_ADHOC_11A,
1659	 .chan11a		= BM4(W1_5260_5320,
1660				      W1_5180_5240,
1661				      W1_5745_5825,
1662				      W1_5500_5700),
1663	 .chan11b		= BM7(W1_2412_2412,
1664				      W1_2437_2442,
1665				      W1_2462_2462,
1666				      W1_2472_2472,
1667				      W1_2417_2432,
1668				      W1_2447_2457,
1669				      W1_2467_2467),
1670	 .chan11g		= BM7(WG1_2412_2412,
1671				      WG1_2437_2442,
1672				      WG1_2462_2462,
1673				      WG1_2472_2472,
1674				      WG1_2417_2432,
1675				      WG1_2447_2457,
1676				      WG1_2467_2467),
1677	 .chan11g_turbo		= BM1(T3_2437_2437)},
1678
1679	{.regDmnEnum		= NULL1,
1680	 .conformanceTestLimit	= NO_CTL,
1681	}
1682};
1683
1684struct cmode {
1685	u_int	mode;
1686	u_int	flags;
1687};
1688
1689static const struct cmode modes[] = {
1690	{ HAL_MODE_TURBO,	IEEE80211_CHAN_ST },
1691	{ HAL_MODE_11A,		IEEE80211_CHAN_A },
1692	{ HAL_MODE_11B,		IEEE80211_CHAN_B },
1693	{ HAL_MODE_11G,		IEEE80211_CHAN_G },
1694	{ HAL_MODE_11G_TURBO,	IEEE80211_CHAN_108G },
1695	{ HAL_MODE_11A_TURBO,	IEEE80211_CHAN_108A },
1696	{ HAL_MODE_11A_QUARTER_RATE,
1697	  IEEE80211_CHAN_A | IEEE80211_CHAN_QUARTER },
1698	{ HAL_MODE_11A_HALF_RATE,
1699	  IEEE80211_CHAN_A | IEEE80211_CHAN_HALF },
1700	{ HAL_MODE_11G_QUARTER_RATE,
1701	  IEEE80211_CHAN_G | IEEE80211_CHAN_QUARTER },
1702	{ HAL_MODE_11G_HALF_RATE,
1703	  IEEE80211_CHAN_G | IEEE80211_CHAN_HALF },
1704	{ HAL_MODE_11NG_HT20,	IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_HT20 },
1705	{ HAL_MODE_11NG_HT40PLUS,
1706	  IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_HT40U },
1707	{ HAL_MODE_11NG_HT40MINUS,
1708	  IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_HT40D },
1709	{ HAL_MODE_11NA_HT20,	IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_HT20 },
1710	{ HAL_MODE_11NA_HT40PLUS,
1711	  IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_HT40U },
1712	{ HAL_MODE_11NA_HT40MINUS,
1713	  IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_HT40D },
1714};
1715
1716static OS_INLINE uint16_t
1717getEepromRD(struct ath_hal *ah)
1718{
1719	return AH_PRIVATE(ah)->ah_currentRD &~ WORLDWIDE_ROAMING_FLAG;
1720}
1721
1722/*
1723 * Test to see if the bitmask array is all zeros
1724 */
1725static HAL_BOOL
1726isChanBitMaskZero(const uint64_t *bitmask)
1727{
1728#if BMLEN > 2
1729#error	"add more cases"
1730#endif
1731#if BMLEN > 1
1732	if (bitmask[1] != 0)
1733		return AH_FALSE;
1734#endif
1735	return (bitmask[0] == 0);
1736}
1737
1738/*
1739 * Return whether or not the regulatory domain/country in EEPROM
1740 * is acceptable.
1741 */
1742static HAL_BOOL
1743isEepromValid(struct ath_hal *ah)
1744{
1745	uint16_t rd = getEepromRD(ah);
1746	int i;
1747
1748	if (rd & COUNTRY_ERD_FLAG) {
1749		uint16_t cc = rd &~ COUNTRY_ERD_FLAG;
1750		for (i = 0; i < N(allCountries); i++)
1751			if (allCountries[i].countryCode == cc)
1752				return AH_TRUE;
1753	} else {
1754		for (i = 0; i < N(regDomainPairs); i++)
1755			if (regDomainPairs[i].regDmnEnum == rd)
1756				return AH_TRUE;
1757	}
1758	HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1759	    "%s: invalid regulatory domain/country code 0x%x\n", __func__, rd);
1760	return AH_FALSE;
1761}
1762
1763/*
1764 * Find the pointer to the country element in the country table
1765 * corresponding to the country code
1766 */
1767static COUNTRY_CODE_TO_ENUM_RD*
1768findCountry(HAL_CTRY_CODE countryCode)
1769{
1770	int i;
1771
1772	for (i = 0; i < N(allCountries); i++) {
1773		if (allCountries[i].countryCode == countryCode)
1774			return &allCountries[i];
1775	}
1776	return AH_NULL;
1777}
1778
1779static REG_DOMAIN *
1780findRegDmn(int regDmn)
1781{
1782	int i;
1783
1784	for (i = 0; i < N(regDomains); i++) {
1785		if (regDomains[i].regDmnEnum == regDmn)
1786			return &regDomains[i];
1787	}
1788	return AH_NULL;
1789}
1790
1791static REG_DMN_PAIR_MAPPING *
1792findRegDmnPair(int regDmnPair)
1793{
1794	int i;
1795
1796	if (regDmnPair != NO_ENUMRD) {
1797		for (i = 0; i < N(regDomainPairs); i++) {
1798			if (regDomainPairs[i].regDmnEnum == regDmnPair)
1799				return &regDomainPairs[i];
1800		}
1801	}
1802	return AH_NULL;
1803}
1804
1805/*
1806 * Calculate a default country based on the EEPROM setting.
1807 */
1808static HAL_CTRY_CODE
1809getDefaultCountry(struct ath_hal *ah)
1810{
1811	REG_DMN_PAIR_MAPPING *regpair;
1812	uint16_t rd;
1813
1814	rd = getEepromRD(ah);
1815	if (rd & COUNTRY_ERD_FLAG) {
1816		COUNTRY_CODE_TO_ENUM_RD *country;
1817		uint16_t cc = rd & ~COUNTRY_ERD_FLAG;
1818		country = findCountry(cc);
1819		if (country != AH_NULL)
1820			return cc;
1821	}
1822	/*
1823	 * Check reg domains that have only one country
1824	 */
1825	regpair = findRegDmnPair(rd);
1826	return (regpair != AH_NULL) ? regpair->singleCC : CTRY_DEFAULT;
1827}
1828
1829static HAL_BOOL
1830IS_BIT_SET(int bit, const uint64_t bitmask[])
1831{
1832	int byteOffset, bitnum;
1833	uint64_t val;
1834
1835	byteOffset = bit/64;
1836	bitnum = bit - byteOffset*64;
1837	val = ((uint64_t) 1) << bitnum;
1838	return (bitmask[byteOffset] & val) != 0;
1839}
1840
1841static HAL_STATUS
1842getregstate(struct ath_hal *ah, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
1843    COUNTRY_CODE_TO_ENUM_RD **pcountry,
1844    REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
1845{
1846	COUNTRY_CODE_TO_ENUM_RD *country;
1847	REG_DOMAIN *rd5GHz, *rd2GHz;
1848
1849	if (cc == CTRY_DEFAULT && regDmn == SKU_NONE) {
1850		/*
1851		 * Validate the EEPROM setting and setup defaults
1852		 */
1853		if (!isEepromValid(ah)) {
1854			/*
1855			 * Don't return any channels if the EEPROM has an
1856			 * invalid regulatory domain/country code setting.
1857			 */
1858			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1859			    "%s: invalid EEPROM contents\n",__func__);
1860			return HAL_EEBADREG;
1861		}
1862
1863		cc = getDefaultCountry(ah);
1864		country = findCountry(cc);
1865		if (country == AH_NULL) {
1866			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1867			    "NULL Country!, cc %d\n", cc);
1868			return HAL_EEBADCC;
1869		}
1870		regDmn = country->regDmnEnum;
1871		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: EEPROM cc %u rd 0x%x\n",
1872		    __func__, cc, regDmn);
1873
1874		if (country->countryCode == CTRY_DEFAULT) {
1875			/*
1876			 * Check EEPROM; SKU may be for a country, single
1877			 * domain, or multiple domains (WWR).
1878			 */
1879			uint16_t rdnum = getEepromRD(ah);
1880			if ((rdnum & COUNTRY_ERD_FLAG) == 0 &&
1881			    (findRegDmn(rdnum) != AH_NULL ||
1882			     findRegDmnPair(rdnum) != AH_NULL)) {
1883				regDmn = rdnum;
1884				HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1885				    "%s: EEPROM rd 0x%x\n", __func__, rdnum);
1886			}
1887		}
1888	} else {
1889		country = findCountry(cc);
1890		if (country == AH_NULL) {
1891			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1892			    "unknown country, cc %d\n", cc);
1893			return HAL_EINVAL;
1894		}
1895		if (regDmn == SKU_NONE)
1896			regDmn = country->regDmnEnum;
1897		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u rd 0x%x\n",
1898		    __func__, cc, regDmn);
1899	}
1900
1901	/*
1902	 * Setup per-band state.
1903	 */
1904	if ((regDmn & MULTI_DOMAIN_MASK) == 0) {
1905		REG_DMN_PAIR_MAPPING *regpair = findRegDmnPair(regDmn);
1906		if (regpair == AH_NULL) {
1907			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1908			    "%s: no reg domain pair %u for country %u\n",
1909			    __func__, regDmn, country->countryCode);
1910			return HAL_EINVAL;
1911		}
1912		rd5GHz = findRegDmn(regpair->regDmn5GHz);
1913		if (rd5GHz == AH_NULL) {
1914			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1915			    "%s: no 5GHz reg domain %u for country %u\n",
1916			    __func__, regpair->regDmn5GHz, country->countryCode);
1917			return HAL_EINVAL;
1918		}
1919		rd2GHz = findRegDmn(regpair->regDmn2GHz);
1920		if (rd2GHz == AH_NULL) {
1921			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1922			    "%s: no 2GHz reg domain %u for country %u\n",
1923			    __func__, regpair->regDmn2GHz, country->countryCode);
1924			return HAL_EINVAL;
1925		}
1926	} else {
1927		rd5GHz = rd2GHz = findRegDmn(regDmn);
1928		if (rd2GHz == AH_NULL) {
1929			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1930			    "%s: no unitary reg domain %u for country %u\n",
1931			    __func__, regDmn, country->countryCode);
1932			return HAL_EINVAL;
1933		}
1934	}
1935	if (pcountry != AH_NULL)
1936		*pcountry = country;
1937	*prd2GHz = rd2GHz;
1938	*prd5GHz = rd5GHz;
1939	return HAL_OK;
1940}
1941
1942/*
1943 * Construct the channel list for the specified regulatory config.
1944 */
1945static HAL_STATUS
1946getchannels(struct ath_hal *ah,
1947    struct ieee80211_channel chans[], u_int maxchans, int *nchans,
1948    u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
1949    HAL_BOOL enableExtendedChannels,
1950    COUNTRY_CODE_TO_ENUM_RD **pcountry,
1951    REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
1952{
1953#define CHANNEL_HALF_BW		10
1954#define CHANNEL_QUARTER_BW	5
1955#define	HAL_MODE_11A_ALL \
1956	(HAL_MODE_11A | HAL_MODE_11A_TURBO | HAL_MODE_TURBO | \
1957	 HAL_MODE_11A_QUARTER_RATE | HAL_MODE_11A_HALF_RATE)
1958	REG_DOMAIN *rd5GHz, *rd2GHz;
1959	u_int modesAvail;
1960	const struct cmode *cm;
1961	struct ieee80211_channel *ic;
1962	int next, b;
1963	HAL_STATUS status;
1964
1965	HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u regDmn 0x%x mode 0x%x%s\n",
1966	    __func__, cc, regDmn, modeSelect,
1967	    enableExtendedChannels ? " ecm" : "");
1968
1969	status = getregstate(ah, cc, regDmn, pcountry, &rd2GHz, &rd5GHz);
1970	if (status != HAL_OK)
1971		return status;
1972
1973	/* get modes that HW is capable of */
1974	modesAvail = ath_hal_getWirelessModes(ah);
1975	/* optimize work below if no 11a channels */
1976	if (isChanBitMaskZero(rd5GHz->chan11a) &&
1977	    (modesAvail & HAL_MODE_11A_ALL)) {
1978		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1979		    "%s: disallow all 11a\n", __func__);
1980		modesAvail &= ~HAL_MODE_11A_ALL;
1981	}
1982
1983	next = 0;
1984	ic = &chans[0];
1985	for (cm = modes; cm < &modes[N(modes)]; cm++) {
1986		uint16_t c, c_hi, c_lo;
1987		uint64_t *channelBM = AH_NULL;
1988		REG_DMN_FREQ_BAND *fband = AH_NULL,*freqs;
1989		int low_adj, hi_adj, channelSep, lastc;
1990		uint32_t rdflags;
1991		uint64_t dfsMask;
1992		uint64_t pscan;
1993
1994		if ((cm->mode & modeSelect) == 0) {
1995			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1996			    "%s: skip mode 0x%x flags 0x%x\n",
1997			    __func__, cm->mode, cm->flags);
1998			continue;
1999		}
2000		if ((cm->mode & modesAvail) == 0) {
2001			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2002			    "%s: !avail mode 0x%x (0x%x) flags 0x%x\n",
2003			    __func__, modesAvail, cm->mode, cm->flags);
2004			continue;
2005		}
2006		if (!ath_hal_getChannelEdges(ah, cm->flags, &c_lo, &c_hi)) {
2007			/* channel not supported by hardware, skip it */
2008			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2009			    "%s: channels 0x%x not supported by hardware\n",
2010			    __func__,cm->flags);
2011			continue;
2012		}
2013		switch (cm->mode) {
2014		case HAL_MODE_TURBO:
2015		case HAL_MODE_11A_TURBO:
2016			rdflags = rd5GHz->flags;
2017			dfsMask = rd5GHz->dfsMask;
2018			pscan = rd5GHz->pscan;
2019			if (cm->mode == HAL_MODE_TURBO)
2020				channelBM = rd5GHz->chan11a_turbo;
2021			else
2022				channelBM = rd5GHz->chan11a_dyn_turbo;
2023			freqs = &regDmn5GhzTurboFreq[0];
2024			break;
2025		case HAL_MODE_11G_TURBO:
2026			rdflags = rd2GHz->flags;
2027			dfsMask = rd2GHz->dfsMask;
2028			pscan = rd2GHz->pscan;
2029			channelBM = rd2GHz->chan11g_turbo;
2030			freqs = &regDmn2Ghz11gTurboFreq[0];
2031			break;
2032		case HAL_MODE_11A:
2033		case HAL_MODE_11A_HALF_RATE:
2034		case HAL_MODE_11A_QUARTER_RATE:
2035		case HAL_MODE_11NA_HT20:
2036		case HAL_MODE_11NA_HT40PLUS:
2037		case HAL_MODE_11NA_HT40MINUS:
2038			rdflags = rd5GHz->flags;
2039			dfsMask = rd5GHz->dfsMask;
2040			pscan = rd5GHz->pscan;
2041			if (cm->mode == HAL_MODE_11A_HALF_RATE)
2042				channelBM = rd5GHz->chan11a_half;
2043			else if (cm->mode == HAL_MODE_11A_QUARTER_RATE)
2044				channelBM = rd5GHz->chan11a_quarter;
2045			else
2046				channelBM = rd5GHz->chan11a;
2047			freqs = &regDmn5GhzFreq[0];
2048			break;
2049		case HAL_MODE_11B:
2050		case HAL_MODE_11G:
2051		case HAL_MODE_11G_HALF_RATE:
2052		case HAL_MODE_11G_QUARTER_RATE:
2053		case HAL_MODE_11NG_HT20:
2054		case HAL_MODE_11NG_HT40PLUS:
2055		case HAL_MODE_11NG_HT40MINUS:
2056			rdflags = rd2GHz->flags;
2057			dfsMask = rd2GHz->dfsMask;
2058			pscan = rd2GHz->pscan;
2059			if (cm->mode == HAL_MODE_11G_HALF_RATE)
2060				channelBM = rd2GHz->chan11g_half;
2061			else if (cm->mode == HAL_MODE_11G_QUARTER_RATE)
2062				channelBM = rd2GHz->chan11g_quarter;
2063			else if (cm->mode == HAL_MODE_11B)
2064				channelBM = rd2GHz->chan11b;
2065			else
2066				channelBM = rd2GHz->chan11g;
2067			if (cm->mode == HAL_MODE_11B)
2068				freqs = &regDmn2GhzFreq[0];
2069			else
2070				freqs = &regDmn2Ghz11gFreq[0];
2071			break;
2072		default:
2073			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2074			    "%s: Unkonwn HAL mode 0x%x\n", __func__, cm->mode);
2075			continue;
2076		}
2077		if (isChanBitMaskZero(channelBM))
2078			continue;
2079		/*
2080		 * Setup special handling for HT40 channels; e.g.
2081		 * 5G HT40 channels require 40Mhz channel separation.
2082		 */
2083		hi_adj = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2084		    cm->mode == HAL_MODE_11NG_HT40PLUS) ? -20 : 0;
2085		low_adj = (cm->mode == HAL_MODE_11NA_HT40MINUS ||
2086		    cm->mode == HAL_MODE_11NG_HT40MINUS) ? 20 : 0;
2087		channelSep = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2088		    cm->mode == HAL_MODE_11NA_HT40MINUS) ? 40 : 0;
2089
2090		for (b = 0; b < 64*BMLEN; b++) {
2091			if (!IS_BIT_SET(b, channelBM))
2092				continue;
2093			fband = &freqs[b];
2094			lastc = 0;
2095
2096			for (c = fband->lowChannel + low_adj;
2097			     c <= fband->highChannel + hi_adj;
2098			     c += fband->channelSep) {
2099				if (!(c_lo <= c && c <= c_hi)) {
2100					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2101					    "%s: c %u out of range [%u..%u]\n",
2102					    __func__, c, c_lo, c_hi);
2103					continue;
2104				}
2105				if (next >= maxchans){
2106					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2107					    "%s: too many channels for channel table\n",
2108					    __func__);
2109					goto done;
2110				}
2111				if ((fband->usePassScan & IS_ECM_CHAN) &&
2112				    !enableExtendedChannels) {
2113					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2114					    "skip ecm channel\n");
2115					continue;
2116				}
2117				if ((fband->useDfs & dfsMask) &&
2118				    (cm->flags & IEEE80211_CHAN_HT40)) {
2119					/* NB: DFS and HT40 don't mix */
2120					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2121					    "skip HT40 chan, DFS required\n");
2122					continue;
2123				}
2124				/*
2125				 * Make sure that channel separation
2126				 * meets the requirement.
2127				 */
2128				if (lastc && channelSep &&
2129				    (c-lastc) < channelSep)
2130					continue;
2131				lastc = c;
2132
2133				OS_MEMZERO(ic, sizeof(*ic));
2134				ic->ic_freq = c;
2135				ic->ic_flags = cm->flags;
2136				ic->ic_maxregpower = fband->powerDfs;
2137				ath_hal_getpowerlimits(ah, ic);
2138				ic->ic_maxantgain = fband->antennaMax;
2139				if (fband->usePassScan & pscan)
2140					ic->ic_flags |= IEEE80211_CHAN_PASSIVE;
2141				if (fband->useDfs & dfsMask)
2142					ic->ic_flags |= IEEE80211_CHAN_DFS;
2143				if (IEEE80211_IS_CHAN_5GHZ(ic) &&
2144				    (rdflags & DISALLOW_ADHOC_11A))
2145					ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
2146				if (IEEE80211_IS_CHAN_TURBO(ic) &&
2147				    (rdflags & DISALLOW_ADHOC_11A_TURB))
2148					ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
2149				if (rdflags & NO_HOSTAP)
2150					ic->ic_flags |= IEEE80211_CHAN_NOHOSTAP;
2151				if (rdflags & LIMIT_FRAME_4MS)
2152					ic->ic_flags |= IEEE80211_CHAN_4MSXMIT;
2153				if (rdflags & NEED_NFC)
2154					ic->ic_flags |= CHANNEL_NFCREQUIRED;
2155
2156				ic++, next++;
2157			}
2158		}
2159	}
2160done:
2161	*nchans = next;
2162	/* NB: pcountry set above by getregstate */
2163	if (prd2GHz != AH_NULL)
2164		*prd2GHz = rd2GHz;
2165	if (prd5GHz != AH_NULL)
2166		*prd5GHz = rd5GHz;
2167	return HAL_OK;
2168#undef HAL_MODE_11A_ALL
2169#undef CHANNEL_HALF_BW
2170#undef CHANNEL_QUARTER_BW
2171}
2172
2173/*
2174 * Retrieve a channel list without affecting runtime state.
2175 */
2176HAL_STATUS
2177ath_hal_getchannels(struct ath_hal *ah,
2178    struct ieee80211_channel chans[], u_int maxchans, int *nchans,
2179    u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
2180    HAL_BOOL enableExtendedChannels)
2181{
2182	return getchannels(ah, chans, maxchans, nchans, modeSelect,
2183	    cc, regDmn, enableExtendedChannels, AH_NULL, AH_NULL, AH_NULL);
2184}
2185
2186/*
2187 * Handle frequency mapping from 900Mhz range to 2.4GHz range
2188 * for GSM radios.  This is done when we need the h/w frequency
2189 * and the channel is marked IEEE80211_CHAN_GSM.
2190 */
2191static int
2192ath_hal_mapgsm(int sku, int freq)
2193{
2194	if (sku == SKU_XR9)
2195		return 1520 + freq;
2196	if (sku == SKU_GZ901)
2197		return 1544 + freq;
2198	if (sku == SKU_SR9)
2199		return 3344 - freq;
2200	HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
2201	    "%s: cannot map freq %u unknown gsm sku %u\n",
2202	    __func__, freq, sku);
2203	return freq;
2204}
2205
2206/*
2207 * Setup the internal/private channel state given a table of
2208 * net80211 channels.  We collapse entries for the same frequency
2209 * and record the frequency for doing noise floor processing
2210 * where we don't have net80211 channel context.
2211 */
2212static HAL_BOOL
2213assignPrivateChannels(struct ath_hal *ah,
2214	struct ieee80211_channel chans[], int nchans, int sku)
2215{
2216	HAL_CHANNEL_INTERNAL *ic;
2217	int i, j, next, freq;
2218
2219	next = 0;
2220	for (i = 0; i < nchans; i++) {
2221		struct ieee80211_channel *c = &chans[i];
2222		for (j = i-1; j >= 0; j--)
2223			if (chans[j].ic_freq == c->ic_freq) {
2224				c->ic_devdata = chans[j].ic_devdata;
2225				break;
2226			}
2227		if (j < 0) {
2228			/* new entry, assign a private channel entry */
2229			if (next >= N(AH_PRIVATE(ah)->ah_channels)) {
2230				HALDEBUG(ah, HAL_DEBUG_ANY,
2231				    "%s: too many channels, max %zu\n",
2232				    __func__, N(AH_PRIVATE(ah)->ah_channels));
2233				return AH_FALSE;
2234			}
2235			/*
2236			 * Handle frequency mapping for 900MHz devices.
2237			 * The hardware uses 2.4GHz frequencies that are
2238			 * down-converted.  The 802.11 layer uses the
2239			 * true frequencies.
2240			 */
2241			freq = IEEE80211_IS_CHAN_GSM(c) ?
2242			    ath_hal_mapgsm(sku, c->ic_freq) : c->ic_freq;
2243
2244			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2245			    "%s: private[%3u] %u/0x%x -> channel %u\n",
2246			    __func__, next, c->ic_freq, c->ic_flags, freq);
2247
2248			ic = &AH_PRIVATE(ah)->ah_channels[next];
2249			/*
2250			 * NB: This clears privFlags which means ancillary
2251			 *     code like ANI and IQ calibration will be
2252			 *     restarted and re-setup any per-channel state.
2253			 */
2254			OS_MEMZERO(ic, sizeof(*ic));
2255			ic->channel = freq;
2256			c->ic_devdata = next;
2257			next++;
2258		}
2259	}
2260	AH_PRIVATE(ah)->ah_nchan = next;
2261	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: %u public, %u private channels\n",
2262	    __func__, nchans, next);
2263	return AH_TRUE;
2264}
2265
2266/*
2267 * Setup the channel list based on the information in the EEPROM.
2268 */
2269HAL_STATUS
2270ath_hal_init_channels(struct ath_hal *ah,
2271    struct ieee80211_channel chans[], u_int maxchans, int *nchans,
2272    u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
2273    HAL_BOOL enableExtendedChannels)
2274{
2275	COUNTRY_CODE_TO_ENUM_RD *country;
2276	REG_DOMAIN *rd5GHz, *rd2GHz;
2277	HAL_STATUS status;
2278
2279	status = getchannels(ah, chans, maxchans, nchans, modeSelect,
2280	    cc, regDmn, enableExtendedChannels, &country, &rd2GHz, &rd5GHz);
2281	if (status == HAL_OK &&
2282	    assignPrivateChannels(ah, chans, *nchans, AH_PRIVATE(ah)->ah_currentRD)) {
2283		AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
2284		AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
2285
2286		ah->ah_countryCode = country->countryCode;
2287		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
2288		    __func__, ah->ah_countryCode);
2289	} else
2290		status = HAL_EINVAL;
2291	return status;
2292}
2293
2294/*
2295 * Set the channel list.
2296 */
2297HAL_STATUS
2298ath_hal_set_channels(struct ath_hal *ah,
2299    struct ieee80211_channel chans[], int nchans,
2300    HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd)
2301{
2302	COUNTRY_CODE_TO_ENUM_RD *country;
2303	REG_DOMAIN *rd5GHz, *rd2GHz;
2304	HAL_STATUS status;
2305
2306	switch (rd) {
2307	case SKU_SR9:
2308	case SKU_XR9:
2309	case SKU_GZ901:
2310		/*
2311		 * Map 900MHz sku's.  The frequencies will be mapped
2312		 * according to the sku to compensate for the down-converter.
2313		 * We use the FCC for these sku's as the mapped channel
2314		 * list is known compatible (will need to change if/when
2315		 * vendors do different mapping in different locales).
2316		 */
2317		status = getregstate(ah, CTRY_DEFAULT, SKU_FCC,
2318		    &country, &rd2GHz, &rd5GHz);
2319		break;
2320	default:
2321		status = getregstate(ah, cc, rd,
2322		    &country, &rd2GHz, &rd5GHz);
2323		rd = AH_PRIVATE(ah)->ah_currentRD;
2324		break;
2325	}
2326	if (status == HAL_OK && assignPrivateChannels(ah, chans, nchans, rd)) {
2327		AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
2328		AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
2329
2330		ah->ah_countryCode = country->countryCode;
2331		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
2332		    __func__, ah->ah_countryCode);
2333	} else
2334		status = HAL_EINVAL;
2335	return status;
2336}
2337
2338#ifdef AH_DEBUG
2339/*
2340 * Return the internal channel corresponding to a public channel.
2341 * NB: normally this routine is inline'd (see ah_internal.h)
2342 */
2343HAL_CHANNEL_INTERNAL *
2344ath_hal_checkchannel(struct ath_hal *ah, const struct ieee80211_channel *c)
2345{
2346	HAL_CHANNEL_INTERNAL *cc = &AH_PRIVATE(ah)->ah_channels[c->ic_devdata];
2347
2348	if (c->ic_devdata < AH_PRIVATE(ah)->ah_nchan &&
2349	    (c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c)))
2350		return cc;
2351	if (c->ic_devdata >= AH_PRIVATE(ah)->ah_nchan) {
2352		HALDEBUG(ah, HAL_DEBUG_ANY,
2353		    "%s: bad mapping, devdata %u nchans %u\n",
2354		   __func__, c->ic_devdata, AH_PRIVATE(ah)->ah_nchan);
2355		HALASSERT(c->ic_devdata < AH_PRIVATE(ah)->ah_nchan);
2356	} else {
2357		HALDEBUG(ah, HAL_DEBUG_ANY,
2358		    "%s: no match for %u/0x%x devdata %u channel %u\n",
2359		   __func__, c->ic_freq, c->ic_flags, c->ic_devdata,
2360		   cc->channel);
2361		HALASSERT(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c));
2362	}
2363	return AH_NULL;
2364}
2365#endif /* AH_DEBUG */
2366
2367#define isWwrSKU(_ah) \
2368	((getEepromRD((_ah)) & WORLD_SKU_MASK) == WORLD_SKU_PREFIX || \
2369	  getEepromRD(_ah) == WORLD)
2370
2371/*
2372 * Return the test group for the specific channel based on
2373 * the current regulatory setup.
2374 */
2375u_int
2376ath_hal_getctl(struct ath_hal *ah, const struct ieee80211_channel *c)
2377{
2378	u_int ctl;
2379
2380	if (AH_PRIVATE(ah)->ah_rd2GHz == AH_PRIVATE(ah)->ah_rd5GHz ||
2381	    (ah->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)))
2382		ctl = SD_NO_CTL;
2383	else if (IEEE80211_IS_CHAN_2GHZ(c))
2384		ctl = AH_PRIVATE(ah)->ah_rd2GHz->conformanceTestLimit;
2385	else
2386		ctl = AH_PRIVATE(ah)->ah_rd5GHz->conformanceTestLimit;
2387	if (IEEE80211_IS_CHAN_B(c))
2388		return ctl | CTL_11B;
2389	if (IEEE80211_IS_CHAN_G(c))
2390		return ctl | CTL_11G;
2391	if (IEEE80211_IS_CHAN_108G(c))
2392		return ctl | CTL_108G;
2393	if (IEEE80211_IS_CHAN_TURBO(c))
2394		return ctl | CTL_TURBO;
2395	if (IEEE80211_IS_CHAN_A(c))
2396		return ctl | CTL_11A;
2397	return ctl;
2398}
2399
2400/*
2401 * Return the max allowed antenna gain and apply any regulatory
2402 * domain specific changes.
2403 *
2404 * NOTE: a negative reduction is possible in RD's that only
2405 * measure radiated power (e.g., ETSI) which would increase
2406 * that actual conducted output power (though never beyond
2407 * the calibrated target power).
2408 */
2409u_int
2410ath_hal_getantennareduction(struct ath_hal *ah,
2411    const struct ieee80211_channel *chan, u_int twiceGain)
2412{
2413	int8_t antennaMax = twiceGain - chan->ic_maxantgain*2;
2414	return (antennaMax < 0) ? 0 : antennaMax;
2415}
2416