aac.c revision 126674
1139778Simp/*-
212115Sdyson * Copyright (c) 2000 Michael Smith
312115Sdyson * Copyright (c) 2001 Scott Long
412115Sdyson * Copyright (c) 2000 BSDi
512115Sdyson * Copyright (c) 2001 Adaptec, Inc.
612115Sdyson * All rights reserved.
7139778Simp *
812115Sdyson * Redistribution and use in source and binary forms, with or without
912115Sdyson * modification, are permitted provided that the following conditions
1012115Sdyson * are met:
1112115Sdyson * 1. Redistributions of source code must retain the above copyright
1212115Sdyson *    notice, this list of conditions and the following disclaimer.
1312115Sdyson * 2. Redistributions in binary form must reproduce the above copyright
1412115Sdyson *    notice, this list of conditions and the following disclaimer in the
1512115Sdyson *    documentation and/or other materials provided with the distribution.
1612115Sdyson *
1712115Sdyson * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1812115Sdyson * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1912115Sdyson * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2012115Sdyson * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
2112115Sdyson * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2212115Sdyson * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2312115Sdyson * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2412115Sdyson * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2512115Sdyson * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2612115Sdyson * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2712115Sdyson * SUCH DAMAGE.
2812115Sdyson */
2912115Sdyson
3012115Sdyson#include <sys/cdefs.h>
3112115Sdyson__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 126674 2004-03-05 22:42:17Z jhb $");
3212115Sdyson
3312115Sdyson/*
3412115Sdyson * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
3593015Sbde */
3658345Sphk
3712115Sdyson#include "opt_aac.h"
3812115Sdyson
3912115Sdyson/* #include <stddef.h> */
4012115Sdyson#include <sys/param.h>
4112115Sdyson#include <sys/systm.h>
4260041Sphk#include <sys/malloc.h>
4312115Sdyson#include <sys/kernel.h>
4412115Sdyson#include <sys/kthread.h>
4512115Sdyson#include <sys/sysctl.h>
46251171Sjeff#include <sys/poll.h>
4712115Sdyson#include <sys/ioccom.h>
4812115Sdyson
4912726Sbde#include <sys/bus.h>
5012115Sdyson#include <sys/conf.h>
51202283Slulf#include <sys/signalvar.h>
52202283Slulf#include <sys/time.h>
53202283Slulf#include <sys/eventhandler.h>
54202283Slulf
55202283Slulf#include <machine/bus_memio.h>
5612115Sdyson#include <machine/bus.h>
57254283Spfg#include <machine/resource.h>
58254283Spfg
5912115Sdyson#include <dev/aac/aacreg.h>
6012115Sdyson#include <dev/aac/aac_ioctl.h>
6112115Sdyson#include <dev/aac/aacvar.h>
6237363Sbde#include <dev/aac/aac_tables.h>
6337363Sbde
6437363Sbdestatic void	aac_startup(void *arg);
6537363Sbdestatic void	aac_add_container(struct aac_softc *sc,
6637363Sbde				  struct aac_mntinforesp *mir, int f);
6737363Sbdestatic void	aac_get_bus_info(struct aac_softc *sc);
6812115Sdyson
6912115Sdyson/* Command Processing */
70246634Spfgstatic void	aac_timeout(struct aac_softc *sc);
7112115Sdysonstatic int	aac_map_command(struct aac_command *cm);
72202283Slulfstatic void	aac_complete(void *context, int pending);
7312115Sdysonstatic int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
7412115Sdysonstatic void	aac_bio_complete(struct aac_command *cm);
7512115Sdysonstatic int	aac_wait_command(struct aac_command *cm, int timeout);
7612115Sdysonstatic void	aac_command_thread(struct aac_softc *sc);
77202283Slulf
7896749Siedowse/* Command Buffer Management */
7930492Sphkstatic void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80202283Slulf				   int nseg, int error);
8112115Sdysonstatic void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82202283Slulf				       int nseg, int error);
83202283Slulfstatic int	aac_alloc_commands(struct aac_softc *sc);
84202283Slulfstatic void	aac_free_commands(struct aac_softc *sc);
8512115Sdysonstatic void	aac_unmap_command(struct aac_command *cm);
8643301Sdillon
8712115Sdyson/* Hardware Interface */
88202283Slulfstatic void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
8912115Sdyson			       int error);
9012115Sdysonstatic int	aac_check_firmware(struct aac_softc *sc);
9112115Sdysonstatic int	aac_init(struct aac_softc *sc);
92202283Slulfstatic int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93187395Sstas				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94221166Sjhb				 u_int32_t arg3, u_int32_t *sp);
9512115Sdysonstatic int	aac_enqueue_fib(struct aac_softc *sc, int queue,
9612115Sdyson				struct aac_command *cm);
9712115Sdysonstatic int	aac_dequeue_fib(struct aac_softc *sc, int queue,
9812115Sdyson				u_int32_t *fib_size, struct aac_fib **fib_addr);
9912115Sdysonstatic int	aac_enqueue_response(struct aac_softc *sc, int queue,
10012115Sdyson				     struct aac_fib *fib);
10112115Sdyson
10212115Sdyson/* Falcon/PPC interface */
10312115Sdysonstatic int	aac_fa_get_fwstatus(struct aac_softc *sc);
10412115Sdysonstatic void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
10512115Sdysonstatic int	aac_fa_get_istatus(struct aac_softc *sc);
10612115Sdysonstatic void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
10712115Sdysonstatic void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
10812115Sdyson				   u_int32_t arg0, u_int32_t arg1,
10912115Sdyson				   u_int32_t arg2, u_int32_t arg3);
110246634Spfgstatic int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111246634Spfgstatic void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
11212115Sdyson
11396752Siedowsestruct aac_interface aac_fa_interface = {
11496877Siedowse	aac_fa_get_fwstatus,
11596752Siedowse	aac_fa_qnotify,
11696877Siedowse	aac_fa_get_istatus,
117245820Spfg	aac_fa_clear_istatus,
118202283Slulf	aac_fa_set_mailbox,
11912115Sdyson	aac_fa_get_mailbox,
12012115Sdyson	aac_fa_set_interrupts
121254283Spfg};
122221166Sjhb
12312115Sdyson/* StrongARM interface */
124277365Sngiestatic int	aac_sa_get_fwstatus(struct aac_softc *sc);
125277365Sngiestatic void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126277365Sngiestatic int	aac_sa_get_istatus(struct aac_softc *sc);
127202283Slulfstatic void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128202283Slulfstatic void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129277365Sngie				   u_int32_t arg0, u_int32_t arg1,
130277365Sngie				   u_int32_t arg2, u_int32_t arg3);
131277365Sngiestatic int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132202283Slulfstatic void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133202283Slulf
134202283Slulfstruct aac_interface aac_sa_interface = {
13512115Sdyson	aac_sa_get_fwstatus,
136202283Slulf	aac_sa_qnotify,
13712115Sdyson	aac_sa_get_istatus,
13812115Sdyson	aac_sa_clear_istatus,
13912115Sdyson	aac_sa_set_mailbox,
140251658Spfg	aac_sa_get_mailbox,
14112115Sdyson	aac_sa_set_interrupts
14212115Sdyson};
14312115Sdyson
14412115Sdyson/* i960Rx interface */
14512115Sdysonstatic int	aac_rx_get_fwstatus(struct aac_softc *sc);
14612115Sdysonstatic void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
14796749Siedowsestatic int	aac_rx_get_istatus(struct aac_softc *sc);
14812115Sdysonstatic void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
14912115Sdysonstatic void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
15012115Sdyson				   u_int32_t arg0, u_int32_t arg1,
15196749Siedowse				   u_int32_t arg2, u_int32_t arg3);
15212115Sdysonstatic int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
15312115Sdysonstatic void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
15412115Sdyson
15512115Sdysonstruct aac_interface aac_rx_interface = {
15612115Sdyson	aac_rx_get_fwstatus,
15712115Sdyson	aac_rx_qnotify,
158202283Slulf	aac_rx_get_istatus,
15912115Sdyson	aac_rx_clear_istatus,
16012115Sdyson	aac_rx_set_mailbox,
161202283Slulf	aac_rx_get_mailbox,
162125962Stjr	aac_rx_set_interrupts
163202283Slulf};
16412115Sdyson
16512115Sdyson/* Debugging and Diagnostics */
166221166Sjhbstatic void	aac_describe_controller(struct aac_softc *sc);
167221166Sjhbstatic char	*aac_describe_code(struct aac_code_lookup *table,
168202283Slulf				   u_int32_t code);
169202283Slulf
17012115Sdyson/* Management Interface */
171202283Slulfstatic d_open_t		aac_open;
17212115Sdysonstatic d_close_t	aac_close;
173202283Slulfstatic d_ioctl_t	aac_ioctl;
174202283Slulfstatic d_poll_t		aac_poll;
175221166Sjhbstatic int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
17612115Sdysonstatic void		aac_handle_aif(struct aac_softc *sc,
177221166Sjhb					   struct aac_fib *fib);
178202283Slulfstatic int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
17912115Sdysonstatic int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
18012115Sdysonstatic int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
18112115Sdysonstatic int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
182245612Spfg
18312115Sdysonstatic struct cdevsw aac_cdevsw = {
18412115Sdyson	.d_version =	D_VERSION,
18512115Sdyson	.d_flags =	D_NEEDGIANT,
186298805Spfg	.d_open =	aac_open,
18712115Sdyson	.d_close =	aac_close,
18861686Salex	.d_ioctl =	aac_ioctl,
18912115Sdyson	.d_poll =	aac_poll,
19012115Sdyson	.d_name =	"aac",
19112115Sdyson};
19212115Sdyson
19312115SdysonMALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
19412115Sdyson
19512115Sdyson/* sysctl node */
19612115SdysonSYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
197221166Sjhb
198221166Sjhb/*
199202283Slulf * Device Interface
20012115Sdyson */
20112115Sdyson
20212115Sdyson/*
20312115Sdyson * Initialise the controller and softc
20412115Sdyson */
205202283Slulfint
206202283Slulfaac_attach(struct aac_softc *sc)
207221166Sjhb{
20812115Sdyson	int error, unit;
209221166Sjhb
210202283Slulf	debug_called(1);
21112115Sdyson
21212115Sdyson	/*
21312115Sdyson	 * Initialise per-controller queues.
21412115Sdyson	 */
21512115Sdyson	aac_initq_free(sc);
21612115Sdyson	aac_initq_ready(sc);
21712115Sdyson	aac_initq_busy(sc);
21812115Sdyson	aac_initq_bio(sc);
21912115Sdyson
220202283Slulf	/*
22112115Sdyson	 * Initialise command-completion task.
22212115Sdyson	 */
22312115Sdyson	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
224202283Slulf
22512115Sdyson	/* disable interrupts before we enable anything */
22612115Sdyson	AAC_MASK_INTERRUPTS(sc);
22712115Sdyson
22812115Sdyson	/* mark controller as suspended until we get ourselves organised */
22912115Sdyson	sc->aac_state |= AAC_STATE_SUSPEND;
23012115Sdyson
231275645Spfg	/*
232275645Spfg	 * Check that the firmware on the card is supported.
23312115Sdyson	 */
23412115Sdyson	if ((error = aac_check_firmware(sc)) != 0)
23512115Sdyson		return(error);
23612115Sdyson
237275645Spfg	/*
238275645Spfg	 * Initialize locks
239275645Spfg	 */
240275645Spfg	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
241275645Spfg	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
242275645Spfg	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
24312115Sdyson	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
244245612Spfg	TAILQ_INIT(&sc->aac_container_tqh);
24540721Speter
24612115Sdyson	/* Initialize the local AIF queue pointers */
24712115Sdyson	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
24812115Sdyson
24912115Sdyson	/*
25012115Sdyson	 * Initialise the adapter.
25112115Sdyson	 */
252275645Spfg	if ((error = aac_init(sc)) != 0)
253275645Spfg		return(error);
254275645Spfg
255275645Spfg	/*
256275645Spfg	 * Print a little information about the controller.
257275645Spfg	 */
258275645Spfg	aac_describe_controller(sc);
259275645Spfg
26012115Sdyson	/*
261234605Strasz	 * Register to probe our containers later.
26240718Speter	 */
26340718Speter	sc->aac_ich.ich_func = aac_startup;
264202283Slulf	sc->aac_ich.ich_arg = sc;
265262623Spfg	if (config_intrhook_establish(&sc->aac_ich) != 0) {
26612115Sdyson		device_printf(sc->aac_dev,
26712115Sdyson			      "can't establish configuration hook\n");
26812115Sdyson		return(ENXIO);
26912115Sdyson	}
27012115Sdyson
27112115Sdyson	/*
27212115Sdyson	 * Make the control device.
27312115Sdyson	 */
27412115Sdyson	unit = device_get_unit(sc->aac_dev);
27512115Sdyson	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
27612115Sdyson				 0640, "aac%d", unit);
27712115Sdyson	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
27812115Sdyson	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
27912115Sdyson	sc->aac_dev_t->si_drv1 = sc;
28012115Sdyson
28112115Sdyson	/* Create the AIF thread */
282202283Slulf	if (kthread_create((void(*)(void *))aac_command_thread, sc,
28312115Sdyson			   &sc->aifthread, 0, 0, "aac%daif", unit))
28412115Sdyson		panic("Could not create AIF thread\n");
28512115Sdyson
28612115Sdyson	/* Register the shutdown method to only be called post-dump */
28712115Sdyson	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
28812115Sdyson	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
28912115Sdyson		device_printf(sc->aac_dev,
29012115Sdyson			      "shutdown event registration failed\n");
29112115Sdyson
29212115Sdyson	/* Register with CAM for the non-DASD devices */
29312115Sdyson	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
29496752Siedowse		TAILQ_INIT(&sc->aac_sim_tqh);
29512115Sdyson		aac_get_bus_info(sc);
29612115Sdyson	}
29712115Sdyson
29812115Sdyson	return(0);
29912115Sdyson}
30012115Sdyson
30112115Sdyson/*
30212115Sdyson * Probe for containers, create disks.
30312115Sdyson */
30412115Sdysonstatic void
30512115Sdysonaac_startup(void *arg)
30612115Sdyson{
30712115Sdyson	struct aac_softc *sc;
30812115Sdyson	struct aac_fib *fib;
30912115Sdyson	struct aac_mntinfo *mi;
31012115Sdyson	struct aac_mntinforesp *mir = NULL;
31112115Sdyson	int count = 0, i = 0;
31212115Sdyson
31312115Sdyson	debug_called(1);
31412115Sdyson
31512115Sdyson	sc = (struct aac_softc *)arg;
31612115Sdyson
31712115Sdyson	/* disconnect ourselves from the intrhook chain */
31812115Sdyson	config_intrhook_disestablish(&sc->aac_ich);
31912115Sdyson
32012115Sdyson	aac_alloc_sync_fib(sc, &fib, 0);
32112115Sdyson	mi = (struct aac_mntinfo *)&fib->data[0];
32212115Sdyson
323246258Spfg	/* loop over possible containers */
32412115Sdyson	do {
32512115Sdyson		/* request information on this container */
32612115Sdyson		bzero(mi, sizeof(struct aac_mntinfo));
32712115Sdyson		mi->Command = VM_NameServe;
32812115Sdyson		mi->MntType = FT_FILESYS;
32912115Sdyson		mi->MntCount = i;
33012115Sdyson		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
33112115Sdyson				 sizeof(struct aac_mntinfo))) {
33212115Sdyson			printf("error probing container %d", i);
33312115Sdyson			continue;
33412115Sdyson		}
33512115Sdyson
336251658Spfg		mir = (struct aac_mntinforesp *)&fib->data[0];
33712115Sdyson		/* XXX Need to check if count changed */
33812115Sdyson		count = mir->MntRespCount;
33912115Sdyson		aac_add_container(sc, mir, 0);
34012115Sdyson		i++;
34112115Sdyson	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
34212115Sdyson
343202283Slulf	aac_release_sync_fib(sc);
344202283Slulf
345202283Slulf	/* poke the bus to actually attach the child devices */
34612115Sdyson	if (bus_generic_attach(sc->aac_dev))
347202283Slulf		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
348251658Spfg
34912115Sdyson	/* mark the controller up */
35012115Sdyson	sc->aac_state &= ~AAC_STATE_SUSPEND;
35112115Sdyson
35212115Sdyson	/* enable interrupts now */
353245950Spfg	AAC_UNMASK_INTERRUPTS(sc);
354245820Spfg}
355245950Spfg
35612115Sdyson/*
35712115Sdyson * Create a device to respresent a new container
35813490Sdyson */
35912115Sdysonstatic void
36012115Sdysonaac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
36112115Sdyson{
36212115Sdyson	struct aac_container *co;
36312115Sdyson	device_t child;
36412115Sdyson
36512115Sdyson	/*
36612115Sdyson	 * Check container volume type for validity.  Note that many of
36712115Sdyson	 * the possible types may never show up.
36812115Sdyson	 */
36912115Sdyson	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
37012115Sdyson		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
37112115Sdyson		       M_NOWAIT | M_ZERO);
37212115Sdyson		if (co == NULL)
373254283Spfg			panic("Out of memory?!\n");
374254283Spfg		debug(1, "id %x  name '%.16s'  size %u  type %d",
37512115Sdyson		      mir->MntTable[0].ObjectId,
37612115Sdyson		      mir->MntTable[0].FileSystemName,
377202283Slulf		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
37812115Sdyson
379254283Spfg		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
380254283Spfg			device_printf(sc->aac_dev, "device_add_child failed\n");
381254283Spfg		else
382254283Spfg			device_set_ivars(child, co);
38312115Sdyson		device_set_desc(child, aac_describe_code(aac_container_types,
38412115Sdyson				mir->MntTable[0].VolType));
38512115Sdyson		co->co_disk = child;
38612115Sdyson		co->co_found = f;
38712115Sdyson		bcopy(&mir->MntTable[0], &co->co_mntobj,
38812115Sdyson		      sizeof(struct aac_mntobj));
38912115Sdyson		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
39012115Sdyson		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
39112115Sdyson		AAC_LOCK_RELEASE(&sc->aac_container_lock);
39212115Sdyson	}
39312115Sdyson}
39412115Sdyson
395202283Slulf/*
39612115Sdyson * Free all of the resources associated with (sc)
39712115Sdyson *
39812115Sdyson * Should not be called if the controller is active.
39912115Sdyson */
40012115Sdysonvoid
40112115Sdysonaac_free(struct aac_softc *sc)
40212115Sdyson{
40312115Sdyson
40412115Sdyson	debug_called(1);
405202283Slulf
406240355Skevlo	/* remove the control device */
40758345Sphk	if (sc->aac_dev_t != NULL)
40812115Sdyson		destroy_dev(sc->aac_dev_t);
40912115Sdyson
41012115Sdyson	/* throw away any FIB buffers, discard the FIB DMA tag */
41112115Sdyson	aac_free_commands(sc);
412121205Sphk	if (sc->aac_fib_dmat)
413136927Sphk		bus_dma_tag_destroy(sc->aac_fib_dmat);
41459762Sphk
41512115Sdyson	free(sc->aac_commands, M_AACBUF);
41612115Sdyson
41712115Sdyson	/* destroy the common area */
41812115Sdyson	if (sc->aac_common) {
41912115Sdyson		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
42012115Sdyson		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
42112115Sdyson				sc->aac_common_dmamap);
422254283Spfg	}
423202283Slulf	if (sc->aac_common_dmat)
424202283Slulf		bus_dma_tag_destroy(sc->aac_common_dmat);
42512115Sdyson
426254283Spfg	/* disconnect the interrupt handler */
42712115Sdyson	if (sc->aac_intr)
42812115Sdyson		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
429245612Spfg	if (sc->aac_irq != NULL)
430245612Spfg		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
431245612Spfg				     sc->aac_irq);
432245612Spfg
433245612Spfg	/* destroy data-transfer DMA tag */
434245612Spfg	if (sc->aac_buffer_dmat)
435245612Spfg		bus_dma_tag_destroy(sc->aac_buffer_dmat);
43612115Sdyson
43712115Sdyson	/* destroy the parent DMA tag */
43812115Sdyson	if (sc->aac_parent_dmat)
43912115Sdyson		bus_dma_tag_destroy(sc->aac_parent_dmat);
44012115Sdyson
44112115Sdyson	/* release the register window mapping */
44212115Sdyson	if (sc->aac_regs_resource != NULL)
44312115Sdyson		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
44412115Sdyson				     sc->aac_regs_rid, sc->aac_regs_resource);
44512115Sdyson}
44612115Sdyson
44743301Sdillon/*
44896877Siedowse * Disconnect from the controller completely, in preparation for unload.
44912115Sdyson */
45012115Sdysonint
45112115Sdysonaac_detach(device_t dev)
452202283Slulf{
45312115Sdyson	struct aac_softc *sc;
45412115Sdyson	struct aac_container *co;
45512115Sdyson	struct aac_sim	*sim;
45612115Sdyson	int error;
45712115Sdyson
45812115Sdyson	debug_called(1);
45912115Sdyson
46012115Sdyson	sc = device_get_softc(dev);
46112115Sdyson
46212115Sdyson	if (sc->aac_state & AAC_STATE_OPEN)
46343301Sdillon		return(EBUSY);
46443301Sdillon
46512115Sdyson	/* Remove the child containers */
46612115Sdyson	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
46712115Sdyson		error = device_delete_child(dev, co->co_disk);
46812115Sdyson		if (error)
469184205Sdes			return (error);
47012115Sdyson		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
47112115Sdyson		free(co, M_AACBUF);
47212115Sdyson	}
47312115Sdyson
47412115Sdyson	/* Remove the CAM SIMs */
47512115Sdyson	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
47612115Sdyson		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
47712115Sdyson		error = device_delete_child(dev, sim->sim_dev);
478246634Spfg		if (error)
47912115Sdyson			return (error);
48096749Siedowse		free(sim, M_AACBUF);
48196749Siedowse	}
48296749Siedowse
48396749Siedowse	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
48496749Siedowse		sc->aifflags |= AAC_AIFFLAGS_EXIT;
48596749Siedowse		wakeup(sc->aifthread);
48696749Siedowse		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
48796749Siedowse	}
48896749Siedowse
48996749Siedowse	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
49096749Siedowse		panic("Cannot shutdown AIF thread\n");
49196749Siedowse
49296749Siedowse	if ((error = aac_shutdown(dev)))
49396749Siedowse		return(error);
49496749Siedowse
49596749Siedowse	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
49696749Siedowse
49796749Siedowse	aac_free(sc);
498183071Skib
499183071Skib	return(0);
50096749Siedowse}
50196749Siedowse
50296749Siedowse/*
50396749Siedowse * Bring the controller down to a dormant state and detach all child devices.
50496749Siedowse *
50596749Siedowse * This function is called before detach or system shutdown.
506234607Strasz *
50796749Siedowse * Note that we can assume that the bioq on the controller is empty, as we won't
50812115Sdyson * allow shutdown if any device is open.
50912115Sdyson */
51096749Siedowseint
51196749Siedowseaac_shutdown(device_t dev)
51296749Siedowse{
51396749Siedowse	struct aac_softc *sc;
514246634Spfg	struct aac_fib *fib;
51596749Siedowse	struct aac_close_command *cc;
51696749Siedowse
51796749Siedowse	debug_called(1);
51896749Siedowse
51996749Siedowse	sc = device_get_softc(dev);
52096749Siedowse
52196749Siedowse	sc->aac_state |= AAC_STATE_SUSPEND;
52296749Siedowse
52396749Siedowse	/*
524143578Sphk	 * Send a Container shutdown followed by a HostShutdown FIB to the
525184205Sdes	 * controller to convince it that we don't want to talk to it anymore.
52696749Siedowse	 * We've been closed and all I/O completed already
527140939Sphk	 */
52896749Siedowse	device_printf(sc->aac_dev, "shutting down controller...");
52996749Siedowse
530	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
531	cc = (struct aac_close_command *)&fib->data[0];
532
533	bzero(cc, sizeof(struct aac_close_command));
534	cc->Command = VM_CloseAll;
535	cc->ContainerId = 0xffffffff;
536	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
537	    sizeof(struct aac_close_command)))
538		printf("FAILED.\n");
539	else
540		printf("done\n");
541#if 0
542	else {
543		fib->data[0] = 0;
544		/*
545		 * XXX Issuing this command to the controller makes it shut down
546		 * but also keeps it from coming back up without a reset of the
547		 * PCI bus.  This is not desirable if you are just unloading the
548		 * driver module with the intent to reload it later.
549		 */
550		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
551		    fib, 1)) {
552			printf("FAILED.\n");
553		} else {
554			printf("done.\n");
555		}
556	}
557#endif
558
559	AAC_MASK_INTERRUPTS(sc);
560
561	return(0);
562}
563
564/*
565 * Bring the controller to a quiescent state, ready for system suspend.
566 */
567int
568aac_suspend(device_t dev)
569{
570	struct aac_softc *sc;
571
572	debug_called(1);
573
574	sc = device_get_softc(dev);
575
576	sc->aac_state |= AAC_STATE_SUSPEND;
577
578	AAC_MASK_INTERRUPTS(sc);
579	return(0);
580}
581
582/*
583 * Bring the controller back to a state ready for operation.
584 */
585int
586aac_resume(device_t dev)
587{
588	struct aac_softc *sc;
589
590	debug_called(1);
591
592	sc = device_get_softc(dev);
593
594	sc->aac_state &= ~AAC_STATE_SUSPEND;
595	AAC_UNMASK_INTERRUPTS(sc);
596	return(0);
597}
598
599/*
600 * Take an interrupt.
601 */
602void
603aac_intr(void *arg)
604{
605	struct aac_softc *sc;
606	u_int16_t reason;
607
608	debug_called(2);
609
610	sc = (struct aac_softc *)arg;
611
612	/*
613	 * Read the status register directly.  This is faster than taking the
614	 * driver lock and reading the queues directly.  It also saves having
615	 * to turn parts of the driver lock into a spin mutex, which would be
616	 * ugly.
617	 */
618	reason = AAC_GET_ISTATUS(sc);
619	AAC_CLEAR_ISTATUS(sc, reason);
620
621	/* handle completion processing */
622	if (reason & AAC_DB_RESPONSE_READY)
623		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
624
625	/* controller wants to talk to us */
626	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
627		/*
628		 * XXX Make sure that we don't get fooled by strange messages
629		 * that start with a NULL.
630		 */
631		if ((reason & AAC_DB_PRINTF) &&
632		    (sc->aac_common->ac_printf[0] == 0))
633			sc->aac_common->ac_printf[0] = 32;
634
635		/*
636		 * This might miss doing the actual wakeup.  However, the
637		 * msleep that this is waking up has a timeout, so it will
638		 * wake up eventually.  AIFs and printfs are low enough
639		 * priority that they can handle hanging out for a few seconds
640		 * if needed.
641		 */
642		wakeup(sc->aifthread);
643	}
644}
645
646/*
647 * Command Processing
648 */
649
650/*
651 * Start as much queued I/O as possible on the controller
652 */
653void
654aac_startio(struct aac_softc *sc)
655{
656	struct aac_command *cm;
657
658	debug_called(2);
659
660	if (sc->flags & AAC_QUEUE_FRZN)
661		return;
662
663	for (;;) {
664		/*
665		 * Try to get a command that's been put off for lack of
666		 * resources
667		 */
668		cm = aac_dequeue_ready(sc);
669
670		/*
671		 * Try to build a command off the bio queue (ignore error
672		 * return)
673		 */
674		if (cm == NULL)
675			aac_bio_command(sc, &cm);
676
677		/* nothing to do? */
678		if (cm == NULL)
679			break;
680
681		/*
682		 * Try to give the command to the controller.  Any error is
683		 * catastrophic since it means that bus_dmamap_load() failed.
684		 */
685		if (aac_map_command(cm) != 0)
686			panic("aac: error mapping command %p\n", cm);
687	}
688}
689
690/*
691 * Deliver a command to the controller; allocate controller resources at the
692 * last moment when possible.
693 */
694static int
695aac_map_command(struct aac_command *cm)
696{
697	struct aac_softc *sc;
698	int error;
699
700	debug_called(2);
701
702	sc = cm->cm_sc;
703	error = 0;
704
705	/* don't map more than once */
706	if (cm->cm_flags & AAC_CMD_MAPPED)
707		panic("aac: command %p already mapped", cm);
708
709	if (cm->cm_datalen != 0) {
710		error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
711					cm->cm_data, cm->cm_datalen,
712					aac_map_command_sg, cm, 0);
713		if (error == EINPROGRESS) {
714			debug(1, "freezing queue\n");
715			sc->flags |= AAC_QUEUE_FRZN;
716			error = 0;
717		}
718	} else {
719		aac_map_command_sg(cm, NULL, 0, 0);
720	}
721	return (error);
722}
723
724/*
725 * Handle notification of one or more FIBs coming from the controller.
726 */
727static void
728aac_command_thread(struct aac_softc *sc)
729{
730	struct aac_fib *fib;
731	u_int32_t fib_size;
732	int size, retval;
733
734	debug_called(2);
735
736	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
737	sc->aifflags = AAC_AIFFLAGS_RUNNING;
738
739	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
740
741		retval = 0;
742		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
743			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
744					"aifthd", AAC_PERIODIC_INTERVAL * hz);
745
746		/*
747		 * First see if any FIBs need to be allocated.  This needs
748		 * to be called without the driver lock because contigmalloc
749		 * will grab Giant, and would result in an LOR.
750		 */
751		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
752			AAC_LOCK_RELEASE(&sc->aac_io_lock);
753			aac_alloc_commands(sc);
754			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
755			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
756			aac_startio(sc);
757		}
758
759		/*
760		 * While we're here, check to see if any commands are stuck.
761		 * This is pretty low-priority, so it's ok if it doesn't
762		 * always fire.
763		 */
764		if (retval == EWOULDBLOCK)
765			aac_timeout(sc);
766
767		/* Check the hardware printf message buffer */
768		if (sc->aac_common->ac_printf[0] != 0)
769			aac_print_printf(sc);
770
771		/* Also check to see if the adapter has a command for us. */
772		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
773				       &fib_size, &fib) == 0) {
774
775			AAC_PRINT_FIB(sc, fib);
776
777			switch (fib->Header.Command) {
778			case AifRequest:
779				aac_handle_aif(sc, fib);
780				break;
781			default:
782				device_printf(sc->aac_dev, "unknown command "
783					      "from controller\n");
784				break;
785			}
786
787			if ((fib->Header.XferState == 0) ||
788			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
789				break;
790
791			/* Return the AIF to the controller. */
792			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
793				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
794				*(AAC_FSAStatus*)fib->data = ST_OK;
795
796				/* XXX Compute the Size field? */
797				size = fib->Header.Size;
798				if (size > sizeof(struct aac_fib)) {
799					size = sizeof(struct aac_fib);
800					fib->Header.Size = size;
801				}
802				/*
803				 * Since we did not generate this command, it
804				 * cannot go through the normal
805				 * enqueue->startio chain.
806				 */
807				aac_enqueue_response(sc,
808						     AAC_ADAP_NORM_RESP_QUEUE,
809						     fib);
810			}
811		}
812	}
813	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
814	AAC_LOCK_RELEASE(&sc->aac_io_lock);
815	wakeup(sc->aac_dev);
816
817	kthread_exit(0);
818}
819
820/*
821 * Process completed commands.
822 */
823static void
824aac_complete(void *context, int pending)
825{
826	struct aac_softc *sc;
827	struct aac_command *cm;
828	struct aac_fib *fib;
829	u_int32_t fib_size;
830
831	debug_called(2);
832
833	sc = (struct aac_softc *)context;
834
835	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
836
837	/* pull completed commands off the queue */
838	for (;;) {
839		/* look for completed FIBs on our queue */
840		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
841				    &fib))
842			break;	/* nothing to do */
843
844		/* get the command, unmap and hand off for processing */
845		cm = sc->aac_commands + fib->Header.SenderData;
846		if (cm == NULL) {
847			AAC_PRINT_FIB(sc, fib);
848			break;
849		}
850
851		aac_remove_busy(cm);
852		aac_unmap_command(cm);
853		cm->cm_flags |= AAC_CMD_COMPLETED;
854
855		/* is there a completion handler? */
856		if (cm->cm_complete != NULL) {
857			cm->cm_complete(cm);
858		} else {
859			/* assume that someone is sleeping on this command */
860			wakeup(cm);
861		}
862	}
863
864	/* see if we can start some more I/O */
865	sc->flags &= ~AAC_QUEUE_FRZN;
866	aac_startio(sc);
867
868	AAC_LOCK_RELEASE(&sc->aac_io_lock);
869}
870
871/*
872 * Handle a bio submitted from a disk device.
873 */
874void
875aac_submit_bio(struct bio *bp)
876{
877	struct aac_disk *ad;
878	struct aac_softc *sc;
879
880	debug_called(2);
881
882	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
883	sc = ad->ad_controller;
884
885	/* queue the BIO and try to get some work done */
886	aac_enqueue_bio(sc, bp);
887	aac_startio(sc);
888}
889
890/*
891 * Get a bio and build a command to go with it.
892 */
893static int
894aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
895{
896	struct aac_command *cm;
897	struct aac_fib *fib;
898	struct aac_disk *ad;
899	struct bio *bp;
900
901	debug_called(2);
902
903	/* get the resources we will need */
904	cm = NULL;
905	bp = NULL;
906	if (aac_alloc_command(sc, &cm))	/* get a command */
907		goto fail;
908	if ((bp = aac_dequeue_bio(sc)) == NULL)
909		goto fail;
910
911	/* fill out the command */
912	cm->cm_data = (void *)bp->bio_data;
913	cm->cm_datalen = bp->bio_bcount;
914	cm->cm_complete = aac_bio_complete;
915	cm->cm_private = bp;
916	cm->cm_timestamp = time_second;
917	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
918
919	/* build the FIB */
920	fib = cm->cm_fib;
921	fib->Header.Size = sizeof(struct aac_fib_header);
922	fib->Header.XferState =
923		AAC_FIBSTATE_HOSTOWNED   |
924		AAC_FIBSTATE_INITIALISED |
925		AAC_FIBSTATE_EMPTY	 |
926		AAC_FIBSTATE_FROMHOST	 |
927		AAC_FIBSTATE_REXPECTED   |
928		AAC_FIBSTATE_NORM	 |
929		AAC_FIBSTATE_ASYNC	 |
930		AAC_FIBSTATE_FAST_RESPONSE;
931
932	/* build the read/write request */
933	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
934
935	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
936		fib->Header.Command = ContainerCommand;
937		if (bp->bio_cmd == BIO_READ) {
938			struct aac_blockread *br;
939			br = (struct aac_blockread *)&fib->data[0];
940			br->Command = VM_CtBlockRead;
941			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
942			br->BlockNumber = bp->bio_pblkno;
943			br->ByteCount = bp->bio_bcount;
944			fib->Header.Size += sizeof(struct aac_blockread);
945			cm->cm_sgtable = &br->SgMap;
946			cm->cm_flags |= AAC_CMD_DATAIN;
947		} else {
948			struct aac_blockwrite *bw;
949			bw = (struct aac_blockwrite *)&fib->data[0];
950			bw->Command = VM_CtBlockWrite;
951			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
952			bw->BlockNumber = bp->bio_pblkno;
953			bw->ByteCount = bp->bio_bcount;
954			bw->Stable = CUNSTABLE;
955			fib->Header.Size += sizeof(struct aac_blockwrite);
956			cm->cm_flags |= AAC_CMD_DATAOUT;
957			cm->cm_sgtable = &bw->SgMap;
958		}
959	} else {
960		fib->Header.Command = ContainerCommand64;
961		if (bp->bio_cmd == BIO_READ) {
962			struct aac_blockread64 *br;
963			br = (struct aac_blockread64 *)&fib->data[0];
964			br->Command = VM_CtHostRead64;
965			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
966			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
967			br->BlockNumber = bp->bio_pblkno;
968			br->Pad = 0;
969			br->Flags = 0;
970			fib->Header.Size += sizeof(struct aac_blockread64);
971			cm->cm_flags |= AAC_CMD_DATAOUT;
972			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
973		} else {
974			struct aac_blockwrite64 *bw;
975			bw = (struct aac_blockwrite64 *)&fib->data[0];
976			bw->Command = VM_CtHostWrite64;
977			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
978			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
979			bw->BlockNumber = bp->bio_pblkno;
980			bw->Pad = 0;
981			bw->Flags = 0;
982			fib->Header.Size += sizeof(struct aac_blockwrite64);
983			cm->cm_flags |= AAC_CMD_DATAIN;
984			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
985		}
986	}
987
988	*cmp = cm;
989	return(0);
990
991fail:
992	if (bp != NULL)
993		aac_enqueue_bio(sc, bp);
994	if (cm != NULL)
995		aac_release_command(cm);
996	return(ENOMEM);
997}
998
999/*
1000 * Handle a bio-instigated command that has been completed.
1001 */
1002static void
1003aac_bio_complete(struct aac_command *cm)
1004{
1005	struct aac_blockread_response *brr;
1006	struct aac_blockwrite_response *bwr;
1007	struct bio *bp;
1008	AAC_FSAStatus status;
1009
1010	/* fetch relevant status and then release the command */
1011	bp = (struct bio *)cm->cm_private;
1012	if (bp->bio_cmd == BIO_READ) {
1013		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1014		status = brr->Status;
1015	} else {
1016		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1017		status = bwr->Status;
1018	}
1019	aac_release_command(cm);
1020
1021	/* fix up the bio based on status */
1022	if (status == ST_OK) {
1023		bp->bio_resid = 0;
1024	} else {
1025		bp->bio_error = EIO;
1026		bp->bio_flags |= BIO_ERROR;
1027		/* pass an error string out to the disk layer */
1028		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1029						    status);
1030	}
1031	aac_biodone(bp);
1032}
1033
1034/*
1035 * Submit a command to the controller, return when it completes.
1036 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1037 *     be stuck here forever.  At the same time, signals are not caught
1038 *     because there is a risk that a signal could wakeup the tsleep before
1039 *     the card has a chance to complete the command.  The passed in timeout
1040 *     is ignored for the same reason.  Since there is no way to cancel a
1041 *     command in progress, we should probably create a 'dead' queue where
1042 *     commands go that have been interrupted/timed-out/etc, that keeps them
1043 *     out of the free pool.  That way, if the card is just slow, it won't
1044 *     spam the memory of a command that has been recycled.
1045 */
1046static int
1047aac_wait_command(struct aac_command *cm, int timeout)
1048{
1049	struct aac_softc *sc;
1050	int error = 0;
1051
1052	debug_called(2);
1053
1054	sc = cm->cm_sc;
1055
1056	/* Put the command on the ready queue and get things going */
1057	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1058	aac_enqueue_ready(cm);
1059	aac_startio(sc);
1060	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1061		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1062	}
1063	return(error);
1064}
1065
1066/*
1067 *Command Buffer Management
1068 */
1069
1070/*
1071 * Allocate a command.
1072 */
1073int
1074aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1075{
1076	struct aac_command *cm;
1077
1078	debug_called(3);
1079
1080	if ((cm = aac_dequeue_free(sc)) == NULL) {
1081		if (sc->total_fibs < sc->aac_max_fibs) {
1082			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1083			wakeup(sc->aifthread);
1084		}
1085		return (EBUSY);
1086	}
1087
1088	*cmp = cm;
1089	return(0);
1090}
1091
1092/*
1093 * Release a command back to the freelist.
1094 */
1095void
1096aac_release_command(struct aac_command *cm)
1097{
1098	debug_called(3);
1099
1100	/* (re)initialise the command/FIB */
1101	cm->cm_sgtable = NULL;
1102	cm->cm_flags = 0;
1103	cm->cm_complete = NULL;
1104	cm->cm_private = NULL;
1105	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1106	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1107	cm->cm_fib->Header.Flags = 0;
1108	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1109
1110	/*
1111	 * These are duplicated in aac_start to cover the case where an
1112	 * intermediate stage may have destroyed them.  They're left
1113	 * initialised here for debugging purposes only.
1114	 */
1115	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1116	cm->cm_fib->Header.SenderData = 0;
1117
1118	aac_enqueue_free(cm);
1119}
1120
1121/*
1122 * Map helper for command/FIB allocation.
1123 */
1124static void
1125aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1126{
1127	uint32_t	*fibphys;
1128
1129	fibphys = (uint32_t *)arg;
1130
1131	debug_called(3);
1132
1133	*fibphys = segs[0].ds_addr;
1134}
1135
1136/*
1137 * Allocate and initialise commands/FIBs for this adapter.
1138 */
1139static int
1140aac_alloc_commands(struct aac_softc *sc)
1141{
1142	struct aac_command *cm;
1143	struct aac_fibmap *fm;
1144	uint32_t fibphys;
1145	int i, error;
1146
1147	debug_called(2);
1148
1149	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1150		return (ENOMEM);
1151
1152	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1153	if (fm == NULL)
1154		return (ENOMEM);
1155
1156	/* allocate the FIBs in DMAable memory and load them */
1157	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1158			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1159		device_printf(sc->aac_dev,
1160			      "Not enough contiguous memory available.\n");
1161		free(fm, M_AACBUF);
1162		return (ENOMEM);
1163	}
1164
1165	/* Ignore errors since this doesn't bounce */
1166	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1167			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1168			      aac_map_command_helper, &fibphys, 0);
1169
1170	/* initialise constant fields in the command structure */
1171	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
1172	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1173	for (i = 0; i < AAC_FIB_COUNT; i++) {
1174		cm = sc->aac_commands + sc->total_fibs;
1175		fm->aac_commands = cm;
1176		cm->cm_sc = sc;
1177		cm->cm_fib = fm->aac_fibs + i;
1178		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1179		cm->cm_index = sc->total_fibs;
1180
1181		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1182					       &cm->cm_datamap)) == 0)
1183			aac_release_command(cm);
1184		else
1185			break;
1186		sc->total_fibs++;
1187	}
1188
1189	if (i > 0) {
1190		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1191		debug(1, "total_fibs= %d\n", sc->total_fibs);
1192		AAC_LOCK_RELEASE(&sc->aac_io_lock);
1193		return (0);
1194	}
1195
1196	AAC_LOCK_RELEASE(&sc->aac_io_lock);
1197	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1198	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1199	free(fm, M_AACBUF);
1200	return (ENOMEM);
1201}
1202
1203/*
1204 * Free FIBs owned by this adapter.
1205 */
1206static void
1207aac_free_commands(struct aac_softc *sc)
1208{
1209	struct aac_fibmap *fm;
1210	struct aac_command *cm;
1211	int i;
1212
1213	debug_called(1);
1214
1215	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1216
1217		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1218		/*
1219		 * We check against total_fibs to handle partially
1220		 * allocated blocks.
1221		 */
1222		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1223			cm = fm->aac_commands + i;
1224			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1225		}
1226		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1227		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1228		free(fm, M_AACBUF);
1229	}
1230}
1231
1232/*
1233 * Command-mapping helper function - populate this command's s/g table.
1234 */
1235static void
1236aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1237{
1238	struct aac_softc *sc;
1239	struct aac_command *cm;
1240	struct aac_fib *fib;
1241	int i;
1242
1243	debug_called(3);
1244
1245	cm = (struct aac_command *)arg;
1246	sc = cm->cm_sc;
1247	fib = cm->cm_fib;
1248
1249	/* copy into the FIB */
1250	if (cm->cm_sgtable != NULL) {
1251		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1252			struct aac_sg_table *sg;
1253			sg = cm->cm_sgtable;
1254			sg->SgCount = nseg;
1255			for (i = 0; i < nseg; i++) {
1256				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1257				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1258			}
1259			/* update the FIB size for the s/g count */
1260			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1261		} else {
1262			struct aac_sg_table64 *sg;
1263			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1264			sg->SgCount = nseg;
1265			for (i = 0; i < nseg; i++) {
1266				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1267				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1268			}
1269			/* update the FIB size for the s/g count */
1270			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1271		}
1272	}
1273
1274	/* Fix up the address values in the FIB.  Use the command array index
1275	 * instead of a pointer since these fields are only 32 bits.  Shift
1276	 * the SenderFibAddress over to make room for the fast response bit.
1277	 */
1278	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1279	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1280
1281	/* save a pointer to the command for speedy reverse-lookup */
1282	cm->cm_fib->Header.SenderData = cm->cm_index;
1283
1284	if (cm->cm_flags & AAC_CMD_DATAIN)
1285		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1286				BUS_DMASYNC_PREREAD);
1287	if (cm->cm_flags & AAC_CMD_DATAOUT)
1288		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1289				BUS_DMASYNC_PREWRITE);
1290	cm->cm_flags |= AAC_CMD_MAPPED;
1291
1292	/* put the FIB on the outbound queue */
1293	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1294		aac_unmap_command(cm);
1295		aac_requeue_ready(cm);
1296	}
1297
1298	return;
1299}
1300
1301/*
1302 * Unmap a command from controller-visible space.
1303 */
1304static void
1305aac_unmap_command(struct aac_command *cm)
1306{
1307	struct aac_softc *sc;
1308
1309	debug_called(2);
1310
1311	sc = cm->cm_sc;
1312
1313	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1314		return;
1315
1316	if (cm->cm_datalen != 0) {
1317		if (cm->cm_flags & AAC_CMD_DATAIN)
1318			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1319					BUS_DMASYNC_POSTREAD);
1320		if (cm->cm_flags & AAC_CMD_DATAOUT)
1321			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1322					BUS_DMASYNC_POSTWRITE);
1323
1324		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1325	}
1326	cm->cm_flags &= ~AAC_CMD_MAPPED;
1327}
1328
1329/*
1330 * Hardware Interface
1331 */
1332
1333/*
1334 * Initialise the adapter.
1335 */
1336static void
1337aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1338{
1339	struct aac_softc *sc;
1340
1341	debug_called(1);
1342
1343	sc = (struct aac_softc *)arg;
1344
1345	sc->aac_common_busaddr = segs[0].ds_addr;
1346}
1347
1348static int
1349aac_check_firmware(struct aac_softc *sc)
1350{
1351	u_int32_t major, minor, options;
1352
1353	debug_called(1);
1354
1355	/*
1356	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1357	 * firmware version 1.x are not compatible with this driver.
1358	 */
1359	if (sc->flags & AAC_FLAGS_PERC2QC) {
1360		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1361				     NULL)) {
1362			device_printf(sc->aac_dev,
1363				      "Error reading firmware version\n");
1364			return (EIO);
1365		}
1366
1367		/* These numbers are stored as ASCII! */
1368		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1369		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1370		if (major == 1) {
1371			device_printf(sc->aac_dev,
1372			    "Firmware version %d.%d is not supported.\n",
1373			    major, minor);
1374			return (EINVAL);
1375		}
1376	}
1377
1378	/*
1379	 * Retrieve the capabilities/supported options word so we know what
1380	 * work-arounds to enable.
1381	 */
1382	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1383		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1384		return (EIO);
1385	}
1386	options = AAC_GET_MAILBOX(sc, 1);
1387	sc->supported_options = options;
1388
1389	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1390	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1391		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1392	if (options & AAC_SUPPORTED_NONDASD)
1393		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1394	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1395	     && (sizeof(bus_addr_t) > 4)) {
1396		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1397		sc->flags |= AAC_FLAGS_SG_64BIT;
1398	}
1399
1400	/* Check for broken hardware that does a lower number of commands */
1401	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1402		sc->aac_max_fibs = AAC_MAX_FIBS;
1403	else
1404		sc->aac_max_fibs = 256;
1405
1406	return (0);
1407}
1408
1409static int
1410aac_init(struct aac_softc *sc)
1411{
1412	struct aac_adapter_init	*ip;
1413	time_t then;
1414	u_int32_t code, qoffset;
1415	int error;
1416
1417	debug_called(1);
1418
1419	/*
1420	 * First wait for the adapter to come ready.
1421	 */
1422	then = time_second;
1423	do {
1424		code = AAC_GET_FWSTATUS(sc);
1425		if (code & AAC_SELF_TEST_FAILED) {
1426			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1427			return(ENXIO);
1428		}
1429		if (code & AAC_KERNEL_PANIC) {
1430			device_printf(sc->aac_dev,
1431				      "FATAL: controller kernel panic\n");
1432			return(ENXIO);
1433		}
1434		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1435			device_printf(sc->aac_dev,
1436				      "FATAL: controller not coming ready, "
1437					   "status %x\n", code);
1438			return(ENXIO);
1439		}
1440	} while (!(code & AAC_UP_AND_RUNNING));
1441
1442	error = ENOMEM;
1443	/*
1444	 * Create DMA tag for mapping buffers into controller-addressable space.
1445	 */
1446	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1447			       1, 0, 			/* algnmnt, boundary */
1448			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1449			       BUS_SPACE_MAXADDR :
1450			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1451			       BUS_SPACE_MAXADDR, 	/* highaddr */
1452			       NULL, NULL, 		/* filter, filterarg */
1453			       MAXBSIZE,		/* maxsize */
1454			       AAC_MAXSGENTRIES,	/* nsegments */
1455			       MAXBSIZE,		/* maxsegsize */
1456			       BUS_DMA_ALLOCNOW,	/* flags */
1457			       busdma_lock_mutex,	/* lockfunc */
1458			       &sc->aac_io_lock,	/* lockfuncarg */
1459			       &sc->aac_buffer_dmat)) {
1460		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1461		goto out;
1462	}
1463
1464	/*
1465	 * Create DMA tag for mapping FIBs into controller-addressable space..
1466	 */
1467	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1468			       1, 0, 			/* algnmnt, boundary */
1469			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1470			       BUS_SPACE_MAXADDR_32BIT :
1471			       0x7fffffff,		/* lowaddr */
1472			       BUS_SPACE_MAXADDR, 	/* highaddr */
1473			       NULL, NULL, 		/* filter, filterarg */
1474			       AAC_FIB_COUNT *
1475			       sizeof(struct aac_fib),  /* maxsize */
1476			       1,			/* nsegments */
1477			       AAC_FIB_COUNT *
1478			       sizeof(struct aac_fib),	/* maxsegsize */
1479			       BUS_DMA_ALLOCNOW,	/* flags */
1480			       NULL, NULL,		/* No locking needed */
1481			       &sc->aac_fib_dmat)) {
1482		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1483		goto out;
1484	}
1485
1486	/*
1487	 * Create DMA tag for the common structure and allocate it.
1488	 */
1489	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1490			       1, 0,			/* algnmnt, boundary */
1491			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1492			       BUS_SPACE_MAXADDR_32BIT :
1493			       0x7fffffff,		/* lowaddr */
1494			       BUS_SPACE_MAXADDR, 	/* highaddr */
1495			       NULL, NULL, 		/* filter, filterarg */
1496			       8192 + sizeof(struct aac_common), /* maxsize */
1497			       1,			/* nsegments */
1498			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1499			       BUS_DMA_ALLOCNOW,	/* flags */
1500			       NULL, NULL,		/* No locking needed */
1501			       &sc->aac_common_dmat)) {
1502		device_printf(sc->aac_dev,
1503			      "can't allocate common structure DMA tag\n");
1504		goto out;
1505	}
1506	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1507			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1508		device_printf(sc->aac_dev, "can't allocate common structure\n");
1509		goto out;
1510	}
1511
1512	/*
1513	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1514	 * below address 8192 in physical memory.
1515	 * XXX If the padding is not needed, can it be put to use instead
1516	 * of ignored?
1517	 */
1518	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1519			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1520			aac_common_map, sc, 0);
1521
1522	if (sc->aac_common_busaddr < 8192) {
1523		(uint8_t *)sc->aac_common += 8192;
1524		sc->aac_common_busaddr += 8192;
1525	}
1526	bzero(sc->aac_common, sizeof(*sc->aac_common));
1527
1528	/* Allocate some FIBs and associated command structs */
1529	TAILQ_INIT(&sc->aac_fibmap_tqh);
1530	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1531				  M_AACBUF, M_WAITOK|M_ZERO);
1532	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1533		if (aac_alloc_commands(sc) != 0)
1534			break;
1535	}
1536	if (sc->total_fibs == 0)
1537		goto out;
1538
1539	/*
1540	 * Fill in the init structure.  This tells the adapter about the
1541	 * physical location of various important shared data structures.
1542	 */
1543	ip = &sc->aac_common->ac_init;
1544	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1545	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1546
1547	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1548					 offsetof(struct aac_common, ac_fibs);
1549	ip->AdapterFibsVirtualAddress = 0;
1550	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1551	ip->AdapterFibAlign = sizeof(struct aac_fib);
1552
1553	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1554				  offsetof(struct aac_common, ac_printf);
1555	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1556
1557	/*
1558	 * The adapter assumes that pages are 4K in size, except on some
1559 	 * broken firmware versions that do the page->byte conversion twice,
1560	 * therefore 'assuming' that this value is in 16MB units (2^24).
1561	 * Round up since the granularity is so high.
1562	 */
1563	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1564	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1565		ip->HostPhysMemPages =
1566		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1567	}
1568	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1569
1570	/*
1571	 * Initialise FIB queues.  Note that it appears that the layout of the
1572	 * indexes and the segmentation of the entries may be mandated by the
1573	 * adapter, which is only told about the base of the queue index fields.
1574	 *
1575	 * The initial values of the indices are assumed to inform the adapter
1576	 * of the sizes of the respective queues, and theoretically it could
1577	 * work out the entire layout of the queue structures from this.  We
1578	 * take the easy route and just lay this area out like everyone else
1579	 * does.
1580	 *
1581	 * The Linux driver uses a much more complex scheme whereby several
1582	 * header records are kept for each queue.  We use a couple of generic
1583	 * list manipulation functions which 'know' the size of each list by
1584	 * virtue of a table.
1585	 */
1586	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1587	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1588	sc->aac_queues =
1589	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1590	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1591
1592	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1593		AAC_HOST_NORM_CMD_ENTRIES;
1594	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1595		AAC_HOST_NORM_CMD_ENTRIES;
1596	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1597		AAC_HOST_HIGH_CMD_ENTRIES;
1598	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1599		AAC_HOST_HIGH_CMD_ENTRIES;
1600	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1601		AAC_ADAP_NORM_CMD_ENTRIES;
1602	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1603		AAC_ADAP_NORM_CMD_ENTRIES;
1604	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1605		AAC_ADAP_HIGH_CMD_ENTRIES;
1606	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1607		AAC_ADAP_HIGH_CMD_ENTRIES;
1608	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1609		AAC_HOST_NORM_RESP_ENTRIES;
1610	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1611		AAC_HOST_NORM_RESP_ENTRIES;
1612	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1613		AAC_HOST_HIGH_RESP_ENTRIES;
1614	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1615		AAC_HOST_HIGH_RESP_ENTRIES;
1616	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1617		AAC_ADAP_NORM_RESP_ENTRIES;
1618	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1619		AAC_ADAP_NORM_RESP_ENTRIES;
1620	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1621		AAC_ADAP_HIGH_RESP_ENTRIES;
1622	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1623		AAC_ADAP_HIGH_RESP_ENTRIES;
1624	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1625		&sc->aac_queues->qt_HostNormCmdQueue[0];
1626	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1627		&sc->aac_queues->qt_HostHighCmdQueue[0];
1628	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1629		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1630	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1631		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1632	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1633		&sc->aac_queues->qt_HostNormRespQueue[0];
1634	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1635		&sc->aac_queues->qt_HostHighRespQueue[0];
1636	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1637		&sc->aac_queues->qt_AdapNormRespQueue[0];
1638	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1639		&sc->aac_queues->qt_AdapHighRespQueue[0];
1640
1641	/*
1642	 * Do controller-type-specific initialisation
1643	 */
1644	switch (sc->aac_hwif) {
1645	case AAC_HWIF_I960RX:
1646		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1647		break;
1648	}
1649
1650	/*
1651	 * Give the init structure to the controller.
1652	 */
1653	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1654			     sc->aac_common_busaddr +
1655			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1656			     NULL)) {
1657		device_printf(sc->aac_dev,
1658			      "error establishing init structure\n");
1659		error = EIO;
1660		goto out;
1661	}
1662
1663	error = 0;
1664out:
1665	return(error);
1666}
1667
1668/*
1669 * Send a synchronous command to the controller and wait for a result.
1670 */
1671static int
1672aac_sync_command(struct aac_softc *sc, u_int32_t command,
1673		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1674		 u_int32_t *sp)
1675{
1676	time_t then;
1677	u_int32_t status;
1678
1679	debug_called(3);
1680
1681	/* populate the mailbox */
1682	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1683
1684	/* ensure the sync command doorbell flag is cleared */
1685	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1686
1687	/* then set it to signal the adapter */
1688	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1689
1690	/* spin waiting for the command to complete */
1691	then = time_second;
1692	do {
1693		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1694			debug(1, "timed out");
1695			return(EIO);
1696		}
1697	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1698
1699	/* clear the completion flag */
1700	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1701
1702	/* get the command status */
1703	status = AAC_GET_MAILBOX(sc, 0);
1704	if (sp != NULL)
1705		*sp = status;
1706	return(0);
1707}
1708
1709/*
1710 * Grab the sync fib area.
1711 */
1712int
1713aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1714{
1715
1716	/*
1717	 * If the force flag is set, the system is shutting down, or in
1718	 * trouble.  Ignore the mutex.
1719	 */
1720	if (!(flags & AAC_SYNC_LOCK_FORCE))
1721		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1722
1723	*fib = &sc->aac_common->ac_sync_fib;
1724
1725	return (1);
1726}
1727
1728/*
1729 * Release the sync fib area.
1730 */
1731void
1732aac_release_sync_fib(struct aac_softc *sc)
1733{
1734
1735	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1736}
1737
1738/*
1739 * Send a synchronous FIB to the controller and wait for a result.
1740 */
1741int
1742aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1743		 struct aac_fib *fib, u_int16_t datasize)
1744{
1745	debug_called(3);
1746
1747	if (datasize > AAC_FIB_DATASIZE)
1748		return(EINVAL);
1749
1750	/*
1751	 * Set up the sync FIB
1752	 */
1753	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1754				AAC_FIBSTATE_INITIALISED |
1755				AAC_FIBSTATE_EMPTY;
1756	fib->Header.XferState |= xferstate;
1757	fib->Header.Command = command;
1758	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1759	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1760	fib->Header.SenderSize = sizeof(struct aac_fib);
1761	fib->Header.SenderFibAddress = 0;	/* Not needed */
1762	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1763					 offsetof(struct aac_common,
1764						  ac_sync_fib);
1765
1766	/*
1767	 * Give the FIB to the controller, wait for a response.
1768	 */
1769	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1770			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1771		debug(2, "IO error");
1772		return(EIO);
1773	}
1774
1775	return (0);
1776}
1777
1778/*
1779 * Adapter-space FIB queue manipulation
1780 *
1781 * Note that the queue implementation here is a little funky; neither the PI or
1782 * CI will ever be zero.  This behaviour is a controller feature.
1783 */
1784static struct {
1785	int		size;
1786	int		notify;
1787} aac_qinfo[] = {
1788	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1789	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1790	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1791	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1792	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1793	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1794	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1795	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1796};
1797
1798/*
1799 * Atomically insert an entry into the nominated queue, returns 0 on success or
1800 * EBUSY if the queue is full.
1801 *
1802 * Note: it would be more efficient to defer notifying the controller in
1803 *	 the case where we may be inserting several entries in rapid succession,
1804 *	 but implementing this usefully may be difficult (it would involve a
1805 *	 separate queue/notify interface).
1806 */
1807static int
1808aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1809{
1810	u_int32_t pi, ci;
1811	int error;
1812	u_int32_t fib_size;
1813	u_int32_t fib_addr;
1814
1815	debug_called(3);
1816
1817	fib_size = cm->cm_fib->Header.Size;
1818	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1819
1820	/* get the producer/consumer indices */
1821	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1822	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1823
1824	/* wrap the queue? */
1825	if (pi >= aac_qinfo[queue].size)
1826		pi = 0;
1827
1828	/* check for queue full */
1829	if ((pi + 1) == ci) {
1830		error = EBUSY;
1831		goto out;
1832	}
1833
1834	/* populate queue entry */
1835	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1836	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1837
1838	/* update producer index */
1839	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1840
1841	/*
1842	 * To avoid a race with its completion interrupt, place this command on
1843	 * the busy queue prior to advertising it to the controller.
1844	 */
1845	aac_enqueue_busy(cm);
1846
1847	/* notify the adapter if we know how */
1848	if (aac_qinfo[queue].notify != 0)
1849		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1850
1851	error = 0;
1852
1853out:
1854	return(error);
1855}
1856
1857/*
1858 * Atomically remove one entry from the nominated queue, returns 0 on
1859 * success or ENOENT if the queue is empty.
1860 */
1861static int
1862aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1863		struct aac_fib **fib_addr)
1864{
1865	u_int32_t pi, ci;
1866	u_int32_t fib_index;
1867	int error;
1868	int notify;
1869
1870	debug_called(3);
1871
1872	/* get the producer/consumer indices */
1873	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1874	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1875
1876	/* check for queue empty */
1877	if (ci == pi) {
1878		error = ENOENT;
1879		goto out;
1880	}
1881
1882	/* wrap the pi so the following test works */
1883	if (pi >= aac_qinfo[queue].size)
1884		pi = 0;
1885
1886	notify = 0;
1887	if (ci == pi + 1)
1888		notify++;
1889
1890	/* wrap the queue? */
1891	if (ci >= aac_qinfo[queue].size)
1892		ci = 0;
1893
1894	/* fetch the entry */
1895	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1896
1897	switch (queue) {
1898	case AAC_HOST_NORM_CMD_QUEUE:
1899	case AAC_HOST_HIGH_CMD_QUEUE:
1900		/*
1901		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1902		 * on to hold an address.  For AIF's, the adapter assumes
1903		 * that it's giving us an address into the array of AIF fibs.
1904		 * Therefore, we have to convert it to an index.
1905		 */
1906		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1907			sizeof(struct aac_fib);
1908		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1909		break;
1910
1911	case AAC_HOST_NORM_RESP_QUEUE:
1912	case AAC_HOST_HIGH_RESP_QUEUE:
1913	{
1914		struct aac_command *cm;
1915
1916		/*
1917		 * As above, an index is used instead of an actual address.
1918		 * Gotta shift the index to account for the fast response
1919		 * bit.  No other correction is needed since this value was
1920		 * originally provided by the driver via the SenderFibAddress
1921		 * field.
1922		 */
1923		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1924		cm = sc->aac_commands + (fib_index >> 1);
1925		*fib_addr = cm->cm_fib;
1926
1927		/*
1928		 * Is this a fast response? If it is, update the fib fields in
1929		 * local memory since the whole fib isn't DMA'd back up.
1930		 */
1931		if (fib_index & 0x01) {
1932			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1933			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1934		}
1935		break;
1936	}
1937	default:
1938		panic("Invalid queue in aac_dequeue_fib()");
1939		break;
1940	}
1941
1942	/* update consumer index */
1943	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1944
1945	/* if we have made the queue un-full, notify the adapter */
1946	if (notify && (aac_qinfo[queue].notify != 0))
1947		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1948	error = 0;
1949
1950out:
1951	return(error);
1952}
1953
1954/*
1955 * Put our response to an Adapter Initialed Fib on the response queue
1956 */
1957static int
1958aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1959{
1960	u_int32_t pi, ci;
1961	int error;
1962	u_int32_t fib_size;
1963	u_int32_t fib_addr;
1964
1965	debug_called(1);
1966
1967	/* Tell the adapter where the FIB is */
1968	fib_size = fib->Header.Size;
1969	fib_addr = fib->Header.SenderFibAddress;
1970	fib->Header.ReceiverFibAddress = fib_addr;
1971
1972	/* get the producer/consumer indices */
1973	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1974	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1975
1976	/* wrap the queue? */
1977	if (pi >= aac_qinfo[queue].size)
1978		pi = 0;
1979
1980	/* check for queue full */
1981	if ((pi + 1) == ci) {
1982		error = EBUSY;
1983		goto out;
1984	}
1985
1986	/* populate queue entry */
1987	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1988	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1989
1990	/* update producer index */
1991	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1992
1993	/* notify the adapter if we know how */
1994	if (aac_qinfo[queue].notify != 0)
1995		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1996
1997	error = 0;
1998
1999out:
2000	return(error);
2001}
2002
2003/*
2004 * Check for commands that have been outstanding for a suspiciously long time,
2005 * and complain about them.
2006 */
2007static void
2008aac_timeout(struct aac_softc *sc)
2009{
2010	struct aac_command *cm;
2011	time_t deadline;
2012
2013	/*
2014	 * Traverse the busy command list, bitch about late commands once
2015	 * only.
2016	 */
2017	deadline = time_second - AAC_CMD_TIMEOUT;
2018	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2019		if ((cm->cm_timestamp  < deadline)
2020			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2021			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2022			device_printf(sc->aac_dev,
2023				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2024				      cm, (int)(time_second-cm->cm_timestamp));
2025			AAC_PRINT_FIB(sc, cm->cm_fib);
2026		}
2027	}
2028
2029	return;
2030}
2031
2032/*
2033 * Interface Function Vectors
2034 */
2035
2036/*
2037 * Read the current firmware status word.
2038 */
2039static int
2040aac_sa_get_fwstatus(struct aac_softc *sc)
2041{
2042	debug_called(3);
2043
2044	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2045}
2046
2047static int
2048aac_rx_get_fwstatus(struct aac_softc *sc)
2049{
2050	debug_called(3);
2051
2052	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2053}
2054
2055static int
2056aac_fa_get_fwstatus(struct aac_softc *sc)
2057{
2058	int val;
2059
2060	debug_called(3);
2061
2062	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2063	return (val);
2064}
2065
2066/*
2067 * Notify the controller of a change in a given queue
2068 */
2069
2070static void
2071aac_sa_qnotify(struct aac_softc *sc, int qbit)
2072{
2073	debug_called(3);
2074
2075	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2076}
2077
2078static void
2079aac_rx_qnotify(struct aac_softc *sc, int qbit)
2080{
2081	debug_called(3);
2082
2083	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2084}
2085
2086static void
2087aac_fa_qnotify(struct aac_softc *sc, int qbit)
2088{
2089	debug_called(3);
2090
2091	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2092	AAC_FA_HACK(sc);
2093}
2094
2095/*
2096 * Get the interrupt reason bits
2097 */
2098static int
2099aac_sa_get_istatus(struct aac_softc *sc)
2100{
2101	debug_called(3);
2102
2103	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2104}
2105
2106static int
2107aac_rx_get_istatus(struct aac_softc *sc)
2108{
2109	debug_called(3);
2110
2111	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2112}
2113
2114static int
2115aac_fa_get_istatus(struct aac_softc *sc)
2116{
2117	int val;
2118
2119	debug_called(3);
2120
2121	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2122	return (val);
2123}
2124
2125/*
2126 * Clear some interrupt reason bits
2127 */
2128static void
2129aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2130{
2131	debug_called(3);
2132
2133	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2134}
2135
2136static void
2137aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2138{
2139	debug_called(3);
2140
2141	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2142}
2143
2144static void
2145aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2146{
2147	debug_called(3);
2148
2149	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2150	AAC_FA_HACK(sc);
2151}
2152
2153/*
2154 * Populate the mailbox and set the command word
2155 */
2156static void
2157aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2158		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2159{
2160	debug_called(4);
2161
2162	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2163	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2164	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2165	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2166	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2167}
2168
2169static void
2170aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2171		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2172{
2173	debug_called(4);
2174
2175	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2176	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2177	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2178	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2179	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2180}
2181
2182static void
2183aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2184		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2185{
2186	debug_called(4);
2187
2188	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2189	AAC_FA_HACK(sc);
2190	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2191	AAC_FA_HACK(sc);
2192	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2193	AAC_FA_HACK(sc);
2194	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2195	AAC_FA_HACK(sc);
2196	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2197	AAC_FA_HACK(sc);
2198}
2199
2200/*
2201 * Fetch the immediate command status word
2202 */
2203static int
2204aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2205{
2206	debug_called(4);
2207
2208	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2209}
2210
2211static int
2212aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2213{
2214	debug_called(4);
2215
2216	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2217}
2218
2219static int
2220aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2221{
2222	int val;
2223
2224	debug_called(4);
2225
2226	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2227	return (val);
2228}
2229
2230/*
2231 * Set/clear interrupt masks
2232 */
2233static void
2234aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2235{
2236	debug(2, "%sable interrupts", enable ? "en" : "dis");
2237
2238	if (enable) {
2239		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2240	} else {
2241		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2242	}
2243}
2244
2245static void
2246aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2247{
2248	debug(2, "%sable interrupts", enable ? "en" : "dis");
2249
2250	if (enable) {
2251		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2252	} else {
2253		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2254	}
2255}
2256
2257static void
2258aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2259{
2260	debug(2, "%sable interrupts", enable ? "en" : "dis");
2261
2262	if (enable) {
2263		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2264		AAC_FA_HACK(sc);
2265	} else {
2266		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2267		AAC_FA_HACK(sc);
2268	}
2269}
2270
2271/*
2272 * Debugging and Diagnostics
2273 */
2274
2275/*
2276 * Print some information about the controller.
2277 */
2278static void
2279aac_describe_controller(struct aac_softc *sc)
2280{
2281	struct aac_fib *fib;
2282	struct aac_adapter_info	*info;
2283
2284	debug_called(2);
2285
2286	aac_alloc_sync_fib(sc, &fib, 0);
2287
2288	fib->data[0] = 0;
2289	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2290		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2291		aac_release_sync_fib(sc);
2292		return;
2293	}
2294	info = (struct aac_adapter_info *)&fib->data[0];
2295
2296	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2297		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2298		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2299		      aac_describe_code(aac_battery_platform,
2300					info->batteryPlatform));
2301
2302	/* save the kernel revision structure for later use */
2303	sc->aac_revision = info->KernelRevision;
2304	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2305		      info->KernelRevision.external.comp.major,
2306		      info->KernelRevision.external.comp.minor,
2307		      info->KernelRevision.external.comp.dash,
2308		      info->KernelRevision.buildNumber,
2309		      (u_int32_t)(info->SerialNumber & 0xffffff));
2310
2311	aac_release_sync_fib(sc);
2312
2313	if (1 || bootverbose) {
2314		device_printf(sc->aac_dev, "Supported Options=%b\n",
2315			      sc->supported_options,
2316			      "\20"
2317			      "\1SNAPSHOT"
2318			      "\2CLUSTERS"
2319			      "\3WCACHE"
2320			      "\4DATA64"
2321			      "\5HOSTTIME"
2322			      "\6RAID50"
2323			      "\7WINDOW4GB"
2324			      "\10SCSIUPGD"
2325			      "\11SOFTERR"
2326			      "\12NORECOND"
2327			      "\13SGMAP64"
2328			      "\14ALARM"
2329			      "\15NONDASD");
2330	}
2331}
2332
2333/*
2334 * Look up a text description of a numeric error code and return a pointer to
2335 * same.
2336 */
2337static char *
2338aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2339{
2340	int i;
2341
2342	for (i = 0; table[i].string != NULL; i++)
2343		if (table[i].code == code)
2344			return(table[i].string);
2345	return(table[i + 1].string);
2346}
2347
2348/*
2349 * Management Interface
2350 */
2351
2352static int
2353aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2354{
2355	struct aac_softc *sc;
2356
2357	debug_called(2);
2358
2359	sc = dev->si_drv1;
2360
2361	/* Check to make sure the device isn't already open */
2362	if (sc->aac_state & AAC_STATE_OPEN) {
2363		return EBUSY;
2364	}
2365	sc->aac_state |= AAC_STATE_OPEN;
2366
2367	return 0;
2368}
2369
2370static int
2371aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2372{
2373	struct aac_softc *sc;
2374
2375	debug_called(2);
2376
2377	sc = dev->si_drv1;
2378
2379	/* Mark this unit as no longer open  */
2380	sc->aac_state &= ~AAC_STATE_OPEN;
2381
2382	return 0;
2383}
2384
2385static int
2386aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2387{
2388	union aac_statrequest *as;
2389	struct aac_softc *sc;
2390	int error = 0;
2391	uint32_t cookie;
2392
2393	debug_called(2);
2394
2395	as = (union aac_statrequest *)arg;
2396	sc = dev->si_drv1;
2397
2398	switch (cmd) {
2399	case AACIO_STATS:
2400		switch (as->as_item) {
2401		case AACQ_FREE:
2402		case AACQ_BIO:
2403		case AACQ_READY:
2404		case AACQ_BUSY:
2405			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2406			      sizeof(struct aac_qstat));
2407			break;
2408		default:
2409			error = ENOENT;
2410			break;
2411		}
2412	break;
2413
2414	case FSACTL_SENDFIB:
2415		arg = *(caddr_t*)arg;
2416	case FSACTL_LNX_SENDFIB:
2417		debug(1, "FSACTL_SENDFIB");
2418		error = aac_ioctl_sendfib(sc, arg);
2419		break;
2420	case FSACTL_AIF_THREAD:
2421	case FSACTL_LNX_AIF_THREAD:
2422		debug(1, "FSACTL_AIF_THREAD");
2423		error = EINVAL;
2424		break;
2425	case FSACTL_OPEN_GET_ADAPTER_FIB:
2426		arg = *(caddr_t*)arg;
2427	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2428		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2429		/*
2430		 * Pass the caller out an AdapterFibContext.
2431		 *
2432		 * Note that because we only support one opener, we
2433		 * basically ignore this.  Set the caller's context to a magic
2434		 * number just in case.
2435		 *
2436		 * The Linux code hands the driver a pointer into kernel space,
2437		 * and then trusts it when the caller hands it back.  Aiee!
2438		 * Here, we give it the proc pointer of the per-adapter aif
2439		 * thread. It's only used as a sanity check in other calls.
2440		 */
2441		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2442		error = copyout(&cookie, arg, sizeof(cookie));
2443		break;
2444	case FSACTL_GET_NEXT_ADAPTER_FIB:
2445		arg = *(caddr_t*)arg;
2446	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2447		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2448		error = aac_getnext_aif(sc, arg);
2449		break;
2450	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2451	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2452		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2453		/* don't do anything here */
2454		break;
2455	case FSACTL_MINIPORT_REV_CHECK:
2456		arg = *(caddr_t*)arg;
2457	case FSACTL_LNX_MINIPORT_REV_CHECK:
2458		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2459		error = aac_rev_check(sc, arg);
2460		break;
2461	case FSACTL_QUERY_DISK:
2462		arg = *(caddr_t*)arg;
2463	case FSACTL_LNX_QUERY_DISK:
2464		debug(1, "FSACTL_QUERY_DISK");
2465		error = aac_query_disk(sc, arg);
2466			break;
2467	case FSACTL_DELETE_DISK:
2468	case FSACTL_LNX_DELETE_DISK:
2469		/*
2470		 * We don't trust the underland to tell us when to delete a
2471		 * container, rather we rely on an AIF coming from the
2472		 * controller
2473		 */
2474		error = 0;
2475		break;
2476	default:
2477		debug(1, "unsupported cmd 0x%lx\n", cmd);
2478		error = EINVAL;
2479		break;
2480	}
2481	return(error);
2482}
2483
2484static int
2485aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2486{
2487	struct aac_softc *sc;
2488	int revents;
2489
2490	sc = dev->si_drv1;
2491	revents = 0;
2492
2493	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2494	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2495		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2496			revents |= poll_events & (POLLIN | POLLRDNORM);
2497	}
2498	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2499
2500	if (revents == 0) {
2501		if (poll_events & (POLLIN | POLLRDNORM))
2502			selrecord(td, &sc->rcv_select);
2503	}
2504
2505	return (revents);
2506}
2507
2508/*
2509 * Send a FIB supplied from userspace
2510 */
2511static int
2512aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2513{
2514	struct aac_command *cm;
2515	int size, error;
2516
2517	debug_called(2);
2518
2519	cm = NULL;
2520
2521	/*
2522	 * Get a command
2523	 */
2524	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2525	if (aac_alloc_command(sc, &cm)) {
2526		error = EBUSY;
2527		goto out;
2528	}
2529
2530	/*
2531	 * Fetch the FIB header, then re-copy to get data as well.
2532	 */
2533	if ((error = copyin(ufib, cm->cm_fib,
2534			    sizeof(struct aac_fib_header))) != 0)
2535		goto out;
2536	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2537	if (size > sizeof(struct aac_fib)) {
2538		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2539			      size, sizeof(struct aac_fib));
2540		size = sizeof(struct aac_fib);
2541	}
2542	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2543		goto out;
2544	cm->cm_fib->Header.Size = size;
2545	cm->cm_timestamp = time_second;
2546
2547	/*
2548	 * Pass the FIB to the controller, wait for it to complete.
2549	 */
2550	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2551		device_printf(sc->aac_dev,
2552			      "aac_wait_command return %d\n", error);
2553		goto out;
2554	}
2555
2556	/*
2557	 * Copy the FIB and data back out to the caller.
2558	 */
2559	size = cm->cm_fib->Header.Size;
2560	if (size > sizeof(struct aac_fib)) {
2561		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2562			      size, sizeof(struct aac_fib));
2563		size = sizeof(struct aac_fib);
2564	}
2565	error = copyout(cm->cm_fib, ufib, size);
2566
2567out:
2568	if (cm != NULL) {
2569		aac_release_command(cm);
2570	}
2571
2572	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2573	return(error);
2574}
2575
2576/*
2577 * Handle an AIF sent to us by the controller; queue it for later reference.
2578 * If the queue fills up, then drop the older entries.
2579 */
2580static void
2581aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2582{
2583	struct aac_aif_command *aif;
2584	struct aac_container *co, *co_next;
2585	struct aac_mntinfo *mi;
2586	struct aac_mntinforesp *mir = NULL;
2587	u_int16_t rsize;
2588	int next, found;
2589	int count = 0, added = 0, i = 0;
2590
2591	debug_called(2);
2592
2593	aif = (struct aac_aif_command*)&fib->data[0];
2594	aac_print_aif(sc, aif);
2595
2596	/* Is it an event that we should care about? */
2597	switch (aif->command) {
2598	case AifCmdEventNotify:
2599		switch (aif->data.EN.type) {
2600		case AifEnAddContainer:
2601		case AifEnDeleteContainer:
2602			/*
2603			 * A container was added or deleted, but the message
2604			 * doesn't tell us anything else!  Re-enumerate the
2605			 * containers and sort things out.
2606			 */
2607			aac_alloc_sync_fib(sc, &fib, 0);
2608			mi = (struct aac_mntinfo *)&fib->data[0];
2609			do {
2610				/*
2611				 * Ask the controller for its containers one at
2612				 * a time.
2613				 * XXX What if the controller's list changes
2614				 * midway through this enumaration?
2615				 * XXX This should be done async.
2616				 */
2617				bzero(mi, sizeof(struct aac_mntinfo));
2618				mi->Command = VM_NameServe;
2619				mi->MntType = FT_FILESYS;
2620				mi->MntCount = i;
2621				rsize = sizeof(mir);
2622				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2623						 sizeof(struct aac_mntinfo))) {
2624					printf("Error probing container %d\n",
2625					      i);
2626					continue;
2627				}
2628				mir = (struct aac_mntinforesp *)&fib->data[0];
2629				/* XXX Need to check if count changed */
2630				count = mir->MntRespCount;
2631				/*
2632				 * Check the container against our list.
2633				 * co->co_found was already set to 0 in a
2634				 * previous run.
2635				 */
2636				if ((mir->Status == ST_OK) &&
2637				    (mir->MntTable[0].VolType != CT_NONE)) {
2638					found = 0;
2639					TAILQ_FOREACH(co,
2640						      &sc->aac_container_tqh,
2641						      co_link) {
2642						if (co->co_mntobj.ObjectId ==
2643						    mir->MntTable[0].ObjectId) {
2644							co->co_found = 1;
2645							found = 1;
2646							break;
2647						}
2648					}
2649					/*
2650					 * If the container matched, continue
2651					 * in the list.
2652					 */
2653					if (found) {
2654						i++;
2655						continue;
2656					}
2657
2658					/*
2659					 * This is a new container.  Do all the
2660					 * appropriate things to set it up.
2661					 */
2662					aac_add_container(sc, mir, 1);
2663					added = 1;
2664				}
2665				i++;
2666			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2667			aac_release_sync_fib(sc);
2668
2669			/*
2670			 * Go through our list of containers and see which ones
2671			 * were not marked 'found'.  Since the controller didn't
2672			 * list them they must have been deleted.  Do the
2673			 * appropriate steps to destroy the device.  Also reset
2674			 * the co->co_found field.
2675			 */
2676			co = TAILQ_FIRST(&sc->aac_container_tqh);
2677			while (co != NULL) {
2678				if (co->co_found == 0) {
2679					device_delete_child(sc->aac_dev,
2680							    co->co_disk);
2681					co_next = TAILQ_NEXT(co, co_link);
2682					AAC_LOCK_ACQUIRE(&sc->
2683							aac_container_lock);
2684					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2685						     co_link);
2686					AAC_LOCK_RELEASE(&sc->
2687							 aac_container_lock);
2688					FREE(co, M_AACBUF);
2689					co = co_next;
2690				} else {
2691					co->co_found = 0;
2692					co = TAILQ_NEXT(co, co_link);
2693				}
2694			}
2695
2696			/* Attach the newly created containers */
2697			if (added)
2698				bus_generic_attach(sc->aac_dev);
2699
2700			break;
2701
2702		default:
2703			break;
2704		}
2705
2706	default:
2707		break;
2708	}
2709
2710	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2711	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2712	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2713	if (next != sc->aac_aifq_tail) {
2714		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2715		sc->aac_aifq_head = next;
2716
2717		/* On the off chance that someone is sleeping for an aif... */
2718		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2719			wakeup(sc->aac_aifq);
2720		/* Wakeup any poll()ers */
2721		selwakeuppri(&sc->rcv_select, PRIBIO);
2722	}
2723	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2724
2725	return;
2726}
2727
2728/*
2729 * Return the Revision of the driver to userspace and check to see if the
2730 * userspace app is possibly compatible.  This is extremely bogus since
2731 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2732 * returning what the card reported.
2733 */
2734static int
2735aac_rev_check(struct aac_softc *sc, caddr_t udata)
2736{
2737	struct aac_rev_check rev_check;
2738	struct aac_rev_check_resp rev_check_resp;
2739	int error = 0;
2740
2741	debug_called(2);
2742
2743	/*
2744	 * Copyin the revision struct from userspace
2745	 */
2746	if ((error = copyin(udata, (caddr_t)&rev_check,
2747			sizeof(struct aac_rev_check))) != 0) {
2748		return error;
2749	}
2750
2751	debug(2, "Userland revision= %d\n",
2752	      rev_check.callingRevision.buildNumber);
2753
2754	/*
2755	 * Doctor up the response struct.
2756	 */
2757	rev_check_resp.possiblyCompatible = 1;
2758	rev_check_resp.adapterSWRevision.external.ul =
2759	    sc->aac_revision.external.ul;
2760	rev_check_resp.adapterSWRevision.buildNumber =
2761	    sc->aac_revision.buildNumber;
2762
2763	return(copyout((caddr_t)&rev_check_resp, udata,
2764			sizeof(struct aac_rev_check_resp)));
2765}
2766
2767/*
2768 * Pass the caller the next AIF in their queue
2769 */
2770static int
2771aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2772{
2773	struct get_adapter_fib_ioctl agf;
2774	int error;
2775
2776	debug_called(2);
2777
2778	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2779
2780		/*
2781		 * Check the magic number that we gave the caller.
2782		 */
2783		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2784			error = EFAULT;
2785		} else {
2786			error = aac_return_aif(sc, agf.AifFib);
2787			if ((error == EAGAIN) && (agf.Wait)) {
2788				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2789				while (error == EAGAIN) {
2790					error = tsleep(sc->aac_aifq, PRIBIO |
2791						       PCATCH, "aacaif", 0);
2792					if (error == 0)
2793						error = aac_return_aif(sc,
2794						    agf.AifFib);
2795				}
2796				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2797			}
2798		}
2799	}
2800	return(error);
2801}
2802
2803/*
2804 * Hand the next AIF off the top of the queue out to userspace.
2805 */
2806static int
2807aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2808{
2809	int next, error;
2810
2811	debug_called(2);
2812
2813	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2814	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2815		AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2816		return (EAGAIN);
2817	}
2818
2819	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2820	error = copyout(&sc->aac_aifq[next], uptr,
2821			sizeof(struct aac_aif_command));
2822	if (error)
2823		device_printf(sc->aac_dev,
2824		    "aac_return_aif: copyout returned %d\n", error);
2825	else
2826		sc->aac_aifq_tail = next;
2827
2828	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2829	return(error);
2830}
2831
2832/*
2833 * Give the userland some information about the container.  The AAC arch
2834 * expects the driver to be a SCSI passthrough type driver, so it expects
2835 * the containers to have b:t:l numbers.  Fake it.
2836 */
2837static int
2838aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2839{
2840	struct aac_query_disk query_disk;
2841	struct aac_container *co;
2842	struct aac_disk	*disk;
2843	int error, id;
2844
2845	debug_called(2);
2846
2847	disk = NULL;
2848
2849	error = copyin(uptr, (caddr_t)&query_disk,
2850		       sizeof(struct aac_query_disk));
2851	if (error)
2852		return (error);
2853
2854	id = query_disk.ContainerNumber;
2855	if (id == -1)
2856		return (EINVAL);
2857
2858	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2859	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2860		if (co->co_mntobj.ObjectId == id)
2861			break;
2862		}
2863
2864	if (co == NULL) {
2865			query_disk.Valid = 0;
2866			query_disk.Locked = 0;
2867			query_disk.Deleted = 1;		/* XXX is this right? */
2868	} else {
2869		disk = device_get_softc(co->co_disk);
2870		query_disk.Valid = 1;
2871		query_disk.Locked =
2872		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2873		query_disk.Deleted = 0;
2874		query_disk.Bus = device_get_unit(sc->aac_dev);
2875		query_disk.Target = disk->unit;
2876		query_disk.Lun = 0;
2877		query_disk.UnMapped = 0;
2878		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2879		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2880	}
2881	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2882
2883	error = copyout((caddr_t)&query_disk, uptr,
2884			sizeof(struct aac_query_disk));
2885
2886	return (error);
2887}
2888
2889static void
2890aac_get_bus_info(struct aac_softc *sc)
2891{
2892	struct aac_fib *fib;
2893	struct aac_ctcfg *c_cmd;
2894	struct aac_ctcfg_resp *c_resp;
2895	struct aac_vmioctl *vmi;
2896	struct aac_vmi_businf_resp *vmi_resp;
2897	struct aac_getbusinf businfo;
2898	struct aac_sim *caminf;
2899	device_t child;
2900	int i, found, error;
2901
2902	aac_alloc_sync_fib(sc, &fib, 0);
2903	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2904	bzero(c_cmd, sizeof(struct aac_ctcfg));
2905
2906	c_cmd->Command = VM_ContainerConfig;
2907	c_cmd->cmd = CT_GET_SCSI_METHOD;
2908	c_cmd->param = 0;
2909
2910	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2911	    sizeof(struct aac_ctcfg));
2912	if (error) {
2913		device_printf(sc->aac_dev, "Error %d sending "
2914		    "VM_ContainerConfig command\n", error);
2915		aac_release_sync_fib(sc);
2916		return;
2917	}
2918
2919	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2920	if (c_resp->Status != ST_OK) {
2921		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2922		    c_resp->Status);
2923		aac_release_sync_fib(sc);
2924		return;
2925	}
2926
2927	sc->scsi_method_id = c_resp->param;
2928
2929	vmi = (struct aac_vmioctl *)&fib->data[0];
2930	bzero(vmi, sizeof(struct aac_vmioctl));
2931
2932	vmi->Command = VM_Ioctl;
2933	vmi->ObjType = FT_DRIVE;
2934	vmi->MethId = sc->scsi_method_id;
2935	vmi->ObjId = 0;
2936	vmi->IoctlCmd = GetBusInfo;
2937
2938	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2939	    sizeof(struct aac_vmioctl));
2940	if (error) {
2941		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2942		    error);
2943		aac_release_sync_fib(sc);
2944		return;
2945	}
2946
2947	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2948	if (vmi_resp->Status != ST_OK) {
2949		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2950		    vmi_resp->Status);
2951		aac_release_sync_fib(sc);
2952		return;
2953	}
2954
2955	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2956	aac_release_sync_fib(sc);
2957
2958	found = 0;
2959	for (i = 0; i < businfo.BusCount; i++) {
2960		if (businfo.BusValid[i] != AAC_BUS_VALID)
2961			continue;
2962
2963		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2964		    M_AACBUF, M_NOWAIT | M_ZERO);
2965		if (caminf == NULL)
2966			continue;
2967
2968		child = device_add_child(sc->aac_dev, "aacp", -1);
2969		if (child == NULL) {
2970			device_printf(sc->aac_dev, "device_add_child failed\n");
2971			continue;
2972		}
2973
2974		caminf->TargetsPerBus = businfo.TargetsPerBus;
2975		caminf->BusNumber = i;
2976		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2977		caminf->aac_sc = sc;
2978		caminf->sim_dev = child;
2979
2980		device_set_ivars(child, caminf);
2981		device_set_desc(child, "SCSI Passthrough Bus");
2982		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2983
2984		found = 1;
2985	}
2986
2987	if (found)
2988		bus_generic_attach(sc->aac_dev);
2989
2990	return;
2991}
2992