aac.c revision 110604
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 110604 2003-02-10 00:34:24Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/signalvar.h>
61#include <sys/time.h>
62#include <sys/eventhandler.h>
63
64#include <machine/bus_memio.h>
65#include <machine/bus.h>
66#include <machine/resource.h>
67
68#include <dev/aac/aacreg.h>
69#include <dev/aac/aac_ioctl.h>
70#include <dev/aac/aacvar.h>
71#include <dev/aac/aac_tables.h>
72
73static void	aac_startup(void *arg);
74static void	aac_add_container(struct aac_softc *sc,
75				  struct aac_mntinforesp *mir, int f);
76static void	aac_get_bus_info(struct aac_softc *sc);
77
78/* Command Processing */
79static void	aac_timeout(struct aac_softc *sc);
80static int	aac_start(struct aac_command *cm);
81static void	aac_complete(void *context, int pending);
82static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83static void	aac_bio_complete(struct aac_command *cm);
84static int	aac_wait_command(struct aac_command *cm, int timeout);
85static void	aac_command_thread(struct aac_softc *sc);
86static void	aac_host_response(struct aac_softc *sc);
87
88/* Command Buffer Management */
89static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90				       int nseg, int error);
91static int	aac_alloc_commands(struct aac_softc *sc);
92static void	aac_free_commands(struct aac_softc *sc, struct aac_fibmap *fm);
93static void	aac_map_command(struct aac_command *cm);
94static void	aac_unmap_command(struct aac_command *cm);
95
96/* Hardware Interface */
97static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98			       int error);
99static int	aac_check_firmware(struct aac_softc *sc);
100static int	aac_init(struct aac_softc *sc);
101static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
102				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103				 u_int32_t arg3, u_int32_t *sp);
104static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
105				struct aac_command *cm);
106static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
107				u_int32_t *fib_size, struct aac_fib **fib_addr);
108static int	aac_enqueue_response(struct aac_softc *sc, int queue,
109				     struct aac_fib *fib);
110
111/* Falcon/PPC interface */
112static int	aac_fa_get_fwstatus(struct aac_softc *sc);
113static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
114static int	aac_fa_get_istatus(struct aac_softc *sc);
115static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117				   u_int32_t arg0, u_int32_t arg1,
118				   u_int32_t arg2, u_int32_t arg3);
119static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
120static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121
122struct aac_interface aac_fa_interface = {
123	aac_fa_get_fwstatus,
124	aac_fa_qnotify,
125	aac_fa_get_istatus,
126	aac_fa_clear_istatus,
127	aac_fa_set_mailbox,
128	aac_fa_get_mailboxstatus,
129	aac_fa_set_interrupts
130};
131
132/* StrongARM interface */
133static int	aac_sa_get_fwstatus(struct aac_softc *sc);
134static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
135static int	aac_sa_get_istatus(struct aac_softc *sc);
136static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138				   u_int32_t arg0, u_int32_t arg1,
139				   u_int32_t arg2, u_int32_t arg3);
140static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
141static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142
143struct aac_interface aac_sa_interface = {
144	aac_sa_get_fwstatus,
145	aac_sa_qnotify,
146	aac_sa_get_istatus,
147	aac_sa_clear_istatus,
148	aac_sa_set_mailbox,
149	aac_sa_get_mailboxstatus,
150	aac_sa_set_interrupts
151};
152
153/* i960Rx interface */
154static int	aac_rx_get_fwstatus(struct aac_softc *sc);
155static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
156static int	aac_rx_get_istatus(struct aac_softc *sc);
157static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159				   u_int32_t arg0, u_int32_t arg1,
160				   u_int32_t arg2, u_int32_t arg3);
161static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
162static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163
164struct aac_interface aac_rx_interface = {
165	aac_rx_get_fwstatus,
166	aac_rx_qnotify,
167	aac_rx_get_istatus,
168	aac_rx_clear_istatus,
169	aac_rx_set_mailbox,
170	aac_rx_get_mailboxstatus,
171	aac_rx_set_interrupts
172};
173
174/* Debugging and Diagnostics */
175static void	aac_describe_controller(struct aac_softc *sc);
176static char	*aac_describe_code(struct aac_code_lookup *table,
177				   u_int32_t code);
178
179/* Management Interface */
180static d_open_t		aac_open;
181static d_close_t	aac_close;
182static d_ioctl_t	aac_ioctl;
183static d_poll_t		aac_poll;
184static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185static void		aac_handle_aif(struct aac_softc *sc,
186					   struct aac_fib *fib);
187static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
188static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191
192#define AAC_CDEV_MAJOR	150
193
194static struct cdevsw aac_cdevsw = {
195	aac_open,		/* open */
196	aac_close,		/* close */
197	noread,			/* read */
198	nowrite,		/* write */
199	aac_ioctl,		/* ioctl */
200	aac_poll,		/* poll */
201	nommap,			/* mmap */
202	nostrategy,		/* strategy */
203	"aac",			/* name */
204	AAC_CDEV_MAJOR,		/* major */
205	nodump,			/* dump */
206	nopsize,		/* psize */
207	0,			/* flags */
208#if __FreeBSD_version < 500005
209	-1,			/* bmaj */
210#endif
211};
212
213MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
214
215/* sysctl node */
216SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
217
218/*
219 * Device Interface
220 */
221
222/*
223 * Initialise the controller and softc
224 */
225int
226aac_attach(struct aac_softc *sc)
227{
228	int error, unit;
229
230	debug_called(1);
231
232	/*
233	 * Initialise per-controller queues.
234	 */
235	aac_initq_free(sc);
236	aac_initq_ready(sc);
237	aac_initq_busy(sc);
238	aac_initq_complete(sc);
239	aac_initq_bio(sc);
240
241#if __FreeBSD_version >= 500005
242	/*
243	 * Initialise command-completion task.
244	 */
245	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
246#endif
247
248	/* disable interrupts before we enable anything */
249	AAC_MASK_INTERRUPTS(sc);
250
251	/* mark controller as suspended until we get ourselves organised */
252	sc->aac_state |= AAC_STATE_SUSPEND;
253
254	/*
255	 * Check that the firmware on the card is supported.
256	 */
257	if ((error = aac_check_firmware(sc)) != 0)
258		return(error);
259
260	/* Init the sync fib lock */
261	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
262
263	/*
264	 * Initialise the adapter.
265	 */
266	if ((error = aac_init(sc)) != 0)
267		return(error);
268
269	/*
270	 * Print a little information about the controller.
271	 */
272	aac_describe_controller(sc);
273
274	/*
275	 * Register to probe our containers later.
276	 */
277	TAILQ_INIT(&sc->aac_container_tqh);
278	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
279
280	/*
281	 * Lock for the AIF queue
282	 */
283	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
284
285	sc->aac_ich.ich_func = aac_startup;
286	sc->aac_ich.ich_arg = sc;
287	if (config_intrhook_establish(&sc->aac_ich) != 0) {
288		device_printf(sc->aac_dev,
289			      "can't establish configuration hook\n");
290		return(ENXIO);
291	}
292
293	/*
294	 * Make the control device.
295	 */
296	unit = device_get_unit(sc->aac_dev);
297	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
298				 0640, "aac%d", unit);
299#if __FreeBSD_version > 500005
300	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
301	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
302#endif
303	sc->aac_dev_t->si_drv1 = sc;
304
305	/* Create the AIF thread */
306#if __FreeBSD_version > 500005
307	if (kthread_create((void(*)(void *))aac_command_thread, sc,
308			   &sc->aifthread, 0, 0, "aac%daif", unit))
309#else
310	if (kthread_create((void(*)(void *))aac_command_thread, sc,
311			   &sc->aifthread, "aac%daif", unit))
312#endif
313		panic("Could not create AIF thread\n");
314
315	/* Register the shutdown method to only be called post-dump */
316	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
317	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
318		device_printf(sc->aac_dev,
319			      "shutdown event registration failed\n");
320
321	/* Register with CAM for the non-DASD devices */
322	if (!(sc->quirks & AAC_QUIRK_NOCAM)) {
323		TAILQ_INIT(&sc->aac_sim_tqh);
324		aac_get_bus_info(sc);
325	}
326
327	return(0);
328}
329
330/*
331 * Probe for containers, create disks.
332 */
333static void
334aac_startup(void *arg)
335{
336	struct aac_softc *sc;
337	struct aac_fib *fib;
338	struct aac_mntinfo *mi;
339	struct aac_mntinforesp *mir = NULL;
340	int i = 0;
341
342	debug_called(1);
343
344	sc = (struct aac_softc *)arg;
345
346	/* disconnect ourselves from the intrhook chain */
347	config_intrhook_disestablish(&sc->aac_ich);
348
349	aac_alloc_sync_fib(sc, &fib, 0);
350	mi = (struct aac_mntinfo *)&fib->data[0];
351
352	/* loop over possible containers */
353	do {
354		/* request information on this container */
355		bzero(mi, sizeof(struct aac_mntinfo));
356		mi->Command = VM_NameServe;
357		mi->MntType = FT_FILESYS;
358		mi->MntCount = i;
359		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
360				 sizeof(struct aac_mntinfo))) {
361			debug(2, "error probing container %d", i);
362			continue;
363		}
364
365		mir = (struct aac_mntinforesp *)&fib->data[0];
366		aac_add_container(sc, mir, 0);
367		i++;
368	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
369
370	aac_release_sync_fib(sc);
371
372	/* poke the bus to actually attach the child devices */
373	if (bus_generic_attach(sc->aac_dev))
374		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
375
376	/* mark the controller up */
377	sc->aac_state &= ~AAC_STATE_SUSPEND;
378
379	/* enable interrupts now */
380	AAC_UNMASK_INTERRUPTS(sc);
381}
382
383/*
384 * Create a device to respresent a new container
385 */
386static void
387aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
388{
389	struct aac_container *co;
390	device_t child;
391
392	/*
393	 * Check container volume type for validity.  Note that many of
394	 * the possible types may never show up.
395	 */
396	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
397		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
398		       M_NOWAIT | M_ZERO);
399		if (co == NULL)
400			panic("Out of memory?!\n");
401		debug(1, "id %x  name '%.16s'  size %u  type %d",
402		      mir->MntTable[0].ObjectId,
403		      mir->MntTable[0].FileSystemName,
404		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
405
406		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
407			device_printf(sc->aac_dev, "device_add_child failed\n");
408		else
409			device_set_ivars(child, co);
410		device_set_desc(child, aac_describe_code(aac_container_types,
411				mir->MntTable[0].VolType));
412		co->co_disk = child;
413		co->co_found = f;
414		bcopy(&mir->MntTable[0], &co->co_mntobj,
415		      sizeof(struct aac_mntobj));
416		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
417		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
418		AAC_LOCK_RELEASE(&sc->aac_container_lock);
419	}
420}
421
422/*
423 * Free all of the resources associated with (sc)
424 *
425 * Should not be called if the controller is active.
426 */
427void
428aac_free(struct aac_softc *sc)
429{
430	struct aac_fibmap *fm;
431
432	debug_called(1);
433
434	/* remove the control device */
435	if (sc->aac_dev_t != NULL)
436		destroy_dev(sc->aac_dev_t);
437
438	/* throw away any FIB buffers, discard the FIB DMA tag */
439	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
440		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
441		aac_free_commands(sc, fm);
442		free(fm, M_AACBUF);
443	}
444	if (sc->aac_fib_dmat)
445		bus_dma_tag_destroy(sc->aac_fib_dmat);
446
447	free(sc->aac_commands, M_AACBUF);
448
449	/* destroy the common area */
450	if (sc->aac_common) {
451		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
452		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
453				sc->aac_common_dmamap);
454	}
455	if (sc->aac_common_dmat)
456		bus_dma_tag_destroy(sc->aac_common_dmat);
457
458	/* disconnect the interrupt handler */
459	if (sc->aac_intr)
460		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
461	if (sc->aac_irq != NULL)
462		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
463				     sc->aac_irq);
464
465	/* destroy data-transfer DMA tag */
466	if (sc->aac_buffer_dmat)
467		bus_dma_tag_destroy(sc->aac_buffer_dmat);
468
469	/* destroy the parent DMA tag */
470	if (sc->aac_parent_dmat)
471		bus_dma_tag_destroy(sc->aac_parent_dmat);
472
473	/* release the register window mapping */
474	if (sc->aac_regs_resource != NULL)
475		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
476				     sc->aac_regs_rid, sc->aac_regs_resource);
477}
478
479/*
480 * Disconnect from the controller completely, in preparation for unload.
481 */
482int
483aac_detach(device_t dev)
484{
485	struct aac_softc *sc;
486	struct aac_container *co;
487	struct aac_sim	*sim;
488	int error;
489
490	debug_called(1);
491
492	sc = device_get_softc(dev);
493
494	if (sc->aac_state & AAC_STATE_OPEN)
495		return(EBUSY);
496
497	/* Remove the child containers */
498	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
499		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
500		error = device_delete_child(dev, co->co_disk);
501		if (error)
502			return (error);
503		free(co, M_AACBUF);
504	}
505
506	/* Remove the CAM SIMs */
507	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
508		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
509		error = device_delete_child(dev, sim->sim_dev);
510		if (error)
511			return (error);
512		free(sim, M_AACBUF);
513	}
514
515	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
516		sc->aifflags |= AAC_AIFFLAGS_EXIT;
517		wakeup(sc->aifthread);
518		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
519	}
520
521	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
522		panic("Cannot shutdown AIF thread\n");
523
524	if ((error = aac_shutdown(dev)))
525		return(error);
526
527	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
528
529	aac_free(sc);
530
531	return(0);
532}
533
534/*
535 * Bring the controller down to a dormant state and detach all child devices.
536 *
537 * This function is called before detach or system shutdown.
538 *
539 * Note that we can assume that the bioq on the controller is empty, as we won't
540 * allow shutdown if any device is open.
541 */
542int
543aac_shutdown(device_t dev)
544{
545	struct aac_softc *sc;
546	struct aac_fib *fib;
547	struct aac_close_command *cc;
548	int s;
549
550	debug_called(1);
551
552	sc = device_get_softc(dev);
553
554	s = splbio();
555
556	sc->aac_state |= AAC_STATE_SUSPEND;
557
558	/*
559	 * Send a Container shutdown followed by a HostShutdown FIB to the
560	 * controller to convince it that we don't want to talk to it anymore.
561	 * We've been closed and all I/O completed already
562	 */
563	device_printf(sc->aac_dev, "shutting down controller...");
564
565	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
566	cc = (struct aac_close_command *)&fib->data[0];
567
568	bzero(cc, sizeof(struct aac_close_command));
569	cc->Command = VM_CloseAll;
570	cc->ContainerId = 0xffffffff;
571	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
572	    sizeof(struct aac_close_command)))
573		printf("FAILED.\n");
574	else
575		printf("done\n");
576#if 0
577	else {
578		fib->data[0] = 0;
579		/*
580		 * XXX Issuing this command to the controller makes it shut down
581		 * but also keeps it from coming back up without a reset of the
582		 * PCI bus.  This is not desirable if you are just unloading the
583		 * driver module with the intent to reload it later.
584		 */
585		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
586		    fib, 1)) {
587			printf("FAILED.\n");
588		} else {
589			printf("done.\n");
590		}
591	}
592#endif
593
594	AAC_MASK_INTERRUPTS(sc);
595
596	splx(s);
597	return(0);
598}
599
600/*
601 * Bring the controller to a quiescent state, ready for system suspend.
602 */
603int
604aac_suspend(device_t dev)
605{
606	struct aac_softc *sc;
607	int s;
608
609	debug_called(1);
610
611	sc = device_get_softc(dev);
612
613	s = splbio();
614
615	sc->aac_state |= AAC_STATE_SUSPEND;
616
617	AAC_MASK_INTERRUPTS(sc);
618	splx(s);
619	return(0);
620}
621
622/*
623 * Bring the controller back to a state ready for operation.
624 */
625int
626aac_resume(device_t dev)
627{
628	struct aac_softc *sc;
629
630	debug_called(1);
631
632	sc = device_get_softc(dev);
633
634	sc->aac_state &= ~AAC_STATE_SUSPEND;
635	AAC_UNMASK_INTERRUPTS(sc);
636	return(0);
637}
638
639/*
640 * Take an interrupt.
641 */
642void
643aac_intr(void *arg)
644{
645	struct aac_softc *sc;
646	u_int32_t *resp_queue;
647	u_int16_t reason;
648
649	debug_called(2);
650
651	sc = (struct aac_softc *)arg;
652
653	/*
654	 * Optimize the common case of adapter response interrupts.
655	 * We must read from the card prior to processing the responses
656	 * to ensure the clear is flushed prior to accessing the queues.
657	 * Reading the queues from local memory might save us a PCI read.
658	 */
659	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
660	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
661		reason = AAC_DB_RESPONSE_READY;
662	else
663		reason = AAC_GET_ISTATUS(sc);
664	AAC_CLEAR_ISTATUS(sc, reason);
665	(void)AAC_GET_ISTATUS(sc);
666
667	/* It's not ok to return here because of races with the previous step */
668	if (reason & AAC_DB_RESPONSE_READY)
669		aac_host_response(sc);
670
671	/* controller wants to talk to the log */
672	if (reason & AAC_DB_PRINTF) {
673		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
674			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
675		} else
676			aac_print_printf(sc);
677	}
678
679	/* controller has a message for us? */
680	if (reason & AAC_DB_COMMAND_READY) {
681		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
682			sc->aifflags |= AAC_AIFFLAGS_AIF;
683		} else {
684			/*
685			 * XXX If the kthread is dead and we're at this point,
686			 * there are bigger problems than just figuring out
687			 * what to do with an AIF.
688			 */
689		}
690
691	}
692
693	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
694		/* XXX Should this be done with cv_signal? */
695		wakeup(sc->aifthread);
696}
697
698/*
699 * Command Processing
700 */
701
702/*
703 * Start as much queued I/O as possible on the controller
704 */
705void
706aac_startio(struct aac_softc *sc)
707{
708	struct aac_command *cm;
709
710	debug_called(2);
711
712	for (;;) {
713		/*
714		 * Try to get a command that's been put off for lack of
715		 * resources
716		 */
717		cm = aac_dequeue_ready(sc);
718
719		/*
720		 * Try to build a command off the bio queue (ignore error
721		 * return)
722		 */
723		if (cm == NULL)
724			aac_bio_command(sc, &cm);
725
726		/* nothing to do? */
727		if (cm == NULL)
728			break;
729
730		/* try to give the command to the controller */
731		if (aac_start(cm) == EBUSY) {
732			/* put it on the ready queue for later */
733			aac_requeue_ready(cm);
734			break;
735		}
736	}
737}
738
739/*
740 * Deliver a command to the controller; allocate controller resources at the
741 * last moment when possible.
742 */
743static int
744aac_start(struct aac_command *cm)
745{
746	struct aac_softc *sc;
747	int error;
748
749	debug_called(2);
750
751	sc = cm->cm_sc;
752
753	/* get the command mapped */
754	aac_map_command(cm);
755
756	/* fix up the address values in the FIB */
757	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
758	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
759
760	/* save a pointer to the command for speedy reverse-lookup */
761	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
762							 * address issue */
763	/* put the FIB on the outbound queue */
764	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
765	return(error);
766}
767
768/*
769 * Handle notification of one or more FIBs coming from the controller.
770 */
771static void
772aac_command_thread(struct aac_softc *sc)
773{
774	struct aac_fib *fib;
775	u_int32_t fib_size;
776	int size;
777
778	debug_called(2);
779
780	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
781
782	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
783		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
784			tsleep(sc->aifthread, PRIBIO, "aifthd",
785			       AAC_PERIODIC_INTERVAL * hz);
786
787		/* While we're here, check to see if any commands are stuck */
788		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
789			aac_timeout(sc);
790
791		/* Check the hardware printf message buffer */
792		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
793			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
794			aac_print_printf(sc);
795		}
796
797		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
798
799			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
800					    &fib_size, &fib)) {
801				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
802				break;	/* nothing to do */
803			}
804
805			AAC_PRINT_FIB(sc, fib);
806
807			switch (fib->Header.Command) {
808			case AifRequest:
809				aac_handle_aif(sc, fib);
810				break;
811			default:
812				device_printf(sc->aac_dev, "unknown command "
813					      "from controller\n");
814				break;
815			}
816
817			if ((fib->Header.XferState == 0) ||
818			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
819				break;
820
821			/* Return the AIF to the controller. */
822			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
823				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
824				*(AAC_FSAStatus*)fib->data = ST_OK;
825
826				/* XXX Compute the Size field? */
827				size = fib->Header.Size;
828				if (size > sizeof(struct aac_fib)) {
829					size = sizeof(struct aac_fib);
830					fib->Header.Size = size;
831				}
832				/*
833				 * Since we did not generate this command, it
834				 * cannot go through the normal
835				 * enqueue->startio chain.
836				 */
837				aac_enqueue_response(sc,
838						     AAC_ADAP_NORM_RESP_QUEUE,
839						     fib);
840			}
841		}
842	}
843	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
844	wakeup(sc->aac_dev);
845
846#if __FreeBSD_version > 500005
847	mtx_lock(&Giant);
848#endif
849	kthread_exit(0);
850}
851
852/*
853 * Handle notification of one or more FIBs completed by the controller
854 */
855static void
856aac_host_response(struct aac_softc *sc)
857{
858	struct aac_command *cm;
859	struct aac_fib *fib;
860	u_int32_t fib_size;
861
862	debug_called(2);
863
864	for (;;) {
865		/* look for completed FIBs on our queue */
866		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
867				    &fib))
868			break;	/* nothing to do */
869
870		/* get the command, unmap and queue for later processing */
871		cm = (struct aac_command *)fib->Header.SenderData;
872		if (cm == NULL) {
873			AAC_PRINT_FIB(sc, fib);
874		} else {
875			aac_remove_busy(cm);
876			aac_unmap_command(cm);		/* XXX defer? */
877			aac_enqueue_complete(cm);
878		}
879	}
880
881	/* handle completion processing */
882#if __FreeBSD_version >= 500005
883	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
884#else
885	aac_complete(sc, 0);
886#endif
887}
888
889/*
890 * Process completed commands.
891 */
892static void
893aac_complete(void *context, int pending)
894{
895	struct aac_softc *sc;
896	struct aac_command *cm;
897
898	debug_called(2);
899
900	sc = (struct aac_softc *)context;
901
902	/* pull completed commands off the queue */
903	for (;;) {
904		cm = aac_dequeue_complete(sc);
905		if (cm == NULL)
906			break;
907		cm->cm_flags |= AAC_CMD_COMPLETED;
908
909		/* is there a completion handler? */
910		if (cm->cm_complete != NULL) {
911			cm->cm_complete(cm);
912		} else {
913			/* assume that someone is sleeping on this command */
914			wakeup(cm);
915		}
916	}
917
918	/* see if we can start some more I/O */
919	aac_startio(sc);
920}
921
922/*
923 * Handle a bio submitted from a disk device.
924 */
925void
926aac_submit_bio(struct bio *bp)
927{
928	struct aac_disk *ad;
929	struct aac_softc *sc;
930
931	debug_called(2);
932
933	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
934	sc = ad->ad_controller;
935
936	/* queue the BIO and try to get some work done */
937	aac_enqueue_bio(sc, bp);
938	aac_startio(sc);
939}
940
941/*
942 * Get a bio and build a command to go with it.
943 */
944static int
945aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
946{
947	struct aac_command *cm;
948	struct aac_fib *fib;
949	struct aac_blockread *br;
950	struct aac_blockwrite *bw;
951	struct aac_disk *ad;
952	struct bio *bp;
953
954	debug_called(2);
955
956	/* get the resources we will need */
957	cm = NULL;
958	if ((bp = aac_dequeue_bio(sc)) == NULL)
959		goto fail;
960	if (aac_alloc_command(sc, &cm))	/* get a command */
961		goto fail;
962
963	/* fill out the command */
964	cm->cm_data = (void *)bp->bio_data;
965	cm->cm_datalen = bp->bio_bcount;
966	cm->cm_complete = aac_bio_complete;
967	cm->cm_private = bp;
968	cm->cm_timestamp = time_second;
969	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
970
971	/* build the FIB */
972	fib = cm->cm_fib;
973	fib->Header.XferState =
974		AAC_FIBSTATE_HOSTOWNED   |
975		AAC_FIBSTATE_INITIALISED |
976		AAC_FIBSTATE_EMPTY	 |
977		AAC_FIBSTATE_FROMHOST	 |
978		AAC_FIBSTATE_REXPECTED   |
979		AAC_FIBSTATE_NORM	 |
980		AAC_FIBSTATE_ASYNC	 |
981		AAC_FIBSTATE_FAST_RESPONSE;
982	fib->Header.Command = ContainerCommand;
983	fib->Header.Size = sizeof(struct aac_fib_header);
984
985	/* build the read/write request */
986	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
987	if (BIO_IS_READ(bp)) {
988		br = (struct aac_blockread *)&fib->data[0];
989		br->Command = VM_CtBlockRead;
990		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
991		br->BlockNumber = bp->bio_pblkno;
992		br->ByteCount = bp->bio_bcount;
993		fib->Header.Size += sizeof(struct aac_blockread);
994		cm->cm_sgtable = &br->SgMap;
995		cm->cm_flags |= AAC_CMD_DATAIN;
996	} else {
997		bw = (struct aac_blockwrite *)&fib->data[0];
998		bw->Command = VM_CtBlockWrite;
999		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1000		bw->BlockNumber = bp->bio_pblkno;
1001		bw->ByteCount = bp->bio_bcount;
1002		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
1003		fib->Header.Size += sizeof(struct aac_blockwrite);
1004		cm->cm_flags |= AAC_CMD_DATAOUT;
1005		cm->cm_sgtable = &bw->SgMap;
1006	}
1007
1008	*cmp = cm;
1009	return(0);
1010
1011fail:
1012	if (bp != NULL)
1013		aac_enqueue_bio(sc, bp);
1014	if (cm != NULL)
1015		aac_release_command(cm);
1016	return(ENOMEM);
1017}
1018
1019/*
1020 * Handle a bio-instigated command that has been completed.
1021 */
1022static void
1023aac_bio_complete(struct aac_command *cm)
1024{
1025	struct aac_blockread_response *brr;
1026	struct aac_blockwrite_response *bwr;
1027	struct bio *bp;
1028	AAC_FSAStatus status;
1029
1030	/* fetch relevant status and then release the command */
1031	bp = (struct bio *)cm->cm_private;
1032	if (BIO_IS_READ(bp)) {
1033		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1034		status = brr->Status;
1035	} else {
1036		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1037		status = bwr->Status;
1038	}
1039	aac_release_command(cm);
1040
1041	/* fix up the bio based on status */
1042	if (status == ST_OK) {
1043		bp->bio_resid = 0;
1044	} else {
1045		bp->bio_error = EIO;
1046		bp->bio_flags |= BIO_ERROR;
1047		/* pass an error string out to the disk layer */
1048		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1049						    status);
1050	}
1051	aac_biodone(bp);
1052}
1053
1054/*
1055 * Submit a command to the controller, return when it completes.
1056 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1057 *     be stuck here forever.  At the same time, signals are not caught
1058 *     because there is a risk that a signal could wakeup the tsleep before
1059 *     the card has a chance to complete the command.  The passed in timeout
1060 *     is ignored for the same reason.  Since there is no way to cancel a
1061 *     command in progress, we should probably create a 'dead' queue where
1062 *     commands go that have been interrupted/timed-out/etc, that keeps them
1063 *     out of the free pool.  That way, if the card is just slow, it won't
1064 *     spam the memory of a command that has been recycled.
1065 */
1066static int
1067aac_wait_command(struct aac_command *cm, int timeout)
1068{
1069	int s, error = 0;
1070
1071	debug_called(2);
1072
1073	/* Put the command on the ready queue and get things going */
1074	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1075	aac_enqueue_ready(cm);
1076	aac_startio(cm->cm_sc);
1077	s = splbio();
1078	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1079		error = tsleep(cm, PRIBIO, "aacwait", 0);
1080	}
1081	splx(s);
1082	return(error);
1083}
1084
1085/*
1086 *Command Buffer Management
1087 */
1088
1089/*
1090 * Allocate a command.
1091 */
1092int
1093aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1094{
1095	struct aac_command *cm;
1096
1097	debug_called(3);
1098
1099	if ((cm = aac_dequeue_free(sc)) == NULL) {
1100		if (aac_alloc_commands(sc))
1101			return(ENOMEM);
1102		if ((cm = aac_dequeue_free(sc)) == NULL)
1103			return (ENOMEM);
1104	}
1105
1106	*cmp = cm;
1107	return(0);
1108}
1109
1110/*
1111 * Release a command back to the freelist.
1112 */
1113void
1114aac_release_command(struct aac_command *cm)
1115{
1116	debug_called(3);
1117
1118	/* (re)initialise the command/FIB */
1119	cm->cm_sgtable = NULL;
1120	cm->cm_flags = 0;
1121	cm->cm_complete = NULL;
1122	cm->cm_private = NULL;
1123	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1124	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1125	cm->cm_fib->Header.Flags = 0;
1126	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1127
1128	/*
1129	 * These are duplicated in aac_start to cover the case where an
1130	 * intermediate stage may have destroyed them.  They're left
1131	 * initialised here for debugging purposes only.
1132	 */
1133	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1134	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1135	cm->cm_fib->Header.SenderData = 0;
1136
1137	aac_enqueue_free(cm);
1138}
1139
1140/*
1141 * Map helper for command/FIB allocation.
1142 */
1143static void
1144aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1145{
1146	uintptr_t	*fibphys;
1147
1148	fibphys = (uintptr_t *)arg;
1149
1150	debug_called(3);
1151
1152	*fibphys = segs[0].ds_addr;
1153}
1154
1155/*
1156 * Allocate and initialise commands/FIBs for this adapter.
1157 */
1158static int
1159aac_alloc_commands(struct aac_softc *sc)
1160{
1161	struct aac_command *cm;
1162	struct aac_fibmap *fm;
1163	uintptr_t fibphys;
1164	int i, error;
1165
1166	debug_called(1);
1167
1168	if (sc->total_fibs + AAC_FIB_COUNT > AAC_MAX_FIBS)
1169		return (ENOMEM);
1170
1171	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, /*M_WAITOK|*/M_ZERO);
1172
1173	/* allocate the FIBs in DMAable memory and load them */
1174	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1175			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1176		device_printf(sc->aac_dev,
1177			      "Not enough contiguous memory available.\n");
1178		return (ENOMEM);
1179	}
1180
1181	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1182			AAC_FIB_COUNT * sizeof(struct aac_fib),
1183			aac_map_command_helper, &fibphys, 0);
1184
1185	/* initialise constant fields in the command structure */
1186	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1187	for (i = 0; i < AAC_FIB_COUNT; i++) {
1188		cm = sc->aac_commands + sc->total_fibs + i;
1189		fm->aac_commands = cm;
1190		cm->cm_sc = sc;
1191		cm->cm_fib = fm->aac_fibs + i;
1192		cm->cm_fibphys = (uint32_t)fibphys +
1193				 (i * sizeof(struct aac_fib));
1194
1195		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1196					       &cm->cm_datamap)) == 0)
1197			aac_release_command(cm);
1198		else
1199			return (error);
1200	}
1201
1202	sc->total_fibs += AAC_FIB_COUNT;
1203	TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1204
1205	return (0);
1206}
1207
1208/*
1209 * Free FIBs owned by this adapter.
1210 */
1211static void
1212aac_free_commands(struct aac_softc *sc, struct aac_fibmap *fm)
1213{
1214	struct aac_command *cm;
1215	int i;
1216
1217	debug_called(1);
1218
1219	for (i = 0; i < AAC_FIB_COUNT; i++) {
1220		cm = fm->aac_commands + i;
1221		bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1222	}
1223
1224	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1225	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1226}
1227
1228/*
1229 * Command-mapping helper function - populate this command's s/g table.
1230 */
1231static void
1232aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1233{
1234	struct aac_command *cm;
1235	struct aac_fib *fib;
1236	struct aac_sg_table *sg;
1237	int i;
1238
1239	debug_called(3);
1240
1241	cm = (struct aac_command *)arg;
1242	fib = cm->cm_fib;
1243
1244	/* find the s/g table */
1245	sg = cm->cm_sgtable;
1246
1247	/* copy into the FIB */
1248	if (sg != NULL) {
1249		sg->SgCount = nseg;
1250		for (i = 0; i < nseg; i++) {
1251			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1252			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1253		}
1254		/* update the FIB size for the s/g count */
1255		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1256	}
1257
1258}
1259
1260/*
1261 * Map a command into controller-visible space.
1262 */
1263static void
1264aac_map_command(struct aac_command *cm)
1265{
1266	struct aac_softc *sc;
1267
1268	debug_called(2);
1269
1270	sc = cm->cm_sc;
1271
1272	/* don't map more than once */
1273	if (cm->cm_flags & AAC_CMD_MAPPED)
1274		return;
1275
1276	if (cm->cm_datalen != 0) {
1277		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1278				cm->cm_data, cm->cm_datalen,
1279				aac_map_command_sg, cm, 0);
1280
1281		if (cm->cm_flags & AAC_CMD_DATAIN)
1282			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1283					BUS_DMASYNC_PREREAD);
1284		if (cm->cm_flags & AAC_CMD_DATAOUT)
1285			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1286					BUS_DMASYNC_PREWRITE);
1287	}
1288	cm->cm_flags |= AAC_CMD_MAPPED;
1289}
1290
1291/*
1292 * Unmap a command from controller-visible space.
1293 */
1294static void
1295aac_unmap_command(struct aac_command *cm)
1296{
1297	struct aac_softc *sc;
1298
1299	debug_called(2);
1300
1301	sc = cm->cm_sc;
1302
1303	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1304		return;
1305
1306	if (cm->cm_datalen != 0) {
1307		if (cm->cm_flags & AAC_CMD_DATAIN)
1308			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1309					BUS_DMASYNC_POSTREAD);
1310		if (cm->cm_flags & AAC_CMD_DATAOUT)
1311			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1312					BUS_DMASYNC_POSTWRITE);
1313
1314		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1315	}
1316	cm->cm_flags &= ~AAC_CMD_MAPPED;
1317}
1318
1319/*
1320 * Hardware Interface
1321 */
1322
1323/*
1324 * Initialise the adapter.
1325 */
1326static void
1327aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1328{
1329	struct aac_softc *sc;
1330
1331	debug_called(1);
1332
1333	sc = (struct aac_softc *)arg;
1334
1335	sc->aac_common_busaddr = segs[0].ds_addr;
1336}
1337
1338/*
1339 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1340 * firmware version 1.x are not compatible with this driver.
1341 */
1342static int
1343aac_check_firmware(struct aac_softc *sc)
1344{
1345	u_int32_t major, minor;
1346
1347	debug_called(1);
1348
1349	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1350		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1351				     NULL)) {
1352			device_printf(sc->aac_dev,
1353				      "Error reading firmware version\n");
1354			return (EIO);
1355		}
1356
1357		/* These numbers are stored as ASCII! */
1358		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1359		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1360		if (major == 1) {
1361			device_printf(sc->aac_dev,
1362			    "Firmware version %d.%d is not supported.\n",
1363			    major, minor);
1364			return (EINVAL);
1365		}
1366	}
1367
1368	return (0);
1369}
1370
1371static int
1372aac_init(struct aac_softc *sc)
1373{
1374	struct aac_adapter_init	*ip;
1375	time_t then;
1376	u_int32_t code;
1377	u_int8_t *qaddr;
1378	int i;
1379
1380	debug_called(1);
1381
1382	/*
1383	 * First wait for the adapter to come ready.
1384	 */
1385	then = time_second;
1386	do {
1387		code = AAC_GET_FWSTATUS(sc);
1388		if (code & AAC_SELF_TEST_FAILED) {
1389			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1390			return(ENXIO);
1391		}
1392		if (code & AAC_KERNEL_PANIC) {
1393			device_printf(sc->aac_dev,
1394				      "FATAL: controller kernel panic\n");
1395			return(ENXIO);
1396		}
1397		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1398			device_printf(sc->aac_dev,
1399				      "FATAL: controller not coming ready, "
1400					   "status %x\n", code);
1401			return(ENXIO);
1402		}
1403	} while (!(code & AAC_UP_AND_RUNNING));
1404
1405	/*
1406	 * Create DMA tag for the common structure and allocate it.
1407	 */
1408	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1409			       1, 0,			/* algnmnt, boundary */
1410			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1411			       BUS_SPACE_MAXADDR, 	/* highaddr */
1412			       NULL, NULL, 		/* filter, filterarg */
1413			       8192 + sizeof(struct aac_common), /* maxsize */
1414			       1,			/* nsegments */
1415			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1416			       0,			/* flags */
1417			       &sc->aac_common_dmat)) {
1418		device_printf(sc->aac_dev,
1419			      "can't allocate common structure DMA tag\n");
1420		return(ENOMEM);
1421	}
1422	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1423			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1424		device_printf(sc->aac_dev, "can't allocate common structure\n");
1425		return(ENOMEM);
1426	}
1427
1428	/*
1429	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1430	 * below address 8192 in physical memory.
1431	 * XXX If the padding is not needed, can it be put to use instead
1432	 * of ignored?
1433	 */
1434	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1435			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1436			aac_common_map, sc, 0);
1437
1438	if (sc->aac_common_busaddr < 8192) {
1439		(uint8_t *)sc->aac_common += 8192;
1440		sc->aac_common_busaddr += 8192;
1441	}
1442	bzero(sc->aac_common, sizeof(*sc->aac_common));
1443
1444	/* Allocate some FIBs and associated command structs */
1445	TAILQ_INIT(&sc->aac_fibmap_tqh);
1446	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1447				  M_AACBUF, /*M_WAITOK|*/M_ZERO);
1448	for (i = 0; i < 16; i++) {
1449		if (aac_alloc_commands(sc) != 0)
1450			break;
1451	}
1452	if (sc->total_fibs == 0)
1453		return (ENOMEM);
1454
1455	/*
1456	 * Fill in the init structure.  This tells the adapter about the
1457	 * physical location of various important shared data structures.
1458	 */
1459	ip = &sc->aac_common->ac_init;
1460	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1461	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1462
1463	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1464					 offsetof(struct aac_common, ac_fibs);
1465	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1466	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1467	ip->AdapterFibAlign = sizeof(struct aac_fib);
1468
1469	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1470				  offsetof(struct aac_common, ac_printf);
1471	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1472
1473	/* The adapter assumes that pages are 4K in size */
1474	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1475	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1476
1477	/*
1478	 * Initialise FIB queues.  Note that it appears that the layout of the
1479	 * indexes and the segmentation of the entries may be mandated by the
1480	 * adapter, which is only told about the base of the queue index fields.
1481	 *
1482	 * The initial values of the indices are assumed to inform the adapter
1483	 * of the sizes of the respective queues, and theoretically it could
1484	 * work out the entire layout of the queue structures from this.  We
1485	 * take the easy route and just lay this area out like everyone else
1486	 * does.
1487	 *
1488	 * The Linux driver uses a much more complex scheme whereby several
1489	 * header records are kept for each queue.  We use a couple of generic
1490	 * list manipulation functions which 'know' the size of each list by
1491	 * virtue of a table.
1492	 */
1493	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1494	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1495	sc->aac_queues = (struct aac_queue_table *)qaddr;
1496	ip->CommHeaderAddress = sc->aac_common_busaddr +
1497				((u_int32_t)sc->aac_queues -
1498				(u_int32_t)sc->aac_common);
1499
1500	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1501		AAC_HOST_NORM_CMD_ENTRIES;
1502	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1503		AAC_HOST_NORM_CMD_ENTRIES;
1504	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1505		AAC_HOST_HIGH_CMD_ENTRIES;
1506	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1507		AAC_HOST_HIGH_CMD_ENTRIES;
1508	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1509		AAC_ADAP_NORM_CMD_ENTRIES;
1510	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1511		AAC_ADAP_NORM_CMD_ENTRIES;
1512	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1513		AAC_ADAP_HIGH_CMD_ENTRIES;
1514	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1515		AAC_ADAP_HIGH_CMD_ENTRIES;
1516	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1517		AAC_HOST_NORM_RESP_ENTRIES;
1518	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1519		AAC_HOST_NORM_RESP_ENTRIES;
1520	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1521		AAC_HOST_HIGH_RESP_ENTRIES;
1522	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1523		AAC_HOST_HIGH_RESP_ENTRIES;
1524	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1525		AAC_ADAP_NORM_RESP_ENTRIES;
1526	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1527		AAC_ADAP_NORM_RESP_ENTRIES;
1528	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1529		AAC_ADAP_HIGH_RESP_ENTRIES;
1530	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1531		AAC_ADAP_HIGH_RESP_ENTRIES;
1532	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1533		&sc->aac_queues->qt_HostNormCmdQueue[0];
1534	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1535		&sc->aac_queues->qt_HostHighCmdQueue[0];
1536	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1537		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1538	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1539		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1540	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1541		&sc->aac_queues->qt_HostNormRespQueue[0];
1542	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1543		&sc->aac_queues->qt_HostHighRespQueue[0];
1544	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1545		&sc->aac_queues->qt_AdapNormRespQueue[0];
1546	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1547		&sc->aac_queues->qt_AdapHighRespQueue[0];
1548
1549	/*
1550	 * Do controller-type-specific initialisation
1551	 */
1552	switch (sc->aac_hwif) {
1553	case AAC_HWIF_I960RX:
1554		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1555		break;
1556	}
1557
1558	/*
1559	 * Give the init structure to the controller.
1560	 */
1561	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1562			     sc->aac_common_busaddr +
1563			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1564			     NULL)) {
1565		device_printf(sc->aac_dev,
1566			      "error establishing init structure\n");
1567		return(EIO);
1568	}
1569
1570	return(0);
1571}
1572
1573/*
1574 * Send a synchronous command to the controller and wait for a result.
1575 */
1576static int
1577aac_sync_command(struct aac_softc *sc, u_int32_t command,
1578		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1579		 u_int32_t *sp)
1580{
1581	time_t then;
1582	u_int32_t status;
1583
1584	debug_called(3);
1585
1586	/* populate the mailbox */
1587	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1588
1589	/* ensure the sync command doorbell flag is cleared */
1590	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1591
1592	/* then set it to signal the adapter */
1593	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1594
1595	/* spin waiting for the command to complete */
1596	then = time_second;
1597	do {
1598		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1599			debug(2, "timed out");
1600			return(EIO);
1601		}
1602	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1603
1604	/* clear the completion flag */
1605	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1606
1607	/* get the command status */
1608	status = AAC_GET_MAILBOXSTATUS(sc);
1609	if (sp != NULL)
1610		*sp = status;
1611	return(0);
1612}
1613
1614/*
1615 * Grab the sync fib area.
1616 */
1617int
1618aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1619{
1620
1621	/*
1622	 * If the force flag is set, the system is shutting down, or in
1623	 * trouble.  Ignore the mutex.
1624	 */
1625	if (!(flags & AAC_SYNC_LOCK_FORCE))
1626		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1627
1628	*fib = &sc->aac_common->ac_sync_fib;
1629
1630	return (1);
1631}
1632
1633/*
1634 * Release the sync fib area.
1635 */
1636void
1637aac_release_sync_fib(struct aac_softc *sc)
1638{
1639
1640	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1641}
1642
1643/*
1644 * Send a synchronous FIB to the controller and wait for a result.
1645 */
1646int
1647aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1648		 struct aac_fib *fib, u_int16_t datasize)
1649{
1650	debug_called(3);
1651
1652	if (datasize > AAC_FIB_DATASIZE)
1653		return(EINVAL);
1654
1655	/*
1656	 * Set up the sync FIB
1657	 */
1658	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1659				AAC_FIBSTATE_INITIALISED |
1660				AAC_FIBSTATE_EMPTY;
1661	fib->Header.XferState |= xferstate;
1662	fib->Header.Command = command;
1663	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1664	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1665	fib->Header.SenderSize = sizeof(struct aac_fib);
1666	fib->Header.SenderFibAddress = (u_int32_t)fib;
1667	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1668					 offsetof(struct aac_common,
1669						  ac_sync_fib);
1670
1671	/*
1672	 * Give the FIB to the controller, wait for a response.
1673	 */
1674	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1675			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1676		debug(2, "IO error");
1677		return(EIO);
1678	}
1679
1680	return (0);
1681}
1682
1683/*
1684 * Adapter-space FIB queue manipulation
1685 *
1686 * Note that the queue implementation here is a little funky; neither the PI or
1687 * CI will ever be zero.  This behaviour is a controller feature.
1688 */
1689static struct {
1690	int		size;
1691	int		notify;
1692} aac_qinfo[] = {
1693	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1694	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1695	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1696	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1697	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1698	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1699	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1700	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1701};
1702
1703/*
1704 * Atomically insert an entry into the nominated queue, returns 0 on success or
1705 * EBUSY if the queue is full.
1706 *
1707 * Note: it would be more efficient to defer notifying the controller in
1708 *	 the case where we may be inserting several entries in rapid succession,
1709 *	 but implementing this usefully may be difficult (it would involve a
1710 *	 separate queue/notify interface).
1711 */
1712static int
1713aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1714{
1715	u_int32_t pi, ci;
1716	int s, error;
1717	u_int32_t fib_size;
1718	u_int32_t fib_addr;
1719
1720	debug_called(3);
1721
1722	fib_size = cm->cm_fib->Header.Size;
1723	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1724
1725	s = splbio();
1726
1727	/* get the producer/consumer indices */
1728	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1729	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1730
1731	/* wrap the queue? */
1732	if (pi >= aac_qinfo[queue].size)
1733		pi = 0;
1734
1735	/* check for queue full */
1736	if ((pi + 1) == ci) {
1737		error = EBUSY;
1738		goto out;
1739	}
1740
1741	/* populate queue entry */
1742	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1743	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1744
1745	/* update producer index */
1746	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1747
1748	/*
1749	 * To avoid a race with its completion interrupt, place this command on
1750	 * the busy queue prior to advertising it to the controller.
1751	 */
1752	aac_enqueue_busy(cm);
1753
1754	/* notify the adapter if we know how */
1755	if (aac_qinfo[queue].notify != 0)
1756		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1757
1758	error = 0;
1759
1760out:
1761	splx(s);
1762	return(error);
1763}
1764
1765/*
1766 * Atomically remove one entry from the nominated queue, returns 0 on
1767 * success or ENOENT if the queue is empty.
1768 */
1769static int
1770aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1771		struct aac_fib **fib_addr)
1772{
1773	u_int32_t pi, ci;
1774	int s, error;
1775	int notify;
1776
1777	debug_called(3);
1778
1779	s = splbio();
1780
1781	/* get the producer/consumer indices */
1782	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1783	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1784
1785	/* check for queue empty */
1786	if (ci == pi) {
1787		error = ENOENT;
1788		goto out;
1789	}
1790
1791	notify = 0;
1792	if (ci == pi + 1)
1793		notify++;
1794
1795	/* wrap the queue? */
1796	if (ci >= aac_qinfo[queue].size)
1797		ci = 0;
1798
1799	/* fetch the entry */
1800	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1801	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1802				       ci)->aq_fib_addr;
1803
1804	/*
1805	 * Is this a fast response? If it is, update the fib fields in
1806	 * local memory so the whole fib doesn't have to be DMA'd back up.
1807	 */
1808	if (*(uintptr_t *)fib_addr & 0x01) {
1809		*(uintptr_t *)fib_addr &= ~0x01;
1810		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1811		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1812	}
1813	/* update consumer index */
1814	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1815
1816	/* if we have made the queue un-full, notify the adapter */
1817	if (notify && (aac_qinfo[queue].notify != 0))
1818		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1819	error = 0;
1820
1821out:
1822	splx(s);
1823	return(error);
1824}
1825
1826/*
1827 * Put our response to an Adapter Initialed Fib on the response queue
1828 */
1829static int
1830aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1831{
1832	u_int32_t pi, ci;
1833	int s, error;
1834	u_int32_t fib_size;
1835	u_int32_t fib_addr;
1836
1837	debug_called(1);
1838
1839	/* Tell the adapter where the FIB is */
1840	fib_size = fib->Header.Size;
1841	fib_addr = fib->Header.SenderFibAddress;
1842	fib->Header.ReceiverFibAddress = fib_addr;
1843
1844	s = splbio();
1845
1846	/* get the producer/consumer indices */
1847	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1848	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1849
1850	/* wrap the queue? */
1851	if (pi >= aac_qinfo[queue].size)
1852		pi = 0;
1853
1854	/* check for queue full */
1855	if ((pi + 1) == ci) {
1856		error = EBUSY;
1857		goto out;
1858	}
1859
1860	/* populate queue entry */
1861	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1862	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1863
1864	/* update producer index */
1865	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1866
1867	/* notify the adapter if we know how */
1868	if (aac_qinfo[queue].notify != 0)
1869		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1870
1871	error = 0;
1872
1873out:
1874	splx(s);
1875	return(error);
1876}
1877
1878/*
1879 * Check for commands that have been outstanding for a suspiciously long time,
1880 * and complain about them.
1881 */
1882static void
1883aac_timeout(struct aac_softc *sc)
1884{
1885	int s;
1886	struct aac_command *cm;
1887	time_t deadline;
1888
1889	/*
1890	 * Traverse the busy command list, bitch about late commands once
1891	 * only.
1892	 */
1893	deadline = time_second - AAC_CMD_TIMEOUT;
1894	s = splbio();
1895	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1896		if ((cm->cm_timestamp  < deadline)
1897			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1898			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1899			device_printf(sc->aac_dev,
1900				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1901				      cm, (int)(time_second-cm->cm_timestamp));
1902			AAC_PRINT_FIB(sc, cm->cm_fib);
1903		}
1904	}
1905	splx(s);
1906
1907	return;
1908}
1909
1910/*
1911 * Interface Function Vectors
1912 */
1913
1914/*
1915 * Read the current firmware status word.
1916 */
1917static int
1918aac_sa_get_fwstatus(struct aac_softc *sc)
1919{
1920	debug_called(3);
1921
1922	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1923}
1924
1925static int
1926aac_rx_get_fwstatus(struct aac_softc *sc)
1927{
1928	debug_called(3);
1929
1930	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1931}
1932
1933static int
1934aac_fa_get_fwstatus(struct aac_softc *sc)
1935{
1936	int val;
1937
1938	debug_called(3);
1939
1940	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1941	return (val);
1942}
1943
1944/*
1945 * Notify the controller of a change in a given queue
1946 */
1947
1948static void
1949aac_sa_qnotify(struct aac_softc *sc, int qbit)
1950{
1951	debug_called(3);
1952
1953	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1954}
1955
1956static void
1957aac_rx_qnotify(struct aac_softc *sc, int qbit)
1958{
1959	debug_called(3);
1960
1961	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1962}
1963
1964static void
1965aac_fa_qnotify(struct aac_softc *sc, int qbit)
1966{
1967	debug_called(3);
1968
1969	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1970	AAC_FA_HACK(sc);
1971}
1972
1973/*
1974 * Get the interrupt reason bits
1975 */
1976static int
1977aac_sa_get_istatus(struct aac_softc *sc)
1978{
1979	debug_called(3);
1980
1981	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1982}
1983
1984static int
1985aac_rx_get_istatus(struct aac_softc *sc)
1986{
1987	debug_called(3);
1988
1989	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1990}
1991
1992static int
1993aac_fa_get_istatus(struct aac_softc *sc)
1994{
1995	int val;
1996
1997	debug_called(3);
1998
1999	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2000	return (val);
2001}
2002
2003/*
2004 * Clear some interrupt reason bits
2005 */
2006static void
2007aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2008{
2009	debug_called(3);
2010
2011	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2012}
2013
2014static void
2015aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2016{
2017	debug_called(3);
2018
2019	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2020}
2021
2022static void
2023aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2024{
2025	debug_called(3);
2026
2027	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2028	AAC_FA_HACK(sc);
2029}
2030
2031/*
2032 * Populate the mailbox and set the command word
2033 */
2034static void
2035aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2036		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2037{
2038	debug_called(4);
2039
2040	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2041	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2042	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2043	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2044	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2045}
2046
2047static void
2048aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2049		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2050{
2051	debug_called(4);
2052
2053	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2054	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2055	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2056	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2057	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2058}
2059
2060static void
2061aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2062		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2063{
2064	debug_called(4);
2065
2066	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2067	AAC_FA_HACK(sc);
2068	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2069	AAC_FA_HACK(sc);
2070	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2071	AAC_FA_HACK(sc);
2072	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2073	AAC_FA_HACK(sc);
2074	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2075	AAC_FA_HACK(sc);
2076}
2077
2078/*
2079 * Fetch the immediate command status word
2080 */
2081static int
2082aac_sa_get_mailboxstatus(struct aac_softc *sc)
2083{
2084	debug_called(4);
2085
2086	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2087}
2088
2089static int
2090aac_rx_get_mailboxstatus(struct aac_softc *sc)
2091{
2092	debug_called(4);
2093
2094	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2095}
2096
2097static int
2098aac_fa_get_mailboxstatus(struct aac_softc *sc)
2099{
2100	int val;
2101
2102	debug_called(4);
2103
2104	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2105	return (val);
2106}
2107
2108/*
2109 * Set/clear interrupt masks
2110 */
2111static void
2112aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2113{
2114	debug(2, "%sable interrupts", enable ? "en" : "dis");
2115
2116	if (enable) {
2117		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2118	} else {
2119		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2120	}
2121}
2122
2123static void
2124aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2125{
2126	debug(2, "%sable interrupts", enable ? "en" : "dis");
2127
2128	if (enable) {
2129		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2130	} else {
2131		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2132	}
2133}
2134
2135static void
2136aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2137{
2138	debug(2, "%sable interrupts", enable ? "en" : "dis");
2139
2140	if (enable) {
2141		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2142		AAC_FA_HACK(sc);
2143	} else {
2144		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2145		AAC_FA_HACK(sc);
2146	}
2147}
2148
2149/*
2150 * Debugging and Diagnostics
2151 */
2152
2153/*
2154 * Print some information about the controller.
2155 */
2156static void
2157aac_describe_controller(struct aac_softc *sc)
2158{
2159	struct aac_fib *fib;
2160	struct aac_adapter_info	*info;
2161
2162	debug_called(2);
2163
2164	aac_alloc_sync_fib(sc, &fib, 0);
2165
2166	fib->data[0] = 0;
2167	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2168		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2169		aac_release_sync_fib(sc);
2170		return;
2171	}
2172	info = (struct aac_adapter_info *)&fib->data[0];
2173
2174	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2175		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2176		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2177		      aac_describe_code(aac_battery_platform,
2178					info->batteryPlatform));
2179
2180	/* save the kernel revision structure for later use */
2181	sc->aac_revision = info->KernelRevision;
2182	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2183		      info->KernelRevision.external.comp.major,
2184		      info->KernelRevision.external.comp.minor,
2185		      info->KernelRevision.external.comp.dash,
2186		      info->KernelRevision.buildNumber,
2187		      (u_int32_t)(info->SerialNumber & 0xffffff));
2188
2189	aac_release_sync_fib(sc);
2190}
2191
2192/*
2193 * Look up a text description of a numeric error code and return a pointer to
2194 * same.
2195 */
2196static char *
2197aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2198{
2199	int i;
2200
2201	for (i = 0; table[i].string != NULL; i++)
2202		if (table[i].code == code)
2203			return(table[i].string);
2204	return(table[i + 1].string);
2205}
2206
2207/*
2208 * Management Interface
2209 */
2210
2211static int
2212aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2213{
2214	struct aac_softc *sc;
2215
2216	debug_called(2);
2217
2218	sc = dev->si_drv1;
2219
2220	/* Check to make sure the device isn't already open */
2221	if (sc->aac_state & AAC_STATE_OPEN) {
2222		return EBUSY;
2223	}
2224	sc->aac_state |= AAC_STATE_OPEN;
2225
2226	return 0;
2227}
2228
2229static int
2230aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2231{
2232	struct aac_softc *sc;
2233
2234	debug_called(2);
2235
2236	sc = dev->si_drv1;
2237
2238	/* Mark this unit as no longer open  */
2239	sc->aac_state &= ~AAC_STATE_OPEN;
2240
2241	return 0;
2242}
2243
2244static int
2245aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2246{
2247	union aac_statrequest *as;
2248	struct aac_softc *sc;
2249	int error = 0;
2250	int i;
2251
2252	debug_called(2);
2253
2254	as = (union aac_statrequest *)arg;
2255	sc = dev->si_drv1;
2256
2257	switch (cmd) {
2258	case AACIO_STATS:
2259		switch (as->as_item) {
2260		case AACQ_FREE:
2261		case AACQ_BIO:
2262		case AACQ_READY:
2263		case AACQ_BUSY:
2264		case AACQ_COMPLETE:
2265			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2266			      sizeof(struct aac_qstat));
2267			break;
2268		default:
2269			error = ENOENT;
2270			break;
2271		}
2272	break;
2273
2274	case FSACTL_SENDFIB:
2275		arg = *(caddr_t*)arg;
2276	case FSACTL_LNX_SENDFIB:
2277		debug(1, "FSACTL_SENDFIB");
2278		error = aac_ioctl_sendfib(sc, arg);
2279		break;
2280	case FSACTL_AIF_THREAD:
2281	case FSACTL_LNX_AIF_THREAD:
2282		debug(1, "FSACTL_AIF_THREAD");
2283		error = EINVAL;
2284		break;
2285	case FSACTL_OPEN_GET_ADAPTER_FIB:
2286		arg = *(caddr_t*)arg;
2287	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2288		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2289		/*
2290		 * Pass the caller out an AdapterFibContext.
2291		 *
2292		 * Note that because we only support one opener, we
2293		 * basically ignore this.  Set the caller's context to a magic
2294		 * number just in case.
2295		 *
2296		 * The Linux code hands the driver a pointer into kernel space,
2297		 * and then trusts it when the caller hands it back.  Aiee!
2298		 * Here, we give it the proc pointer of the per-adapter aif
2299		 * thread. It's only used as a sanity check in other calls.
2300		 */
2301		i = (int)sc->aifthread;
2302		error = copyout(&i, arg, sizeof(i));
2303		break;
2304	case FSACTL_GET_NEXT_ADAPTER_FIB:
2305		arg = *(caddr_t*)arg;
2306	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2307		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2308		error = aac_getnext_aif(sc, arg);
2309		break;
2310	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2311	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2312		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2313		/* don't do anything here */
2314		break;
2315	case FSACTL_MINIPORT_REV_CHECK:
2316		arg = *(caddr_t*)arg;
2317	case FSACTL_LNX_MINIPORT_REV_CHECK:
2318		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2319		error = aac_rev_check(sc, arg);
2320		break;
2321	case FSACTL_QUERY_DISK:
2322		arg = *(caddr_t*)arg;
2323	case FSACTL_LNX_QUERY_DISK:
2324		debug(1, "FSACTL_QUERY_DISK");
2325		error = aac_query_disk(sc, arg);
2326			break;
2327	case FSACTL_DELETE_DISK:
2328	case FSACTL_LNX_DELETE_DISK:
2329		/*
2330		 * We don't trust the underland to tell us when to delete a
2331		 * container, rather we rely on an AIF coming from the
2332		 * controller
2333		 */
2334		error = 0;
2335		break;
2336	default:
2337		debug(1, "unsupported cmd 0x%lx\n", cmd);
2338		error = EINVAL;
2339		break;
2340	}
2341	return(error);
2342}
2343
2344static int
2345aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2346{
2347	struct aac_softc *sc;
2348	int revents;
2349
2350	sc = dev->si_drv1;
2351	revents = 0;
2352
2353	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2354	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2355		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2356			revents |= poll_events & (POLLIN | POLLRDNORM);
2357	}
2358	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2359
2360	if (revents == 0) {
2361		if (poll_events & (POLLIN | POLLRDNORM))
2362			selrecord(td, &sc->rcv_select);
2363	}
2364
2365	return (revents);
2366}
2367
2368/*
2369 * Send a FIB supplied from userspace
2370 */
2371static int
2372aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2373{
2374	struct aac_command *cm;
2375	int size, error;
2376
2377	debug_called(2);
2378
2379	cm = NULL;
2380
2381	/*
2382	 * Get a command
2383	 */
2384	if (aac_alloc_command(sc, &cm)) {
2385		error = EBUSY;
2386		goto out;
2387	}
2388
2389	/*
2390	 * Fetch the FIB header, then re-copy to get data as well.
2391	 */
2392	if ((error = copyin(ufib, cm->cm_fib,
2393			    sizeof(struct aac_fib_header))) != 0)
2394		goto out;
2395	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2396	if (size > sizeof(struct aac_fib)) {
2397		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2398			      size, sizeof(struct aac_fib));
2399		size = sizeof(struct aac_fib);
2400	}
2401	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2402		goto out;
2403	cm->cm_fib->Header.Size = size;
2404	cm->cm_timestamp = time_second;
2405
2406	/*
2407	 * Pass the FIB to the controller, wait for it to complete.
2408	 */
2409	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2410		device_printf(sc->aac_dev,
2411			      "aac_wait_command return %d\n", error);
2412		goto out;
2413	}
2414
2415	/*
2416	 * Copy the FIB and data back out to the caller.
2417	 */
2418	size = cm->cm_fib->Header.Size;
2419	if (size > sizeof(struct aac_fib)) {
2420		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2421			      size, sizeof(struct aac_fib));
2422		size = sizeof(struct aac_fib);
2423	}
2424	error = copyout(cm->cm_fib, ufib, size);
2425
2426out:
2427	if (cm != NULL) {
2428		aac_release_command(cm);
2429	}
2430	return(error);
2431}
2432
2433/*
2434 * Handle an AIF sent to us by the controller; queue it for later reference.
2435 * If the queue fills up, then drop the older entries.
2436 */
2437static void
2438aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2439{
2440	struct aac_aif_command *aif;
2441	struct aac_container *co, *co_next;
2442	struct aac_mntinfo *mi;
2443	struct aac_mntinforesp *mir = NULL;
2444	u_int16_t rsize;
2445	int next, found;
2446	int added = 0, i = 0;
2447
2448	debug_called(2);
2449
2450	aif = (struct aac_aif_command*)&fib->data[0];
2451	aac_print_aif(sc, aif);
2452
2453	/* Is it an event that we should care about? */
2454	switch (aif->command) {
2455	case AifCmdEventNotify:
2456		switch (aif->data.EN.type) {
2457		case AifEnAddContainer:
2458		case AifEnDeleteContainer:
2459			/*
2460			 * A container was added or deleted, but the message
2461			 * doesn't tell us anything else!  Re-enumerate the
2462			 * containers and sort things out.
2463			 */
2464			aac_alloc_sync_fib(sc, &fib, 0);
2465			mi = (struct aac_mntinfo *)&fib->data[0];
2466			do {
2467				/*
2468				 * Ask the controller for its containers one at
2469				 * a time.
2470				 * XXX What if the controller's list changes
2471				 * midway through this enumaration?
2472				 * XXX This should be done async.
2473				 */
2474				bzero(mi, sizeof(struct aac_mntinfo));
2475				mi->Command = VM_NameServe;
2476				mi->MntType = FT_FILESYS;
2477				mi->MntCount = i;
2478				rsize = sizeof(mir);
2479				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2480						 sizeof(struct aac_mntinfo))) {
2481					debug(2, "Error probing container %d\n",
2482					      i);
2483					continue;
2484				}
2485				mir = (struct aac_mntinforesp *)&fib->data[0];
2486				/*
2487				 * Check the container against our list.
2488				 * co->co_found was already set to 0 in a
2489				 * previous run.
2490				 */
2491				if ((mir->Status == ST_OK) &&
2492				    (mir->MntTable[0].VolType != CT_NONE)) {
2493					found = 0;
2494					TAILQ_FOREACH(co,
2495						      &sc->aac_container_tqh,
2496						      co_link) {
2497						if (co->co_mntobj.ObjectId ==
2498						    mir->MntTable[0].ObjectId) {
2499							co->co_found = 1;
2500							found = 1;
2501							break;
2502						}
2503					}
2504					/*
2505					 * If the container matched, continue
2506					 * in the list.
2507					 */
2508					if (found) {
2509						i++;
2510						continue;
2511					}
2512
2513					/*
2514					 * This is a new container.  Do all the
2515					 * appropriate things to set it up.
2516					 */
2517					aac_add_container(sc, mir, 1);
2518					added = 1;
2519				}
2520				i++;
2521			} while ((i < mir->MntRespCount) &&
2522				 (i < AAC_MAX_CONTAINERS));
2523			aac_release_sync_fib(sc);
2524
2525			/*
2526			 * Go through our list of containers and see which ones
2527			 * were not marked 'found'.  Since the controller didn't
2528			 * list them they must have been deleted.  Do the
2529			 * appropriate steps to destroy the device.  Also reset
2530			 * the co->co_found field.
2531			 */
2532			co = TAILQ_FIRST(&sc->aac_container_tqh);
2533			while (co != NULL) {
2534				if (co->co_found == 0) {
2535					device_delete_child(sc->aac_dev,
2536							    co->co_disk);
2537					co_next = TAILQ_NEXT(co, co_link);
2538					AAC_LOCK_ACQUIRE(&sc->
2539							aac_container_lock);
2540					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2541						     co_link);
2542					AAC_LOCK_RELEASE(&sc->
2543							 aac_container_lock);
2544					FREE(co, M_AACBUF);
2545					co = co_next;
2546				} else {
2547					co->co_found = 0;
2548					co = TAILQ_NEXT(co, co_link);
2549				}
2550			}
2551
2552			/* Attach the newly created containers */
2553			if (added)
2554				bus_generic_attach(sc->aac_dev);
2555
2556			break;
2557
2558		default:
2559			break;
2560		}
2561
2562	default:
2563		break;
2564	}
2565
2566	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2567	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2568	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2569	if (next != sc->aac_aifq_tail) {
2570		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2571		sc->aac_aifq_head = next;
2572
2573		/* On the off chance that someone is sleeping for an aif... */
2574		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2575			wakeup(sc->aac_aifq);
2576		/* Wakeup any poll()ers */
2577		selwakeup(&sc->rcv_select);
2578	}
2579	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2580
2581	return;
2582}
2583
2584/*
2585 * Return the Revision of the driver to userspace and check to see if the
2586 * userspace app is possibly compatible.  This is extremely bogus since
2587 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2588 * returning what the card reported.
2589 */
2590static int
2591aac_rev_check(struct aac_softc *sc, caddr_t udata)
2592{
2593	struct aac_rev_check rev_check;
2594	struct aac_rev_check_resp rev_check_resp;
2595	int error = 0;
2596
2597	debug_called(2);
2598
2599	/*
2600	 * Copyin the revision struct from userspace
2601	 */
2602	if ((error = copyin(udata, (caddr_t)&rev_check,
2603			sizeof(struct aac_rev_check))) != 0) {
2604		return error;
2605	}
2606
2607	debug(2, "Userland revision= %d\n",
2608	      rev_check.callingRevision.buildNumber);
2609
2610	/*
2611	 * Doctor up the response struct.
2612	 */
2613	rev_check_resp.possiblyCompatible = 1;
2614	rev_check_resp.adapterSWRevision.external.ul =
2615	    sc->aac_revision.external.ul;
2616	rev_check_resp.adapterSWRevision.buildNumber =
2617	    sc->aac_revision.buildNumber;
2618
2619	return(copyout((caddr_t)&rev_check_resp, udata,
2620			sizeof(struct aac_rev_check_resp)));
2621}
2622
2623/*
2624 * Pass the caller the next AIF in their queue
2625 */
2626static int
2627aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2628{
2629	struct get_adapter_fib_ioctl agf;
2630	int error, s;
2631
2632	debug_called(2);
2633
2634	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2635
2636		/*
2637		 * Check the magic number that we gave the caller.
2638		 */
2639		if (agf.AdapterFibContext != (int)sc->aifthread) {
2640			error = EFAULT;
2641		} else {
2642
2643			s = splbio();
2644			error = aac_return_aif(sc, agf.AifFib);
2645
2646			if ((error == EAGAIN) && (agf.Wait)) {
2647				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2648				while (error == EAGAIN) {
2649					error = tsleep(sc->aac_aifq, PRIBIO |
2650						       PCATCH, "aacaif", 0);
2651					if (error == 0)
2652						error = aac_return_aif(sc,
2653						    agf.AifFib);
2654				}
2655				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2656			}
2657		splx(s);
2658		}
2659	}
2660	return(error);
2661}
2662
2663/*
2664 * Hand the next AIF off the top of the queue out to userspace.
2665 */
2666static int
2667aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2668{
2669	int error;
2670
2671	debug_called(2);
2672
2673	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2674	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2675		error = EAGAIN;
2676	} else {
2677		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2678				sizeof(struct aac_aif_command));
2679		if (error)
2680			device_printf(sc->aac_dev,
2681			    "aac_return_aif: copyout returned %d\n", error);
2682		if (!error)
2683			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2684					    AAC_AIFQ_LENGTH;
2685	}
2686	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2687	return(error);
2688}
2689
2690/*
2691 * Give the userland some information about the container.  The AAC arch
2692 * expects the driver to be a SCSI passthrough type driver, so it expects
2693 * the containers to have b:t:l numbers.  Fake it.
2694 */
2695static int
2696aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2697{
2698	struct aac_query_disk query_disk;
2699	struct aac_container *co;
2700	struct aac_disk	*disk;
2701	int error, id;
2702
2703	debug_called(2);
2704
2705	disk = NULL;
2706
2707	error = copyin(uptr, (caddr_t)&query_disk,
2708		       sizeof(struct aac_query_disk));
2709	if (error)
2710		return (error);
2711
2712	id = query_disk.ContainerNumber;
2713	if (id == -1)
2714		return (EINVAL);
2715
2716	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2717	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2718		if (co->co_mntobj.ObjectId == id)
2719			break;
2720		}
2721
2722	if (co == NULL) {
2723			query_disk.Valid = 0;
2724			query_disk.Locked = 0;
2725			query_disk.Deleted = 1;		/* XXX is this right? */
2726	} else {
2727		disk = device_get_softc(co->co_disk);
2728		query_disk.Valid = 1;
2729		query_disk.Locked =
2730		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2731		query_disk.Deleted = 0;
2732		query_disk.Bus = device_get_unit(sc->aac_dev);
2733		query_disk.Target = disk->unit;
2734		query_disk.Lun = 0;
2735		query_disk.UnMapped = 0;
2736		bcopy(disk->ad_dev_t->si_name,
2737		      &query_disk.diskDeviceName[0], 10);
2738	}
2739	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2740
2741	error = copyout((caddr_t)&query_disk, uptr,
2742			sizeof(struct aac_query_disk));
2743
2744	return (error);
2745}
2746
2747static void
2748aac_get_bus_info(struct aac_softc *sc)
2749{
2750	struct aac_fib *fib;
2751	struct aac_ctcfg *c_cmd;
2752	struct aac_ctcfg_resp *c_resp;
2753	struct aac_vmioctl *vmi;
2754	struct aac_vmi_businf_resp *vmi_resp;
2755	struct aac_getbusinf businfo;
2756	struct aac_sim *caminf;
2757	device_t child;
2758	int i, found, error;
2759
2760	aac_alloc_sync_fib(sc, &fib, 0);
2761	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2762	bzero(c_cmd, sizeof(struct aac_ctcfg));
2763
2764	c_cmd->Command = VM_ContainerConfig;
2765	c_cmd->cmd = CT_GET_SCSI_METHOD;
2766	c_cmd->param = 0;
2767
2768	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2769	    sizeof(struct aac_ctcfg));
2770	if (error) {
2771		device_printf(sc->aac_dev, "Error %d sending "
2772		    "VM_ContainerConfig command\n", error);
2773		aac_release_sync_fib(sc);
2774		return;
2775	}
2776
2777	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2778	if (c_resp->Status != ST_OK) {
2779		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2780		    c_resp->Status);
2781		aac_release_sync_fib(sc);
2782		return;
2783	}
2784
2785	sc->scsi_method_id = c_resp->param;
2786
2787	vmi = (struct aac_vmioctl *)&fib->data[0];
2788	bzero(vmi, sizeof(struct aac_vmioctl));
2789
2790	vmi->Command = VM_Ioctl;
2791	vmi->ObjType = FT_DRIVE;
2792	vmi->MethId = sc->scsi_method_id;
2793	vmi->ObjId = 0;
2794	vmi->IoctlCmd = GetBusInfo;
2795
2796	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2797	    sizeof(struct aac_vmioctl));
2798	if (error) {
2799		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2800		    error);
2801		aac_release_sync_fib(sc);
2802		return;
2803	}
2804
2805	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2806	if (vmi_resp->Status != ST_OK) {
2807		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2808		    vmi_resp->Status);
2809		aac_release_sync_fib(sc);
2810		return;
2811	}
2812
2813	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2814	aac_release_sync_fib(sc);
2815
2816	found = 0;
2817	for (i = 0; i < businfo.BusCount; i++) {
2818		if (businfo.BusValid[i] != AAC_BUS_VALID)
2819			continue;
2820
2821		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2822		    M_AACBUF, M_NOWAIT | M_ZERO);
2823		if (caminf == NULL)
2824			continue;
2825
2826		child = device_add_child(sc->aac_dev, "aacp", -1);
2827		if (child == NULL) {
2828			device_printf(sc->aac_dev, "device_add_child failed\n");
2829			continue;
2830		}
2831
2832		caminf->TargetsPerBus = businfo.TargetsPerBus;
2833		caminf->BusNumber = i;
2834		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2835		caminf->aac_sc = sc;
2836		caminf->sim_dev = child;
2837
2838		device_set_ivars(child, caminf);
2839		device_set_desc(child, "SCSI Passthrough Bus");
2840		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2841
2842		found = 1;
2843	}
2844
2845	if (found)
2846		bus_generic_attach(sc->aac_dev);
2847
2848	return;
2849}
2850