zfs_fuid.c revision 210398
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/sunddi.h>
28#include <sys/dmu.h>
29#include <sys/avl.h>
30#include <sys/zap.h>
31#include <sys/refcount.h>
32#include <sys/nvpair.h>
33#ifdef _KERNEL
34#include <sys/kidmap.h>
35#include <sys/sid.h>
36#include <sys/zfs_vfsops.h>
37#include <sys/zfs_znode.h>
38#endif
39#include <sys/zfs_fuid.h>
40
41/*
42 * FUID Domain table(s).
43 *
44 * The FUID table is stored as a packed nvlist of an array
45 * of nvlists which contain an index, domain string and offset
46 *
47 * During file system initialization the nvlist(s) are read and
48 * two AVL trees are created.  One tree is keyed by the index number
49 * and the other by the domain string.  Nodes are never removed from
50 * trees, but new entries may be added.  If a new entry is added then
51 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
52 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
53 *
54 */
55
56#define	FUID_IDX	"fuid_idx"
57#define	FUID_DOMAIN	"fuid_domain"
58#define	FUID_OFFSET	"fuid_offset"
59#define	FUID_NVP_ARRAY	"fuid_nvlist"
60
61typedef struct fuid_domain {
62	avl_node_t	f_domnode;
63	avl_node_t	f_idxnode;
64	ksiddomain_t	*f_ksid;
65	uint64_t	f_idx;
66} fuid_domain_t;
67
68static char *nulldomain = "";
69
70/*
71 * Compare two indexes.
72 */
73static int
74idx_compare(const void *arg1, const void *arg2)
75{
76	const fuid_domain_t *node1 = arg1;
77	const fuid_domain_t *node2 = arg2;
78
79	if (node1->f_idx < node2->f_idx)
80		return (-1);
81	else if (node1->f_idx > node2->f_idx)
82		return (1);
83	return (0);
84}
85
86/*
87 * Compare two domain strings.
88 */
89static int
90domain_compare(const void *arg1, const void *arg2)
91{
92	const fuid_domain_t *node1 = arg1;
93	const fuid_domain_t *node2 = arg2;
94	int val;
95
96	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
97	if (val == 0)
98		return (0);
99	return (val > 0 ? 1 : -1);
100}
101
102void
103zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
104{
105	avl_create(idx_tree, idx_compare,
106	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
107	avl_create(domain_tree, domain_compare,
108	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
109}
110
111/*
112 * load initial fuid domain and idx trees.  This function is used by
113 * both the kernel and zdb.
114 */
115uint64_t
116zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
117    avl_tree_t *domain_tree)
118{
119	dmu_buf_t *db;
120	uint64_t fuid_size;
121
122	ASSERT(fuid_obj != 0);
123	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
124	    FTAG, &db));
125	fuid_size = *(uint64_t *)db->db_data;
126	dmu_buf_rele(db, FTAG);
127
128	if (fuid_size)  {
129		nvlist_t **fuidnvp;
130		nvlist_t *nvp = NULL;
131		uint_t count;
132		char *packed;
133		int i;
134
135		packed = kmem_alloc(fuid_size, KM_SLEEP);
136		VERIFY(dmu_read(os, fuid_obj, 0,
137		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
138		VERIFY(nvlist_unpack(packed, fuid_size,
139		    &nvp, 0) == 0);
140		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
141		    &fuidnvp, &count) == 0);
142
143		for (i = 0; i != count; i++) {
144			fuid_domain_t *domnode;
145			char *domain;
146			uint64_t idx;
147
148			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
149			    &domain) == 0);
150			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
151			    &idx) == 0);
152
153			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
154
155			domnode->f_idx = idx;
156			domnode->f_ksid = ksid_lookupdomain(domain);
157			avl_add(idx_tree, domnode);
158			avl_add(domain_tree, domnode);
159		}
160		nvlist_free(nvp);
161		kmem_free(packed, fuid_size);
162	}
163	return (fuid_size);
164}
165
166void
167zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
168{
169	fuid_domain_t *domnode;
170	void *cookie;
171
172	cookie = NULL;
173	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
174		ksiddomain_rele(domnode->f_ksid);
175
176	avl_destroy(domain_tree);
177	cookie = NULL;
178	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
179		kmem_free(domnode, sizeof (fuid_domain_t));
180	avl_destroy(idx_tree);
181}
182
183char *
184zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
185{
186	fuid_domain_t searchnode, *findnode;
187	avl_index_t loc;
188
189	searchnode.f_idx = idx;
190
191	findnode = avl_find(idx_tree, &searchnode, &loc);
192
193	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
194}
195
196#ifdef _KERNEL
197/*
198 * Load the fuid table(s) into memory.
199 */
200static void
201zfs_fuid_init(zfsvfs_t *zfsvfs)
202{
203	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
204
205	if (zfsvfs->z_fuid_loaded) {
206		rw_exit(&zfsvfs->z_fuid_lock);
207		return;
208	}
209
210	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
211
212	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
213	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
214	if (zfsvfs->z_fuid_obj != 0) {
215		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
216		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
217		    &zfsvfs->z_fuid_domain);
218	}
219
220	zfsvfs->z_fuid_loaded = B_TRUE;
221	rw_exit(&zfsvfs->z_fuid_lock);
222}
223
224/*
225 * sync out AVL trees to persistent storage.
226 */
227void
228zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
229{
230	nvlist_t *nvp;
231	nvlist_t **fuids;
232	size_t nvsize = 0;
233	char *packed;
234	dmu_buf_t *db;
235	fuid_domain_t *domnode;
236	int numnodes;
237	int i;
238
239	if (!zfsvfs->z_fuid_dirty) {
240		return;
241	}
242
243	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
244
245	/*
246	 * First see if table needs to be created?
247	 */
248	if (zfsvfs->z_fuid_obj == 0) {
249		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
250		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
251		    sizeof (uint64_t), tx);
252		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
253		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
254		    &zfsvfs->z_fuid_obj, tx) == 0);
255	}
256
257	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
258
259	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
260	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
261	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
262	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
263		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
264		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
265		    domnode->f_idx) == 0);
266		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
267		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
268		    domnode->f_ksid->kd_name) == 0);
269	}
270	VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
271	    fuids, numnodes) == 0);
272	for (i = 0; i != numnodes; i++)
273		nvlist_free(fuids[i]);
274	kmem_free(fuids, numnodes * sizeof (void *));
275	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
276	packed = kmem_alloc(nvsize, KM_SLEEP);
277	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
278	    NV_ENCODE_XDR, KM_SLEEP) == 0);
279	nvlist_free(nvp);
280	zfsvfs->z_fuid_size = nvsize;
281	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
282	    zfsvfs->z_fuid_size, packed, tx);
283	kmem_free(packed, zfsvfs->z_fuid_size);
284	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
285	    FTAG, &db));
286	dmu_buf_will_dirty(db, tx);
287	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
288	dmu_buf_rele(db, FTAG);
289
290	zfsvfs->z_fuid_dirty = B_FALSE;
291	rw_exit(&zfsvfs->z_fuid_lock);
292}
293
294/*
295 * Query domain table for a given domain.
296 *
297 * If domain isn't found and addok is set, it is added to AVL trees and
298 * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
299 * necessary for the caller or another thread to detect the dirty table
300 * and sync out the changes.
301 */
302int
303zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
304    char **retdomain, boolean_t addok)
305{
306	fuid_domain_t searchnode, *findnode;
307	avl_index_t loc;
308	krw_t rw = RW_READER;
309
310	/*
311	 * If the dummy "nobody" domain then return an index of 0
312	 * to cause the created FUID to be a standard POSIX id
313	 * for the user nobody.
314	 */
315	if (domain[0] == '\0') {
316		if (retdomain)
317			*retdomain = nulldomain;
318		return (0);
319	}
320
321	searchnode.f_ksid = ksid_lookupdomain(domain);
322	if (retdomain)
323		*retdomain = searchnode.f_ksid->kd_name;
324	if (!zfsvfs->z_fuid_loaded)
325		zfs_fuid_init(zfsvfs);
326
327retry:
328	rw_enter(&zfsvfs->z_fuid_lock, rw);
329	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
330
331	if (findnode) {
332		rw_exit(&zfsvfs->z_fuid_lock);
333		ksiddomain_rele(searchnode.f_ksid);
334		return (findnode->f_idx);
335	} else if (addok) {
336		fuid_domain_t *domnode;
337		uint64_t retidx;
338
339		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
340			rw_exit(&zfsvfs->z_fuid_lock);
341			rw = RW_WRITER;
342			goto retry;
343		}
344
345		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
346		domnode->f_ksid = searchnode.f_ksid;
347
348		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
349
350		avl_add(&zfsvfs->z_fuid_domain, domnode);
351		avl_add(&zfsvfs->z_fuid_idx, domnode);
352		zfsvfs->z_fuid_dirty = B_TRUE;
353		rw_exit(&zfsvfs->z_fuid_lock);
354		return (retidx);
355	} else {
356		rw_exit(&zfsvfs->z_fuid_lock);
357		return (-1);
358	}
359}
360
361/*
362 * Query domain table by index, returning domain string
363 *
364 * Returns a pointer from an avl node of the domain string.
365 *
366 */
367const char *
368zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
369{
370	char *domain;
371
372	if (idx == 0 || !zfsvfs->z_use_fuids)
373		return (NULL);
374
375	if (!zfsvfs->z_fuid_loaded)
376		zfs_fuid_init(zfsvfs);
377
378	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
379
380	if (zfsvfs->z_fuid_obj)
381		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
382	else
383		domain = nulldomain;
384	rw_exit(&zfsvfs->z_fuid_lock);
385
386	ASSERT(domain);
387	return (domain);
388}
389
390void
391zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
392{
393	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
394	    cr, ZFS_OWNER);
395	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
396	    cr, ZFS_GROUP);
397}
398
399uid_t
400zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
401    cred_t *cr, zfs_fuid_type_t type)
402{
403	uint32_t index = FUID_INDEX(fuid);
404	const char *domain;
405	uid_t id;
406
407	if (index == 0)
408		return (fuid);
409
410	domain = zfs_fuid_find_by_idx(zfsvfs, index);
411	ASSERT(domain != NULL);
412
413#ifdef sun
414	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
415		(void) kidmap_getuidbysid(crgetzone(cr), domain,
416		    FUID_RID(fuid), &id);
417	} else {
418		(void) kidmap_getgidbysid(crgetzone(cr), domain,
419		    FUID_RID(fuid), &id);
420	}
421#else	/* sun */
422	id = UID_NOBODY;
423#endif	/* sun */
424	return (id);
425}
426
427/*
428 * Add a FUID node to the list of fuid's being created for this
429 * ACL
430 *
431 * If ACL has multiple domains, then keep only one copy of each unique
432 * domain.
433 */
434static void
435zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
436    uint64_t idx, uint64_t id, zfs_fuid_type_t type)
437{
438	zfs_fuid_t *fuid;
439	zfs_fuid_domain_t *fuid_domain;
440	zfs_fuid_info_t *fuidp;
441	uint64_t fuididx;
442	boolean_t found = B_FALSE;
443
444	if (*fuidpp == NULL)
445		*fuidpp = zfs_fuid_info_alloc();
446
447	fuidp = *fuidpp;
448	/*
449	 * First find fuid domain index in linked list
450	 *
451	 * If one isn't found then create an entry.
452	 */
453
454	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
455	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
456	    fuid_domain), fuididx++) {
457		if (idx == fuid_domain->z_domidx) {
458			found = B_TRUE;
459			break;
460		}
461	}
462
463	if (!found) {
464		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
465		fuid_domain->z_domain = domain;
466		fuid_domain->z_domidx = idx;
467		list_insert_tail(&fuidp->z_domains, fuid_domain);
468		fuidp->z_domain_str_sz += strlen(domain) + 1;
469		fuidp->z_domain_cnt++;
470	}
471
472	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
473
474		/*
475		 * Now allocate fuid entry and add it on the end of the list
476		 */
477
478		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
479		fuid->z_id = id;
480		fuid->z_domidx = idx;
481		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
482
483		list_insert_tail(&fuidp->z_fuids, fuid);
484		fuidp->z_fuid_cnt++;
485	} else {
486		if (type == ZFS_OWNER)
487			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
488		else
489			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
490	}
491}
492
493/*
494 * Create a file system FUID, based on information in the users cred
495 */
496uint64_t
497zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
498    cred_t *cr, zfs_fuid_info_t **fuidp)
499{
500	uint64_t	idx;
501	ksid_t		*ksid;
502	uint32_t	rid;
503	char 		*kdomain;
504	const char	*domain;
505	uid_t		id;
506
507	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
508
509	if (type == ZFS_OWNER)
510		id = crgetuid(cr);
511	else
512		id = crgetgid(cr);
513
514	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id))
515		return ((uint64_t)id);
516
517#ifdef sun
518	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
519
520	VERIFY(ksid != NULL);
521	rid = ksid_getrid(ksid);
522	domain = ksid_getdomain(ksid);
523#else	/* sun */
524	rid = UID_NOBODY;
525	domain = nulldomain;
526#endif	/* sun */
527	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
528
529	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
530
531	return (FUID_ENCODE(idx, rid));
532}
533
534/*
535 * Create a file system FUID for an ACL ace
536 * or a chown/chgrp of the file.
537 * This is similar to zfs_fuid_create_cred, except that
538 * we can't find the domain + rid information in the
539 * cred.  Instead we have to query Winchester for the
540 * domain and rid.
541 *
542 * During replay operations the domain+rid information is
543 * found in the zfs_fuid_info_t that the replay code has
544 * attached to the zfsvfs of the file system.
545 */
546uint64_t
547zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
548    zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
549{
550	const char *domain;
551	char *kdomain;
552	uint32_t fuid_idx = FUID_INDEX(id);
553	uint32_t rid;
554	idmap_stat status;
555	uint64_t idx;
556	zfs_fuid_t *zfuid = NULL;
557	zfs_fuid_info_t *fuidp;
558
559	/*
560	 * If POSIX ID, or entry is already a FUID then
561	 * just return the id
562	 *
563	 * We may also be handed an already FUID'ized id via
564	 * chmod.
565	 */
566
567	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
568		return (id);
569
570	if (zfsvfs->z_replay) {
571		fuidp = zfsvfs->z_fuid_replay;
572
573		/*
574		 * If we are passed an ephemeral id, but no
575		 * fuid_info was logged then return NOBODY.
576		 * This is most likely a result of idmap service
577		 * not being available.
578		 */
579		if (fuidp == NULL)
580			return (UID_NOBODY);
581
582		switch (type) {
583		case ZFS_ACE_USER:
584		case ZFS_ACE_GROUP:
585			zfuid = list_head(&fuidp->z_fuids);
586			rid = FUID_RID(zfuid->z_logfuid);
587			idx = FUID_INDEX(zfuid->z_logfuid);
588			break;
589		case ZFS_OWNER:
590			rid = FUID_RID(fuidp->z_fuid_owner);
591			idx = FUID_INDEX(fuidp->z_fuid_owner);
592			break;
593		case ZFS_GROUP:
594			rid = FUID_RID(fuidp->z_fuid_group);
595			idx = FUID_INDEX(fuidp->z_fuid_group);
596			break;
597		};
598		domain = fuidp->z_domain_table[idx -1];
599	} else {
600#ifdef sun
601		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
602			status = kidmap_getsidbyuid(crgetzone(cr), id,
603			    &domain, &rid);
604		else
605			status = kidmap_getsidbygid(crgetzone(cr), id,
606			    &domain, &rid);
607
608		if (status != 0) {
609#endif	/* sun */
610			/*
611			 * When returning nobody we will need to
612			 * make a dummy fuid table entry for logging
613			 * purposes.
614			 */
615			rid = UID_NOBODY;
616			domain = nulldomain;
617#ifdef sun
618		}
619#endif	/* sun */
620	}
621
622	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
623
624	if (!zfsvfs->z_replay)
625		zfs_fuid_node_add(fuidpp, kdomain,
626		    rid, idx, id, type);
627	else if (zfuid != NULL) {
628		list_remove(&fuidp->z_fuids, zfuid);
629		kmem_free(zfuid, sizeof (zfs_fuid_t));
630	}
631	return (FUID_ENCODE(idx, rid));
632}
633
634void
635zfs_fuid_destroy(zfsvfs_t *zfsvfs)
636{
637	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
638	if (!zfsvfs->z_fuid_loaded) {
639		rw_exit(&zfsvfs->z_fuid_lock);
640		return;
641	}
642	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
643	rw_exit(&zfsvfs->z_fuid_lock);
644}
645
646/*
647 * Allocate zfs_fuid_info for tracking FUIDs created during
648 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
649 */
650zfs_fuid_info_t *
651zfs_fuid_info_alloc(void)
652{
653	zfs_fuid_info_t *fuidp;
654
655	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
656	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
657	    offsetof(zfs_fuid_domain_t, z_next));
658	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
659	    offsetof(zfs_fuid_t, z_next));
660	return (fuidp);
661}
662
663/*
664 * Release all memory associated with zfs_fuid_info_t
665 */
666void
667zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
668{
669	zfs_fuid_t *zfuid;
670	zfs_fuid_domain_t *zdomain;
671
672	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
673		list_remove(&fuidp->z_fuids, zfuid);
674		kmem_free(zfuid, sizeof (zfs_fuid_t));
675	}
676
677	if (fuidp->z_domain_table != NULL)
678		kmem_free(fuidp->z_domain_table,
679		    (sizeof (char **)) * fuidp->z_domain_cnt);
680
681	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
682		list_remove(&fuidp->z_domains, zdomain);
683		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
684	}
685
686	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
687}
688
689/*
690 * Check to see if id is a groupmember.  If cred
691 * has ksid info then sidlist is checked first
692 * and if still not found then POSIX groups are checked
693 *
694 * Will use a straight FUID compare when possible.
695 */
696boolean_t
697zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
698{
699#ifdef sun
700	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
701	ksidlist_t	*ksidlist = crgetsidlist(cr);
702#endif	/* sun */
703	uid_t		gid;
704
705#ifdef sun
706	if (ksid && ksidlist) {
707		int 		i;
708		ksid_t		*ksid_groups;
709		ksidlist_t	*ksidlist = crgetsidlist(cr);
710		uint32_t	idx = FUID_INDEX(id);
711		uint32_t	rid = FUID_RID(id);
712
713		ASSERT(ksidlist);
714		ksid_groups = ksidlist->ksl_sids;
715
716		for (i = 0; i != ksidlist->ksl_nsid; i++) {
717			if (idx == 0) {
718				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
719				    id == ksid_groups[i].ks_id) {
720					return (B_TRUE);
721				}
722			} else {
723				const char *domain;
724
725				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
726				ASSERT(domain != NULL);
727
728				if (strcmp(domain,
729				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
730					return (B_FALSE);
731
732				if ((strcmp(domain,
733				    ksid_groups[i].ks_domain->kd_name) == 0) &&
734				    rid == ksid_groups[i].ks_rid)
735					return (B_TRUE);
736			}
737		}
738	}
739#endif	/* sun */
740
741	/*
742	 * Not found in ksidlist, check posix groups
743	 */
744	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
745	return (groupmember(gid, cr));
746}
747
748void
749zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
750{
751	if (zfsvfs->z_fuid_obj == 0) {
752		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
753		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
754		    FUID_SIZE_ESTIMATE(zfsvfs));
755		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
756	} else {
757		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
758		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
759		    FUID_SIZE_ESTIMATE(zfsvfs));
760	}
761}
762#endif
763