1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/vdev_impl.h>
33#include <sys/spa_impl.h>
34#include <sys/zio.h>
35#include <sys/avl.h>
36#include <sys/dsl_pool.h>
37
38/*
39 * ZFS I/O Scheduler
40 * ---------------
41 *
42 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
43 * I/O scheduler determines when and in what order those operations are
44 * issued.  The I/O scheduler divides operations into six I/O classes
45 * prioritized in the following order: sync read, sync write, async read,
46 * async write, scrub/resilver and trim.  Each queue defines the minimum and
47 * maximum number of concurrent operations that may be issued to the device.
48 * In addition, the device has an aggregate maximum. Note that the sum of the
49 * per-queue minimums must not exceed the aggregate maximum, and if the
50 * aggregate maximum is equal to or greater than the sum of the per-queue
51 * maximums, the per-queue minimum has no effect.
52 *
53 * For many physical devices, throughput increases with the number of
54 * concurrent operations, but latency typically suffers. Further, physical
55 * devices typically have a limit at which more concurrent operations have no
56 * effect on throughput or can actually cause it to decrease.
57 *
58 * The scheduler selects the next operation to issue by first looking for an
59 * I/O class whose minimum has not been satisfied. Once all are satisfied and
60 * the aggregate maximum has not been hit, the scheduler looks for classes
61 * whose maximum has not been satisfied. Iteration through the I/O classes is
62 * done in the order specified above. No further operations are issued if the
63 * aggregate maximum number of concurrent operations has been hit or if there
64 * are no operations queued for an I/O class that has not hit its maximum.
65 * Every time an I/O is queued or an operation completes, the I/O scheduler
66 * looks for new operations to issue.
67 *
68 * All I/O classes have a fixed maximum number of outstanding operations
69 * except for the async write class. Asynchronous writes represent the data
70 * that is committed to stable storage during the syncing stage for
71 * transaction groups (see txg.c). Transaction groups enter the syncing state
72 * periodically so the number of queued async writes will quickly burst up and
73 * then bleed down to zero. Rather than servicing them as quickly as possible,
74 * the I/O scheduler changes the maximum number of active async write I/Os
75 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
76 * both throughput and latency typically increase with the number of
77 * concurrent operations issued to physical devices, reducing the burstiness
78 * in the number of concurrent operations also stabilizes the response time of
79 * operations from other -- and in particular synchronous -- queues. In broad
80 * strokes, the I/O scheduler will issue more concurrent operations from the
81 * async write queue as there's more dirty data in the pool.
82 *
83 * Async Writes
84 *
85 * The number of concurrent operations issued for the async write I/O class
86 * follows a piece-wise linear function defined by a few adjustable points.
87 *
88 *        |                   o---------| <-- zfs_vdev_async_write_max_active
89 *   ^    |                  /^         |
90 *   |    |                 / |         |
91 * active |                /  |         |
92 *  I/O   |               /   |         |
93 * count  |              /    |         |
94 *        |             /     |         |
95 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
96 *       0|____________^______|_________|
97 *        0%           |      |       100% of zfs_dirty_data_max
98 *                     |      |
99 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
100 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
101 *
102 * Until the amount of dirty data exceeds a minimum percentage of the dirty
103 * data allowed in the pool, the I/O scheduler will limit the number of
104 * concurrent operations to the minimum. As that threshold is crossed, the
105 * number of concurrent operations issued increases linearly to the maximum at
106 * the specified maximum percentage of the dirty data allowed in the pool.
107 *
108 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
109 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
110 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
111 * maximum percentage, this indicates that the rate of incoming data is
112 * greater than the rate that the backend storage can handle. In this case, we
113 * must further throttle incoming writes (see dmu_tx_delay() for details).
114 */
115
116/*
117 * The maximum number of I/Os active to each device.  Ideally, this will be >=
118 * the sum of each queue's max_active.  It must be at least the sum of each
119 * queue's min_active.
120 */
121uint32_t zfs_vdev_max_active = 1000;
122
123/*
124 * Per-queue limits on the number of I/Os active to each device.  If the
125 * sum of the queue's max_active is < zfs_vdev_max_active, then the
126 * min_active comes into play.  We will send min_active from each queue,
127 * and then select from queues in the order defined by zio_priority_t.
128 *
129 * In general, smaller max_active's will lead to lower latency of synchronous
130 * operations.  Larger max_active's may lead to higher overall throughput,
131 * depending on underlying storage.
132 *
133 * The ratio of the queues' max_actives determines the balance of performance
134 * between reads, writes, and scrubs.  E.g., increasing
135 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
136 * more quickly, but reads and writes to have higher latency and lower
137 * throughput.
138 */
139uint32_t zfs_vdev_sync_read_min_active = 10;
140uint32_t zfs_vdev_sync_read_max_active = 10;
141uint32_t zfs_vdev_sync_write_min_active = 10;
142uint32_t zfs_vdev_sync_write_max_active = 10;
143uint32_t zfs_vdev_async_read_min_active = 1;
144uint32_t zfs_vdev_async_read_max_active = 3;
145uint32_t zfs_vdev_async_write_min_active = 1;
146uint32_t zfs_vdev_async_write_max_active = 10;
147uint32_t zfs_vdev_scrub_min_active = 1;
148uint32_t zfs_vdev_scrub_max_active = 2;
149uint32_t zfs_vdev_trim_min_active = 1;
150/*
151 * TRIM max active is large in comparison to the other values due to the fact
152 * that TRIM IOs are coalesced at the device layer. This value is set such
153 * that a typical SSD can process the queued IOs in a single request.
154 */
155uint32_t zfs_vdev_trim_max_active = 64;
156
157
158/*
159 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
160 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
161 * zfs_vdev_async_write_active_max_dirty_percent, use
162 * zfs_vdev_async_write_max_active. The value is linearly interpolated
163 * between min and max.
164 */
165int zfs_vdev_async_write_active_min_dirty_percent = 30;
166int zfs_vdev_async_write_active_max_dirty_percent = 60;
167
168/*
169 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
170 * For read I/Os, we also aggregate across small adjacency gaps; for writes
171 * we include spans of optional I/Os to aid aggregation at the disk even when
172 * they aren't able to help us aggregate at this level.
173 */
174int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
175int zfs_vdev_read_gap_limit = 32 << 10;
176int zfs_vdev_write_gap_limit = 4 << 10;
177
178#ifdef __FreeBSD__
179SYSCTL_DECL(_vfs_zfs_vdev);
180
181static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
182SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
183    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
184    sysctl_zfs_async_write_active_min_dirty_percent, "I",
185    "Percentage of async write dirty data below which "
186    "async_write_min_active is used.");
187
188static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
189SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
190    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
191    sysctl_zfs_async_write_active_max_dirty_percent, "I",
192    "Percentage of async write dirty data above which "
193    "async_write_max_active is used.");
194
195SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
196    &zfs_vdev_max_active, 0,
197    "The maximum number of I/Os of all types active for each device.");
198
199#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
200SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active, CTLFLAG_RWTUN,\
201    &zfs_vdev_ ## name ## _min_active, 0,				\
202    "Initial number of I/O requests of type " #name			\
203    " active for each device");
204
205#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
206SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active, CTLFLAG_RWTUN,\
207    &zfs_vdev_ ## name ## _max_active, 0,				\
208    "Maximum number of I/O requests of type " #name			\
209    " active for each device");
210
211ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
212ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
213ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
214ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
215ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
216ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
217ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
218ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
219ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
220ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
221ZFS_VDEV_QUEUE_KNOB_MIN(trim);
222ZFS_VDEV_QUEUE_KNOB_MAX(trim);
223
224#undef ZFS_VDEV_QUEUE_KNOB
225
226SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
227    &zfs_vdev_aggregation_limit, 0,
228    "I/O requests are aggregated up to this size");
229SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
230    &zfs_vdev_read_gap_limit, 0,
231    "Acceptable gap between two reads being aggregated");
232SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
233    &zfs_vdev_write_gap_limit, 0,
234    "Acceptable gap between two writes being aggregated");
235
236static int
237sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
238{
239	int val, err;
240
241	val = zfs_vdev_async_write_active_min_dirty_percent;
242	err = sysctl_handle_int(oidp, &val, 0, req);
243	if (err != 0 || req->newptr == NULL)
244		return (err);
245
246	if (val < 0 || val > 100 ||
247	    val >= zfs_vdev_async_write_active_max_dirty_percent)
248		return (EINVAL);
249
250	zfs_vdev_async_write_active_min_dirty_percent = val;
251
252	return (0);
253}
254
255static int
256sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
257{
258	int val, err;
259
260	val = zfs_vdev_async_write_active_max_dirty_percent;
261	err = sysctl_handle_int(oidp, &val, 0, req);
262	if (err != 0 || req->newptr == NULL)
263		return (err);
264
265	if (val < 0 || val > 100 ||
266	    val <= zfs_vdev_async_write_active_min_dirty_percent)
267		return (EINVAL);
268
269	zfs_vdev_async_write_active_max_dirty_percent = val;
270
271	return (0);
272}
273#endif
274
275int
276vdev_queue_offset_compare(const void *x1, const void *x2)
277{
278	const zio_t *z1 = x1;
279	const zio_t *z2 = x2;
280
281	if (z1->io_offset < z2->io_offset)
282		return (-1);
283	if (z1->io_offset > z2->io_offset)
284		return (1);
285
286	if (z1 < z2)
287		return (-1);
288	if (z1 > z2)
289		return (1);
290
291	return (0);
292}
293
294static inline avl_tree_t *
295vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
296{
297	return (&vq->vq_class[p].vqc_queued_tree);
298}
299
300static inline avl_tree_t *
301vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
302{
303	if (t == ZIO_TYPE_READ)
304		return (&vq->vq_read_offset_tree);
305	else if (t == ZIO_TYPE_WRITE)
306		return (&vq->vq_write_offset_tree);
307	else
308		return (NULL);
309}
310
311int
312vdev_queue_timestamp_compare(const void *x1, const void *x2)
313{
314	const zio_t *z1 = x1;
315	const zio_t *z2 = x2;
316
317	if (z1->io_timestamp < z2->io_timestamp)
318		return (-1);
319	if (z1->io_timestamp > z2->io_timestamp)
320		return (1);
321
322	if (z1->io_offset < z2->io_offset)
323		return (-1);
324	if (z1->io_offset > z2->io_offset)
325		return (1);
326
327	if (z1 < z2)
328		return (-1);
329	if (z1 > z2)
330		return (1);
331
332	return (0);
333}
334
335void
336vdev_queue_init(vdev_t *vd)
337{
338	vdev_queue_t *vq = &vd->vdev_queue;
339
340	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
341	vq->vq_vdev = vd;
342
343	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
344	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
345	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
346	    vdev_queue_offset_compare, sizeof (zio_t),
347	    offsetof(struct zio, io_offset_node));
348	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
349	    vdev_queue_offset_compare, sizeof (zio_t),
350	    offsetof(struct zio, io_offset_node));
351
352	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
353		int (*compfn) (const void *, const void *);
354
355		/*
356		 * The synchronous i/o queues are dispatched in FIFO rather
357		 * than LBA order.  This provides more consistent latency for
358		 * these i/os.
359		 */
360		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
361			compfn = vdev_queue_timestamp_compare;
362		else
363			compfn = vdev_queue_offset_compare;
364
365		avl_create(vdev_queue_class_tree(vq, p), compfn,
366		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
367	}
368
369	vq->vq_lastoffset = 0;
370}
371
372void
373vdev_queue_fini(vdev_t *vd)
374{
375	vdev_queue_t *vq = &vd->vdev_queue;
376
377	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
378		avl_destroy(vdev_queue_class_tree(vq, p));
379	avl_destroy(&vq->vq_active_tree);
380	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
381	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
382
383	mutex_destroy(&vq->vq_lock);
384}
385
386static void
387vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
388{
389	spa_t *spa = zio->io_spa;
390	avl_tree_t *qtt;
391	ASSERT(MUTEX_HELD(&vq->vq_lock));
392	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
393	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
394	qtt = vdev_queue_type_tree(vq, zio->io_type);
395	if (qtt)
396		avl_add(qtt, zio);
397
398#ifdef illumos
399	mutex_enter(&spa->spa_iokstat_lock);
400	spa->spa_queue_stats[zio->io_priority].spa_queued++;
401	if (spa->spa_iokstat != NULL)
402		kstat_waitq_enter(spa->spa_iokstat->ks_data);
403	mutex_exit(&spa->spa_iokstat_lock);
404#endif
405}
406
407static void
408vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
409{
410	spa_t *spa = zio->io_spa;
411	avl_tree_t *qtt;
412	ASSERT(MUTEX_HELD(&vq->vq_lock));
413	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
414	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
415	qtt = vdev_queue_type_tree(vq, zio->io_type);
416	if (qtt)
417		avl_remove(qtt, zio);
418
419#ifdef illumos
420	mutex_enter(&spa->spa_iokstat_lock);
421	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
422	spa->spa_queue_stats[zio->io_priority].spa_queued--;
423	if (spa->spa_iokstat != NULL)
424		kstat_waitq_exit(spa->spa_iokstat->ks_data);
425	mutex_exit(&spa->spa_iokstat_lock);
426#endif
427}
428
429static void
430vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
431{
432	spa_t *spa = zio->io_spa;
433	ASSERT(MUTEX_HELD(&vq->vq_lock));
434	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
435	vq->vq_class[zio->io_priority].vqc_active++;
436	avl_add(&vq->vq_active_tree, zio);
437
438#ifdef illumos
439	mutex_enter(&spa->spa_iokstat_lock);
440	spa->spa_queue_stats[zio->io_priority].spa_active++;
441	if (spa->spa_iokstat != NULL)
442		kstat_runq_enter(spa->spa_iokstat->ks_data);
443	mutex_exit(&spa->spa_iokstat_lock);
444#endif
445}
446
447static void
448vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
449{
450	spa_t *spa = zio->io_spa;
451	ASSERT(MUTEX_HELD(&vq->vq_lock));
452	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
453	vq->vq_class[zio->io_priority].vqc_active--;
454	avl_remove(&vq->vq_active_tree, zio);
455
456#ifdef illumos
457	mutex_enter(&spa->spa_iokstat_lock);
458	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
459	spa->spa_queue_stats[zio->io_priority].spa_active--;
460	if (spa->spa_iokstat != NULL) {
461		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
462
463		kstat_runq_exit(spa->spa_iokstat->ks_data);
464		if (zio->io_type == ZIO_TYPE_READ) {
465			ksio->reads++;
466			ksio->nread += zio->io_size;
467		} else if (zio->io_type == ZIO_TYPE_WRITE) {
468			ksio->writes++;
469			ksio->nwritten += zio->io_size;
470		}
471	}
472	mutex_exit(&spa->spa_iokstat_lock);
473#endif
474}
475
476static void
477vdev_queue_agg_io_done(zio_t *aio)
478{
479	if (aio->io_type == ZIO_TYPE_READ) {
480		zio_t *pio;
481		while ((pio = zio_walk_parents(aio)) != NULL) {
482			bcopy((char *)aio->io_data + (pio->io_offset -
483			    aio->io_offset), pio->io_data, pio->io_size);
484		}
485	}
486
487	zio_buf_free(aio->io_data, aio->io_size);
488}
489
490static int
491vdev_queue_class_min_active(zio_priority_t p)
492{
493	switch (p) {
494	case ZIO_PRIORITY_SYNC_READ:
495		return (zfs_vdev_sync_read_min_active);
496	case ZIO_PRIORITY_SYNC_WRITE:
497		return (zfs_vdev_sync_write_min_active);
498	case ZIO_PRIORITY_ASYNC_READ:
499		return (zfs_vdev_async_read_min_active);
500	case ZIO_PRIORITY_ASYNC_WRITE:
501		return (zfs_vdev_async_write_min_active);
502	case ZIO_PRIORITY_SCRUB:
503		return (zfs_vdev_scrub_min_active);
504	case ZIO_PRIORITY_TRIM:
505		return (zfs_vdev_trim_min_active);
506	default:
507		panic("invalid priority %u", p);
508		return (0);
509	}
510}
511
512static __noinline int
513vdev_queue_max_async_writes(spa_t *spa)
514{
515	int writes;
516	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
517	uint64_t min_bytes = zfs_dirty_data_max *
518	    zfs_vdev_async_write_active_min_dirty_percent / 100;
519	uint64_t max_bytes = zfs_dirty_data_max *
520	    zfs_vdev_async_write_active_max_dirty_percent / 100;
521
522	/*
523	 * Sync tasks correspond to interactive user actions. To reduce the
524	 * execution time of those actions we push data out as fast as possible.
525	 */
526	if (spa_has_pending_synctask(spa)) {
527		return (zfs_vdev_async_write_max_active);
528	}
529
530	if (dirty < min_bytes)
531		return (zfs_vdev_async_write_min_active);
532	if (dirty > max_bytes)
533		return (zfs_vdev_async_write_max_active);
534
535	/*
536	 * linear interpolation:
537	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
538	 * move right by min_bytes
539	 * move up by min_writes
540	 */
541	writes = (dirty - min_bytes) *
542	    (zfs_vdev_async_write_max_active -
543	    zfs_vdev_async_write_min_active) /
544	    (max_bytes - min_bytes) +
545	    zfs_vdev_async_write_min_active;
546	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
547	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
548	return (writes);
549}
550
551static int
552vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
553{
554	switch (p) {
555	case ZIO_PRIORITY_SYNC_READ:
556		return (zfs_vdev_sync_read_max_active);
557	case ZIO_PRIORITY_SYNC_WRITE:
558		return (zfs_vdev_sync_write_max_active);
559	case ZIO_PRIORITY_ASYNC_READ:
560		return (zfs_vdev_async_read_max_active);
561	case ZIO_PRIORITY_ASYNC_WRITE:
562		return (vdev_queue_max_async_writes(spa));
563	case ZIO_PRIORITY_SCRUB:
564		return (zfs_vdev_scrub_max_active);
565	case ZIO_PRIORITY_TRIM:
566		return (zfs_vdev_trim_max_active);
567	default:
568		panic("invalid priority %u", p);
569		return (0);
570	}
571}
572
573/*
574 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
575 * there is no eligible class.
576 */
577static zio_priority_t
578vdev_queue_class_to_issue(vdev_queue_t *vq)
579{
580	spa_t *spa = vq->vq_vdev->vdev_spa;
581	zio_priority_t p;
582
583	ASSERT(MUTEX_HELD(&vq->vq_lock));
584
585	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
586		return (ZIO_PRIORITY_NUM_QUEUEABLE);
587
588	/* find a queue that has not reached its minimum # outstanding i/os */
589	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
590		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
591		    vq->vq_class[p].vqc_active <
592		    vdev_queue_class_min_active(p))
593			return (p);
594	}
595
596	/*
597	 * If we haven't found a queue, look for one that hasn't reached its
598	 * maximum # outstanding i/os.
599	 */
600	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
601		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
602		    vq->vq_class[p].vqc_active <
603		    vdev_queue_class_max_active(spa, p))
604			return (p);
605	}
606
607	/* No eligible queued i/os */
608	return (ZIO_PRIORITY_NUM_QUEUEABLE);
609}
610
611/*
612 * Compute the range spanned by two i/os, which is the endpoint of the last
613 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
614 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
615 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
616 */
617#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
618#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
619
620static zio_t *
621vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
622{
623	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
624	uint64_t maxgap = 0;
625	uint64_t size;
626	boolean_t stretch;
627	avl_tree_t *t;
628	enum zio_flag flags;
629
630	ASSERT(MUTEX_HELD(&vq->vq_lock));
631
632	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
633		return (NULL);
634
635	first = last = zio;
636
637	if (zio->io_type == ZIO_TYPE_READ)
638		maxgap = zfs_vdev_read_gap_limit;
639
640	/*
641	 * We can aggregate I/Os that are sufficiently adjacent and of
642	 * the same flavor, as expressed by the AGG_INHERIT flags.
643	 * The latter requirement is necessary so that certain
644	 * attributes of the I/O, such as whether it's a normal I/O
645	 * or a scrub/resilver, can be preserved in the aggregate.
646	 * We can include optional I/Os, but don't allow them
647	 * to begin a range as they add no benefit in that situation.
648	 */
649
650	/*
651	 * We keep track of the last non-optional I/O.
652	 */
653	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
654
655	/*
656	 * Walk backwards through sufficiently contiguous I/Os
657	 * recording the last non-option I/O.
658	 */
659	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
660	t = vdev_queue_type_tree(vq, zio->io_type);
661	while (t != NULL && (dio = AVL_PREV(t, first)) != NULL &&
662	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
663	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
664	    IO_GAP(dio, first) <= maxgap) {
665		first = dio;
666		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
667			mandatory = first;
668	}
669
670	/*
671	 * Skip any initial optional I/Os.
672	 */
673	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
674		first = AVL_NEXT(t, first);
675		ASSERT(first != NULL);
676	}
677
678	/*
679	 * Walk forward through sufficiently contiguous I/Os.
680	 */
681	while ((dio = AVL_NEXT(t, last)) != NULL &&
682	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
683	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
684	    IO_GAP(last, dio) <= maxgap) {
685		last = dio;
686		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
687			mandatory = last;
688	}
689
690	/*
691	 * Now that we've established the range of the I/O aggregation
692	 * we must decide what to do with trailing optional I/Os.
693	 * For reads, there's nothing to do. While we are unable to
694	 * aggregate further, it's possible that a trailing optional
695	 * I/O would allow the underlying device to aggregate with
696	 * subsequent I/Os. We must therefore determine if the next
697	 * non-optional I/O is close enough to make aggregation
698	 * worthwhile.
699	 */
700	stretch = B_FALSE;
701	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
702		zio_t *nio = last;
703		while ((dio = AVL_NEXT(t, nio)) != NULL &&
704		    IO_GAP(nio, dio) == 0 &&
705		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
706			nio = dio;
707			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
708				stretch = B_TRUE;
709				break;
710			}
711		}
712	}
713
714	if (stretch) {
715		/* This may be a no-op. */
716		dio = AVL_NEXT(t, last);
717		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
718	} else {
719		while (last != mandatory && last != first) {
720			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
721			last = AVL_PREV(t, last);
722			ASSERT(last != NULL);
723		}
724	}
725
726	if (first == last)
727		return (NULL);
728
729	size = IO_SPAN(first, last);
730	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
731
732	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
733	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
734	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
735	    vdev_queue_agg_io_done, NULL);
736	aio->io_timestamp = first->io_timestamp;
737
738	nio = first;
739	do {
740		dio = nio;
741		nio = AVL_NEXT(t, dio);
742		ASSERT3U(dio->io_type, ==, aio->io_type);
743
744		if (dio->io_flags & ZIO_FLAG_NODATA) {
745			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
746			bzero((char *)aio->io_data + (dio->io_offset -
747			    aio->io_offset), dio->io_size);
748		} else if (dio->io_type == ZIO_TYPE_WRITE) {
749			bcopy(dio->io_data, (char *)aio->io_data +
750			    (dio->io_offset - aio->io_offset),
751			    dio->io_size);
752		}
753
754		zio_add_child(dio, aio);
755		vdev_queue_io_remove(vq, dio);
756		zio_vdev_io_bypass(dio);
757		zio_execute(dio);
758	} while (dio != last);
759
760	return (aio);
761}
762
763static zio_t *
764vdev_queue_io_to_issue(vdev_queue_t *vq)
765{
766	zio_t *zio, *aio;
767	zio_priority_t p;
768	avl_index_t idx;
769	avl_tree_t *tree;
770	zio_t search;
771
772again:
773	ASSERT(MUTEX_HELD(&vq->vq_lock));
774
775	p = vdev_queue_class_to_issue(vq);
776
777	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
778		/* No eligible queued i/os */
779		return (NULL);
780	}
781
782	/*
783	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
784	 * the most recently issued i/o in LBA (offset) order.
785	 *
786	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
787	 */
788	tree = vdev_queue_class_tree(vq, p);
789	search.io_timestamp = 0;
790	search.io_offset = vq->vq_last_offset + 1;
791	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
792	zio = avl_nearest(tree, idx, AVL_AFTER);
793	if (zio == NULL)
794		zio = avl_first(tree);
795	ASSERT3U(zio->io_priority, ==, p);
796
797	aio = vdev_queue_aggregate(vq, zio);
798	if (aio != NULL)
799		zio = aio;
800	else
801		vdev_queue_io_remove(vq, zio);
802
803	/*
804	 * If the I/O is or was optional and therefore has no data, we need to
805	 * simply discard it. We need to drop the vdev queue's lock to avoid a
806	 * deadlock that we could encounter since this I/O will complete
807	 * immediately.
808	 */
809	if (zio->io_flags & ZIO_FLAG_NODATA) {
810		mutex_exit(&vq->vq_lock);
811		zio_vdev_io_bypass(zio);
812		zio_execute(zio);
813		mutex_enter(&vq->vq_lock);
814		goto again;
815	}
816
817	vdev_queue_pending_add(vq, zio);
818	vq->vq_last_offset = zio->io_offset;
819
820	return (zio);
821}
822
823zio_t *
824vdev_queue_io(zio_t *zio)
825{
826	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
827	zio_t *nio;
828
829	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
830		return (zio);
831
832	/*
833	 * Children i/os inherent their parent's priority, which might
834	 * not match the child's i/o type.  Fix it up here.
835	 */
836	if (zio->io_type == ZIO_TYPE_READ) {
837		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
838		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
839		    zio->io_priority != ZIO_PRIORITY_SCRUB)
840			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
841	} else if (zio->io_type == ZIO_TYPE_WRITE) {
842		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
843		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
844			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
845	} else {
846		ASSERT(zio->io_type == ZIO_TYPE_FREE);
847		zio->io_priority = ZIO_PRIORITY_TRIM;
848	}
849
850	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
851
852	mutex_enter(&vq->vq_lock);
853	zio->io_timestamp = gethrtime();
854	vdev_queue_io_add(vq, zio);
855	nio = vdev_queue_io_to_issue(vq);
856	mutex_exit(&vq->vq_lock);
857
858	if (nio == NULL)
859		return (NULL);
860
861	if (nio->io_done == vdev_queue_agg_io_done) {
862		zio_nowait(nio);
863		return (NULL);
864	}
865
866	return (nio);
867}
868
869void
870vdev_queue_io_done(zio_t *zio)
871{
872	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
873	zio_t *nio;
874
875	mutex_enter(&vq->vq_lock);
876
877	vdev_queue_pending_remove(vq, zio);
878
879	vq->vq_io_complete_ts = gethrtime();
880
881	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
882		mutex_exit(&vq->vq_lock);
883		if (nio->io_done == vdev_queue_agg_io_done) {
884			zio_nowait(nio);
885		} else {
886			zio_vdev_io_reissue(nio);
887			zio_execute(nio);
888		}
889		mutex_enter(&vq->vq_lock);
890	}
891
892	mutex_exit(&vq->vq_lock);
893}
894
895/*
896 * As these three methods are only used for load calculations we're not concerned
897 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
898 * use here, instead we prefer to keep it lock free for performance.
899 */
900int
901vdev_queue_length(vdev_t *vd)
902{
903	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
904}
905
906uint64_t
907vdev_queue_lastoffset(vdev_t *vd)
908{
909	return (vd->vdev_queue.vq_lastoffset);
910}
911
912void
913vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
914{
915	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
916}
917