spa_config.c revision 249209
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/nvpair.h>
32#include <sys/uio.h>
33#include <sys/fs/zfs.h>
34#include <sys/vdev_impl.h>
35#include <sys/zfs_ioctl.h>
36#include <sys/utsname.h>
37#include <sys/sunddi.h>
38#include <sys/zfeature.h>
39#ifdef _KERNEL
40#include <sys/kobj.h>
41#include <sys/zone.h>
42#endif
43
44/*
45 * Pool configuration repository.
46 *
47 * Pool configuration is stored as a packed nvlist on the filesystem.  By
48 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
49 * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
50 * property set that allows them to be stored in an alternate location until
51 * the control of external software.
52 *
53 * For each cache file, we have a single nvlist which holds all the
54 * configuration information.  When the module loads, we read this information
55 * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
56 * maintained independently in spa.c.  Whenever the namespace is modified, or
57 * the configuration of a pool is changed, we call spa_config_sync(), which
58 * walks through all the active pools and writes the configuration to disk.
59 */
60
61static uint64_t spa_config_generation = 1;
62
63/*
64 * This can be overridden in userland to preserve an alternate namespace for
65 * userland pools when doing testing.
66 */
67const char *spa_config_path = ZPOOL_CACHE;
68
69/*
70 * Called when the module is first loaded, this routine loads the configuration
71 * file into the SPA namespace.  It does not actually open or load the pools; it
72 * only populates the namespace.
73 */
74void
75spa_config_load(void)
76{
77	void *buf = NULL;
78	nvlist_t *nvlist, *child;
79	nvpair_t *nvpair;
80	char *pathname;
81	struct _buf *file;
82	uint64_t fsize;
83
84	/*
85	 * Open the configuration file.
86	 */
87	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
88
89	(void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path);
90
91	file = kobj_open_file(pathname);
92
93	kmem_free(pathname, MAXPATHLEN);
94
95	if (file == (struct _buf *)-1)
96		return;
97
98	if (kobj_get_filesize(file, &fsize) != 0)
99		goto out;
100
101	buf = kmem_alloc(fsize, KM_SLEEP);
102
103	/*
104	 * Read the nvlist from the file.
105	 */
106	if (kobj_read_file(file, buf, fsize, 0) < 0)
107		goto out;
108
109	/*
110	 * Unpack the nvlist.
111	 */
112	if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
113		goto out;
114
115	/*
116	 * Iterate over all elements in the nvlist, creating a new spa_t for
117	 * each one with the specified configuration.
118	 */
119	mutex_enter(&spa_namespace_lock);
120	nvpair = NULL;
121	while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
122		if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
123			continue;
124
125		VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
126
127		if (spa_lookup(nvpair_name(nvpair)) != NULL)
128			continue;
129		(void) spa_add(nvpair_name(nvpair), child, NULL);
130	}
131	mutex_exit(&spa_namespace_lock);
132
133	nvlist_free(nvlist);
134
135out:
136	if (buf != NULL)
137		kmem_free(buf, fsize);
138
139	kobj_close_file(file);
140}
141
142static void
143spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
144{
145	size_t buflen;
146	char *buf;
147	vnode_t *vp;
148	int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
149	char *temp;
150
151	/*
152	 * If the nvlist is empty (NULL), then remove the old cachefile.
153	 */
154	if (nvl == NULL) {
155		(void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
156		return;
157	}
158
159	/*
160	 * Pack the configuration into a buffer.
161	 */
162	VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
163
164	buf = kmem_alloc(buflen, KM_SLEEP);
165	temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
166
167	VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
168	    KM_SLEEP) == 0);
169
170	/*
171	 * Write the configuration to disk.  We need to do the traditional
172	 * 'write to temporary file, sync, move over original' to make sure we
173	 * always have a consistent view of the data.
174	 */
175	(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
176
177	if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) {
178		if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
179		    0, RLIM64_INFINITY, kcred, NULL) == 0 &&
180		    VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) {
181			(void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
182		}
183		(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
184	}
185
186	(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
187
188	kmem_free(buf, buflen);
189	kmem_free(temp, MAXPATHLEN);
190}
191
192/*
193 * Synchronize pool configuration to disk.  This must be called with the
194 * namespace lock held.
195 */
196void
197spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
198{
199	spa_config_dirent_t *dp, *tdp;
200	nvlist_t *nvl;
201
202	ASSERT(MUTEX_HELD(&spa_namespace_lock));
203
204	if (rootdir == NULL || !(spa_mode_global & FWRITE))
205		return;
206
207	/*
208	 * Iterate over all cachefiles for the pool, past or present.  When the
209	 * cachefile is changed, the new one is pushed onto this list, allowing
210	 * us to update previous cachefiles that no longer contain this pool.
211	 */
212	for (dp = list_head(&target->spa_config_list); dp != NULL;
213	    dp = list_next(&target->spa_config_list, dp)) {
214		spa_t *spa = NULL;
215		if (dp->scd_path == NULL)
216			continue;
217
218		/*
219		 * Iterate over all pools, adding any matching pools to 'nvl'.
220		 */
221		nvl = NULL;
222		while ((spa = spa_next(spa)) != NULL) {
223			/*
224			 * Skip over our own pool if we're about to remove
225			 * ourselves from the spa namespace or any pool that
226			 * is readonly. Since we cannot guarantee that a
227			 * readonly pool would successfully import upon reboot,
228			 * we don't allow them to be written to the cache file.
229			 */
230			if ((spa == target && removing) ||
231			    !spa_writeable(spa))
232				continue;
233
234			mutex_enter(&spa->spa_props_lock);
235			tdp = list_head(&spa->spa_config_list);
236			if (spa->spa_config == NULL ||
237			    tdp->scd_path == NULL ||
238			    strcmp(tdp->scd_path, dp->scd_path) != 0) {
239				mutex_exit(&spa->spa_props_lock);
240				continue;
241			}
242
243			if (nvl == NULL)
244				VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
245				    KM_SLEEP) == 0);
246
247			VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
248			    spa->spa_config) == 0);
249			mutex_exit(&spa->spa_props_lock);
250		}
251
252		spa_config_write(dp, nvl);
253		nvlist_free(nvl);
254	}
255
256	/*
257	 * Remove any config entries older than the current one.
258	 */
259	dp = list_head(&target->spa_config_list);
260	while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
261		list_remove(&target->spa_config_list, tdp);
262		if (tdp->scd_path != NULL)
263			spa_strfree(tdp->scd_path);
264		kmem_free(tdp, sizeof (spa_config_dirent_t));
265	}
266
267	spa_config_generation++;
268
269	if (postsysevent)
270		spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
271}
272
273/*
274 * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
275 * and we don't want to allow the local zone to see all the pools anyway.
276 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
277 * information for all pool visible within the zone.
278 */
279nvlist_t *
280spa_all_configs(uint64_t *generation)
281{
282	nvlist_t *pools;
283	spa_t *spa = NULL;
284
285	if (*generation == spa_config_generation)
286		return (NULL);
287
288	VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
289
290	mutex_enter(&spa_namespace_lock);
291	while ((spa = spa_next(spa)) != NULL) {
292		if (INGLOBALZONE(curthread) ||
293		    zone_dataset_visible(spa_name(spa), NULL)) {
294			mutex_enter(&spa->spa_props_lock);
295			VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
296			    spa->spa_config) == 0);
297			mutex_exit(&spa->spa_props_lock);
298		}
299	}
300	*generation = spa_config_generation;
301	mutex_exit(&spa_namespace_lock);
302
303	return (pools);
304}
305
306void
307spa_config_set(spa_t *spa, nvlist_t *config)
308{
309	mutex_enter(&spa->spa_props_lock);
310	if (spa->spa_config != NULL)
311		nvlist_free(spa->spa_config);
312	spa->spa_config = config;
313	mutex_exit(&spa->spa_props_lock);
314}
315
316/*
317 * Generate the pool's configuration based on the current in-core state.
318 * We infer whether to generate a complete config or just one top-level config
319 * based on whether vd is the root vdev.
320 */
321nvlist_t *
322spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
323{
324	nvlist_t *config, *nvroot;
325	vdev_t *rvd = spa->spa_root_vdev;
326	unsigned long hostid = 0;
327	boolean_t locked = B_FALSE;
328	uint64_t split_guid;
329
330	if (vd == NULL) {
331		vd = rvd;
332		locked = B_TRUE;
333		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
334	}
335
336	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
337	    (SCL_CONFIG | SCL_STATE));
338
339	/*
340	 * If txg is -1, report the current value of spa->spa_config_txg.
341	 */
342	if (txg == -1ULL)
343		txg = spa->spa_config_txg;
344
345	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
346
347	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
348	    spa_version(spa)) == 0);
349	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
350	    spa_name(spa)) == 0);
351	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
352	    spa_state(spa)) == 0);
353	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
354	    txg) == 0);
355	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
356	    spa_guid(spa)) == 0);
357	VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
358	    ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
359
360
361#ifdef	_KERNEL
362	hostid = zone_get_hostid(NULL);
363#else	/* _KERNEL */
364	/*
365	 * We're emulating the system's hostid in userland, so we can't use
366	 * zone_get_hostid().
367	 */
368	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
369#endif	/* _KERNEL */
370	if (hostid != 0) {
371		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
372		    hostid) == 0);
373	}
374	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
375	    utsname.nodename) == 0);
376
377	if (vd != rvd) {
378		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
379		    vd->vdev_top->vdev_guid) == 0);
380		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
381		    vd->vdev_guid) == 0);
382		if (vd->vdev_isspare)
383			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
384			    1ULL) == 0);
385		if (vd->vdev_islog)
386			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
387			    1ULL) == 0);
388		vd = vd->vdev_top;		/* label contains top config */
389	} else {
390		/*
391		 * Only add the (potentially large) split information
392		 * in the mos config, and not in the vdev labels
393		 */
394		if (spa->spa_config_splitting != NULL)
395			VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
396			    spa->spa_config_splitting) == 0);
397	}
398
399	/*
400	 * Add the top-level config.  We even add this on pools which
401	 * don't support holes in the namespace.
402	 */
403	vdev_top_config_generate(spa, config);
404
405	/*
406	 * If we're splitting, record the original pool's guid.
407	 */
408	if (spa->spa_config_splitting != NULL &&
409	    nvlist_lookup_uint64(spa->spa_config_splitting,
410	    ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
411		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
412		    split_guid) == 0);
413	}
414
415	nvroot = vdev_config_generate(spa, vd, getstats, 0);
416	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
417	nvlist_free(nvroot);
418
419	/*
420	 * Store what's necessary for reading the MOS in the label.
421	 */
422	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
423	    spa->spa_label_features) == 0);
424
425	if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
426		ddt_histogram_t *ddh;
427		ddt_stat_t *dds;
428		ddt_object_t *ddo;
429
430		ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
431		ddt_get_dedup_histogram(spa, ddh);
432		VERIFY(nvlist_add_uint64_array(config,
433		    ZPOOL_CONFIG_DDT_HISTOGRAM,
434		    (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
435		kmem_free(ddh, sizeof (ddt_histogram_t));
436
437		ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
438		ddt_get_dedup_object_stats(spa, ddo);
439		VERIFY(nvlist_add_uint64_array(config,
440		    ZPOOL_CONFIG_DDT_OBJ_STATS,
441		    (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
442		kmem_free(ddo, sizeof (ddt_object_t));
443
444		dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
445		ddt_get_dedup_stats(spa, dds);
446		VERIFY(nvlist_add_uint64_array(config,
447		    ZPOOL_CONFIG_DDT_STATS,
448		    (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
449		kmem_free(dds, sizeof (ddt_stat_t));
450	}
451
452	if (locked)
453		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
454
455	return (config);
456}
457
458/*
459 * Update all disk labels, generate a fresh config based on the current
460 * in-core state, and sync the global config cache (do not sync the config
461 * cache if this is a booting rootpool).
462 */
463void
464spa_config_update(spa_t *spa, int what)
465{
466	vdev_t *rvd = spa->spa_root_vdev;
467	uint64_t txg;
468	int c;
469
470	ASSERT(MUTEX_HELD(&spa_namespace_lock));
471
472	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
473	txg = spa_last_synced_txg(spa) + 1;
474	if (what == SPA_CONFIG_UPDATE_POOL) {
475		vdev_config_dirty(rvd);
476	} else {
477		/*
478		 * If we have top-level vdevs that were added but have
479		 * not yet been prepared for allocation, do that now.
480		 * (It's safe now because the config cache is up to date,
481		 * so it will be able to translate the new DVAs.)
482		 * See comments in spa_vdev_add() for full details.
483		 */
484		for (c = 0; c < rvd->vdev_children; c++) {
485			vdev_t *tvd = rvd->vdev_child[c];
486			if (tvd->vdev_ms_array == 0)
487				vdev_metaslab_set_size(tvd);
488			vdev_expand(tvd, txg);
489		}
490	}
491	spa_config_exit(spa, SCL_ALL, FTAG);
492
493	/*
494	 * Wait for the mosconfig to be regenerated and synced.
495	 */
496	txg_wait_synced(spa->spa_dsl_pool, txg);
497
498	/*
499	 * Update the global config cache to reflect the new mosconfig.
500	 */
501	if (!spa->spa_is_root)
502		spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
503
504	if (what == SPA_CONFIG_UPDATE_POOL)
505		spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
506}
507