spa_config.c revision 236884
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/nvpair.h>
32#include <sys/uio.h>
33#include <sys/fs/zfs.h>
34#include <sys/vdev_impl.h>
35#include <sys/zfs_ioctl.h>
36#include <sys/utsname.h>
37#include <sys/sunddi.h>
38#include <sys/zfeature.h>
39#ifdef _KERNEL
40#include <sys/kobj.h>
41#include <sys/zone.h>
42#endif
43
44/*
45 * Pool configuration repository.
46 *
47 * Pool configuration is stored as a packed nvlist on the filesystem.  By
48 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
49 * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
50 * property set that allows them to be stored in an alternate location until
51 * the control of external software.
52 *
53 * For each cache file, we have a single nvlist which holds all the
54 * configuration information.  When the module loads, we read this information
55 * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
56 * maintained independently in spa.c.  Whenever the namespace is modified, or
57 * the configuration of a pool is changed, we call spa_config_sync(), which
58 * walks through all the active pools and writes the configuration to disk.
59 */
60
61static uint64_t spa_config_generation = 1;
62
63/*
64 * This can be overridden in userland to preserve an alternate namespace for
65 * userland pools when doing testing.
66 */
67const char *spa_config_path = ZPOOL_CACHE;
68
69/*
70 * Called when the module is first loaded, this routine loads the configuration
71 * file into the SPA namespace.  It does not actually open or load the pools; it
72 * only populates the namespace.
73 */
74void
75spa_config_load(void)
76{
77	void *buf = NULL;
78	nvlist_t *nvlist, *child;
79	nvpair_t *nvpair;
80	char *pathname;
81	struct _buf *file;
82	uint64_t fsize;
83
84	/*
85	 * Open the configuration file.
86	 */
87	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
88
89	(void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path);
90
91	file = kobj_open_file(pathname);
92
93	kmem_free(pathname, MAXPATHLEN);
94
95	if (file == (struct _buf *)-1)
96		return;
97
98	if (kobj_get_filesize(file, &fsize) != 0)
99		goto out;
100
101	buf = kmem_alloc(fsize, KM_SLEEP);
102
103	/*
104	 * Read the nvlist from the file.
105	 */
106	if (kobj_read_file(file, buf, fsize, 0) < 0)
107		goto out;
108
109	/*
110	 * Unpack the nvlist.
111	 */
112	if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
113		goto out;
114
115	/*
116	 * Iterate over all elements in the nvlist, creating a new spa_t for
117	 * each one with the specified configuration.
118	 */
119	mutex_enter(&spa_namespace_lock);
120	nvpair = NULL;
121	while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
122		if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
123			continue;
124
125		VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
126
127		if (spa_lookup(nvpair_name(nvpair)) != NULL)
128			continue;
129		(void) spa_add(nvpair_name(nvpair), child, NULL);
130	}
131	mutex_exit(&spa_namespace_lock);
132
133	nvlist_free(nvlist);
134
135out:
136	if (buf != NULL)
137		kmem_free(buf, fsize);
138
139	kobj_close_file(file);
140}
141
142static void
143spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
144{
145	size_t buflen;
146	char *buf;
147	vnode_t *vp;
148	int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
149	char *temp;
150
151	/*
152	 * If the nvlist is empty (NULL), then remove the old cachefile.
153	 */
154	if (nvl == NULL) {
155		(void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
156		return;
157	}
158
159	/*
160	 * Pack the configuration into a buffer.
161	 */
162	VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
163
164	buf = kmem_alloc(buflen, KM_SLEEP);
165	temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
166
167	VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
168	    KM_SLEEP) == 0);
169
170	/*
171	 * Write the configuration to disk.  We need to do the traditional
172	 * 'write to temporary file, sync, move over original' to make sure we
173	 * always have a consistent view of the data.
174	 */
175	(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
176
177	if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) {
178		if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
179		    0, RLIM64_INFINITY, kcred, NULL) == 0 &&
180		    VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) {
181			(void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
182		}
183		(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
184	}
185
186	(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
187
188	kmem_free(buf, buflen);
189	kmem_free(temp, MAXPATHLEN);
190}
191
192/*
193 * Synchronize pool configuration to disk.  This must be called with the
194 * namespace lock held.
195 */
196void
197spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
198{
199	spa_config_dirent_t *dp, *tdp;
200	nvlist_t *nvl;
201
202	ASSERT(MUTEX_HELD(&spa_namespace_lock));
203
204	if (rootdir == NULL || !(spa_mode_global & FWRITE))
205		return;
206
207	/*
208	 * Iterate over all cachefiles for the pool, past or present.  When the
209	 * cachefile is changed, the new one is pushed onto this list, allowing
210	 * us to update previous cachefiles that no longer contain this pool.
211	 */
212	for (dp = list_head(&target->spa_config_list); dp != NULL;
213	    dp = list_next(&target->spa_config_list, dp)) {
214		spa_t *spa = NULL;
215		if (dp->scd_path == NULL)
216			continue;
217
218		/*
219		 * Iterate over all pools, adding any matching pools to 'nvl'.
220		 */
221		nvl = NULL;
222		while ((spa = spa_next(spa)) != NULL) {
223			if (spa == target && removing)
224				continue;
225
226			mutex_enter(&spa->spa_props_lock);
227			tdp = list_head(&spa->spa_config_list);
228			if (spa->spa_config == NULL ||
229			    tdp->scd_path == NULL ||
230			    strcmp(tdp->scd_path, dp->scd_path) != 0) {
231				mutex_exit(&spa->spa_props_lock);
232				continue;
233			}
234
235			if (nvl == NULL)
236				VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
237				    KM_SLEEP) == 0);
238
239			VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
240			    spa->spa_config) == 0);
241			mutex_exit(&spa->spa_props_lock);
242		}
243
244		spa_config_write(dp, nvl);
245		nvlist_free(nvl);
246	}
247
248	/*
249	 * Remove any config entries older than the current one.
250	 */
251	dp = list_head(&target->spa_config_list);
252	while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
253		list_remove(&target->spa_config_list, tdp);
254		if (tdp->scd_path != NULL)
255			spa_strfree(tdp->scd_path);
256		kmem_free(tdp, sizeof (spa_config_dirent_t));
257	}
258
259	spa_config_generation++;
260
261	if (postsysevent)
262		spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
263}
264
265/*
266 * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
267 * and we don't want to allow the local zone to see all the pools anyway.
268 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
269 * information for all pool visible within the zone.
270 */
271nvlist_t *
272spa_all_configs(uint64_t *generation)
273{
274	nvlist_t *pools;
275	spa_t *spa = NULL;
276
277	if (*generation == spa_config_generation)
278		return (NULL);
279
280	VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
281
282	mutex_enter(&spa_namespace_lock);
283	while ((spa = spa_next(spa)) != NULL) {
284		if (INGLOBALZONE(curthread) ||
285		    zone_dataset_visible(spa_name(spa), NULL)) {
286			mutex_enter(&spa->spa_props_lock);
287			VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
288			    spa->spa_config) == 0);
289			mutex_exit(&spa->spa_props_lock);
290		}
291	}
292	*generation = spa_config_generation;
293	mutex_exit(&spa_namespace_lock);
294
295	return (pools);
296}
297
298void
299spa_config_set(spa_t *spa, nvlist_t *config)
300{
301	mutex_enter(&spa->spa_props_lock);
302	if (spa->spa_config != NULL)
303		nvlist_free(spa->spa_config);
304	spa->spa_config = config;
305	mutex_exit(&spa->spa_props_lock);
306}
307
308/*
309 * Generate the pool's configuration based on the current in-core state.
310 * We infer whether to generate a complete config or just one top-level config
311 * based on whether vd is the root vdev.
312 */
313nvlist_t *
314spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
315{
316	nvlist_t *config, *nvroot;
317	vdev_t *rvd = spa->spa_root_vdev;
318	unsigned long hostid = 0;
319	boolean_t locked = B_FALSE;
320	uint64_t split_guid;
321
322	if (vd == NULL) {
323		vd = rvd;
324		locked = B_TRUE;
325		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
326	}
327
328	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
329	    (SCL_CONFIG | SCL_STATE));
330
331	/*
332	 * If txg is -1, report the current value of spa->spa_config_txg.
333	 */
334	if (txg == -1ULL)
335		txg = spa->spa_config_txg;
336
337	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
338
339	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
340	    spa_version(spa)) == 0);
341	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
342	    spa_name(spa)) == 0);
343	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
344	    spa_state(spa)) == 0);
345	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
346	    txg) == 0);
347	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
348	    spa_guid(spa)) == 0);
349	VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
350	    ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
351
352
353#ifdef	_KERNEL
354	hostid = zone_get_hostid(NULL);
355#else	/* _KERNEL */
356	/*
357	 * We're emulating the system's hostid in userland, so we can't use
358	 * zone_get_hostid().
359	 */
360	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
361#endif	/* _KERNEL */
362	if (hostid != 0) {
363		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
364		    hostid) == 0);
365	}
366	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
367	    utsname.nodename) == 0);
368
369	if (vd != rvd) {
370		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
371		    vd->vdev_top->vdev_guid) == 0);
372		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
373		    vd->vdev_guid) == 0);
374		if (vd->vdev_isspare)
375			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
376			    1ULL) == 0);
377		if (vd->vdev_islog)
378			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
379			    1ULL) == 0);
380		vd = vd->vdev_top;		/* label contains top config */
381	} else {
382		/*
383		 * Only add the (potentially large) split information
384		 * in the mos config, and not in the vdev labels
385		 */
386		if (spa->spa_config_splitting != NULL)
387			VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
388			    spa->spa_config_splitting) == 0);
389	}
390
391	/*
392	 * Add the top-level config.  We even add this on pools which
393	 * don't support holes in the namespace.
394	 */
395	vdev_top_config_generate(spa, config);
396
397	/*
398	 * If we're splitting, record the original pool's guid.
399	 */
400	if (spa->spa_config_splitting != NULL &&
401	    nvlist_lookup_uint64(spa->spa_config_splitting,
402	    ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
403		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
404		    split_guid) == 0);
405	}
406
407	nvroot = vdev_config_generate(spa, vd, getstats, 0);
408	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
409	nvlist_free(nvroot);
410
411	/*
412	 * Store what's necessary for reading the MOS in the label.
413	 */
414	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
415	    spa->spa_label_features) == 0);
416
417	if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
418		ddt_histogram_t *ddh;
419		ddt_stat_t *dds;
420		ddt_object_t *ddo;
421
422		ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
423		ddt_get_dedup_histogram(spa, ddh);
424		VERIFY(nvlist_add_uint64_array(config,
425		    ZPOOL_CONFIG_DDT_HISTOGRAM,
426		    (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
427		kmem_free(ddh, sizeof (ddt_histogram_t));
428
429		ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
430		ddt_get_dedup_object_stats(spa, ddo);
431		VERIFY(nvlist_add_uint64_array(config,
432		    ZPOOL_CONFIG_DDT_OBJ_STATS,
433		    (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
434		kmem_free(ddo, sizeof (ddt_object_t));
435
436		dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
437		ddt_get_dedup_stats(spa, dds);
438		VERIFY(nvlist_add_uint64_array(config,
439		    ZPOOL_CONFIG_DDT_STATS,
440		    (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
441		kmem_free(dds, sizeof (ddt_stat_t));
442	}
443
444	if (locked)
445		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
446
447	return (config);
448}
449
450/*
451 * Update all disk labels, generate a fresh config based on the current
452 * in-core state, and sync the global config cache (do not sync the config
453 * cache if this is a booting rootpool).
454 */
455void
456spa_config_update(spa_t *spa, int what)
457{
458	vdev_t *rvd = spa->spa_root_vdev;
459	uint64_t txg;
460	int c;
461
462	ASSERT(MUTEX_HELD(&spa_namespace_lock));
463
464	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
465	txg = spa_last_synced_txg(spa) + 1;
466	if (what == SPA_CONFIG_UPDATE_POOL) {
467		vdev_config_dirty(rvd);
468	} else {
469		/*
470		 * If we have top-level vdevs that were added but have
471		 * not yet been prepared for allocation, do that now.
472		 * (It's safe now because the config cache is up to date,
473		 * so it will be able to translate the new DVAs.)
474		 * See comments in spa_vdev_add() for full details.
475		 */
476		for (c = 0; c < rvd->vdev_children; c++) {
477			vdev_t *tvd = rvd->vdev_child[c];
478			if (tvd->vdev_ms_array == 0)
479				vdev_metaslab_set_size(tvd);
480			vdev_expand(tvd, txg);
481		}
482	}
483	spa_config_exit(spa, SCL_ALL, FTAG);
484
485	/*
486	 * Wait for the mosconfig to be regenerated and synced.
487	 */
488	txg_wait_synced(spa->spa_dsl_pool, txg);
489
490	/*
491	 * Update the global config cache to reflect the new mosconfig.
492	 */
493	if (!spa->spa_is_root)
494		spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
495
496	if (what == SPA_CONFIG_UPDATE_POOL)
497		spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
498}
499