1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27/* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dbuf.h>
33#include <sys/dnode.h>
34#include <sys/zfs_context.h>
35#include <sys/dmu_objset.h>
36#include <sys/dmu_traverse.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_prop.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zio_compress.h>
47#include <sys/sa.h>
48#include <sys/zfeature.h>
49#ifdef _KERNEL
50#include <sys/racct.h>
51#include <sys/vm.h>
52#include <sys/zfs_znode.h>
53#endif
54
55/*
56 * Enable/disable nopwrite feature.
57 */
58int zfs_nopwrite_enabled = 1;
59SYSCTL_DECL(_vfs_zfs);
60SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
61    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
62
63const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
64	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
65	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
67	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
70	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
72	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
74	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
75	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
76	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
78	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
79	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
80	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
81	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
82	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
83	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
86	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
87	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
88	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
89	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
90	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
91	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
92	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
93	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
94	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
95	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
96	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
97	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
98	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
99	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
100	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
102	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
106	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
108	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
113	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
116	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
117	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
118};
119
120const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
121	{	byteswap_uint8_array,	"uint8"		},
122	{	byteswap_uint16_array,	"uint16"	},
123	{	byteswap_uint32_array,	"uint32"	},
124	{	byteswap_uint64_array,	"uint64"	},
125	{	zap_byteswap,		"zap"		},
126	{	dnode_buf_byteswap,	"dnode"		},
127	{	dmu_objset_byteswap,	"objset"	},
128	{	zfs_znode_byteswap,	"znode"		},
129	{	zfs_oldacl_byteswap,	"oldacl"	},
130	{	zfs_acl_byteswap,	"acl"		}
131};
132
133int
134dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
135    void *tag, dmu_buf_t **dbp)
136{
137	dnode_t *dn;
138	uint64_t blkid;
139	dmu_buf_impl_t *db;
140	int err;
141
142	err = dnode_hold(os, object, FTAG, &dn);
143	if (err)
144		return (err);
145	blkid = dbuf_whichblock(dn, 0, offset);
146	rw_enter(&dn->dn_struct_rwlock, RW_READER);
147	db = dbuf_hold(dn, blkid, tag);
148	rw_exit(&dn->dn_struct_rwlock);
149	dnode_rele(dn, FTAG);
150
151	if (db == NULL) {
152		*dbp = NULL;
153		return (SET_ERROR(EIO));
154	}
155
156	*dbp = &db->db;
157	return (err);
158}
159
160int
161dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
162    void *tag, dmu_buf_t **dbp, int flags)
163{
164	int err;
165	int db_flags = DB_RF_CANFAIL;
166
167	if (flags & DMU_READ_NO_PREFETCH)
168		db_flags |= DB_RF_NOPREFETCH;
169
170	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
171	if (err == 0) {
172		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
173		err = dbuf_read(db, NULL, db_flags);
174		if (err != 0) {
175			dbuf_rele(db, tag);
176			*dbp = NULL;
177		}
178	}
179
180	return (err);
181}
182
183int
184dmu_bonus_max(void)
185{
186	return (DN_MAX_BONUSLEN);
187}
188
189int
190dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
191{
192	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193	dnode_t *dn;
194	int error;
195
196	DB_DNODE_ENTER(db);
197	dn = DB_DNODE(db);
198
199	if (dn->dn_bonus != db) {
200		error = SET_ERROR(EINVAL);
201	} else if (newsize < 0 || newsize > db_fake->db_size) {
202		error = SET_ERROR(EINVAL);
203	} else {
204		dnode_setbonuslen(dn, newsize, tx);
205		error = 0;
206	}
207
208	DB_DNODE_EXIT(db);
209	return (error);
210}
211
212int
213dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
214{
215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216	dnode_t *dn;
217	int error;
218
219	DB_DNODE_ENTER(db);
220	dn = DB_DNODE(db);
221
222	if (!DMU_OT_IS_VALID(type)) {
223		error = SET_ERROR(EINVAL);
224	} else if (dn->dn_bonus != db) {
225		error = SET_ERROR(EINVAL);
226	} else {
227		dnode_setbonus_type(dn, type, tx);
228		error = 0;
229	}
230
231	DB_DNODE_EXIT(db);
232	return (error);
233}
234
235dmu_object_type_t
236dmu_get_bonustype(dmu_buf_t *db_fake)
237{
238	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
239	dnode_t *dn;
240	dmu_object_type_t type;
241
242	DB_DNODE_ENTER(db);
243	dn = DB_DNODE(db);
244	type = dn->dn_bonustype;
245	DB_DNODE_EXIT(db);
246
247	return (type);
248}
249
250int
251dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
252{
253	dnode_t *dn;
254	int error;
255
256	error = dnode_hold(os, object, FTAG, &dn);
257	dbuf_rm_spill(dn, tx);
258	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
259	dnode_rm_spill(dn, tx);
260	rw_exit(&dn->dn_struct_rwlock);
261	dnode_rele(dn, FTAG);
262	return (error);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 */
268int
269dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
270{
271	dnode_t *dn;
272	dmu_buf_impl_t *db;
273	int error;
274
275	error = dnode_hold(os, object, FTAG, &dn);
276	if (error)
277		return (error);
278
279	rw_enter(&dn->dn_struct_rwlock, RW_READER);
280	if (dn->dn_bonus == NULL) {
281		rw_exit(&dn->dn_struct_rwlock);
282		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283		if (dn->dn_bonus == NULL)
284			dbuf_create_bonus(dn);
285	}
286	db = dn->dn_bonus;
287
288	/* as long as the bonus buf is held, the dnode will be held */
289	if (refcount_add(&db->db_holds, tag) == 1) {
290		VERIFY(dnode_add_ref(dn, db));
291		atomic_inc_32(&dn->dn_dbufs_count);
292	}
293
294	/*
295	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
296	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
297	 * a dnode hold for every dbuf.
298	 */
299	rw_exit(&dn->dn_struct_rwlock);
300
301	dnode_rele(dn, FTAG);
302
303	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
304
305	*dbp = &db->db;
306	return (0);
307}
308
309/*
310 * returns ENOENT, EIO, or 0.
311 *
312 * This interface will allocate a blank spill dbuf when a spill blk
313 * doesn't already exist on the dnode.
314 *
315 * if you only want to find an already existing spill db, then
316 * dmu_spill_hold_existing() should be used.
317 */
318int
319dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
320{
321	dmu_buf_impl_t *db = NULL;
322	int err;
323
324	if ((flags & DB_RF_HAVESTRUCT) == 0)
325		rw_enter(&dn->dn_struct_rwlock, RW_READER);
326
327	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
328
329	if ((flags & DB_RF_HAVESTRUCT) == 0)
330		rw_exit(&dn->dn_struct_rwlock);
331
332	ASSERT(db != NULL);
333	err = dbuf_read(db, NULL, flags);
334	if (err == 0)
335		*dbp = &db->db;
336	else
337		dbuf_rele(db, tag);
338	return (err);
339}
340
341int
342dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
343{
344	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
345	dnode_t *dn;
346	int err;
347
348	DB_DNODE_ENTER(db);
349	dn = DB_DNODE(db);
350
351	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
352		err = SET_ERROR(EINVAL);
353	} else {
354		rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
356		if (!dn->dn_have_spill) {
357			err = SET_ERROR(ENOENT);
358		} else {
359			err = dmu_spill_hold_by_dnode(dn,
360			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
361		}
362
363		rw_exit(&dn->dn_struct_rwlock);
364	}
365
366	DB_DNODE_EXIT(db);
367	return (err);
368}
369
370int
371dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
372{
373	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
374	dnode_t *dn;
375	int err;
376
377	DB_DNODE_ENTER(db);
378	dn = DB_DNODE(db);
379	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
380	DB_DNODE_EXIT(db);
381
382	return (err);
383}
384
385/*
386 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
387 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
388 * and can induce severe lock contention when writing to several files
389 * whose dnodes are in the same block.
390 */
391static int
392dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
393    boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
394{
395	dmu_buf_t **dbp;
396	uint64_t blkid, nblks, i;
397	uint32_t dbuf_flags;
398	int err;
399	zio_t *zio;
400
401	ASSERT(length <= DMU_MAX_ACCESS);
402
403	/*
404	 * Note: We directly notify the prefetch code of this read, so that
405	 * we can tell it about the multi-block read.  dbuf_read() only knows
406	 * about the one block it is accessing.
407	 */
408	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
409	    DB_RF_NOPREFETCH;
410
411	rw_enter(&dn->dn_struct_rwlock, RW_READER);
412	if (dn->dn_datablkshift) {
413		int blkshift = dn->dn_datablkshift;
414		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
415		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
416	} else {
417		if (offset + length > dn->dn_datablksz) {
418			zfs_panic_recover("zfs: accessing past end of object "
419			    "%llx/%llx (size=%u access=%llu+%llu)",
420			    (longlong_t)dn->dn_objset->
421			    os_dsl_dataset->ds_object,
422			    (longlong_t)dn->dn_object, dn->dn_datablksz,
423			    (longlong_t)offset, (longlong_t)length);
424			rw_exit(&dn->dn_struct_rwlock);
425			return (SET_ERROR(EIO));
426		}
427		nblks = 1;
428	}
429	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
430
431#if defined(_KERNEL) && defined(RACCT)
432	if (racct_enable && !read) {
433		PROC_LOCK(curproc);
434		racct_add_force(curproc, RACCT_WRITEBPS, length);
435		racct_add_force(curproc, RACCT_WRITEIOPS, nblks);
436		PROC_UNLOCK(curproc);
437	}
438#endif
439
440	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
441	blkid = dbuf_whichblock(dn, 0, offset);
442	for (i = 0; i < nblks; i++) {
443		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
444		if (db == NULL) {
445			rw_exit(&dn->dn_struct_rwlock);
446			dmu_buf_rele_array(dbp, nblks, tag);
447			zio_nowait(zio);
448			return (SET_ERROR(EIO));
449		}
450
451		/* initiate async i/o */
452		if (read)
453			(void) dbuf_read(db, zio, dbuf_flags);
454#ifdef _KERNEL
455		else
456			curthread->td_ru.ru_oublock++;
457#endif
458		dbp[i] = &db->db;
459	}
460
461	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
462	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
463		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
464		    read && DNODE_IS_CACHEABLE(dn));
465	}
466	rw_exit(&dn->dn_struct_rwlock);
467
468	/* wait for async i/o */
469	err = zio_wait(zio);
470	if (err) {
471		dmu_buf_rele_array(dbp, nblks, tag);
472		return (err);
473	}
474
475	/* wait for other io to complete */
476	if (read) {
477		for (i = 0; i < nblks; i++) {
478			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
479			mutex_enter(&db->db_mtx);
480			while (db->db_state == DB_READ ||
481			    db->db_state == DB_FILL)
482				cv_wait(&db->db_changed, &db->db_mtx);
483			if (db->db_state == DB_UNCACHED)
484				err = SET_ERROR(EIO);
485			mutex_exit(&db->db_mtx);
486			if (err) {
487				dmu_buf_rele_array(dbp, nblks, tag);
488				return (err);
489			}
490		}
491	}
492
493	*numbufsp = nblks;
494	*dbpp = dbp;
495	return (0);
496}
497
498static int
499dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
500    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
501{
502	dnode_t *dn;
503	int err;
504
505	err = dnode_hold(os, object, FTAG, &dn);
506	if (err)
507		return (err);
508
509	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
510	    numbufsp, dbpp, DMU_READ_PREFETCH);
511
512	dnode_rele(dn, FTAG);
513
514	return (err);
515}
516
517int
518dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
519    uint64_t length, boolean_t read, void *tag, int *numbufsp,
520    dmu_buf_t ***dbpp)
521{
522	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
523	dnode_t *dn;
524	int err;
525
526	DB_DNODE_ENTER(db);
527	dn = DB_DNODE(db);
528	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
529	    numbufsp, dbpp, DMU_READ_PREFETCH);
530	DB_DNODE_EXIT(db);
531
532	return (err);
533}
534
535void
536dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
537{
538	int i;
539	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
540
541	if (numbufs == 0)
542		return;
543
544	for (i = 0; i < numbufs; i++) {
545		if (dbp[i])
546			dbuf_rele(dbp[i], tag);
547	}
548
549	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
550}
551
552/*
553 * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
554 * indirect blocks prefeteched will be those that point to the blocks containing
555 * the data starting at offset, and continuing to offset + len.
556 *
557 * Note that if the indirect blocks above the blocks being prefetched are not in
558 * cache, they will be asychronously read in.
559 */
560void
561dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
562    uint64_t len, zio_priority_t pri)
563{
564	dnode_t *dn;
565	uint64_t blkid;
566	int nblks, err;
567
568	if (len == 0) {  /* they're interested in the bonus buffer */
569		dn = DMU_META_DNODE(os);
570
571		if (object == 0 || object >= DN_MAX_OBJECT)
572			return;
573
574		rw_enter(&dn->dn_struct_rwlock, RW_READER);
575		blkid = dbuf_whichblock(dn, level,
576		    object * sizeof (dnode_phys_t));
577		dbuf_prefetch(dn, level, blkid, pri, 0);
578		rw_exit(&dn->dn_struct_rwlock);
579		return;
580	}
581
582	/*
583	 * XXX - Note, if the dnode for the requested object is not
584	 * already cached, we will do a *synchronous* read in the
585	 * dnode_hold() call.  The same is true for any indirects.
586	 */
587	err = dnode_hold(os, object, FTAG, &dn);
588	if (err != 0)
589		return;
590
591	rw_enter(&dn->dn_struct_rwlock, RW_READER);
592	/*
593	 * offset + len - 1 is the last byte we want to prefetch for, and offset
594	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
595	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
596	 * offset)  is the first.  Then the number we need to prefetch is the
597	 * last - first + 1.
598	 */
599	if (level > 0 || dn->dn_datablkshift != 0) {
600		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
601		    dbuf_whichblock(dn, level, offset) + 1;
602	} else {
603		nblks = (offset < dn->dn_datablksz);
604	}
605
606	if (nblks != 0) {
607		blkid = dbuf_whichblock(dn, level, offset);
608		for (int i = 0; i < nblks; i++)
609			dbuf_prefetch(dn, level, blkid + i, pri, 0);
610	}
611
612	rw_exit(&dn->dn_struct_rwlock);
613
614	dnode_rele(dn, FTAG);
615}
616
617/*
618 * Get the next "chunk" of file data to free.  We traverse the file from
619 * the end so that the file gets shorter over time (if we crashes in the
620 * middle, this will leave us in a better state).  We find allocated file
621 * data by simply searching the allocated level 1 indirects.
622 *
623 * On input, *start should be the first offset that does not need to be
624 * freed (e.g. "offset + length").  On return, *start will be the first
625 * offset that should be freed.
626 */
627static int
628get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
629{
630	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
631	/* bytes of data covered by a level-1 indirect block */
632	uint64_t iblkrange =
633	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
634
635	ASSERT3U(minimum, <=, *start);
636
637	if (*start - minimum <= iblkrange * maxblks) {
638		*start = minimum;
639		return (0);
640	}
641	ASSERT(ISP2(iblkrange));
642
643	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
644		int err;
645
646		/*
647		 * dnode_next_offset(BACKWARDS) will find an allocated L1
648		 * indirect block at or before the input offset.  We must
649		 * decrement *start so that it is at the end of the region
650		 * to search.
651		 */
652		(*start)--;
653		err = dnode_next_offset(dn,
654		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
655
656		/* if there are no indirect blocks before start, we are done */
657		if (err == ESRCH) {
658			*start = minimum;
659			break;
660		} else if (err != 0) {
661			return (err);
662		}
663
664		/* set start to the beginning of this L1 indirect */
665		*start = P2ALIGN(*start, iblkrange);
666	}
667	if (*start < minimum)
668		*start = minimum;
669	return (0);
670}
671
672static int
673dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
674    uint64_t length)
675{
676	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
677	int err;
678
679	if (offset >= object_size)
680		return (0);
681
682	if (length == DMU_OBJECT_END || offset + length > object_size)
683		length = object_size - offset;
684
685	while (length != 0) {
686		uint64_t chunk_end, chunk_begin;
687
688		chunk_end = chunk_begin = offset + length;
689
690		/* move chunk_begin backwards to the beginning of this chunk */
691		err = get_next_chunk(dn, &chunk_begin, offset);
692		if (err)
693			return (err);
694		ASSERT3U(chunk_begin, >=, offset);
695		ASSERT3U(chunk_begin, <=, chunk_end);
696
697		dmu_tx_t *tx = dmu_tx_create(os);
698		dmu_tx_hold_free(tx, dn->dn_object,
699		    chunk_begin, chunk_end - chunk_begin);
700
701		/*
702		 * Mark this transaction as typically resulting in a net
703		 * reduction in space used.
704		 */
705		dmu_tx_mark_netfree(tx);
706		err = dmu_tx_assign(tx, TXG_WAIT);
707		if (err) {
708			dmu_tx_abort(tx);
709			return (err);
710		}
711		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
712		dmu_tx_commit(tx);
713
714		length -= chunk_end - chunk_begin;
715	}
716	return (0);
717}
718
719int
720dmu_free_long_range(objset_t *os, uint64_t object,
721    uint64_t offset, uint64_t length)
722{
723	dnode_t *dn;
724	int err;
725
726	err = dnode_hold(os, object, FTAG, &dn);
727	if (err != 0)
728		return (err);
729	err = dmu_free_long_range_impl(os, dn, offset, length);
730
731	/*
732	 * It is important to zero out the maxblkid when freeing the entire
733	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
734	 * will take the fast path, and (b) dnode_reallocate() can verify
735	 * that the entire file has been freed.
736	 */
737	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
738		dn->dn_maxblkid = 0;
739
740	dnode_rele(dn, FTAG);
741	return (err);
742}
743
744int
745dmu_free_long_object(objset_t *os, uint64_t object)
746{
747	dmu_tx_t *tx;
748	int err;
749
750	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
751	if (err != 0)
752		return (err);
753
754	tx = dmu_tx_create(os);
755	dmu_tx_hold_bonus(tx, object);
756	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
757	dmu_tx_mark_netfree(tx);
758	err = dmu_tx_assign(tx, TXG_WAIT);
759	if (err == 0) {
760		err = dmu_object_free(os, object, tx);
761		dmu_tx_commit(tx);
762	} else {
763		dmu_tx_abort(tx);
764	}
765
766	return (err);
767}
768
769int
770dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
771    uint64_t size, dmu_tx_t *tx)
772{
773	dnode_t *dn;
774	int err = dnode_hold(os, object, FTAG, &dn);
775	if (err)
776		return (err);
777	ASSERT(offset < UINT64_MAX);
778	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
779	dnode_free_range(dn, offset, size, tx);
780	dnode_rele(dn, FTAG);
781	return (0);
782}
783
784int
785dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
786    void *buf, uint32_t flags)
787{
788	dnode_t *dn;
789	dmu_buf_t **dbp;
790	int numbufs, err;
791
792	err = dnode_hold(os, object, FTAG, &dn);
793	if (err)
794		return (err);
795
796	/*
797	 * Deal with odd block sizes, where there can't be data past the first
798	 * block.  If we ever do the tail block optimization, we will need to
799	 * handle that here as well.
800	 */
801	if (dn->dn_maxblkid == 0) {
802		int newsz = offset > dn->dn_datablksz ? 0 :
803		    MIN(size, dn->dn_datablksz - offset);
804		bzero((char *)buf + newsz, size - newsz);
805		size = newsz;
806	}
807
808	while (size > 0) {
809		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
810		int i;
811
812		/*
813		 * NB: we could do this block-at-a-time, but it's nice
814		 * to be reading in parallel.
815		 */
816		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
817		    TRUE, FTAG, &numbufs, &dbp, flags);
818		if (err)
819			break;
820
821		for (i = 0; i < numbufs; i++) {
822			int tocpy;
823			int bufoff;
824			dmu_buf_t *db = dbp[i];
825
826			ASSERT(size > 0);
827
828			bufoff = offset - db->db_offset;
829			tocpy = (int)MIN(db->db_size - bufoff, size);
830
831			bcopy((char *)db->db_data + bufoff, buf, tocpy);
832
833			offset += tocpy;
834			size -= tocpy;
835			buf = (char *)buf + tocpy;
836		}
837		dmu_buf_rele_array(dbp, numbufs, FTAG);
838	}
839	dnode_rele(dn, FTAG);
840	return (err);
841}
842
843void
844dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
845    const void *buf, dmu_tx_t *tx)
846{
847	dmu_buf_t **dbp;
848	int numbufs, i;
849
850	if (size == 0)
851		return;
852
853	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
854	    FALSE, FTAG, &numbufs, &dbp));
855
856	for (i = 0; i < numbufs; i++) {
857		int tocpy;
858		int bufoff;
859		dmu_buf_t *db = dbp[i];
860
861		ASSERT(size > 0);
862
863		bufoff = offset - db->db_offset;
864		tocpy = (int)MIN(db->db_size - bufoff, size);
865
866		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
867
868		if (tocpy == db->db_size)
869			dmu_buf_will_fill(db, tx);
870		else
871			dmu_buf_will_dirty(db, tx);
872
873		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
874
875		if (tocpy == db->db_size)
876			dmu_buf_fill_done(db, tx);
877
878		offset += tocpy;
879		size -= tocpy;
880		buf = (char *)buf + tocpy;
881	}
882	dmu_buf_rele_array(dbp, numbufs, FTAG);
883}
884
885void
886dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
887    dmu_tx_t *tx)
888{
889	dmu_buf_t **dbp;
890	int numbufs, i;
891
892	if (size == 0)
893		return;
894
895	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
896	    FALSE, FTAG, &numbufs, &dbp));
897
898	for (i = 0; i < numbufs; i++) {
899		dmu_buf_t *db = dbp[i];
900
901		dmu_buf_will_not_fill(db, tx);
902	}
903	dmu_buf_rele_array(dbp, numbufs, FTAG);
904}
905
906void
907dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
908    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
909    int compressed_size, int byteorder, dmu_tx_t *tx)
910{
911	dmu_buf_t *db;
912
913	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
914	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
915	VERIFY0(dmu_buf_hold_noread(os, object, offset,
916	    FTAG, &db));
917
918	dmu_buf_write_embedded(db,
919	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
920	    uncompressed_size, compressed_size, byteorder, tx);
921
922	dmu_buf_rele(db, FTAG);
923}
924
925/*
926 * DMU support for xuio
927 */
928kstat_t *xuio_ksp = NULL;
929
930int
931dmu_xuio_init(xuio_t *xuio, int nblk)
932{
933	dmu_xuio_t *priv;
934	uio_t *uio = &xuio->xu_uio;
935
936	uio->uio_iovcnt = nblk;
937	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
938
939	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
940	priv->cnt = nblk;
941	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
942	priv->iovp = uio->uio_iov;
943	XUIO_XUZC_PRIV(xuio) = priv;
944
945	if (XUIO_XUZC_RW(xuio) == UIO_READ)
946		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
947	else
948		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
949
950	return (0);
951}
952
953void
954dmu_xuio_fini(xuio_t *xuio)
955{
956	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
957	int nblk = priv->cnt;
958
959	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
960	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
961	kmem_free(priv, sizeof (dmu_xuio_t));
962
963	if (XUIO_XUZC_RW(xuio) == UIO_READ)
964		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
965	else
966		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
967}
968
969/*
970 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
971 * and increase priv->next by 1.
972 */
973int
974dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
975{
976	struct iovec *iov;
977	uio_t *uio = &xuio->xu_uio;
978	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
979	int i = priv->next++;
980
981	ASSERT(i < priv->cnt);
982	ASSERT(off + n <= arc_buf_size(abuf));
983	iov = uio->uio_iov + i;
984	iov->iov_base = (char *)abuf->b_data + off;
985	iov->iov_len = n;
986	priv->bufs[i] = abuf;
987	return (0);
988}
989
990int
991dmu_xuio_cnt(xuio_t *xuio)
992{
993	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
994	return (priv->cnt);
995}
996
997arc_buf_t *
998dmu_xuio_arcbuf(xuio_t *xuio, int i)
999{
1000	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1001
1002	ASSERT(i < priv->cnt);
1003	return (priv->bufs[i]);
1004}
1005
1006void
1007dmu_xuio_clear(xuio_t *xuio, int i)
1008{
1009	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1010
1011	ASSERT(i < priv->cnt);
1012	priv->bufs[i] = NULL;
1013}
1014
1015static void
1016xuio_stat_init(void)
1017{
1018	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1019	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1020	    KSTAT_FLAG_VIRTUAL);
1021	if (xuio_ksp != NULL) {
1022		xuio_ksp->ks_data = &xuio_stats;
1023		kstat_install(xuio_ksp);
1024	}
1025}
1026
1027static void
1028xuio_stat_fini(void)
1029{
1030	if (xuio_ksp != NULL) {
1031		kstat_delete(xuio_ksp);
1032		xuio_ksp = NULL;
1033	}
1034}
1035
1036void
1037xuio_stat_wbuf_copied()
1038{
1039	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1040}
1041
1042void
1043xuio_stat_wbuf_nocopy()
1044{
1045	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1046}
1047
1048#ifdef _KERNEL
1049static int
1050dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1051{
1052	dmu_buf_t **dbp;
1053	int numbufs, i, err;
1054	xuio_t *xuio = NULL;
1055
1056	/*
1057	 * NB: we could do this block-at-a-time, but it's nice
1058	 * to be reading in parallel.
1059	 */
1060	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1061	    TRUE, FTAG, &numbufs, &dbp, 0);
1062	if (err)
1063		return (err);
1064
1065#ifdef UIO_XUIO
1066	if (uio->uio_extflg == UIO_XUIO)
1067		xuio = (xuio_t *)uio;
1068#endif
1069
1070	for (i = 0; i < numbufs; i++) {
1071		int tocpy;
1072		int bufoff;
1073		dmu_buf_t *db = dbp[i];
1074
1075		ASSERT(size > 0);
1076
1077		bufoff = uio->uio_loffset - db->db_offset;
1078		tocpy = (int)MIN(db->db_size - bufoff, size);
1079
1080		if (xuio) {
1081			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1082			arc_buf_t *dbuf_abuf = dbi->db_buf;
1083			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1084			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1085			if (!err) {
1086				uio->uio_resid -= tocpy;
1087				uio->uio_loffset += tocpy;
1088			}
1089
1090			if (abuf == dbuf_abuf)
1091				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1092			else
1093				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1094		} else {
1095#ifdef illumos
1096			err = uiomove((char *)db->db_data + bufoff, tocpy,
1097			    UIO_READ, uio);
1098#else
1099			err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1100			    tocpy, uio);
1101#endif
1102		}
1103		if (err)
1104			break;
1105
1106		size -= tocpy;
1107	}
1108	dmu_buf_rele_array(dbp, numbufs, FTAG);
1109
1110	return (err);
1111}
1112
1113/*
1114 * Read 'size' bytes into the uio buffer.
1115 * From object zdb->db_object.
1116 * Starting at offset uio->uio_loffset.
1117 *
1118 * If the caller already has a dbuf in the target object
1119 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1120 * because we don't have to find the dnode_t for the object.
1121 */
1122int
1123dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1124{
1125	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1126	dnode_t *dn;
1127	int err;
1128
1129	if (size == 0)
1130		return (0);
1131
1132	DB_DNODE_ENTER(db);
1133	dn = DB_DNODE(db);
1134	err = dmu_read_uio_dnode(dn, uio, size);
1135	DB_DNODE_EXIT(db);
1136
1137	return (err);
1138}
1139
1140/*
1141 * Read 'size' bytes into the uio buffer.
1142 * From the specified object
1143 * Starting at offset uio->uio_loffset.
1144 */
1145int
1146dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1147{
1148	dnode_t *dn;
1149	int err;
1150
1151	if (size == 0)
1152		return (0);
1153
1154	err = dnode_hold(os, object, FTAG, &dn);
1155	if (err)
1156		return (err);
1157
1158	err = dmu_read_uio_dnode(dn, uio, size);
1159
1160	dnode_rele(dn, FTAG);
1161
1162	return (err);
1163}
1164
1165static int
1166dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1167{
1168	dmu_buf_t **dbp;
1169	int numbufs;
1170	int err = 0;
1171	int i;
1172
1173	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1174	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1175	if (err)
1176		return (err);
1177
1178	for (i = 0; i < numbufs; i++) {
1179		int tocpy;
1180		int bufoff;
1181		dmu_buf_t *db = dbp[i];
1182
1183		ASSERT(size > 0);
1184
1185		bufoff = uio->uio_loffset - db->db_offset;
1186		tocpy = (int)MIN(db->db_size - bufoff, size);
1187
1188		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1189
1190		if (tocpy == db->db_size)
1191			dmu_buf_will_fill(db, tx);
1192		else
1193			dmu_buf_will_dirty(db, tx);
1194
1195#ifdef illumos
1196		/*
1197		 * XXX uiomove could block forever (eg. nfs-backed
1198		 * pages).  There needs to be a uiolockdown() function
1199		 * to lock the pages in memory, so that uiomove won't
1200		 * block.
1201		 */
1202		err = uiomove((char *)db->db_data + bufoff, tocpy,
1203		    UIO_WRITE, uio);
1204#else
1205		err = vn_io_fault_uiomove((char *)db->db_data + bufoff, tocpy,
1206		    uio);
1207#endif
1208
1209		if (tocpy == db->db_size)
1210			dmu_buf_fill_done(db, tx);
1211
1212		if (err)
1213			break;
1214
1215		size -= tocpy;
1216	}
1217
1218	dmu_buf_rele_array(dbp, numbufs, FTAG);
1219	return (err);
1220}
1221
1222/*
1223 * Write 'size' bytes from the uio buffer.
1224 * To object zdb->db_object.
1225 * Starting at offset uio->uio_loffset.
1226 *
1227 * If the caller already has a dbuf in the target object
1228 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1229 * because we don't have to find the dnode_t for the object.
1230 */
1231int
1232dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1233    dmu_tx_t *tx)
1234{
1235	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1236	dnode_t *dn;
1237	int err;
1238
1239	if (size == 0)
1240		return (0);
1241
1242	DB_DNODE_ENTER(db);
1243	dn = DB_DNODE(db);
1244	err = dmu_write_uio_dnode(dn, uio, size, tx);
1245	DB_DNODE_EXIT(db);
1246
1247	return (err);
1248}
1249
1250/*
1251 * Write 'size' bytes from the uio buffer.
1252 * To the specified object.
1253 * Starting at offset uio->uio_loffset.
1254 */
1255int
1256dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1257    dmu_tx_t *tx)
1258{
1259	dnode_t *dn;
1260	int err;
1261
1262	if (size == 0)
1263		return (0);
1264
1265	err = dnode_hold(os, object, FTAG, &dn);
1266	if (err)
1267		return (err);
1268
1269	err = dmu_write_uio_dnode(dn, uio, size, tx);
1270
1271	dnode_rele(dn, FTAG);
1272
1273	return (err);
1274}
1275
1276#ifdef illumos
1277int
1278dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1279    page_t *pp, dmu_tx_t *tx)
1280{
1281	dmu_buf_t **dbp;
1282	int numbufs, i;
1283	int err;
1284
1285	if (size == 0)
1286		return (0);
1287
1288	err = dmu_buf_hold_array(os, object, offset, size,
1289	    FALSE, FTAG, &numbufs, &dbp);
1290	if (err)
1291		return (err);
1292
1293	for (i = 0; i < numbufs; i++) {
1294		int tocpy, copied, thiscpy;
1295		int bufoff;
1296		dmu_buf_t *db = dbp[i];
1297		caddr_t va;
1298
1299		ASSERT(size > 0);
1300		ASSERT3U(db->db_size, >=, PAGESIZE);
1301
1302		bufoff = offset - db->db_offset;
1303		tocpy = (int)MIN(db->db_size - bufoff, size);
1304
1305		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1306
1307		if (tocpy == db->db_size)
1308			dmu_buf_will_fill(db, tx);
1309		else
1310			dmu_buf_will_dirty(db, tx);
1311
1312		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1313			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1314			thiscpy = MIN(PAGESIZE, tocpy - copied);
1315			va = zfs_map_page(pp, S_READ);
1316			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1317			zfs_unmap_page(pp, va);
1318			pp = pp->p_next;
1319			bufoff += PAGESIZE;
1320		}
1321
1322		if (tocpy == db->db_size)
1323			dmu_buf_fill_done(db, tx);
1324
1325		offset += tocpy;
1326		size -= tocpy;
1327	}
1328	dmu_buf_rele_array(dbp, numbufs, FTAG);
1329	return (err);
1330}
1331
1332#else	/* !illumos */
1333
1334int
1335dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1336    vm_page_t *ma, dmu_tx_t *tx)
1337{
1338	dmu_buf_t **dbp;
1339	struct sf_buf *sf;
1340	int numbufs, i;
1341	int err;
1342
1343	if (size == 0)
1344		return (0);
1345
1346	err = dmu_buf_hold_array(os, object, offset, size,
1347	    FALSE, FTAG, &numbufs, &dbp);
1348	if (err)
1349		return (err);
1350
1351	for (i = 0; i < numbufs; i++) {
1352		int tocpy, copied, thiscpy;
1353		int bufoff;
1354		dmu_buf_t *db = dbp[i];
1355		caddr_t va;
1356
1357		ASSERT(size > 0);
1358		ASSERT3U(db->db_size, >=, PAGESIZE);
1359
1360		bufoff = offset - db->db_offset;
1361		tocpy = (int)MIN(db->db_size - bufoff, size);
1362
1363		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1364
1365		if (tocpy == db->db_size)
1366			dmu_buf_will_fill(db, tx);
1367		else
1368			dmu_buf_will_dirty(db, tx);
1369
1370		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1371			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1372			thiscpy = MIN(PAGESIZE, tocpy - copied);
1373			va = zfs_map_page(*ma, &sf);
1374			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1375			zfs_unmap_page(sf);
1376			ma += 1;
1377			bufoff += PAGESIZE;
1378		}
1379
1380		if (tocpy == db->db_size)
1381			dmu_buf_fill_done(db, tx);
1382
1383		offset += tocpy;
1384		size -= tocpy;
1385	}
1386	dmu_buf_rele_array(dbp, numbufs, FTAG);
1387	return (err);
1388}
1389#endif	/* illumos */
1390#endif	/* _KERNEL */
1391
1392/*
1393 * Allocate a loaned anonymous arc buffer.
1394 */
1395arc_buf_t *
1396dmu_request_arcbuf(dmu_buf_t *handle, int size)
1397{
1398	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1399
1400	return (arc_loan_buf(db->db_objset->os_spa, size));
1401}
1402
1403/*
1404 * Free a loaned arc buffer.
1405 */
1406void
1407dmu_return_arcbuf(arc_buf_t *buf)
1408{
1409	arc_return_buf(buf, FTAG);
1410	VERIFY(arc_buf_remove_ref(buf, FTAG));
1411}
1412
1413/*
1414 * When possible directly assign passed loaned arc buffer to a dbuf.
1415 * If this is not possible copy the contents of passed arc buf via
1416 * dmu_write().
1417 */
1418void
1419dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1420    dmu_tx_t *tx)
1421{
1422	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1423	dnode_t *dn;
1424	dmu_buf_impl_t *db;
1425	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1426	uint64_t blkid;
1427
1428	DB_DNODE_ENTER(dbuf);
1429	dn = DB_DNODE(dbuf);
1430	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1431	blkid = dbuf_whichblock(dn, 0, offset);
1432	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1433	rw_exit(&dn->dn_struct_rwlock);
1434	DB_DNODE_EXIT(dbuf);
1435
1436	/*
1437	 * We can only assign if the offset is aligned, the arc buf is the
1438	 * same size as the dbuf, and the dbuf is not metadata.  It
1439	 * can't be metadata because the loaned arc buf comes from the
1440	 * user-data kmem arena.
1441	 */
1442	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1443	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1444#ifdef _KERNEL
1445		curthread->td_ru.ru_oublock++;
1446#ifdef RACCT
1447		if (racct_enable) {
1448			PROC_LOCK(curproc);
1449			racct_add_force(curproc, RACCT_WRITEBPS, blksz);
1450			racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1451			PROC_UNLOCK(curproc);
1452		}
1453#endif /* RACCT */
1454#endif /* _KERNEL */
1455		dbuf_assign_arcbuf(db, buf, tx);
1456		dbuf_rele(db, FTAG);
1457	} else {
1458		objset_t *os;
1459		uint64_t object;
1460
1461		DB_DNODE_ENTER(dbuf);
1462		dn = DB_DNODE(dbuf);
1463		os = dn->dn_objset;
1464		object = dn->dn_object;
1465		DB_DNODE_EXIT(dbuf);
1466
1467		dbuf_rele(db, FTAG);
1468		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1469		dmu_return_arcbuf(buf);
1470		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1471	}
1472}
1473
1474typedef struct {
1475	dbuf_dirty_record_t	*dsa_dr;
1476	dmu_sync_cb_t		*dsa_done;
1477	zgd_t			*dsa_zgd;
1478	dmu_tx_t		*dsa_tx;
1479} dmu_sync_arg_t;
1480
1481/* ARGSUSED */
1482static void
1483dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1484{
1485	dmu_sync_arg_t *dsa = varg;
1486	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1487	blkptr_t *bp = zio->io_bp;
1488
1489	if (zio->io_error == 0) {
1490		if (BP_IS_HOLE(bp)) {
1491			/*
1492			 * A block of zeros may compress to a hole, but the
1493			 * block size still needs to be known for replay.
1494			 */
1495			BP_SET_LSIZE(bp, db->db_size);
1496		} else if (!BP_IS_EMBEDDED(bp)) {
1497			ASSERT(BP_GET_LEVEL(bp) == 0);
1498			bp->blk_fill = 1;
1499		}
1500	}
1501}
1502
1503static void
1504dmu_sync_late_arrival_ready(zio_t *zio)
1505{
1506	dmu_sync_ready(zio, NULL, zio->io_private);
1507}
1508
1509/* ARGSUSED */
1510static void
1511dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1512{
1513	dmu_sync_arg_t *dsa = varg;
1514	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1515	dmu_buf_impl_t *db = dr->dr_dbuf;
1516
1517	mutex_enter(&db->db_mtx);
1518	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1519	if (zio->io_error == 0) {
1520		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1521		if (dr->dt.dl.dr_nopwrite) {
1522			blkptr_t *bp = zio->io_bp;
1523			blkptr_t *bp_orig = &zio->io_bp_orig;
1524			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1525
1526			ASSERT(BP_EQUAL(bp, bp_orig));
1527			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1528			ASSERT(zio_checksum_table[chksum].ci_flags &
1529			    ZCHECKSUM_FLAG_NOPWRITE);
1530		}
1531		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1532		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1533		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1534
1535		/*
1536		 * Old style holes are filled with all zeros, whereas
1537		 * new-style holes maintain their lsize, type, level,
1538		 * and birth time (see zio_write_compress). While we
1539		 * need to reset the BP_SET_LSIZE() call that happened
1540		 * in dmu_sync_ready for old style holes, we do *not*
1541		 * want to wipe out the information contained in new
1542		 * style holes. Thus, only zero out the block pointer if
1543		 * it's an old style hole.
1544		 */
1545		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1546		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1547			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1548	} else {
1549		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1550	}
1551	cv_broadcast(&db->db_changed);
1552	mutex_exit(&db->db_mtx);
1553
1554	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1555
1556	kmem_free(dsa, sizeof (*dsa));
1557}
1558
1559static void
1560dmu_sync_late_arrival_done(zio_t *zio)
1561{
1562	blkptr_t *bp = zio->io_bp;
1563	dmu_sync_arg_t *dsa = zio->io_private;
1564	blkptr_t *bp_orig = &zio->io_bp_orig;
1565
1566	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1567		/*
1568		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1569		 * then there is nothing to do here. Otherwise, free the
1570		 * newly allocated block in this txg.
1571		 */
1572		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1573			ASSERT(BP_EQUAL(bp, bp_orig));
1574		} else {
1575			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1576			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1577			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1578			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1579		}
1580	}
1581
1582	dmu_tx_commit(dsa->dsa_tx);
1583
1584	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1585
1586	kmem_free(dsa, sizeof (*dsa));
1587}
1588
1589static int
1590dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1591    zio_prop_t *zp, zbookmark_phys_t *zb)
1592{
1593	dmu_sync_arg_t *dsa;
1594	dmu_tx_t *tx;
1595
1596	tx = dmu_tx_create(os);
1597	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1598	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1599		dmu_tx_abort(tx);
1600		/* Make zl_get_data do txg_waited_synced() */
1601		return (SET_ERROR(EIO));
1602	}
1603
1604	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1605	dsa->dsa_dr = NULL;
1606	dsa->dsa_done = done;
1607	dsa->dsa_zgd = zgd;
1608	dsa->dsa_tx = tx;
1609
1610	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1611	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1612	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1613	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1614
1615	return (0);
1616}
1617
1618/*
1619 * Intent log support: sync the block associated with db to disk.
1620 * N.B. and XXX: the caller is responsible for making sure that the
1621 * data isn't changing while dmu_sync() is writing it.
1622 *
1623 * Return values:
1624 *
1625 *	EEXIST: this txg has already been synced, so there's nothing to do.
1626 *		The caller should not log the write.
1627 *
1628 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1629 *		The caller should not log the write.
1630 *
1631 *	EALREADY: this block is already in the process of being synced.
1632 *		The caller should track its progress (somehow).
1633 *
1634 *	EIO: could not do the I/O.
1635 *		The caller should do a txg_wait_synced().
1636 *
1637 *	0: the I/O has been initiated.
1638 *		The caller should log this blkptr in the done callback.
1639 *		It is possible that the I/O will fail, in which case
1640 *		the error will be reported to the done callback and
1641 *		propagated to pio from zio_done().
1642 */
1643int
1644dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1645{
1646	blkptr_t *bp = zgd->zgd_bp;
1647	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1648	objset_t *os = db->db_objset;
1649	dsl_dataset_t *ds = os->os_dsl_dataset;
1650	dbuf_dirty_record_t *dr;
1651	dmu_sync_arg_t *dsa;
1652	zbookmark_phys_t zb;
1653	zio_prop_t zp;
1654	dnode_t *dn;
1655
1656	ASSERT(pio != NULL);
1657	ASSERT(txg != 0);
1658
1659	SET_BOOKMARK(&zb, ds->ds_object,
1660	    db->db.db_object, db->db_level, db->db_blkid);
1661
1662	DB_DNODE_ENTER(db);
1663	dn = DB_DNODE(db);
1664	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1665	DB_DNODE_EXIT(db);
1666
1667	/*
1668	 * If we're frozen (running ziltest), we always need to generate a bp.
1669	 */
1670	if (txg > spa_freeze_txg(os->os_spa))
1671		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1672
1673	/*
1674	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1675	 * and us.  If we determine that this txg is not yet syncing,
1676	 * but it begins to sync a moment later, that's OK because the
1677	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1678	 */
1679	mutex_enter(&db->db_mtx);
1680
1681	if (txg <= spa_last_synced_txg(os->os_spa)) {
1682		/*
1683		 * This txg has already synced.  There's nothing to do.
1684		 */
1685		mutex_exit(&db->db_mtx);
1686		return (SET_ERROR(EEXIST));
1687	}
1688
1689	if (txg <= spa_syncing_txg(os->os_spa)) {
1690		/*
1691		 * This txg is currently syncing, so we can't mess with
1692		 * the dirty record anymore; just write a new log block.
1693		 */
1694		mutex_exit(&db->db_mtx);
1695		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1696	}
1697
1698	dr = db->db_last_dirty;
1699	while (dr && dr->dr_txg != txg)
1700		dr = dr->dr_next;
1701
1702	if (dr == NULL) {
1703		/*
1704		 * There's no dr for this dbuf, so it must have been freed.
1705		 * There's no need to log writes to freed blocks, so we're done.
1706		 */
1707		mutex_exit(&db->db_mtx);
1708		return (SET_ERROR(ENOENT));
1709	}
1710
1711	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1712
1713	/*
1714	 * Assume the on-disk data is X, the current syncing data (in
1715	 * txg - 1) is Y, and the current in-memory data is Z (currently
1716	 * in dmu_sync).
1717	 *
1718	 * We usually want to perform a nopwrite if X and Z are the
1719	 * same.  However, if Y is different (i.e. the BP is going to
1720	 * change before this write takes effect), then a nopwrite will
1721	 * be incorrect - we would override with X, which could have
1722	 * been freed when Y was written.
1723	 *
1724	 * (Note that this is not a concern when we are nop-writing from
1725	 * syncing context, because X and Y must be identical, because
1726	 * all previous txgs have been synced.)
1727	 *
1728	 * Therefore, we disable nopwrite if the current BP could change
1729	 * before this TXG.  There are two ways it could change: by
1730	 * being dirty (dr_next is non-NULL), or by being freed
1731	 * (dnode_block_freed()).  This behavior is verified by
1732	 * zio_done(), which VERIFYs that the override BP is identical
1733	 * to the on-disk BP.
1734	 */
1735	DB_DNODE_ENTER(db);
1736	dn = DB_DNODE(db);
1737	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1738		zp.zp_nopwrite = B_FALSE;
1739	DB_DNODE_EXIT(db);
1740
1741	ASSERT(dr->dr_txg == txg);
1742	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1743	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1744		/*
1745		 * We have already issued a sync write for this buffer,
1746		 * or this buffer has already been synced.  It could not
1747		 * have been dirtied since, or we would have cleared the state.
1748		 */
1749		mutex_exit(&db->db_mtx);
1750		return (SET_ERROR(EALREADY));
1751	}
1752
1753	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1754	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1755	mutex_exit(&db->db_mtx);
1756
1757	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1758	dsa->dsa_dr = dr;
1759	dsa->dsa_done = done;
1760	dsa->dsa_zgd = zgd;
1761	dsa->dsa_tx = NULL;
1762
1763	zio_nowait(arc_write(pio, os->os_spa, txg,
1764	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1765	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1766	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1767	    ZIO_FLAG_CANFAIL, &zb));
1768
1769	return (0);
1770}
1771
1772int
1773dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1774    dmu_tx_t *tx)
1775{
1776	dnode_t *dn;
1777	int err;
1778
1779	err = dnode_hold(os, object, FTAG, &dn);
1780	if (err)
1781		return (err);
1782	err = dnode_set_blksz(dn, size, ibs, tx);
1783	dnode_rele(dn, FTAG);
1784	return (err);
1785}
1786
1787void
1788dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1789    dmu_tx_t *tx)
1790{
1791	dnode_t *dn;
1792
1793	/*
1794	 * Send streams include each object's checksum function.  This
1795	 * check ensures that the receiving system can understand the
1796	 * checksum function transmitted.
1797	 */
1798	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1799
1800	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1801	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1802	dn->dn_checksum = checksum;
1803	dnode_setdirty(dn, tx);
1804	dnode_rele(dn, FTAG);
1805}
1806
1807void
1808dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1809    dmu_tx_t *tx)
1810{
1811	dnode_t *dn;
1812
1813	/*
1814	 * Send streams include each object's compression function.  This
1815	 * check ensures that the receiving system can understand the
1816	 * compression function transmitted.
1817	 */
1818	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1819
1820	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1821	dn->dn_compress = compress;
1822	dnode_setdirty(dn, tx);
1823	dnode_rele(dn, FTAG);
1824}
1825
1826int zfs_mdcomp_disable = 0;
1827SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RWTUN,
1828    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1829
1830/*
1831 * When the "redundant_metadata" property is set to "most", only indirect
1832 * blocks of this level and higher will have an additional ditto block.
1833 */
1834int zfs_redundant_metadata_most_ditto_level = 2;
1835
1836void
1837dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1838{
1839	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1840	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1841	    (wp & WP_SPILL));
1842	enum zio_checksum checksum = os->os_checksum;
1843	enum zio_compress compress = os->os_compress;
1844	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1845	boolean_t dedup = B_FALSE;
1846	boolean_t nopwrite = B_FALSE;
1847	boolean_t dedup_verify = os->os_dedup_verify;
1848	int copies = os->os_copies;
1849
1850	/*
1851	 * We maintain different write policies for each of the following
1852	 * types of data:
1853	 *	 1. metadata
1854	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1855	 *	 3. all other level 0 blocks
1856	 */
1857	if (ismd) {
1858		if (zfs_mdcomp_disable) {
1859			compress = ZIO_COMPRESS_EMPTY;
1860		} else {
1861			/*
1862			 * XXX -- we should design a compression algorithm
1863			 * that specializes in arrays of bps.
1864			 */
1865			compress = zio_compress_select(os->os_spa,
1866			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1867		}
1868
1869		/*
1870		 * Metadata always gets checksummed.  If the data
1871		 * checksum is multi-bit correctable, and it's not a
1872		 * ZBT-style checksum, then it's suitable for metadata
1873		 * as well.  Otherwise, the metadata checksum defaults
1874		 * to fletcher4.
1875		 */
1876		if (!(zio_checksum_table[checksum].ci_flags &
1877		    ZCHECKSUM_FLAG_METADATA) ||
1878		    (zio_checksum_table[checksum].ci_flags &
1879		    ZCHECKSUM_FLAG_EMBEDDED))
1880			checksum = ZIO_CHECKSUM_FLETCHER_4;
1881
1882		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1883		    (os->os_redundant_metadata ==
1884		    ZFS_REDUNDANT_METADATA_MOST &&
1885		    (level >= zfs_redundant_metadata_most_ditto_level ||
1886		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1887			copies++;
1888	} else if (wp & WP_NOFILL) {
1889		ASSERT(level == 0);
1890
1891		/*
1892		 * If we're writing preallocated blocks, we aren't actually
1893		 * writing them so don't set any policy properties.  These
1894		 * blocks are currently only used by an external subsystem
1895		 * outside of zfs (i.e. dump) and not written by the zio
1896		 * pipeline.
1897		 */
1898		compress = ZIO_COMPRESS_OFF;
1899		checksum = ZIO_CHECKSUM_NOPARITY;
1900	} else {
1901		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1902		    compress);
1903
1904		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1905		    zio_checksum_select(dn->dn_checksum, checksum) :
1906		    dedup_checksum;
1907
1908		/*
1909		 * Determine dedup setting.  If we are in dmu_sync(),
1910		 * we won't actually dedup now because that's all
1911		 * done in syncing context; but we do want to use the
1912		 * dedup checkum.  If the checksum is not strong
1913		 * enough to ensure unique signatures, force
1914		 * dedup_verify.
1915		 */
1916		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1917			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1918			if (!(zio_checksum_table[checksum].ci_flags &
1919			    ZCHECKSUM_FLAG_DEDUP))
1920				dedup_verify = B_TRUE;
1921		}
1922
1923		/*
1924		 * Enable nopwrite if we have secure enough checksum
1925		 * algorithm (see comment in zio_nop_write) and
1926		 * compression is enabled.  We don't enable nopwrite if
1927		 * dedup is enabled as the two features are mutually
1928		 * exclusive.
1929		 */
1930		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
1931		    ZCHECKSUM_FLAG_NOPWRITE) &&
1932		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1933	}
1934
1935	zp->zp_checksum = checksum;
1936	zp->zp_compress = compress;
1937	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1938	zp->zp_level = level;
1939	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1940	zp->zp_dedup = dedup;
1941	zp->zp_dedup_verify = dedup && dedup_verify;
1942	zp->zp_nopwrite = nopwrite;
1943}
1944
1945int
1946dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1947{
1948	dnode_t *dn;
1949	int err;
1950
1951	/*
1952	 * Sync any current changes before
1953	 * we go trundling through the block pointers.
1954	 */
1955	err = dmu_object_wait_synced(os, object);
1956	if (err) {
1957		return (err);
1958	}
1959
1960	err = dnode_hold(os, object, FTAG, &dn);
1961	if (err) {
1962		return (err);
1963	}
1964
1965	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1966	dnode_rele(dn, FTAG);
1967
1968	return (err);
1969}
1970
1971/*
1972 * Given the ZFS object, if it contains any dirty nodes
1973 * this function flushes all dirty blocks to disk. This
1974 * ensures the DMU object info is updated. A more efficient
1975 * future version might just find the TXG with the maximum
1976 * ID and wait for that to be synced.
1977 */
1978int
1979dmu_object_wait_synced(objset_t *os, uint64_t object)
1980{
1981	dnode_t *dn;
1982	int error, i;
1983
1984	error = dnode_hold(os, object, FTAG, &dn);
1985	if (error) {
1986		return (error);
1987	}
1988
1989	for (i = 0; i < TXG_SIZE; i++) {
1990		if (list_link_active(&dn->dn_dirty_link[i])) {
1991			break;
1992		}
1993	}
1994	dnode_rele(dn, FTAG);
1995	if (i != TXG_SIZE) {
1996		txg_wait_synced(dmu_objset_pool(os), 0);
1997	}
1998
1999	return (0);
2000}
2001
2002void
2003dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2004{
2005	dnode_phys_t *dnp;
2006
2007	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2008	mutex_enter(&dn->dn_mtx);
2009
2010	dnp = dn->dn_phys;
2011
2012	doi->doi_data_block_size = dn->dn_datablksz;
2013	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2014	    1ULL << dn->dn_indblkshift : 0;
2015	doi->doi_type = dn->dn_type;
2016	doi->doi_bonus_type = dn->dn_bonustype;
2017	doi->doi_bonus_size = dn->dn_bonuslen;
2018	doi->doi_indirection = dn->dn_nlevels;
2019	doi->doi_checksum = dn->dn_checksum;
2020	doi->doi_compress = dn->dn_compress;
2021	doi->doi_nblkptr = dn->dn_nblkptr;
2022	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2023	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2024	doi->doi_fill_count = 0;
2025	for (int i = 0; i < dnp->dn_nblkptr; i++)
2026		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2027
2028	mutex_exit(&dn->dn_mtx);
2029	rw_exit(&dn->dn_struct_rwlock);
2030}
2031
2032/*
2033 * Get information on a DMU object.
2034 * If doi is NULL, just indicates whether the object exists.
2035 */
2036int
2037dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2038{
2039	dnode_t *dn;
2040	int err = dnode_hold(os, object, FTAG, &dn);
2041
2042	if (err)
2043		return (err);
2044
2045	if (doi != NULL)
2046		dmu_object_info_from_dnode(dn, doi);
2047
2048	dnode_rele(dn, FTAG);
2049	return (0);
2050}
2051
2052/*
2053 * As above, but faster; can be used when you have a held dbuf in hand.
2054 */
2055void
2056dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2057{
2058	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2059
2060	DB_DNODE_ENTER(db);
2061	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2062	DB_DNODE_EXIT(db);
2063}
2064
2065/*
2066 * Faster still when you only care about the size.
2067 * This is specifically optimized for zfs_getattr().
2068 */
2069void
2070dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2071    u_longlong_t *nblk512)
2072{
2073	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2074	dnode_t *dn;
2075
2076	DB_DNODE_ENTER(db);
2077	dn = DB_DNODE(db);
2078
2079	*blksize = dn->dn_datablksz;
2080	/* add 1 for dnode space */
2081	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2082	    SPA_MINBLOCKSHIFT) + 1;
2083	DB_DNODE_EXIT(db);
2084}
2085
2086void
2087byteswap_uint64_array(void *vbuf, size_t size)
2088{
2089	uint64_t *buf = vbuf;
2090	size_t count = size >> 3;
2091	int i;
2092
2093	ASSERT((size & 7) == 0);
2094
2095	for (i = 0; i < count; i++)
2096		buf[i] = BSWAP_64(buf[i]);
2097}
2098
2099void
2100byteswap_uint32_array(void *vbuf, size_t size)
2101{
2102	uint32_t *buf = vbuf;
2103	size_t count = size >> 2;
2104	int i;
2105
2106	ASSERT((size & 3) == 0);
2107
2108	for (i = 0; i < count; i++)
2109		buf[i] = BSWAP_32(buf[i]);
2110}
2111
2112void
2113byteswap_uint16_array(void *vbuf, size_t size)
2114{
2115	uint16_t *buf = vbuf;
2116	size_t count = size >> 1;
2117	int i;
2118
2119	ASSERT((size & 1) == 0);
2120
2121	for (i = 0; i < count; i++)
2122		buf[i] = BSWAP_16(buf[i]);
2123}
2124
2125/* ARGSUSED */
2126void
2127byteswap_uint8_array(void *vbuf, size_t size)
2128{
2129}
2130
2131void
2132dmu_init(void)
2133{
2134	zfs_dbgmsg_init();
2135	sa_cache_init();
2136	xuio_stat_init();
2137	dmu_objset_init();
2138	dnode_init();
2139	dbuf_init();
2140	zfetch_init();
2141	zio_compress_init();
2142	l2arc_init();
2143	arc_init();
2144}
2145
2146void
2147dmu_fini(void)
2148{
2149	arc_fini(); /* arc depends on l2arc, so arc must go first */
2150	l2arc_fini();
2151	zfetch_fini();
2152	zio_compress_fini();
2153	dbuf_fini();
2154	dnode_fini();
2155	dmu_objset_fini();
2156	xuio_stat_fini();
2157	sa_cache_fini();
2158	zfs_dbgmsg_fini();
2159}
2160