scsi_enc_safte.c revision 302408
1/*-
2 * Copyright (c) 2000 Matthew Jacob
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification, immediately at the beginning of the file.
11 * 2. The name of the author may not be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/cam/scsi/scsi_enc_safte.c 299373 2016-05-10 16:20:36Z mav $");
29
30#include <sys/param.h>
31
32#include <sys/conf.h>
33#include <sys/errno.h>
34#include <sys/kernel.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/queue.h>
38#include <sys/sx.h>
39#include <sys/systm.h>
40#include <sys/sysctl.h>
41#include <sys/types.h>
42
43#include <cam/cam.h>
44#include <cam/cam_ccb.h>
45#include <cam/cam_periph.h>
46
47#include <cam/scsi/scsi_enc.h>
48#include <cam/scsi/scsi_enc_internal.h>
49#include <cam/scsi/scsi_message.h>
50
51/*
52 * SAF-TE Type Device Emulation
53 */
54
55static int safte_set_enc_status(enc_softc_t *enc, uint8_t encstat, int slpflag);
56
57#define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
58	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
59/*
60 * SAF-TE specific defines- Mandatory ones only...
61 */
62
63/*
64 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
65 */
66#define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
67#define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
68#define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
69#define	SAFTE_RD_RDGFLG	0x05	/* read global flags */
70
71/*
72 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
73 */
74#define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
75#define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
76#define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
77#define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
78#define	SAFTE_WT_GLOBAL	0x15	/* send global command */
79
80#define	SAFT_SCRATCH	64
81#define	SCSZ		0x8000
82
83typedef enum {
84	SAFTE_UPDATE_NONE,
85	SAFTE_UPDATE_READCONFIG,
86	SAFTE_UPDATE_READGFLAGS,
87	SAFTE_UPDATE_READENCSTATUS,
88	SAFTE_UPDATE_READSLOTSTATUS,
89	SAFTE_PROCESS_CONTROL_REQS,
90	SAFTE_NUM_UPDATE_STATES
91} safte_update_action;
92
93static fsm_fill_handler_t safte_fill_read_buf_io;
94static fsm_fill_handler_t safte_fill_control_request;
95static fsm_done_handler_t safte_process_config;
96static fsm_done_handler_t safte_process_gflags;
97static fsm_done_handler_t safte_process_status;
98static fsm_done_handler_t safte_process_slotstatus;
99static fsm_done_handler_t safte_process_control_request;
100
101static struct enc_fsm_state enc_fsm_states[SAFTE_NUM_UPDATE_STATES] =
102{
103	{ "SAFTE_UPDATE_NONE", 0, 0, 0, NULL, NULL, NULL },
104	{
105		"SAFTE_UPDATE_READCONFIG",
106		SAFTE_RD_RDCFG,
107		SAFT_SCRATCH,
108		60 * 1000,
109		safte_fill_read_buf_io,
110		safte_process_config,
111		enc_error
112	},
113	{
114		"SAFTE_UPDATE_READGFLAGS",
115		SAFTE_RD_RDGFLG,
116		16,
117		60 * 1000,
118		safte_fill_read_buf_io,
119		safte_process_gflags,
120		enc_error
121	},
122	{
123		"SAFTE_UPDATE_READENCSTATUS",
124		SAFTE_RD_RDESTS,
125		SCSZ,
126		60 * 1000,
127		safte_fill_read_buf_io,
128		safte_process_status,
129		enc_error
130	},
131	{
132		"SAFTE_UPDATE_READSLOTSTATUS",
133		SAFTE_RD_RDDSTS,
134		SCSZ,
135		60 * 1000,
136		safte_fill_read_buf_io,
137		safte_process_slotstatus,
138		enc_error
139	},
140	{
141		"SAFTE_PROCESS_CONTROL_REQS",
142		0,
143		SCSZ,
144		60 * 1000,
145		safte_fill_control_request,
146		safte_process_control_request,
147		enc_error
148	}
149};
150
151typedef struct safte_control_request {
152	int	elm_idx;
153	uint8_t	elm_stat[4];
154	int	result;
155	TAILQ_ENTRY(safte_control_request) links;
156} safte_control_request_t;
157TAILQ_HEAD(safte_control_reqlist, safte_control_request);
158typedef struct safte_control_reqlist safte_control_reqlist_t;
159enum {
160	SES_SETSTATUS_ENC_IDX = -1
161};
162
163static void
164safte_terminate_control_requests(safte_control_reqlist_t *reqlist, int result)
165{
166	safte_control_request_t *req;
167
168	while ((req = TAILQ_FIRST(reqlist)) != NULL) {
169		TAILQ_REMOVE(reqlist, req, links);
170		req->result = result;
171		wakeup(req);
172	}
173}
174
175struct scfg {
176	/*
177	 * Cached Configuration
178	 */
179	uint8_t	Nfans;		/* Number of Fans */
180	uint8_t	Npwr;		/* Number of Power Supplies */
181	uint8_t	Nslots;		/* Number of Device Slots */
182	uint8_t	DoorLock;	/* Door Lock Installed */
183	uint8_t	Ntherm;		/* Number of Temperature Sensors */
184	uint8_t	Nspkrs;		/* Number of Speakers */
185	uint8_t	Ntstats;	/* Number of Thermostats */
186	/*
187	 * Cached Flag Bytes for Global Status
188	 */
189	uint8_t	flag1;
190	uint8_t	flag2;
191	/*
192	 * What object index ID is where various slots start.
193	 */
194	uint8_t	pwroff;
195	uint8_t	slotoff;
196#define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
197
198	encioc_enc_status_t	adm_status;
199	encioc_enc_status_t	enc_status;
200	encioc_enc_status_t	slot_status;
201
202	safte_control_reqlist_t	requests;
203	safte_control_request_t	*current_request;
204	int			current_request_stage;
205	int			current_request_stages;
206};
207
208#define	SAFT_FLG1_ALARM		0x1
209#define	SAFT_FLG1_GLOBFAIL	0x2
210#define	SAFT_FLG1_GLOBWARN	0x4
211#define	SAFT_FLG1_ENCPWROFF	0x8
212#define	SAFT_FLG1_ENCFANFAIL	0x10
213#define	SAFT_FLG1_ENCPWRFAIL	0x20
214#define	SAFT_FLG1_ENCDRVFAIL	0x40
215#define	SAFT_FLG1_ENCDRVWARN	0x80
216
217#define	SAFT_FLG2_LOCKDOOR	0x4
218#define	SAFT_PRIVATE		sizeof (struct scfg)
219
220static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
221#define	SAFT_BAIL(r, x)	\
222	if ((r) >= (x)) { \
223		ENC_VLOG(enc, safte_2little, x, __LINE__);\
224		return (EIO); \
225	}
226
227int emulate_array_devices = 1;
228SYSCTL_DECL(_kern_cam_enc);
229SYSCTL_INT(_kern_cam_enc, OID_AUTO, emulate_array_devices, CTLFLAG_RWTUN,
230           &emulate_array_devices, 0, "Emulate Array Devices for SAF-TE");
231
232static int
233safte_fill_read_buf_io(enc_softc_t *enc, struct enc_fsm_state *state,
234		       union ccb *ccb, uint8_t *buf)
235{
236
237	if (state->page_code != SAFTE_RD_RDCFG &&
238	    enc->enc_cache.nelms == 0) {
239		enc_update_request(enc, SAFTE_UPDATE_READCONFIG);
240		return (-1);
241	}
242
243	if (enc->enc_type == ENC_SEMB_SAFT) {
244		semb_read_buffer(&ccb->ataio, /*retries*/5,
245				NULL, MSG_SIMPLE_Q_TAG,
246				state->page_code, buf, state->buf_size,
247				state->timeout);
248	} else {
249		scsi_read_buffer(&ccb->csio, /*retries*/5,
250				NULL, MSG_SIMPLE_Q_TAG, 1,
251				state->page_code, 0, buf, state->buf_size,
252				SSD_FULL_SIZE, state->timeout);
253	}
254	return (0);
255}
256
257static int
258safte_process_config(enc_softc_t *enc, struct enc_fsm_state *state,
259    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
260{
261	struct scfg *cfg;
262	uint8_t *buf = *bufp;
263	int i, r;
264
265	cfg = enc->enc_private;
266	if (cfg == NULL)
267		return (ENXIO);
268	if (error != 0)
269		return (error);
270	if (xfer_len < 6) {
271		ENC_VLOG(enc, "too little data (%d) for configuration\n",
272		    xfer_len);
273		return (EIO);
274	}
275	cfg->Nfans = buf[0];
276	cfg->Npwr = buf[1];
277	cfg->Nslots = buf[2];
278	cfg->DoorLock = buf[3];
279	cfg->Ntherm = buf[4];
280	cfg->Nspkrs = buf[5];
281	if (xfer_len >= 7)
282		cfg->Ntstats = buf[6] & 0x0f;
283	else
284		cfg->Ntstats = 0;
285	ENC_VLOG(enc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d "
286	    "Ntstats %d\n",
287	    cfg->Nfans, cfg->Npwr, cfg->Nslots, cfg->DoorLock, cfg->Ntherm,
288	    cfg->Nspkrs, cfg->Ntstats);
289
290	enc->enc_cache.nelms = cfg->Nfans + cfg->Npwr + cfg->Nslots +
291	    cfg->DoorLock + cfg->Ntherm + cfg->Nspkrs + cfg->Ntstats + 1;
292	ENC_FREE_AND_NULL(enc->enc_cache.elm_map);
293	enc->enc_cache.elm_map =
294	    malloc(enc->enc_cache.nelms * sizeof(enc_element_t),
295	    M_SCSIENC, M_WAITOK|M_ZERO);
296
297	r = 0;
298	/*
299	 * Note that this is all arranged for the convenience
300	 * in later fetches of status.
301	 */
302	for (i = 0; i < cfg->Nfans; i++)
303		enc->enc_cache.elm_map[r++].enctype = ELMTYP_FAN;
304	cfg->pwroff = (uint8_t) r;
305	for (i = 0; i < cfg->Npwr; i++)
306		enc->enc_cache.elm_map[r++].enctype = ELMTYP_POWER;
307	for (i = 0; i < cfg->DoorLock; i++)
308		enc->enc_cache.elm_map[r++].enctype = ELMTYP_DOORLOCK;
309	if (cfg->Nspkrs > 0)
310		enc->enc_cache.elm_map[r++].enctype = ELMTYP_ALARM;
311	for (i = 0; i < cfg->Ntherm; i++)
312		enc->enc_cache.elm_map[r++].enctype = ELMTYP_THERM;
313	for (i = 0; i <= cfg->Ntstats; i++)
314		enc->enc_cache.elm_map[r++].enctype = ELMTYP_THERM;
315	cfg->slotoff = (uint8_t) r;
316	for (i = 0; i < cfg->Nslots; i++)
317		enc->enc_cache.elm_map[r++].enctype =
318		    emulate_array_devices ? ELMTYP_ARRAY_DEV :
319		     ELMTYP_DEVICE;
320
321	enc_update_request(enc, SAFTE_UPDATE_READGFLAGS);
322	enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
323	enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
324
325	return (0);
326}
327
328static int
329safte_process_gflags(enc_softc_t *enc, struct enc_fsm_state *state,
330    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
331{
332	struct scfg *cfg;
333	uint8_t *buf = *bufp;
334
335	cfg = enc->enc_private;
336	if (cfg == NULL)
337		return (ENXIO);
338	if (error != 0)
339		return (error);
340	SAFT_BAIL(3, xfer_len);
341	cfg->flag1 = buf[1];
342	cfg->flag2 = buf[2];
343
344	cfg->adm_status = 0;
345	if (cfg->flag1 & SAFT_FLG1_GLOBFAIL)
346		cfg->adm_status |= SES_ENCSTAT_CRITICAL;
347	else if (cfg->flag1 & SAFT_FLG1_GLOBWARN)
348		cfg->adm_status |= SES_ENCSTAT_NONCRITICAL;
349
350	return (0);
351}
352
353static int
354safte_process_status(enc_softc_t *enc, struct enc_fsm_state *state,
355    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
356{
357	struct scfg *cfg;
358	uint8_t *buf = *bufp;
359	int oid, r, i, nitems;
360	uint16_t tempflags;
361	enc_cache_t *cache = &enc->enc_cache;
362
363	cfg = enc->enc_private;
364	if (cfg == NULL)
365		return (ENXIO);
366	if (error != 0)
367		return (error);
368
369	oid = r = 0;
370	cfg->enc_status = 0;
371
372	for (nitems = i = 0; i < cfg->Nfans; i++) {
373		SAFT_BAIL(r, xfer_len);
374		/*
375		 * 0 = Fan Operational
376		 * 1 = Fan is malfunctioning
377		 * 2 = Fan is not present
378		 * 0x80 = Unknown or Not Reportable Status
379		 */
380		cache->elm_map[oid].encstat[1] = 0;	/* resvd */
381		cache->elm_map[oid].encstat[2] = 0;	/* resvd */
382		if (cfg->flag1 & SAFT_FLG1_ENCFANFAIL)
383			cache->elm_map[oid].encstat[3] |= 0x40;
384		else
385			cache->elm_map[oid].encstat[3] &= ~0x40;
386		switch ((int)buf[r]) {
387		case 0:
388			nitems++;
389			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
390			if ((cache->elm_map[oid].encstat[3] & 0x37) == 0)
391				cache->elm_map[oid].encstat[3] |= 0x27;
392			break;
393
394		case 1:
395			cache->elm_map[oid].encstat[0] =
396			    SES_OBJSTAT_CRIT;
397			/*
398			 * FAIL and FAN STOPPED synthesized
399			 */
400			cache->elm_map[oid].encstat[3] |= 0x10;
401			cache->elm_map[oid].encstat[3] &= ~0x07;
402			/*
403			 * Enclosure marked with CRITICAL error
404			 * if only one fan or no thermometers,
405			 * else the NONCRITICAL error is set.
406			 */
407			if (cfg->Nfans == 1 || (cfg->Ntherm + cfg->Ntstats) == 0)
408				cfg->enc_status |= SES_ENCSTAT_CRITICAL;
409			else
410				cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
411			break;
412		case 2:
413			cache->elm_map[oid].encstat[0] =
414			    SES_OBJSTAT_NOTINSTALLED;
415			cache->elm_map[oid].encstat[3] |= 0x10;
416			cache->elm_map[oid].encstat[3] &= ~0x07;
417			/*
418			 * Enclosure marked with CRITICAL error
419			 * if only one fan or no thermometers,
420			 * else the NONCRITICAL error is set.
421			 */
422			if (cfg->Nfans == 1)
423				cfg->enc_status |= SES_ENCSTAT_CRITICAL;
424			else
425				cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
426			break;
427		case 0x80:
428			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
429			cache->elm_map[oid].encstat[3] = 0;
430			cfg->enc_status |= SES_ENCSTAT_INFO;
431			break;
432		default:
433			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
434			ENC_VLOG(enc, "Unknown fan%d status 0x%x\n", i,
435			    buf[r] & 0xff);
436			break;
437		}
438		cache->elm_map[oid++].svalid = 1;
439		r++;
440	}
441
442	/*
443	 * No matter how you cut it, no cooling elements when there
444	 * should be some there is critical.
445	 */
446	if (cfg->Nfans && nitems == 0)
447		cfg->enc_status |= SES_ENCSTAT_CRITICAL;
448
449	for (i = 0; i < cfg->Npwr; i++) {
450		SAFT_BAIL(r, xfer_len);
451		cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
452		cache->elm_map[oid].encstat[1] = 0;	/* resvd */
453		cache->elm_map[oid].encstat[2] = 0;	/* resvd */
454		cache->elm_map[oid].encstat[3] = 0x20;	/* requested on */
455		switch (buf[r]) {
456		case 0x00:	/* pws operational and on */
457			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
458			break;
459		case 0x01:	/* pws operational and off */
460			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
461			cache->elm_map[oid].encstat[3] = 0x10;
462			cfg->enc_status |= SES_ENCSTAT_INFO;
463			break;
464		case 0x10:	/* pws is malfunctioning and commanded on */
465			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
466			cache->elm_map[oid].encstat[3] = 0x61;
467			cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
468			break;
469
470		case 0x11:	/* pws is malfunctioning and commanded off */
471			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
472			cache->elm_map[oid].encstat[3] = 0x51;
473			cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
474			break;
475		case 0x20:	/* pws is not present */
476			cache->elm_map[oid].encstat[0] =
477			    SES_OBJSTAT_NOTINSTALLED;
478			cache->elm_map[oid].encstat[3] = 0;
479			cfg->enc_status |= SES_ENCSTAT_INFO;
480			break;
481		case 0x21:	/* pws is present */
482			/*
483			 * This is for enclosures that cannot tell whether the
484			 * device is on or malfunctioning, but know that it is
485			 * present. Just fall through.
486			 */
487			/* FALLTHROUGH */
488		case 0x80:	/* Unknown or Not Reportable Status */
489			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
490			cache->elm_map[oid].encstat[3] = 0;
491			cfg->enc_status |= SES_ENCSTAT_INFO;
492			break;
493		default:
494			ENC_VLOG(enc, "unknown power supply %d status (0x%x)\n",
495			    i, buf[r] & 0xff);
496			break;
497		}
498		enc->enc_cache.elm_map[oid++].svalid = 1;
499		r++;
500	}
501
502	/*
503	 * Copy Slot SCSI IDs
504	 */
505	for (i = 0; i < cfg->Nslots; i++) {
506		SAFT_BAIL(r, xfer_len);
507		if (cache->elm_map[cfg->slotoff + i].enctype == ELMTYP_DEVICE)
508			cache->elm_map[cfg->slotoff + i].encstat[1] = buf[r];
509		r++;
510	}
511
512	/*
513	 * We always have doorlock status, no matter what,
514	 * but we only save the status if we have one.
515	 */
516	SAFT_BAIL(r, xfer_len);
517	if (cfg->DoorLock) {
518		/*
519		 * 0 = Door Locked
520		 * 1 = Door Unlocked, or no Lock Installed
521		 * 0x80 = Unknown or Not Reportable Status
522		 */
523		cache->elm_map[oid].encstat[1] = 0;
524		cache->elm_map[oid].encstat[2] = 0;
525		switch (buf[r]) {
526		case 0:
527			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
528			cache->elm_map[oid].encstat[3] = 0;
529			break;
530		case 1:
531			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
532			cache->elm_map[oid].encstat[3] = 1;
533			break;
534		case 0x80:
535			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
536			cache->elm_map[oid].encstat[3] = 0;
537			cfg->enc_status |= SES_ENCSTAT_INFO;
538			break;
539		default:
540			cache->elm_map[oid].encstat[0] =
541			    SES_OBJSTAT_UNSUPPORTED;
542			ENC_VLOG(enc, "unknown lock status 0x%x\n",
543			    buf[r] & 0xff);
544			break;
545		}
546		cache->elm_map[oid++].svalid = 1;
547	}
548	r++;
549
550	/*
551	 * We always have speaker status, no matter what,
552	 * but we only save the status if we have one.
553	 */
554	SAFT_BAIL(r, xfer_len);
555	if (cfg->Nspkrs) {
556		cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
557		cache->elm_map[oid].encstat[1] = 0;
558		cache->elm_map[oid].encstat[2] = 0;
559		if (buf[r] == 0) {
560			cache->elm_map[oid].encstat[0] |= SESCTL_DISABLE;
561			cache->elm_map[oid].encstat[3] |= 0x40;
562		}
563		cache->elm_map[oid++].svalid = 1;
564	}
565	r++;
566
567	/*
568	 * Now, for "pseudo" thermometers, we have two bytes
569	 * of information in enclosure status- 16 bits. Actually,
570	 * the MSB is a single TEMP ALERT flag indicating whether
571	 * any other bits are set, but, thanks to fuzzy thinking,
572	 * in the SAF-TE spec, this can also be set even if no
573	 * other bits are set, thus making this really another
574	 * binary temperature sensor.
575	 */
576
577	SAFT_BAIL(r + cfg->Ntherm, xfer_len);
578	tempflags = buf[r + cfg->Ntherm];
579	SAFT_BAIL(r + cfg->Ntherm + 1, xfer_len);
580	tempflags |= (tempflags << 8) | buf[r + cfg->Ntherm + 1];
581
582	for (i = 0; i < cfg->Ntherm; i++) {
583		SAFT_BAIL(r, xfer_len);
584		/*
585		 * Status is a range from -10 to 245 deg Celsius,
586		 * which we need to normalize to -20 to -245 according
587		 * to the latest SCSI spec, which makes little
588		 * sense since this would overflow an 8bit value.
589		 * Well, still, the base normalization is -20,
590		 * not -10, so we have to adjust.
591		 *
592		 * So what's over and under temperature?
593		 * Hmm- we'll state that 'normal' operating
594		 * is 10 to 40 deg Celsius.
595		 */
596
597		/*
598		 * Actually.... All of the units that people out in the world
599		 * seem to have do not come even close to setting a value that
600		 * complies with this spec.
601		 *
602		 * The closest explanation I could find was in an
603		 * LSI-Logic manual, which seemed to indicate that
604		 * this value would be set by whatever the I2C code
605		 * would interpolate from the output of an LM75
606		 * temperature sensor.
607		 *
608		 * This means that it is impossible to use the actual
609		 * numeric value to predict anything. But we don't want
610		 * to lose the value. So, we'll propagate the *uncorrected*
611		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
612		 * temperature flags for warnings.
613		 */
614		if (tempflags & (1 << i)) {
615			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
616			cfg->enc_status |= SES_ENCSTAT_CRITICAL;
617		} else
618			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
619		cache->elm_map[oid].encstat[1] = 0;
620		cache->elm_map[oid].encstat[2] = buf[r];
621		cache->elm_map[oid].encstat[3] = 0;
622		cache->elm_map[oid++].svalid = 1;
623		r++;
624	}
625
626	for (i = 0; i <= cfg->Ntstats; i++) {
627		cache->elm_map[oid].encstat[1] = 0;
628		if (tempflags & (1 <<
629		    ((i == cfg->Ntstats) ? 15 : (cfg->Ntherm + i)))) {
630			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
631			cache->elm_map[4].encstat[2] = 0xff;
632			/*
633			 * Set 'over temperature' failure.
634			 */
635			cache->elm_map[oid].encstat[3] = 8;
636			cfg->enc_status |= SES_ENCSTAT_CRITICAL;
637		} else {
638			/*
639			 * We used to say 'not available' and synthesize a
640			 * nominal 30 deg (C)- that was wrong. Actually,
641			 * Just say 'OK', and use the reserved value of
642			 * zero.
643			 */
644			if ((cfg->Ntherm + cfg->Ntstats) == 0)
645				cache->elm_map[oid].encstat[0] =
646				    SES_OBJSTAT_NOTAVAIL;
647			else
648				cache->elm_map[oid].encstat[0] =
649				    SES_OBJSTAT_OK;
650			cache->elm_map[oid].encstat[2] = 0;
651			cache->elm_map[oid].encstat[3] = 0;
652		}
653		cache->elm_map[oid++].svalid = 1;
654	}
655	r += 2;
656
657	cache->enc_status =
658	    cfg->enc_status | cfg->slot_status | cfg->adm_status;
659	return (0);
660}
661
662static int
663safte_process_slotstatus(enc_softc_t *enc, struct enc_fsm_state *state,
664    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
665{
666	struct scfg *cfg;
667	uint8_t *buf = *bufp;
668	enc_cache_t *cache = &enc->enc_cache;
669	int oid, r, i;
670
671	cfg = enc->enc_private;
672	if (cfg == NULL)
673		return (ENXIO);
674	if (error != 0)
675		return (error);
676	cfg->slot_status = 0;
677	oid = cfg->slotoff;
678	for (r = i = 0; i < cfg->Nslots; i++, r += 4) {
679		SAFT_BAIL(r+3, xfer_len);
680		if (cache->elm_map[oid].enctype == ELMTYP_ARRAY_DEV)
681			cache->elm_map[oid].encstat[1] = 0;
682		cache->elm_map[oid].encstat[2] &= SESCTL_RQSID;
683		cache->elm_map[oid].encstat[3] = 0;
684		if ((buf[r+3] & 0x01) == 0) {	/* no device */
685			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NOTINSTALLED;
686		} else if (buf[r+0] & 0x02) {
687			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
688			cfg->slot_status |= SES_ENCSTAT_CRITICAL;
689		} else if (buf[r+0] & 0x40) {
690			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
691			cfg->slot_status |= SES_ENCSTAT_NONCRITICAL;
692		} else {
693			cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
694		}
695		if (buf[r+3] & 0x2) {
696			if (buf[r+3] & 0x01)
697				cache->elm_map[oid].encstat[2] |= SESCTL_RQSRMV;
698			else
699				cache->elm_map[oid].encstat[2] |= SESCTL_RQSINS;
700		}
701		if ((buf[r+3] & 0x04) == 0)
702			cache->elm_map[oid].encstat[3] |= SESCTL_DEVOFF;
703		if (buf[r+0] & 0x02)
704			cache->elm_map[oid].encstat[3] |= SESCTL_RQSFLT;
705		if (buf[r+0] & 0x40)
706			cache->elm_map[oid].encstat[0] |= SESCTL_PRDFAIL;
707		if (cache->elm_map[oid].enctype == ELMTYP_ARRAY_DEV) {
708			if (buf[r+0] & 0x01)
709				cache->elm_map[oid].encstat[1] |= 0x80;
710			if (buf[r+0] & 0x04)
711				cache->elm_map[oid].encstat[1] |= 0x02;
712			if (buf[r+0] & 0x08)
713				cache->elm_map[oid].encstat[1] |= 0x04;
714			if (buf[r+0] & 0x10)
715				cache->elm_map[oid].encstat[1] |= 0x08;
716			if (buf[r+0] & 0x20)
717				cache->elm_map[oid].encstat[1] |= 0x10;
718			if (buf[r+1] & 0x01)
719				cache->elm_map[oid].encstat[1] |= 0x20;
720			if (buf[r+1] & 0x02)
721				cache->elm_map[oid].encstat[1] |= 0x01;
722		}
723		cache->elm_map[oid++].svalid = 1;
724	}
725
726	cache->enc_status =
727	    cfg->enc_status | cfg->slot_status | cfg->adm_status;
728	return (0);
729}
730
731static int
732safte_fill_control_request(enc_softc_t *enc, struct enc_fsm_state *state,
733		       union ccb *ccb, uint8_t *buf)
734{
735	struct scfg *cfg;
736	enc_element_t *ep, *ep1;
737	safte_control_request_t *req;
738	int i, idx, xfer_len;
739
740	cfg = enc->enc_private;
741	if (cfg == NULL)
742		return (ENXIO);
743
744	if (enc->enc_cache.nelms == 0) {
745		enc_update_request(enc, SAFTE_UPDATE_READCONFIG);
746		return (-1);
747	}
748
749	if (cfg->current_request == NULL) {
750		cfg->current_request = TAILQ_FIRST(&cfg->requests);
751		TAILQ_REMOVE(&cfg->requests, cfg->current_request, links);
752		cfg->current_request_stage = 0;
753		cfg->current_request_stages = 1;
754	}
755	req = cfg->current_request;
756
757	idx = (int)req->elm_idx;
758	if (req->elm_idx == SES_SETSTATUS_ENC_IDX) {
759		cfg->adm_status = req->elm_stat[0] & ALL_ENC_STAT;
760		cfg->flag1 &= ~(SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
761		if (req->elm_stat[0] & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV))
762			cfg->flag1 |= SAFT_FLG1_GLOBFAIL;
763		else if (req->elm_stat[0] & SES_ENCSTAT_NONCRITICAL)
764			cfg->flag1 |= SAFT_FLG1_GLOBWARN;
765		buf[0] = SAFTE_WT_GLOBAL;
766		buf[1] = cfg->flag1;
767		buf[2] = cfg->flag2;
768		buf[3] = 0;
769		xfer_len = 16;
770	} else {
771		ep = &enc->enc_cache.elm_map[idx];
772
773		switch (ep->enctype) {
774		case ELMTYP_DEVICE:
775		case ELMTYP_ARRAY_DEV:
776			switch (cfg->current_request_stage) {
777			case 0:
778				ep->priv = 0;
779				if (req->elm_stat[0] & SESCTL_PRDFAIL)
780					ep->priv |= 0x40;
781				if (req->elm_stat[3] & SESCTL_RQSFLT)
782					ep->priv |= 0x02;
783				if (ep->enctype == ELMTYP_ARRAY_DEV) {
784					if (req->elm_stat[1] & 0x01)
785						ep->priv |= 0x200;
786					if (req->elm_stat[1] & 0x02)
787						ep->priv |= 0x04;
788					if (req->elm_stat[1] & 0x04)
789						ep->priv |= 0x08;
790					if (req->elm_stat[1] & 0x08)
791						ep->priv |= 0x10;
792					if (req->elm_stat[1] & 0x10)
793						ep->priv |= 0x20;
794					if (req->elm_stat[1] & 0x20)
795						ep->priv |= 0x100;
796					if (req->elm_stat[1] & 0x80)
797						ep->priv |= 0x01;
798				}
799				if (ep->priv == 0)
800					ep->priv |= 0x01;	/* no errors */
801
802				buf[0] = SAFTE_WT_DSTAT;
803				for (i = 0; i < cfg->Nslots; i++) {
804					ep1 = &enc->enc_cache.elm_map[cfg->slotoff + i];
805					buf[1 + (3 * i)] = ep1->priv;
806					buf[2 + (3 * i)] = ep1->priv >> 8;
807				}
808				xfer_len = cfg->Nslots * 3 + 1;
809#define DEVON(x)	(!(((x)[2] & SESCTL_RQSINS) |	\
810			   ((x)[2] & SESCTL_RQSRMV) |	\
811			   ((x)[3] & SESCTL_DEVOFF)))
812				if (DEVON(req->elm_stat) != DEVON(ep->encstat))
813					cfg->current_request_stages++;
814#define IDON(x)		(!!((x)[2] & SESCTL_RQSID))
815				if (IDON(req->elm_stat) != IDON(ep->encstat))
816					cfg->current_request_stages++;
817				break;
818			case 1:
819			case 2:
820				buf[0] = SAFTE_WT_SLTOP;
821				buf[1] = idx - cfg->slotoff;
822				if (cfg->current_request_stage == 1 &&
823				    DEVON(req->elm_stat) != DEVON(ep->encstat)) {
824					if (DEVON(req->elm_stat))
825						buf[2] = 0x01;
826					else
827						buf[2] = 0x02;
828				} else {
829					if (IDON(req->elm_stat))
830						buf[2] = 0x04;
831					else
832						buf[2] = 0x00;
833					ep->encstat[2] &= ~SESCTL_RQSID;
834					ep->encstat[2] |= req->elm_stat[2] &
835					    SESCTL_RQSID;
836				}
837				xfer_len = 64;
838				break;
839			default:
840				return (EINVAL);
841			}
842			break;
843		case ELMTYP_POWER:
844			cfg->current_request_stages = 2;
845			switch (cfg->current_request_stage) {
846			case 0:
847				if (req->elm_stat[3] & SESCTL_RQSTFAIL) {
848					cfg->flag1 |= SAFT_FLG1_ENCPWRFAIL;
849				} else {
850					cfg->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
851				}
852				buf[0] = SAFTE_WT_GLOBAL;
853				buf[1] = cfg->flag1;
854				buf[2] = cfg->flag2;
855				buf[3] = 0;
856				xfer_len = 16;
857				break;
858			case 1:
859				buf[0] = SAFTE_WT_ACTPWS;
860				buf[1] = idx - cfg->pwroff;
861				if (req->elm_stat[3] & SESCTL_RQSTON)
862					buf[2] = 0x01;
863				else
864					buf[2] = 0x00;
865				buf[3] = 0;
866				xfer_len = 16;
867			default:
868				return (EINVAL);
869			}
870			break;
871		case ELMTYP_FAN:
872			if ((req->elm_stat[3] & 0x7) != 0)
873				cfg->current_request_stages = 2;
874			switch (cfg->current_request_stage) {
875			case 0:
876				if (req->elm_stat[3] & SESCTL_RQSTFAIL)
877					cfg->flag1 |= SAFT_FLG1_ENCFANFAIL;
878				else
879					cfg->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
880				buf[0] = SAFTE_WT_GLOBAL;
881				buf[1] = cfg->flag1;
882				buf[2] = cfg->flag2;
883				buf[3] = 0;
884				xfer_len = 16;
885				break;
886			case 1:
887				buf[0] = SAFTE_WT_FANSPD;
888				buf[1] = idx;
889				if (req->elm_stat[3] & SESCTL_RQSTON) {
890					if ((req->elm_stat[3] & 0x7) == 7)
891						buf[2] = 4;
892					else if ((req->elm_stat[3] & 0x7) >= 5)
893						buf[2] = 3;
894					else if ((req->elm_stat[3] & 0x7) >= 3)
895						buf[2] = 2;
896					else
897						buf[2] = 1;
898				} else
899					buf[2] = 0;
900				buf[3] = 0;
901				xfer_len = 16;
902				ep->encstat[3] = req->elm_stat[3] & 0x67;
903			default:
904				return (EINVAL);
905			}
906			break;
907		case ELMTYP_DOORLOCK:
908			if (req->elm_stat[3] & 0x1)
909				cfg->flag2 &= ~SAFT_FLG2_LOCKDOOR;
910			else
911				cfg->flag2 |= SAFT_FLG2_LOCKDOOR;
912			buf[0] = SAFTE_WT_GLOBAL;
913			buf[1] = cfg->flag1;
914			buf[2] = cfg->flag2;
915			buf[3] = 0;
916			xfer_len = 16;
917			break;
918		case ELMTYP_ALARM:
919			if ((req->elm_stat[0] & SESCTL_DISABLE) ||
920			    (req->elm_stat[3] & 0x40)) {
921				cfg->flag2 &= ~SAFT_FLG1_ALARM;
922			} else if ((req->elm_stat[3] & 0x0f) != 0) {
923				cfg->flag2 |= SAFT_FLG1_ALARM;
924			} else {
925				cfg->flag2 &= ~SAFT_FLG1_ALARM;
926			}
927			buf[0] = SAFTE_WT_GLOBAL;
928			buf[1] = cfg->flag1;
929			buf[2] = cfg->flag2;
930			buf[3] = 0;
931			xfer_len = 16;
932			ep->encstat[3] = req->elm_stat[3];
933			break;
934		default:
935			return (EINVAL);
936		}
937	}
938
939	if (enc->enc_type == ENC_SEMB_SAFT) {
940		semb_write_buffer(&ccb->ataio, /*retries*/5,
941				NULL, MSG_SIMPLE_Q_TAG,
942				buf, xfer_len, state->timeout);
943	} else {
944		scsi_write_buffer(&ccb->csio, /*retries*/5,
945				NULL, MSG_SIMPLE_Q_TAG, 1,
946				0, 0, buf, xfer_len,
947				SSD_FULL_SIZE, state->timeout);
948	}
949	return (0);
950}
951
952static int
953safte_process_control_request(enc_softc_t *enc, struct enc_fsm_state *state,
954    union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
955{
956	struct scfg *cfg;
957	safte_control_request_t *req;
958	int idx, type;
959
960	cfg = enc->enc_private;
961	if (cfg == NULL)
962		return (ENXIO);
963
964	req = cfg->current_request;
965	if (req->result == 0)
966		req->result = error;
967	if (++cfg->current_request_stage >= cfg->current_request_stages) {
968		idx = req->elm_idx;
969		if (idx == SES_SETSTATUS_ENC_IDX)
970			type = -1;
971		else
972			type = enc->enc_cache.elm_map[idx].enctype;
973		if (type == ELMTYP_DEVICE || type == ELMTYP_ARRAY_DEV)
974			enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
975		else
976			enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
977		cfg->current_request = NULL;
978		wakeup(req);
979	} else {
980		enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
981	}
982	return (0);
983}
984
985static void
986safte_softc_invalidate(enc_softc_t *enc)
987{
988	struct scfg *cfg;
989
990	cfg = enc->enc_private;
991	safte_terminate_control_requests(&cfg->requests, ENXIO);
992}
993
994static void
995safte_softc_cleanup(enc_softc_t *enc)
996{
997
998	ENC_FREE_AND_NULL(enc->enc_cache.elm_map);
999	ENC_FREE_AND_NULL(enc->enc_private);
1000	enc->enc_cache.nelms = 0;
1001}
1002
1003static int
1004safte_init_enc(enc_softc_t *enc)
1005{
1006	struct scfg *cfg;
1007	int err;
1008	static char cdb0[6] = { SEND_DIAGNOSTIC };
1009
1010	cfg = enc->enc_private;
1011	if (cfg == NULL)
1012		return (ENXIO);
1013
1014	err = enc_runcmd(enc, cdb0, 6, NULL, 0);
1015	if (err) {
1016		return (err);
1017	}
1018	DELAY(5000);
1019	cfg->flag1 = 0;
1020	cfg->flag2 = 0;
1021	err = safte_set_enc_status(enc, 0, 1);
1022	return (err);
1023}
1024
1025static int
1026safte_get_enc_status(enc_softc_t *enc, int slpflg)
1027{
1028
1029	return (0);
1030}
1031
1032static int
1033safte_set_enc_status(enc_softc_t *enc, uint8_t encstat, int slpflag)
1034{
1035	struct scfg *cfg;
1036	safte_control_request_t req;
1037
1038	cfg = enc->enc_private;
1039	if (cfg == NULL)
1040		return (ENXIO);
1041
1042	req.elm_idx = SES_SETSTATUS_ENC_IDX;
1043	req.elm_stat[0] = encstat & 0xf;
1044	req.result = 0;
1045
1046	TAILQ_INSERT_TAIL(&cfg->requests, &req, links);
1047	enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
1048	cam_periph_sleep(enc->periph, &req, PUSER, "encstat", 0);
1049
1050	return (req.result);
1051}
1052
1053static int
1054safte_get_elm_status(enc_softc_t *enc, encioc_elm_status_t *elms, int slpflg)
1055{
1056	int i = (int)elms->elm_idx;
1057
1058	elms->cstat[0] = enc->enc_cache.elm_map[i].encstat[0];
1059	elms->cstat[1] = enc->enc_cache.elm_map[i].encstat[1];
1060	elms->cstat[2] = enc->enc_cache.elm_map[i].encstat[2];
1061	elms->cstat[3] = enc->enc_cache.elm_map[i].encstat[3];
1062	return (0);
1063}
1064
1065static int
1066safte_set_elm_status(enc_softc_t *enc, encioc_elm_status_t *elms, int slpflag)
1067{
1068	struct scfg *cfg;
1069	safte_control_request_t req;
1070
1071	cfg = enc->enc_private;
1072	if (cfg == NULL)
1073		return (ENXIO);
1074
1075	/* If this is clear, we don't do diddly.  */
1076	if ((elms->cstat[0] & SESCTL_CSEL) == 0)
1077		return (0);
1078
1079	req.elm_idx = elms->elm_idx;
1080	memcpy(&req.elm_stat, elms->cstat, sizeof(req.elm_stat));
1081	req.result = 0;
1082
1083	TAILQ_INSERT_TAIL(&cfg->requests, &req, links);
1084	enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
1085	cam_periph_sleep(enc->periph, &req, PUSER, "encstat", 0);
1086
1087	return (req.result);
1088}
1089
1090static void
1091safte_poll_status(enc_softc_t *enc)
1092{
1093
1094	enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
1095	enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
1096}
1097
1098static struct enc_vec safte_enc_vec =
1099{
1100	.softc_invalidate	= safte_softc_invalidate,
1101	.softc_cleanup	= safte_softc_cleanup,
1102	.init_enc	= safte_init_enc,
1103	.get_enc_status	= safte_get_enc_status,
1104	.set_enc_status	= safte_set_enc_status,
1105	.get_elm_status	= safte_get_elm_status,
1106	.set_elm_status	= safte_set_elm_status,
1107	.poll_status	= safte_poll_status
1108};
1109
1110int
1111safte_softc_init(enc_softc_t *enc)
1112{
1113	struct scfg *cfg;
1114
1115	enc->enc_vec = safte_enc_vec;
1116	enc->enc_fsm_states = enc_fsm_states;
1117
1118	if (enc->enc_private == NULL) {
1119		enc->enc_private = ENC_MALLOCZ(SAFT_PRIVATE);
1120		if (enc->enc_private == NULL)
1121			return (ENOMEM);
1122	}
1123	cfg = enc->enc_private;
1124
1125	enc->enc_cache.nelms = 0;
1126	enc->enc_cache.enc_status = 0;
1127
1128	TAILQ_INIT(&cfg->requests);
1129	return (0);
1130}
1131
1132