mv_machdep.c revision 225991
147857Sbrian/*-
247857Sbrian * Copyright (c) 1994-1998 Mark Brinicombe.
347857Sbrian * Copyright (c) 1994 Brini.
447857Sbrian * All rights reserved.
547857Sbrian *
647857Sbrian * This code is derived from software written for Brini by Mark Brinicombe
747857Sbrian *
847857Sbrian * Redistribution and use in source and binary forms, with or without
947857Sbrian * modification, are permitted provided that the following conditions
1047857Sbrian * are met:
1147857Sbrian * 1. Redistributions of source code must retain the above copyright
1247857Sbrian *    notice, this list of conditions and the following disclaimer.
1347857Sbrian * 2. Redistributions in binary form must reproduce the above copyright
1447857Sbrian *    notice, this list of conditions and the following disclaimer in the
1547857Sbrian *    documentation and/or other materials provided with the distribution.
1647857Sbrian * 3. All advertising materials mentioning features or use of this software
1747857Sbrian *    must display the following acknowledgement:
18 *      This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 *    endorse or promote products derived from this software without specific
21 *    prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45
36 */
37
38#include "opt_ddb.h"
39#include "opt_platform.h"
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/arm/mv/mv_machdep.c 225991 2011-10-04 16:58:20Z marcel $");
43
44#define _ARM32_BUS_DMA_PRIVATE
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/signalvar.h>
49#include <sys/imgact.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/linker.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mutex.h>
56#include <sys/pcpu.h>
57#include <sys/proc.h>
58#include <sys/ptrace.h>
59#include <sys/cons.h>
60#include <sys/bio.h>
61#include <sys/bus.h>
62#include <sys/buf.h>
63#include <sys/exec.h>
64#include <sys/kdb.h>
65#include <sys/msgbuf.h>
66#include <machine/reg.h>
67#include <machine/cpu.h>
68#include <machine/fdt.h>
69
70#include <dev/fdt/fdt_common.h>
71#include <dev/ofw/openfirm.h>
72
73#include <vm/vm.h>
74#include <vm/pmap.h>
75#include <vm/vm_object.h>
76#include <vm/vm_page.h>
77#include <vm/vm_pager.h>
78#include <vm/vm_map.h>
79#include <machine/pte.h>
80#include <machine/pmap.h>
81#include <machine/vmparam.h>
82#include <machine/pcb.h>
83#include <machine/undefined.h>
84#include <machine/machdep.h>
85#include <machine/metadata.h>
86#include <machine/armreg.h>
87#include <machine/bus.h>
88#include <sys/reboot.h>
89
90#include <arm/mv/mvreg.h>	/* XXX */
91#include <arm/mv/mvvar.h>	/* XXX eventually this should be eliminated */
92#include <arm/mv/mvwin.h>
93
94#ifdef  DEBUG
95#define debugf(fmt, args...) printf(fmt, ##args)
96#else
97#define debugf(fmt, args...)
98#endif
99
100/*
101 * This is the number of L2 page tables required for covering max
102 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
103 * stacks etc.), uprounded to be divisible by 4.
104 */
105#define KERNEL_PT_MAX	78
106
107/* Define various stack sizes in pages */
108#define IRQ_STACK_SIZE	1
109#define ABT_STACK_SIZE	1
110#define UND_STACK_SIZE	1
111
112extern unsigned char kernbase[];
113extern unsigned char _etext[];
114extern unsigned char _edata[];
115extern unsigned char __bss_start[];
116extern unsigned char _end[];
117
118#ifdef DDB
119extern vm_offset_t ksym_start, ksym_end;
120#endif
121
122extern u_int data_abort_handler_address;
123extern u_int prefetch_abort_handler_address;
124extern u_int undefined_handler_address;
125
126extern vm_offset_t pmap_bootstrap_lastaddr;
127extern int *end;
128
129struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
130struct pcpu __pcpu;
131struct pcpu *pcpup = &__pcpu;
132
133/* Physical and virtual addresses for some global pages */
134
135vm_paddr_t phys_avail[10];
136vm_paddr_t dump_avail[4];
137vm_offset_t physical_pages;
138vm_offset_t pmap_bootstrap_lastaddr;
139
140const struct pmap_devmap *pmap_devmap_bootstrap_table;
141struct pv_addr systempage;
142struct pv_addr msgbufpv;
143struct pv_addr irqstack;
144struct pv_addr undstack;
145struct pv_addr abtstack;
146struct pv_addr kernelstack;
147
148static struct trapframe proc0_tf;
149
150static struct mem_region availmem_regions[FDT_MEM_REGIONS];
151static int availmem_regions_sz;
152
153static void print_kenv(void);
154static void print_kernel_section_addr(void);
155
156static void physmap_init(void);
157static int platform_devmap_init(void);
158static int platform_mpp_init(void);
159
160static char *
161kenv_next(char *cp)
162{
163
164	if (cp != NULL) {
165		while (*cp != 0)
166			cp++;
167		cp++;
168		if (*cp == 0)
169			cp = NULL;
170	}
171	return (cp);
172}
173
174static void
175print_kenv(void)
176{
177	int len;
178	char *cp;
179
180	debugf("loader passed (static) kenv:\n");
181	if (kern_envp == NULL) {
182		debugf(" no env, null ptr\n");
183		return;
184	}
185	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
186
187	len = 0;
188	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
189		debugf(" %x %s\n", (uint32_t)cp, cp);
190}
191
192static void
193print_kernel_section_addr(void)
194{
195
196	debugf("kernel image addresses:\n");
197	debugf(" kernbase       = 0x%08x\n", (uint32_t)kernbase);
198	debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
199	debugf(" _edata         = 0x%08x\n", (uint32_t)_edata);
200	debugf(" __bss_start    = 0x%08x\n", (uint32_t)__bss_start);
201	debugf(" _end           = 0x%08x\n", (uint32_t)_end);
202}
203
204static void
205physmap_init(void)
206{
207	int i, j, cnt;
208	vm_offset_t phys_kernelend, kernload;
209	uint32_t s, e, sz;
210	struct mem_region *mp, *mp1;
211
212	phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
213	kernload = KERNPHYSADDR;
214
215	/*
216	 * Remove kernel physical address range from avail
217	 * regions list. Page align all regions.
218	 * Non-page aligned memory isn't very interesting to us.
219	 * Also, sort the entries for ascending addresses.
220	 */
221	sz = 0;
222	cnt = availmem_regions_sz;
223	debugf("processing avail regions:\n");
224	for (mp = availmem_regions; mp->mr_size; mp++) {
225		s = mp->mr_start;
226		e = mp->mr_start + mp->mr_size;
227		debugf(" %08x-%08x -> ", s, e);
228		/* Check whether this region holds all of the kernel. */
229		if (s < kernload && e > phys_kernelend) {
230			availmem_regions[cnt].mr_start = phys_kernelend;
231			availmem_regions[cnt++].mr_size = e - phys_kernelend;
232			e = kernload;
233		}
234		/* Look whether this regions starts within the kernel. */
235		if (s >= kernload && s < phys_kernelend) {
236			if (e <= phys_kernelend)
237				goto empty;
238			s = phys_kernelend;
239		}
240		/* Now look whether this region ends within the kernel. */
241		if (e > kernload && e <= phys_kernelend) {
242			if (s >= kernload) {
243				goto empty;
244			}
245			e = kernload;
246		}
247		/* Now page align the start and size of the region. */
248		s = round_page(s);
249		e = trunc_page(e);
250		if (e < s)
251			e = s;
252		sz = e - s;
253		debugf("%08x-%08x = %x\n", s, e, sz);
254
255		/* Check whether some memory is left here. */
256		if (sz == 0) {
257		empty:
258			printf("skipping\n");
259			bcopy(mp + 1, mp,
260			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
261			cnt--;
262			mp--;
263			continue;
264		}
265
266		/* Do an insertion sort. */
267		for (mp1 = availmem_regions; mp1 < mp; mp1++)
268			if (s < mp1->mr_start)
269				break;
270		if (mp1 < mp) {
271			bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
272			mp1->mr_start = s;
273			mp1->mr_size = sz;
274		} else {
275			mp->mr_start = s;
276			mp->mr_size = sz;
277		}
278	}
279	availmem_regions_sz = cnt;
280
281	/* Fill in phys_avail table, based on availmem_regions */
282	debugf("fill in phys_avail:\n");
283	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
284
285		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
286		    availmem_regions[i].mr_start,
287		    availmem_regions[i].mr_start + availmem_regions[i].mr_size,
288		    availmem_regions[i].mr_size);
289
290		phys_avail[j] = availmem_regions[i].mr_start;
291		phys_avail[j + 1] = availmem_regions[i].mr_start +
292		    availmem_regions[i].mr_size;
293	}
294	phys_avail[j] = 0;
295	phys_avail[j + 1] = 0;
296}
297
298void *
299initarm(void *mdp, void *unused __unused)
300{
301	struct pv_addr kernel_l1pt;
302	struct pv_addr dpcpu;
303	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
304	uint32_t memsize, l2size;
305	void *kmdp;
306	u_int l1pagetable;
307	int i = 0, j = 0;
308
309	kmdp = NULL;
310	lastaddr = 0;
311	memsize = 0;
312	dtbp = (vm_offset_t)NULL;
313
314	set_cpufuncs();
315
316	/*
317	 * Mask metadata pointer: it is supposed to be on page boundary. If
318	 * the first argument (mdp) doesn't point to a valid address the
319	 * bootloader must have passed us something else than the metadata
320	 * ptr... In this case we want to fall back to some built-in settings.
321	 */
322	mdp = (void *)((uint32_t)mdp & ~PAGE_MASK);
323
324	/* Parse metadata and fetch parameters */
325	if (mdp != NULL) {
326		preload_metadata = mdp;
327		kmdp = preload_search_by_type("elf kernel");
328		if (kmdp != NULL) {
329			boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
330			kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
331			dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
332			lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND,
333			    vm_offset_t);
334#ifdef DDB
335			ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
336			ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
337#endif
338		}
339
340		preload_addr_relocate = KERNVIRTADDR - KERNPHYSADDR;
341	} else {
342		/* Fall back to hardcoded metadata. */
343		lastaddr = fake_preload_metadata();
344	}
345
346#if defined(FDT_DTB_STATIC)
347	/*
348	 * In case the device tree blob was not retrieved (from metadata) try
349	 * to use the statically embedded one.
350	 */
351	if (dtbp == (vm_offset_t)NULL)
352		dtbp = (vm_offset_t)&fdt_static_dtb;
353#endif
354
355	if (OF_install(OFW_FDT, 0) == FALSE)
356		while (1);
357
358	if (OF_init((void *)dtbp) != 0)
359		while (1);
360
361	/* Grab physical memory regions information from device tree. */
362	if (fdt_get_mem_regions(availmem_regions, &availmem_regions_sz,
363	    &memsize) != 0)
364		while(1);
365
366	if (fdt_immr_addr(MV_BASE) != 0)
367		while (1);
368
369	/* Platform-specific initialisation */
370	pmap_bootstrap_lastaddr = fdt_immr_va - ARM_NOCACHE_KVA_SIZE;
371
372	pcpu_init(pcpup, 0, sizeof(struct pcpu));
373	PCPU_SET(curthread, &thread0);
374
375	/* Calculate number of L2 tables needed for mapping vm_page_array */
376	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
377	l2size = (l2size >> L1_S_SHIFT) + 1;
378
379	/*
380	 * Add one table for end of kernel map, one for stacks, msgbuf and
381	 * L1 and L2 tables map and one for vectors map.
382	 */
383	l2size += 3;
384
385	/* Make it divisible by 4 */
386	l2size = (l2size + 3) & ~3;
387
388#define KERNEL_TEXT_BASE (KERNBASE)
389	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
390
391	/* Define a macro to simplify memory allocation */
392#define valloc_pages(var, np)                   \
393	alloc_pages((var).pv_va, (np));         \
394	(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
395
396#define alloc_pages(var, np)			\
397	(var) = freemempos;		\
398	freemempos += (np * PAGE_SIZE);		\
399	memset((char *)(var), 0, ((np) * PAGE_SIZE));
400
401	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
402		freemempos += PAGE_SIZE;
403	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
404
405	for (i = 0; i < l2size; ++i) {
406		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
407			valloc_pages(kernel_pt_table[i],
408			    L2_TABLE_SIZE / PAGE_SIZE);
409			j = i;
410		} else {
411			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
412			    L2_TABLE_SIZE_REAL * (i - j);
413			kernel_pt_table[i].pv_pa =
414			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
415			    KERNPHYSADDR;
416
417		}
418	}
419	/*
420	 * Allocate a page for the system page mapped to 0x00000000
421	 * or 0xffff0000. This page will just contain the system vectors
422	 * and can be shared by all processes.
423	 */
424	valloc_pages(systempage, 1);
425
426	/* Allocate dynamic per-cpu area. */
427	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
428	dpcpu_init((void *)dpcpu.pv_va, 0);
429
430	/* Allocate stacks for all modes */
431	valloc_pages(irqstack, IRQ_STACK_SIZE);
432	valloc_pages(abtstack, ABT_STACK_SIZE);
433	valloc_pages(undstack, UND_STACK_SIZE);
434	valloc_pages(kernelstack, KSTACK_PAGES);
435
436	init_param1();
437
438	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
439
440	/*
441	 * Now we start construction of the L1 page table
442	 * We start by mapping the L2 page tables into the L1.
443	 * This means that we can replace L1 mappings later on if necessary
444	 */
445	l1pagetable = kernel_l1pt.pv_va;
446
447	/*
448	 * Try to map as much as possible of kernel text and data using
449	 * 1MB section mapping and for the rest of initial kernel address
450	 * space use L2 coarse tables.
451	 *
452	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
453	 * and kernel structures
454	 */
455	l2_start = lastaddr & ~(L1_S_OFFSET);
456	for (i = 0 ; i < l2size - 1; i++)
457		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
458		    &kernel_pt_table[i]);
459
460	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
461
462	/* Map kernel code and data */
463	pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
464	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
465	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
466
467
468	/* Map L1 directory and allocated L2 page tables */
469	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
470	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
471
472	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
473	    kernel_pt_table[0].pv_pa,
474	    L2_TABLE_SIZE_REAL * l2size,
475	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
476
477	/* Map allocated DPCPU, stacks and msgbuf */
478	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
479	    freemempos - dpcpu.pv_va,
480	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
481
482	/* Link and map the vector page */
483	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
484	    &kernel_pt_table[l2size - 1]);
485	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
486	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
487
488	/* Map pmap_devmap[] entries */
489	if (platform_devmap_init() != 0)
490		while (1);
491	pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table);
492
493	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
494	    DOMAIN_CLIENT);
495	setttb(kernel_l1pt.pv_pa);
496	cpu_tlb_flushID();
497	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
498
499	/*
500	 * Only after the SOC registers block is mapped we can perform device
501	 * tree fixups, as they may attempt to read parameters from hardware.
502	 */
503	OF_interpret("perform-fixup", 0);
504
505	/*
506	 * Re-initialise MPP. It is important to call this prior to using
507	 * console as the physical connection can be routed via MPP.
508	 */
509	if (platform_mpp_init() != 0)
510		while (1);
511
512	cninit();
513
514	physmem = memsize / PAGE_SIZE;
515
516	debugf("initarm: console initialized\n");
517	debugf(" arg1 mdp = 0x%08x\n", (uint32_t)mdp);
518	debugf(" boothowto = 0x%08x\n", boothowto);
519	printf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
520	print_kernel_section_addr();
521	print_kenv();
522
523	/*
524	 * Re-initialise decode windows
525	 */
526	if (soc_decode_win() != 0)
527		printf("WARNING: could not re-initialise decode windows! "
528		    "Running with existing settings...\n");
529	/*
530	 * Pages were allocated during the secondary bootstrap for the
531	 * stacks for different CPU modes.
532	 * We must now set the r13 registers in the different CPU modes to
533	 * point to these stacks.
534	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
535	 * of the stack memory.
536	 */
537	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
538	set_stackptr(PSR_IRQ32_MODE,
539	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
540	set_stackptr(PSR_ABT32_MODE,
541	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
542	set_stackptr(PSR_UND32_MODE,
543	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
544
545	/*
546	 * We must now clean the cache again....
547	 * Cleaning may be done by reading new data to displace any
548	 * dirty data in the cache. This will have happened in setttb()
549	 * but since we are boot strapping the addresses used for the read
550	 * may have just been remapped and thus the cache could be out
551	 * of sync. A re-clean after the switch will cure this.
552	 * After booting there are no gross relocations of the kernel thus
553	 * this problem will not occur after initarm().
554	 */
555	cpu_idcache_wbinv_all();
556
557	/* Set stack for exception handlers */
558	data_abort_handler_address = (u_int)data_abort_handler;
559	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
560	undefined_handler_address = (u_int)undefinedinstruction_bounce;
561	undefined_init();
562
563	proc_linkup0(&proc0, &thread0);
564	thread0.td_kstack = kernelstack.pv_va;
565	thread0.td_kstack_pages = KSTACK_PAGES;
566	thread0.td_pcb = (struct pcb *)
567	    (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
568	thread0.td_pcb->pcb_flags = 0;
569	thread0.td_frame = &proc0_tf;
570	pcpup->pc_curpcb = thread0.td_pcb;
571
572	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
573
574	dump_avail[0] = 0;
575	dump_avail[1] = memsize;
576	dump_avail[2] = 0;
577	dump_avail[3] = 0;
578
579	pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt);
580	msgbufp = (void *)msgbufpv.pv_va;
581	msgbufinit(msgbufp, msgbufsize);
582	mutex_init();
583
584	/*
585	 * Prepare map of physical memory regions available to vm subsystem.
586	 */
587	physmap_init();
588
589	/* Do basic tuning, hz etc */
590	init_param2(physmem);
591	kdb_init();
592	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
593	    sizeof(struct pcb)));
594}
595
596#define MPP_PIN_MAX		50
597#define MPP_PIN_CELLS		2
598#define MPP_PINS_PER_REG	8
599#define MPP_SEL(pin,func)	(((func) & 0xf) <<		\
600    (((pin) % MPP_PINS_PER_REG) * 4))
601
602static int
603platform_mpp_init(void)
604{
605	pcell_t pinmap[MPP_PIN_MAX * MPP_PIN_CELLS];
606	int mpp[MPP_PIN_MAX];
607	uint32_t ctrl_val, ctrl_offset;
608	pcell_t reg[4];
609	u_long start, size;
610	phandle_t node;
611	pcell_t pin_cells, *pinmap_ptr, pin_count;
612	ssize_t len;
613	int par_addr_cells, par_size_cells;
614	int tuple_size, tuples, rv, pins, i, j;
615	int mpp_pin, mpp_function;
616
617	/*
618	 * Try to access the MPP node directly i.e. through /aliases/mpp.
619	 */
620	if ((node = OF_finddevice("mpp")) != 0)
621		if (fdt_is_compatible(node, "mrvl,mpp"))
622			goto moveon;
623	/*
624	 * Find the node the long way.
625	 */
626	if ((node = OF_finddevice("/")) == 0)
627		return (ENXIO);
628
629	if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0)
630		return (ENXIO);
631
632	if ((node = fdt_find_compatible(node, "mrvl,mpp", 0)) == 0)
633		return (ENXIO);
634moveon:
635	/*
636	 * Process 'reg' prop.
637	 */
638	if ((rv = fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
639	    &par_size_cells)) != 0)
640		return(ENXIO);
641
642	tuple_size = sizeof(pcell_t) * (par_addr_cells + par_size_cells);
643	len = OF_getprop(node, "reg", reg, sizeof(reg));
644	tuples = len / tuple_size;
645	if (tuple_size <= 0)
646		return (EINVAL);
647
648	/*
649	 * Get address/size. XXX we assume only the first 'reg' tuple is used.
650	 */
651	rv = fdt_data_to_res(reg, par_addr_cells, par_size_cells,
652	    &start, &size);
653	if (rv != 0)
654		return (rv);
655	start += fdt_immr_va;
656
657	/*
658	 * Process 'pin-count' and 'pin-map' props.
659	 */
660	if (OF_getprop(node, "pin-count", &pin_count, sizeof(pin_count)) <= 0)
661		return (ENXIO);
662	pin_count = fdt32_to_cpu(pin_count);
663	if (pin_count > MPP_PIN_MAX)
664		return (ERANGE);
665
666	if (OF_getprop(node, "#pin-cells", &pin_cells, sizeof(pin_cells)) <= 0)
667		pin_cells = MPP_PIN_CELLS;
668	pin_cells = fdt32_to_cpu(pin_cells);
669	if (pin_cells > MPP_PIN_CELLS)
670		return (ERANGE);
671	tuple_size = sizeof(pcell_t) * pin_cells;
672
673	bzero(pinmap, sizeof(pinmap));
674	len = OF_getprop(node, "pin-map", pinmap, sizeof(pinmap));
675	if (len <= 0)
676		return (ERANGE);
677	if (len % tuple_size)
678		return (ERANGE);
679	pins = len / tuple_size;
680	if (pins > pin_count)
681		return (ERANGE);
682	/*
683	 * Fill out a "mpp[pin] => function" table. All pins unspecified in
684	 * the 'pin-map' property are defaulted to 0 function i.e. GPIO.
685	 */
686	bzero(mpp, sizeof(mpp));
687	pinmap_ptr = pinmap;
688	for (i = 0; i < pins; i++) {
689		mpp_pin = fdt32_to_cpu(*pinmap_ptr);
690		mpp_function = fdt32_to_cpu(*(pinmap_ptr + 1));
691		mpp[mpp_pin] = mpp_function;
692		pinmap_ptr += pin_cells;
693	}
694
695	/*
696	 * Prepare and program MPP control register values.
697	 */
698	ctrl_offset = 0;
699	for (i = 0; i < pin_count;) {
700		ctrl_val = 0;
701
702		for (j = 0; j < MPP_PINS_PER_REG; j++) {
703			if (i + j == pin_count - 1)
704				break;
705			ctrl_val |= MPP_SEL(i + j, mpp[i + j]);
706		}
707		i += MPP_PINS_PER_REG;
708		bus_space_write_4(fdtbus_bs_tag, start, ctrl_offset,
709		    ctrl_val);
710
711#if defined(SOC_MV_ORION)
712		/*
713		 * Third MPP reg on Orion SoC is placed
714		 * non-linearly (with different offset).
715		 */
716		if (i ==  (2 * MPP_PINS_PER_REG))
717			ctrl_offset = 0x50;
718		else
719#endif
720			ctrl_offset += 4;
721	}
722
723	return (0);
724}
725
726#define FDT_DEVMAP_MAX	(1 + 2 + 1 + 1)
727static struct pmap_devmap fdt_devmap[FDT_DEVMAP_MAX] = {
728	{ 0, 0, 0, 0, 0, }
729};
730
731/*
732 * Construct pmap_devmap[] with DT-derived config data.
733 */
734static int
735platform_devmap_init(void)
736{
737	phandle_t root, child;
738	u_long base, size;
739	int i;
740
741	/*
742	 * IMMR range.
743	 */
744	i = 0;
745	fdt_devmap[i].pd_va = fdt_immr_va;
746	fdt_devmap[i].pd_pa = fdt_immr_pa;
747	fdt_devmap[i].pd_size = fdt_immr_size;
748	fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
749	fdt_devmap[i].pd_cache = PTE_NOCACHE;
750	i++;
751
752	/*
753	 * PCI range(s).
754	 */
755	if ((root = OF_finddevice("/")) == 0)
756		return (ENXIO);
757
758	for (child = OF_child(root); child != 0; child = OF_peer(child))
759		if (fdt_is_type(child, "pci")) {
760			/*
761			 * Check space: each PCI node will consume 2 devmap
762			 * entries.
763			 */
764			if (i + 1 >= FDT_DEVMAP_MAX) {
765				return (ENOMEM);
766				break;
767			}
768
769			/*
770			 * XXX this should account for PCI and multiple ranges
771			 * of a given kind.
772			 */
773			if (fdt_pci_devmap(child, &fdt_devmap[i],
774			    MV_PCIE_IO_BASE, MV_PCIE_MEM_BASE) != 0)
775				return (ENXIO);
776			i += 2;
777		}
778
779	/*
780	 * CESA SRAM range.
781	 */
782	if ((child = OF_finddevice("sram")) != 0)
783		if (fdt_is_compatible(child, "mrvl,cesa-sram"))
784			goto moveon;
785
786	if ((child = fdt_find_compatible(root, "mrvl,cesa-sram", 0)) == 0)
787		/* No CESA SRAM node. */
788		goto out;
789moveon:
790	if (i >= FDT_DEVMAP_MAX)
791		return (ENOMEM);
792
793	if (fdt_regsize(child, &base, &size) != 0)
794		return (EINVAL);
795
796	fdt_devmap[i].pd_va = MV_CESA_SRAM_BASE; /* XXX */
797	fdt_devmap[i].pd_pa = base;
798	fdt_devmap[i].pd_size = size;
799	fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
800	fdt_devmap[i].pd_cache = PTE_NOCACHE;
801
802out:
803	pmap_devmap_bootstrap_table = &fdt_devmap[0];
804	return (0);
805}
806
807struct arm32_dma_range *
808bus_dma_get_range(void)
809{
810
811	return (NULL);
812}
813
814int
815bus_dma_get_range_nb(void)
816{
817
818	return (0);
819}
820