mv_machdep.c revision 210247
1251881Speter/*-
2251881Speter * Copyright (c) 1994-1998 Mark Brinicombe.
3251881Speter * Copyright (c) 1994 Brini.
4251881Speter * All rights reserved.
5251881Speter *
6251881Speter * This code is derived from software written for Brini by Mark Brinicombe
7251881Speter *
8251881Speter * Redistribution and use in source and binary forms, with or without
9251881Speter * modification, are permitted provided that the following conditions
10251881Speter * are met:
11251881Speter * 1. Redistributions of source code must retain the above copyright
12251881Speter *    notice, this list of conditions and the following disclaimer.
13251881Speter * 2. Redistributions in binary form must reproduce the above copyright
14251881Speter *    notice, this list of conditions and the following disclaimer in the
15251881Speter *    documentation and/or other materials provided with the distribution.
16251881Speter * 3. All advertising materials mentioning features or use of this software
17251881Speter *    must display the following acknowledgement:
18251881Speter *      This product includes software developed by Brini.
19251881Speter * 4. The name of the company nor the name of the author may be used to
20251881Speter *    endorse or promote products derived from this software without specific
21251881Speter *    prior written permission.
22251881Speter *
23251881Speter * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24251881Speter * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25251881Speter * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26251881Speter * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27251881Speter * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28251881Speter * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29251881Speter * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30251881Speter * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31251881Speter * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32251881Speter * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33251881Speter * SUCH DAMAGE.
34251881Speter *
35251881Speter * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45
36251881Speter */
37251881Speter
38251881Speter#include "opt_msgbuf.h"
39251881Speter#include "opt_ddb.h"
40251881Speter#include "opt_platform.h"
41251881Speter
42251881Speter#include <sys/cdefs.h>
43251881Speter__FBSDID("$FreeBSD: head/sys/arm/mv/mv_machdep.c 210247 2010-07-19 18:47:18Z raj $");
44251881Speter
45251881Speter#define _ARM32_BUS_DMA_PRIVATE
46251881Speter#include <sys/param.h>
47251881Speter#include <sys/systm.h>
48251881Speter#include <sys/sysproto.h>
49251881Speter#include <sys/signalvar.h>
50251881Speter#include <sys/imgact.h>
51251881Speter#include <sys/kernel.h>
52251881Speter#include <sys/ktr.h>
53251881Speter#include <sys/linker.h>
54251881Speter#include <sys/lock.h>
55251881Speter#include <sys/malloc.h>
56251881Speter#include <sys/mutex.h>
57251881Speter#include <sys/pcpu.h>
58251881Speter#include <sys/proc.h>
59251881Speter#include <sys/ptrace.h>
60251881Speter#include <sys/cons.h>
61251881Speter#include <sys/bio.h>
62251881Speter#include <sys/bus.h>
63251881Speter#include <sys/buf.h>
64251881Speter#include <sys/exec.h>
65251881Speter#include <sys/kdb.h>
66251881Speter#include <sys/msgbuf.h>
67251881Speter#include <machine/reg.h>
68251881Speter#include <machine/cpu.h>
69251881Speter#include <machine/fdt.h>
70251881Speter
71251881Speter#include <dev/fdt/fdt_common.h>
72251881Speter#include <dev/ofw/openfirm.h>
73251881Speter
74251881Speter#include <vm/vm.h>
75251881Speter#include <vm/pmap.h>
76251881Speter#include <vm/vm_object.h>
77251881Speter#include <vm/vm_page.h>
78251881Speter#include <vm/vm_pager.h>
79251881Speter#include <vm/vm_map.h>
80251881Speter#include <machine/pte.h>
81251881Speter#include <machine/pmap.h>
82251881Speter#include <machine/vmparam.h>
83251881Speter#include <machine/pcb.h>
84251881Speter#include <machine/undefined.h>
85251881Speter#include <machine/machdep.h>
86251881Speter#include <machine/metadata.h>
87251881Speter#include <machine/armreg.h>
88251881Speter#include <machine/bus.h>
89251881Speter#include <sys/reboot.h>
90251881Speter
91251881Speter#include <arm/mv/mvreg.h>	/* XXX */
92251881Speter#include <arm/mv/mvvar.h>	/* XXX eventually this should be eliminated */
93251881Speter#include <arm/mv/mvwin.h>
94251881Speter
95251881Speter#define DEBUG
96251881Speter#undef DEBUG
97251881Speter
98251881Speter#ifdef  DEBUG
99251881Speter#define debugf(fmt, args...) printf(fmt, ##args)
100251881Speter#else
101251881Speter#define debugf(fmt, args...)
102251881Speter#endif
103251881Speter
104251881Speter/*
105251881Speter * This is the number of L2 page tables required for covering max
106251881Speter * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
107251881Speter * stacks etc.), uprounded to be divisible by 4.
108251881Speter */
109251881Speter#define KERNEL_PT_MAX	78
110251881Speter
111251881Speter/* Define various stack sizes in pages */
112251881Speter#define IRQ_STACK_SIZE	1
113251881Speter#define ABT_STACK_SIZE	1
114251881Speter#define UND_STACK_SIZE	1
115251881Speter
116251881Speterextern unsigned char kernbase[];
117251881Speterextern unsigned char _etext[];
118251881Speterextern unsigned char _edata[];
119251881Speterextern unsigned char __bss_start[];
120251881Speterextern unsigned char _end[];
121251881Speter
122251881Speterextern u_int data_abort_handler_address;
123251881Speterextern u_int prefetch_abort_handler_address;
124251881Speterextern u_int undefined_handler_address;
125251881Speter
126251881Speterextern vm_offset_t pmap_bootstrap_lastaddr;
127251881Speterextern int *end;
128251881Speter
129251881Speterstruct pv_addr kernel_pt_table[KERNEL_PT_MAX];
130251881Speterstruct pcpu __pcpu;
131251881Speterstruct pcpu *pcpup = &__pcpu;
132251881Speter
133251881Speter/* Physical and virtual addresses for some global pages */
134251881Speter
135251881Spetervm_paddr_t phys_avail[10];
136251881Spetervm_paddr_t dump_avail[4];
137251881Spetervm_offset_t physical_pages;
138251881Spetervm_offset_t pmap_bootstrap_lastaddr;
139251881Speter
140251881Speterconst struct pmap_devmap *pmap_devmap_bootstrap_table;
141251881Speterstruct pv_addr systempage;
142251881Speterstruct pv_addr msgbufpv;
143251881Speterstruct pv_addr irqstack;
144251881Speterstruct pv_addr undstack;
145251881Speterstruct pv_addr abtstack;
146251881Speterstruct pv_addr kernelstack;
147251881Speter
148251881Speterstatic struct trapframe proc0_tf;
149251881Speter
150251881Speterstatic struct mem_region availmem_regions[FDT_MEM_REGIONS];
151251881Speterstatic int availmem_regions_sz;
152251881Speter
153251881Speterstatic void print_kenv(void);
154251881Speterstatic void print_kernel_section_addr(void);
155251881Speter
156251881Speterstatic void physmap_init(int);
157251881Speterstatic int platform_devmap_init(void);
158251881Speterstatic int platform_mpp_init(void);
159251881Speter
160251881Speterstatic char *
161251881Speterkenv_next(char *cp)
162251881Speter{
163251881Speter
164251881Speter	if (cp != NULL) {
165251881Speter		while (*cp != 0)
166251881Speter			cp++;
167251881Speter		cp++;
168251881Speter		if (*cp == 0)
169251881Speter			cp = NULL;
170251881Speter	}
171251881Speter	return (cp);
172251881Speter}
173251881Speter
174251881Speterstatic void
175251881Speterprint_kenv(void)
176251881Speter{
177251881Speter	int len;
178251881Speter	char *cp;
179251881Speter
180251881Speter	debugf("loader passed (static) kenv:\n");
181251881Speter	if (kern_envp == NULL) {
182251881Speter		debugf(" no env, null ptr\n");
183251881Speter		return;
184251881Speter	}
185251881Speter	debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
186251881Speter
187251881Speter	len = 0;
188251881Speter	for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
189251881Speter		debugf(" %x %s\n", (uint32_t)cp, cp);
190}
191
192static void
193print_kernel_section_addr(void)
194{
195
196	debugf("kernel image addresses:\n");
197	debugf(" kernbase       = 0x%08x\n", (uint32_t)kernbase);
198	debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
199	debugf(" _edata         = 0x%08x\n", (uint32_t)_edata);
200	debugf(" __bss_start    = 0x%08x\n", (uint32_t)__bss_start);
201	debugf(" _end           = 0x%08x\n", (uint32_t)_end);
202}
203
204static void
205physmap_init(int hardcoded)
206{
207	int i, j, cnt;
208	vm_offset_t phys_kernelend, kernload;
209	uint32_t s, e, sz;
210	struct mem_region *mp, *mp1;
211
212	phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
213	kernload = KERNPHYSADDR;
214
215	/*
216	 * Use hardcoded physical addresses if we don't use memory regions
217	 * from metadata.
218	 */
219	if (hardcoded) {
220		phys_avail[0] = 0;
221		phys_avail[1] = kernload;
222
223		phys_avail[2] = phys_kernelend;
224		phys_avail[3] = PHYSMEM_SIZE;
225
226		phys_avail[4] = 0;
227		phys_avail[5] = 0;
228		return;
229	}
230
231	/*
232	 * Remove kernel physical address range from avail
233	 * regions list. Page align all regions.
234	 * Non-page aligned memory isn't very interesting to us.
235	 * Also, sort the entries for ascending addresses.
236	 */
237	sz = 0;
238	cnt = availmem_regions_sz;
239	debugf("processing avail regions:\n");
240	for (mp = availmem_regions; mp->mr_size; mp++) {
241		s = mp->mr_start;
242		e = mp->mr_start + mp->mr_size;
243		debugf(" %08x-%08x -> ", s, e);
244		/* Check whether this region holds all of the kernel. */
245		if (s < kernload && e > phys_kernelend) {
246			availmem_regions[cnt].mr_start = phys_kernelend;
247			availmem_regions[cnt++].mr_size = e - phys_kernelend;
248			e = kernload;
249		}
250		/* Look whether this regions starts within the kernel. */
251		if (s >= kernload && s < phys_kernelend) {
252			if (e <= phys_kernelend)
253				goto empty;
254			s = phys_kernelend;
255		}
256		/* Now look whether this region ends within the kernel. */
257		if (e > kernload && e <= phys_kernelend) {
258			if (s >= kernload) {
259				goto empty;
260			}
261			e = kernload;
262		}
263		/* Now page align the start and size of the region. */
264		s = round_page(s);
265		e = trunc_page(e);
266		if (e < s)
267			e = s;
268		sz = e - s;
269		debugf("%08x-%08x = %x\n", s, e, sz);
270
271		/* Check whether some memory is left here. */
272		if (sz == 0) {
273		empty:
274			printf("skipping\n");
275			bcopy(mp + 1, mp,
276			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
277			cnt--;
278			mp--;
279			continue;
280		}
281
282		/* Do an insertion sort. */
283		for (mp1 = availmem_regions; mp1 < mp; mp1++)
284			if (s < mp1->mr_start)
285				break;
286		if (mp1 < mp) {
287			bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
288			mp1->mr_start = s;
289			mp1->mr_size = sz;
290		} else {
291			mp->mr_start = s;
292			mp->mr_size = sz;
293		}
294	}
295	availmem_regions_sz = cnt;
296
297	/* Fill in phys_avail table, based on availmem_regions */
298	debugf("fill in phys_avail:\n");
299	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
300
301		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
302		    availmem_regions[i].mr_start,
303		    availmem_regions[i].mr_start + availmem_regions[i].mr_size,
304		    availmem_regions[i].mr_size);
305
306		phys_avail[j] = availmem_regions[i].mr_start;
307		phys_avail[j + 1] = availmem_regions[i].mr_start +
308		    availmem_regions[i].mr_size;
309	}
310	phys_avail[j] = 0;
311	phys_avail[j + 1] = 0;
312}
313
314void *
315initarm(void *mdp, void *unused __unused)
316{
317	struct pv_addr kernel_l1pt;
318	struct pv_addr dpcpu;
319	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
320	uint32_t memsize, l2size;
321	void *kmdp;
322	u_int l1pagetable;
323	int i = 0, j = 0;
324
325	kmdp = NULL;
326	lastaddr = 0;
327	memsize = 0;
328	dtbp = (vm_offset_t)NULL;
329
330	set_cpufuncs();
331
332	/*
333	 * Mask metadata pointer: it is supposed to be on page boundary. If
334	 * the first argument (mdp) doesn't point to a valid address the
335	 * bootloader must have passed us something else than the metadata
336	 * ptr... In this case we want to fall back to some built-in settings.
337	 */
338	mdp = (void *)((uint32_t)mdp & ~PAGE_MASK);
339
340	/* Parse metadata and fetch parameters */
341	if (mdp != NULL) {
342		preload_metadata = mdp;
343		kmdp = preload_search_by_type("elf kernel");
344		if (kmdp != NULL) {
345			boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
346			kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
347			dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
348			lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND,
349			    vm_offset_t);
350		}
351
352	} else {
353		/* Fall back to hardcoded metadata. */
354		lastaddr = fake_preload_metadata();
355
356		/*
357		 * Assume a single memory region of size specified in board
358		 * configuration file.
359		 */
360		memsize = PHYSMEM_SIZE;
361	}
362
363#if defined(FDT_DTB_STATIC)
364	/*
365	 * In case the device tree blob was not retrieved (from metadata) try
366	 * to use the statically embedded one.
367	 */
368	if (dtbp == (vm_offset_t)NULL)
369		dtbp = (vm_offset_t)&fdt_static_dtb;
370#endif
371
372	if (OF_install(OFW_FDT, 0) == FALSE)
373		while (1);
374
375	if (OF_init((void *)dtbp) != 0)
376		while (1);
377
378	/* Grab physical memory regions information from device tree. */
379	if (fdt_get_mem_regions(availmem_regions, &availmem_regions_sz,
380	    &memsize) != 0)
381		while(1);
382
383	if (fdt_immr_addr(MV_BASE) != 0)
384		while (1);
385
386	/* Platform-specific initialisation */
387	pmap_bootstrap_lastaddr = fdt_immr_va - ARM_NOCACHE_KVA_SIZE;
388
389	pcpu_init(pcpup, 0, sizeof(struct pcpu));
390	PCPU_SET(curthread, &thread0);
391
392	/* Calculate number of L2 tables needed for mapping vm_page_array */
393	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
394	l2size = (l2size >> L1_S_SHIFT) + 1;
395
396	/*
397	 * Add one table for end of kernel map, one for stacks, msgbuf and
398	 * L1 and L2 tables map and one for vectors map.
399	 */
400	l2size += 3;
401
402	/* Make it divisible by 4 */
403	l2size = (l2size + 3) & ~3;
404
405#define KERNEL_TEXT_BASE (KERNBASE)
406	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
407
408	/* Define a macro to simplify memory allocation */
409#define valloc_pages(var, np)                   \
410	alloc_pages((var).pv_va, (np));         \
411	(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
412
413#define alloc_pages(var, np)			\
414	(var) = freemempos;		\
415	freemempos += (np * PAGE_SIZE);		\
416	memset((char *)(var), 0, ((np) * PAGE_SIZE));
417
418	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
419		freemempos += PAGE_SIZE;
420	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
421
422	for (i = 0; i < l2size; ++i) {
423		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
424			valloc_pages(kernel_pt_table[i],
425			    L2_TABLE_SIZE / PAGE_SIZE);
426			j = i;
427		} else {
428			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
429			    L2_TABLE_SIZE_REAL * (i - j);
430			kernel_pt_table[i].pv_pa =
431			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
432			    KERNPHYSADDR;
433
434		}
435	}
436	/*
437	 * Allocate a page for the system page mapped to 0x00000000
438	 * or 0xffff0000. This page will just contain the system vectors
439	 * and can be shared by all processes.
440	 */
441	valloc_pages(systempage, 1);
442
443	/* Allocate dynamic per-cpu area. */
444	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
445	dpcpu_init((void *)dpcpu.pv_va, 0);
446
447	/* Allocate stacks for all modes */
448	valloc_pages(irqstack, IRQ_STACK_SIZE);
449	valloc_pages(abtstack, ABT_STACK_SIZE);
450	valloc_pages(undstack, UND_STACK_SIZE);
451	valloc_pages(kernelstack, KSTACK_PAGES);
452	valloc_pages(msgbufpv, round_page(MSGBUF_SIZE) / PAGE_SIZE);
453
454	/*
455	 * Now we start construction of the L1 page table
456	 * We start by mapping the L2 page tables into the L1.
457	 * This means that we can replace L1 mappings later on if necessary
458	 */
459	l1pagetable = kernel_l1pt.pv_va;
460
461	/*
462	 * Try to map as much as possible of kernel text and data using
463	 * 1MB section mapping and for the rest of initial kernel address
464	 * space use L2 coarse tables.
465	 *
466	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
467	 * and kernel structures
468	 */
469	l2_start = lastaddr & ~(L1_S_OFFSET);
470	for (i = 0 ; i < l2size - 1; i++)
471		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
472		    &kernel_pt_table[i]);
473
474	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
475
476	/* Map kernel code and data */
477	pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
478	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
479	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
480
481
482	/* Map L1 directory and allocated L2 page tables */
483	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
484	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
485
486	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
487	    kernel_pt_table[0].pv_pa,
488	    L2_TABLE_SIZE_REAL * l2size,
489	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
490
491	/* Map allocated DPCPU, stacks and msgbuf */
492	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
493	    freemempos - dpcpu.pv_va,
494	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
495
496	/* Link and map the vector page */
497	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
498	    &kernel_pt_table[l2size - 1]);
499	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
500	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
501
502	/* Map pmap_devmap[] entries */
503	if (platform_devmap_init() != 0)
504		while (1);
505	pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table);
506
507	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
508	    DOMAIN_CLIENT);
509	setttb(kernel_l1pt.pv_pa);
510	cpu_tlb_flushID();
511	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
512
513	/*
514	 * Only after the SOC registers block is mapped we can perform device
515	 * tree fixups, as they may attempt to read parameters from hardware.
516	 */
517	OF_interpret("perform-fixup", 0);
518
519	/*
520	 * Re-initialise MPP. It is important to call this prior to using
521	 * console as the physical connection can be routed via MPP.
522	 */
523	if (platform_mpp_init() != 0)
524		while (1);
525
526	/*
527	 * Initialize GPIO as early as possible.
528	 */
529	if (platform_gpio_init() != 0)
530		while (1);
531
532	cninit();
533	physmem = memsize / PAGE_SIZE;
534
535	debugf("initarm: console initialized\n");
536	debugf(" arg1 mdp = 0x%08x\n", (uint32_t)mdp);
537	debugf(" boothowto = 0x%08x\n", boothowto);
538	printf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
539	print_kernel_section_addr();
540	print_kenv();
541
542	/*
543	 * Re-initialise decode windows
544	 */
545	if (soc_decode_win() != 0)
546		printf("WARNING: could not re-initialise decode windows! "
547		    "Running with existing settings...\n");
548	/*
549	 * Pages were allocated during the secondary bootstrap for the
550	 * stacks for different CPU modes.
551	 * We must now set the r13 registers in the different CPU modes to
552	 * point to these stacks.
553	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
554	 * of the stack memory.
555	 */
556	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
557	set_stackptr(PSR_IRQ32_MODE,
558	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
559	set_stackptr(PSR_ABT32_MODE,
560	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
561	set_stackptr(PSR_UND32_MODE,
562	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
563
564	/*
565	 * We must now clean the cache again....
566	 * Cleaning may be done by reading new data to displace any
567	 * dirty data in the cache. This will have happened in setttb()
568	 * but since we are boot strapping the addresses used for the read
569	 * may have just been remapped and thus the cache could be out
570	 * of sync. A re-clean after the switch will cure this.
571	 * After booting there are no gross relocations of the kernel thus
572	 * this problem will not occur after initarm().
573	 */
574	cpu_idcache_wbinv_all();
575
576	/* Set stack for exception handlers */
577	data_abort_handler_address = (u_int)data_abort_handler;
578	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
579	undefined_handler_address = (u_int)undefinedinstruction_bounce;
580	undefined_init();
581
582	proc_linkup0(&proc0, &thread0);
583	thread0.td_kstack = kernelstack.pv_va;
584	thread0.td_kstack_pages = KSTACK_PAGES;
585	thread0.td_pcb = (struct pcb *)
586	    (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
587	thread0.td_pcb->pcb_flags = 0;
588	thread0.td_frame = &proc0_tf;
589	pcpup->pc_curpcb = thread0.td_pcb;
590
591	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
592
593	dump_avail[0] = 0;
594	dump_avail[1] = memsize;
595	dump_avail[2] = 0;
596	dump_avail[3] = 0;
597
598	pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt);
599	msgbufp = (void *)msgbufpv.pv_va;
600	msgbufinit(msgbufp, MSGBUF_SIZE);
601	mutex_init();
602
603	/*
604	 * Prepare map of physical memory regions available to vm subsystem.
605	 * If metadata pointer doesn't point to a valid address, use hardcoded
606	 * values.
607	 */
608	physmap_init((mdp != NULL) ? 0 : 1);
609
610	/* Do basic tuning, hz etc */
611	init_param1();
612	init_param2(physmem);
613	kdb_init();
614	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
615	    sizeof(struct pcb)));
616}
617
618#define MPP_PIN_MAX		50
619#define MPP_PIN_CELLS		2
620#define MPP_PINS_PER_REG	8
621#define MPP_SEL(pin,func)	(((func) & 0xf) <<		\
622    (((pin) % MPP_PINS_PER_REG) * 4))
623
624static int
625platform_mpp_init(void)
626{
627	pcell_t pinmap[MPP_PIN_MAX * MPP_PIN_CELLS];
628	int mpp[MPP_PIN_MAX];
629	uint32_t ctrl_val, ctrl_offset;
630	pcell_t reg[4];
631	u_long start, size;
632	phandle_t node;
633	pcell_t pin_cells, *pinmap_ptr, pin_count;
634	ssize_t len;
635	int par_addr_cells, par_size_cells;
636	int tuple_size, tuples, rv, pins, i, j;
637	int mpp_pin, mpp_function;
638
639	/*
640	 * Try to access the MPP node directly i.e. through /aliases/mpp.
641	 */
642	if ((node = OF_finddevice("mpp")) != 0)
643		if (fdt_is_compatible(node, "mrvl,mpp"))
644			goto moveon;
645	/*
646	 * Find the node the long way.
647	 */
648	if ((node = OF_finddevice("/")) == 0)
649		return (ENXIO);
650
651	if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0)
652		return (ENXIO);
653
654	if ((node = fdt_find_compatible(node, "mrvl,mpp", 0)) == 0)
655		return (ENXIO);
656moveon:
657	/*
658	 * Process 'reg' prop.
659	 */
660	if ((rv = fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
661	    &par_size_cells)) != 0)
662		return(ENXIO);
663
664	tuple_size = sizeof(pcell_t) * (par_addr_cells + par_size_cells);
665	len = OF_getprop(node, "reg", reg, sizeof(reg));
666	tuples = len / tuple_size;
667	if (tuple_size <= 0)
668		return (EINVAL);
669
670	/*
671	 * Get address/size. XXX we assume only the first 'reg' tuple is used.
672	 */
673	rv = fdt_data_to_res(reg, par_addr_cells, par_size_cells,
674	    &start, &size);
675	if (rv != 0)
676		return (rv);
677	start += fdt_immr_va;
678
679	/*
680	 * Process 'pin-count' and 'pin-map' props.
681	 */
682	if (OF_getprop(node, "pin-count", &pin_count, sizeof(pin_count)) <= 0)
683		return (ENXIO);
684	pin_count = fdt32_to_cpu(pin_count);
685	if (pin_count > MPP_PIN_MAX)
686		return (ERANGE);
687
688	if (OF_getprop(node, "#pin-cells", &pin_cells, sizeof(pin_cells)) <= 0)
689		pin_cells = MPP_PIN_CELLS;
690	pin_cells = fdt32_to_cpu(pin_cells);
691	if (pin_cells > MPP_PIN_CELLS)
692		return (ERANGE);
693	tuple_size = sizeof(pcell_t) * pin_cells;
694
695	bzero(pinmap, sizeof(pinmap));
696	len = OF_getprop(node, "pin-map", pinmap, sizeof(pinmap));
697	if (len <= 0)
698		return (ERANGE);
699	if (len % tuple_size)
700		return (ERANGE);
701	pins = len / tuple_size;
702	if (pins > pin_count)
703		return (ERANGE);
704	/*
705	 * Fill out a "mpp[pin] => function" table. All pins unspecified in
706	 * the 'pin-map' property are defaulted to 0 function i.e. GPIO.
707	 */
708	bzero(mpp, sizeof(mpp));
709	pinmap_ptr = pinmap;
710	for (i = 0; i < pins; i++) {
711		mpp_pin = fdt32_to_cpu(*pinmap_ptr);
712		mpp_function = fdt32_to_cpu(*(pinmap_ptr + 1));
713		mpp[mpp_pin] = mpp_function;
714		pinmap_ptr += pin_cells;
715	}
716
717	/*
718	 * Prepare and program MPP control register values.
719	 */
720	ctrl_offset = 0;
721	for (i = 0; i < pin_count;) {
722		ctrl_val = 0;
723
724		for (j = 0; j < MPP_PINS_PER_REG; j++) {
725			if (i + j == pin_count - 1)
726				break;
727			ctrl_val |= MPP_SEL(i + j, mpp[i + j]);
728		}
729		i += MPP_PINS_PER_REG;
730		bus_space_write_4(fdtbus_bs_tag, start, ctrl_offset,
731		    ctrl_val);
732
733#if defined(SOC_MV_ORION)
734		/*
735		 * Third MPP reg on Orion SoC is placed
736		 * non-linearly (with different offset).
737		 */
738		if (i ==  (2 * MPP_PINS_PER_REG))
739			ctrl_offset = 0x50;
740		else
741#endif
742			ctrl_offset += 4;
743	}
744
745	return (0);
746}
747
748#define FDT_DEVMAP_MAX	(1 + 2 + 1 + 1)
749static struct pmap_devmap fdt_devmap[FDT_DEVMAP_MAX] = {
750	{ 0, 0, 0, 0, 0, }
751};
752
753/*
754 * Construct pmap_devmap[] with DT-derived config data.
755 */
756static int
757platform_devmap_init(void)
758{
759	phandle_t root, child;
760	u_long base, size;
761	int i;
762
763	/*
764	 * IMMR range.
765	 */
766	i = 0;
767	fdt_devmap[i].pd_va = fdt_immr_va;
768	fdt_devmap[i].pd_pa = fdt_immr_pa;
769	fdt_devmap[i].pd_size = fdt_immr_size;
770	fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
771	fdt_devmap[i].pd_cache = PTE_NOCACHE;
772	i++;
773
774	/*
775	 * PCI range(s).
776	 */
777	if ((root = OF_finddevice("/")) == 0)
778		return (ENXIO);
779
780	for (child = OF_child(root); child != 0; child = OF_peer(child))
781		if (fdt_is_type(child, "pci")) {
782			/*
783			 * Check space: each PCI node will consume 2 devmap
784			 * entries.
785			 */
786			if (i + 1 >= FDT_DEVMAP_MAX) {
787				return (ENOMEM);
788				break;
789			}
790
791			/*
792			 * XXX this should account for PCI and multiple ranges
793			 * of a given kind.
794			 */
795			if (fdt_pci_devmap(child, &fdt_devmap[i],
796			    MV_PCIE_IO_BASE, MV_PCIE_MEM_BASE) != 0)
797				return (ENXIO);
798			i += 2;
799		}
800
801	/*
802	 * CESA SRAM range.
803	 */
804	if ((child = OF_finddevice("sram")) != 0)
805		if (fdt_is_compatible(child, "mrvl,cesa-sram"))
806			goto moveon;
807
808	if ((child = fdt_find_compatible(root, "mrvl,cesa-sram", 0)) == 0)
809		/* No CESA SRAM node. */
810		goto out;
811moveon:
812	if (i >= FDT_DEVMAP_MAX)
813		return (ENOMEM);
814
815	if (fdt_regsize(child, &base, &size) != 0)
816		return (EINVAL);
817
818	fdt_devmap[i].pd_va = MV_CESA_SRAM_BASE; /* XXX */
819	fdt_devmap[i].pd_pa = base;
820	fdt_devmap[i].pd_size = size;
821	fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
822	fdt_devmap[i].pd_cache = PTE_NOCACHE;
823
824out:
825	pmap_devmap_bootstrap_table = &fdt_devmap[0];
826	return (0);
827}
828
829struct arm32_dma_range *
830bus_dma_get_range(void)
831{
832
833	return (NULL);
834}
835
836int
837bus_dma_get_range_nb(void)
838{
839
840	return (0);
841}
842