machdep.c revision 74670
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 74670 2001-03-23 03:45:17Z tmm $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52#include "opt_userconfig.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/ipl.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/bio.h>
66#include <sys/buf.h>
67#include <sys/reboot.h>
68#include <sys/callout.h>
69#include <sys/msgbuf.h>
70#include <sys/sysent.h>
71#include <sys/sysctl.h>
72#include <sys/vmmeter.h>
73#include <sys/bus.h>
74#include <sys/eventhandler.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <sys/lock.h>
79#include <vm/vm_kern.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_map.h>
83#include <vm/vm_pager.h>
84#include <vm/vm_extern.h>
85
86#include <sys/user.h>
87#include <sys/exec.h>
88#include <sys/cons.h>
89
90#include <ddb/ddb.h>
91
92#include <net/netisr.h>
93
94#include <machine/cpu.h>
95#include <machine/cputypes.h>
96#include <machine/reg.h>
97#include <machine/clock.h>
98#include <machine/specialreg.h>
99#include <machine/bootinfo.h>
100#include <machine/md_var.h>
101#include <machine/pc/bios.h>
102#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
103#include <machine/globaldata.h>
104#include <machine/globals.h>
105#include <machine/intrcnt.h>
106#ifdef SMP
107#include <machine/smp.h>
108#endif
109#ifdef PERFMON
110#include <machine/perfmon.h>
111#endif
112
113#ifdef OLD_BUS_ARCH
114#include <i386/isa/isa_device.h>
115#endif
116#include <i386/isa/icu.h>
117#include <i386/isa/intr_machdep.h>
118#include <isa/rtc.h>
119#include <machine/vm86.h>
120#include <sys/ptrace.h>
121#include <machine/sigframe.h>
122
123extern void init386 __P((int first));
124extern void dblfault_handler __P((void));
125
126extern void printcpuinfo(void);	/* XXX header file */
127extern void earlysetcpuclass(void);	/* same header file */
128extern void finishidentcpu(void);
129extern void panicifcpuunsupported(void);
130extern void initializecpu(void);
131
132#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
133#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
134
135static void cpu_startup __P((void *));
136SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
137
138int	_udatasel, _ucodesel;
139u_int	atdevbase;
140
141#if defined(SWTCH_OPTIM_STATS)
142extern int swtch_optim_stats;
143SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
144	CTLFLAG_RD, &swtch_optim_stats, 0, "");
145SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
146	CTLFLAG_RD, &tlb_flush_count, 0, "");
147#endif
148
149#ifdef PC98
150static int	ispc98 = 1;
151#else
152static int	ispc98 = 0;
153#endif
154SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
155
156int physmem = 0;
157int cold = 1;
158
159static void osendsig __P((sig_t catcher, int sig, sigset_t *mask, u_long code));
160
161static int
162sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
163{
164	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
165	return (error);
166}
167
168SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
169	0, 0, sysctl_hw_physmem, "I", "");
170
171static int
172sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
173{
174	int error = sysctl_handle_int(oidp, 0,
175		ctob(physmem - cnt.v_wire_count), req);
176	return (error);
177}
178
179SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
180	0, 0, sysctl_hw_usermem, "I", "");
181
182static int
183sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
184{
185	int error = sysctl_handle_int(oidp, 0,
186		i386_btop(avail_end - avail_start), req);
187	return (error);
188}
189
190SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
191	0, 0, sysctl_hw_availpages, "I", "");
192
193static int
194sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
195{
196	int error;
197
198	/* Unwind the buffer, so that it's linear (possibly starting with
199	 * some initial nulls).
200	 */
201	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
202		msgbufp->msg_size-msgbufp->msg_bufr,req);
203	if(error) return(error);
204	if(msgbufp->msg_bufr>0) {
205		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
206			msgbufp->msg_bufr,req);
207	}
208	return(error);
209}
210
211SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
212	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
213
214static int msgbuf_clear;
215
216static int
217sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
218{
219	int error;
220	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
221		req);
222	if (!error && req->newptr) {
223		/* Clear the buffer and reset write pointer */
224		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
225		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
226		msgbuf_clear=0;
227	}
228	return (error);
229}
230
231SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
232	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
233	"Clear kernel message buffer");
234
235int bootverbose = 0, Maxmem = 0;
236long dumplo;
237
238vm_offset_t phys_avail[10];
239
240/* must be 2 less so 0 0 can signal end of chunks */
241#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
242
243static vm_offset_t buffer_sva, buffer_eva;
244vm_offset_t clean_sva, clean_eva;
245static vm_offset_t pager_sva, pager_eva;
246static struct trapframe proc0_tf;
247#ifndef SMP
248static struct globaldata __globaldata;
249#endif
250
251struct cpuhead cpuhead;
252
253struct mtx sched_lock;
254struct mtx Giant;
255
256static void
257cpu_startup(dummy)
258	void *dummy;
259{
260	register unsigned i;
261	register caddr_t v;
262	vm_offset_t maxaddr;
263	vm_size_t size = 0;
264	int firstaddr;
265	vm_offset_t minaddr;
266	int physmem_est;
267
268	if (boothowto & RB_VERBOSE)
269		bootverbose++;
270
271	/*
272	 * Good {morning,afternoon,evening,night}.
273	 */
274	printf("%s", version);
275	earlysetcpuclass();
276	startrtclock();
277	printcpuinfo();
278	panicifcpuunsupported();
279#ifdef PERFMON
280	perfmon_init();
281#endif
282	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
283	/*
284	 * Display any holes after the first chunk of extended memory.
285	 */
286	if (bootverbose) {
287		int indx;
288
289		printf("Physical memory chunk(s):\n");
290		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
291			unsigned int size1 = phys_avail[indx + 1] - phys_avail[indx];
292
293			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
294			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
295			    size1 / PAGE_SIZE);
296		}
297	}
298
299	/*
300	 * Calculate callout wheel size
301	 */
302	for (callwheelsize = 1, callwheelbits = 0;
303	     callwheelsize < ncallout;
304	     callwheelsize <<= 1, ++callwheelbits)
305		;
306	callwheelmask = callwheelsize - 1;
307
308	/*
309	 * Allocate space for system data structures.
310	 * The first available kernel virtual address is in "v".
311	 * As pages of kernel virtual memory are allocated, "v" is incremented.
312	 * As pages of memory are allocated and cleared,
313	 * "firstaddr" is incremented.
314	 * An index into the kernel page table corresponding to the
315	 * virtual memory address maintained in "v" is kept in "mapaddr".
316	 */
317
318	/*
319	 * Make two passes.  The first pass calculates how much memory is
320	 * needed and allocates it.  The second pass assigns virtual
321	 * addresses to the various data structures.
322	 */
323	firstaddr = 0;
324again:
325	v = (caddr_t)firstaddr;
326
327#define	valloc(name, type, num) \
328	    (name) = (type *)v; v = (caddr_t)((name)+(num))
329#define	valloclim(name, type, num, lim) \
330	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
331
332	valloc(callout, struct callout, ncallout);
333	valloc(callwheel, struct callout_tailq, callwheelsize);
334
335	/*
336	 * Discount the physical memory larger than the size of kernel_map
337	 * to avoid eating up all of KVA space.
338	 */
339	if (kernel_map->first_free == NULL) {
340		printf("Warning: no free entries in kernel_map.\n");
341		physmem_est = physmem;
342	} else
343		physmem_est = min(physmem, kernel_map->max_offset - kernel_map->min_offset);
344
345	/*
346	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
347	 * For the first 64MB of ram nominally allocate sufficient buffers to
348	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
349	 * buffers to cover 1/20 of our ram over 64MB.
350	 *
351	 * factor represents the 1/4 x ram conversion.
352	 */
353	if (nbuf == 0) {
354		int factor = 4 * BKVASIZE / PAGE_SIZE;
355
356		nbuf = 50;
357		if (physmem_est > 1024)
358			nbuf += min((physmem_est - 1024) / factor, 16384 / factor);
359		if (physmem_est > 16384)
360			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
361	}
362
363	/*
364	 * Do not allow the buffer_map to be more then 1/2 the size of the
365	 * kernel_map.
366	 */
367	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
368	    (BKVASIZE * 2)) {
369		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
370		    (BKVASIZE * 2);
371		printf("Warning: nbufs capped at %d\n", nbuf);
372	}
373
374	nswbuf = max(min(nbuf/4, 256), 16);
375
376	valloc(swbuf, struct buf, nswbuf);
377	valloc(buf, struct buf, nbuf);
378	v = bufhashinit(v);
379
380	/*
381	 * End of first pass, size has been calculated so allocate memory
382	 */
383	if (firstaddr == 0) {
384		size = (vm_size_t)(v - firstaddr);
385		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
386		if (firstaddr == 0)
387			panic("startup: no room for tables");
388		goto again;
389	}
390
391	/*
392	 * End of second pass, addresses have been assigned
393	 */
394	if ((vm_size_t)(v - firstaddr) != size)
395		panic("startup: table size inconsistency");
396
397	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
398			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
399	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
400				(nbuf*BKVASIZE));
401	buffer_map->system_map = 1;
402	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
403				(nswbuf*MAXPHYS) + pager_map_size);
404	pager_map->system_map = 1;
405	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
406				(16*(ARG_MAX+(PAGE_SIZE*3))));
407
408	/*
409	 * XXX: Mbuf system machine-specific initializations should
410	 *      go here, if anywhere.
411	 */
412
413	/*
414	 * Initialize callouts
415	 */
416	SLIST_INIT(&callfree);
417	for (i = 0; i < ncallout; i++) {
418		callout_init(&callout[i], 0);
419		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
420		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
421	}
422
423	for (i = 0; i < callwheelsize; i++) {
424		TAILQ_INIT(&callwheel[i]);
425	}
426
427	mtx_init(&callout_lock, "callout", MTX_SPIN | MTX_RECURSE);
428
429#if defined(USERCONFIG)
430	userconfig();
431	cninit();		/* the preferred console may have changed */
432#endif
433
434	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
435	    ptoa(cnt.v_free_count) / 1024);
436
437	/*
438	 * Set up buffers, so they can be used to read disk labels.
439	 */
440	bufinit();
441	vm_pager_bufferinit();
442
443	SLIST_INIT(&cpuhead);
444	SLIST_INSERT_HEAD(&cpuhead, GLOBALDATA, gd_allcpu);
445
446#ifdef SMP
447	/*
448	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
449	 */
450	mp_start();			/* fire up the APs and APICs */
451	mp_announce();
452#endif  /* SMP */
453	cpu_setregs();
454}
455
456/*
457 * Send an interrupt to process.
458 *
459 * Stack is set up to allow sigcode stored
460 * at top to call routine, followed by kcall
461 * to sigreturn routine below.  After sigreturn
462 * resets the signal mask, the stack, and the
463 * frame pointer, it returns to the user
464 * specified pc, psl.
465 */
466static void
467osendsig(catcher, sig, mask, code)
468	sig_t catcher;
469	int sig;
470	sigset_t *mask;
471	u_long code;
472{
473	struct osigframe sf;
474	struct osigframe *fp;
475	struct proc *p;
476	struct sigacts *psp;
477	struct trapframe *regs;
478	int oonstack;
479
480	p = curproc;
481	PROC_LOCK(p);
482	psp = p->p_sigacts;
483	regs = p->p_md.md_regs;
484	oonstack = sigonstack(regs->tf_esp);
485
486	/* Allocate and validate space for the signal handler context. */
487	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
488	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
489		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
490		    p->p_sigstk.ss_size - sizeof(struct osigframe));
491#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
492		p->p_sigstk.ss_flags |= SS_ONSTACK;
493#endif
494	} else
495		fp = (struct osigframe *)regs->tf_esp - 1;
496	PROC_UNLOCK(p);
497
498	/*
499	 * grow_stack() will return 0 if *fp does not fit inside the stack
500	 * and the stack can not be grown.
501	 * useracc() will return FALSE if access is denied.
502	 */
503	if (grow_stack(p, (int)fp) == 0 ||
504	    !useracc((caddr_t)fp, sizeof(*fp), VM_PROT_WRITE)) {
505		/*
506		 * Process has trashed its stack; give it an illegal
507		 * instruction to halt it in its tracks.
508		 */
509		PROC_LOCK(p);
510		SIGACTION(p, SIGILL) = SIG_DFL;
511		SIGDELSET(p->p_sigignore, SIGILL);
512		SIGDELSET(p->p_sigcatch, SIGILL);
513		SIGDELSET(p->p_sigmask, SIGILL);
514		psignal(p, SIGILL);
515		PROC_UNLOCK(p);
516		return;
517	}
518
519	/* Translate the signal if appropriate. */
520	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
521		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
522
523	/* Build the argument list for the signal handler. */
524	sf.sf_signum = sig;
525	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
526	PROC_LOCK(p);
527	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
528		/* Signal handler installed with SA_SIGINFO. */
529		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
530		sf.sf_siginfo.si_signo = sig;
531		sf.sf_siginfo.si_code = code;
532		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
533	} else {
534		/* Old FreeBSD-style arguments. */
535		sf.sf_arg2 = code;
536		sf.sf_addr = regs->tf_err;
537		sf.sf_ahu.sf_handler = catcher;
538	}
539	PROC_UNLOCK(p);
540
541	/* Save most if not all of trap frame. */
542	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
543	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
544	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
545	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
546	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
547	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
548	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
549	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
550	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
551	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
552	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
553	sf.sf_siginfo.si_sc.sc_gs = rgs();
554	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
555
556	/* Build the signal context to be used by osigreturn(). */
557	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
558	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
559	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
560	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
561	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
562	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
563	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
564	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
565
566	/*
567	 * If we're a vm86 process, we want to save the segment registers.
568	 * We also change eflags to be our emulated eflags, not the actual
569	 * eflags.
570	 */
571	if (regs->tf_eflags & PSL_VM) {
572		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
573		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
574		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
575
576		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
577		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
578		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
579		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
580
581		if (vm86->vm86_has_vme == 0)
582			sf.sf_siginfo.si_sc.sc_ps =
583			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
584			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
585
586		/* See sendsig() for comments. */
587		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
588	}
589
590	/* Copy the sigframe out to the user's stack. */
591	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
592		/*
593		 * Something is wrong with the stack pointer.
594		 * ...Kill the process.
595		 */
596		PROC_LOCK(p);
597		sigexit(p, SIGILL);
598		/* NOTREACHED */
599	}
600
601	regs->tf_esp = (int)fp;
602	regs->tf_eip = PS_STRINGS - szosigcode;
603	regs->tf_cs = _ucodesel;
604	regs->tf_ds = _udatasel;
605	regs->tf_es = _udatasel;
606	regs->tf_fs = _udatasel;
607	load_gs(_udatasel);
608	regs->tf_ss = _udatasel;
609}
610
611void
612sendsig(catcher, sig, mask, code)
613	sig_t catcher;
614	int sig;
615	sigset_t *mask;
616	u_long code;
617{
618	struct sigframe sf;
619	struct proc *p;
620	struct sigacts *psp;
621	struct trapframe *regs;
622	struct sigframe *sfp;
623	int oonstack;
624
625	p = curproc;
626	PROC_LOCK(p);
627	psp = p->p_sigacts;
628	if (SIGISMEMBER(psp->ps_osigset, sig)) {
629		PROC_UNLOCK(p);
630		osendsig(catcher, sig, mask, code);
631		return;
632	}
633	regs = p->p_md.md_regs;
634	oonstack = sigonstack(regs->tf_esp);
635
636	/* Save user context. */
637	bzero(&sf, sizeof(sf));
638	sf.sf_uc.uc_sigmask = *mask;
639	sf.sf_uc.uc_stack = p->p_sigstk;
640	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
641	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
642	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
643	sf.sf_uc.uc_mcontext.mc_gs = rgs();
644	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
645
646	/* Allocate and validate space for the signal handler context. */
647	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
648	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
649		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
650		    p->p_sigstk.ss_size - sizeof(struct sigframe));
651#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
652		p->p_sigstk.ss_flags |= SS_ONSTACK;
653#endif
654	} else
655		sfp = (struct sigframe *)regs->tf_esp - 1;
656	PROC_UNLOCK(p);
657
658	/*
659	 * grow_stack() will return 0 if *sfp does not fit inside the stack
660	 * and the stack can not be grown.
661	 * useracc() will return FALSE if access is denied.
662	 */
663	if (grow_stack(p, (int)sfp) == 0 ||
664	    !useracc((caddr_t)sfp, sizeof(*sfp), VM_PROT_WRITE)) {
665		/*
666		 * Process has trashed its stack; give it an illegal
667		 * instruction to halt it in its tracks.
668		 */
669#ifdef DEBUG
670		printf("process %d has trashed its stack\n", p->p_pid);
671#endif
672		PROC_LOCK(p);
673		SIGACTION(p, SIGILL) = SIG_DFL;
674		SIGDELSET(p->p_sigignore, SIGILL);
675		SIGDELSET(p->p_sigcatch, SIGILL);
676		SIGDELSET(p->p_sigmask, SIGILL);
677		psignal(p, SIGILL);
678		PROC_UNLOCK(p);
679		return;
680	}
681
682	/* Translate the signal if appropriate. */
683	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
684		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
685
686	/* Build the argument list for the signal handler. */
687	sf.sf_signum = sig;
688	sf.sf_ucontext = (register_t)&sfp->sf_uc;
689	PROC_LOCK(p);
690	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
691		/* Signal handler installed with SA_SIGINFO. */
692		sf.sf_siginfo = (register_t)&sfp->sf_si;
693		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
694
695		/* Fill siginfo structure. */
696		sf.sf_si.si_signo = sig;
697		sf.sf_si.si_code = code;
698		sf.sf_si.si_addr = (void *)regs->tf_err;
699	} else {
700		/* Old FreeBSD-style arguments. */
701		sf.sf_siginfo = code;
702		sf.sf_addr = regs->tf_err;
703		sf.sf_ahu.sf_handler = catcher;
704	}
705	PROC_UNLOCK(p);
706
707	/*
708	 * If we're a vm86 process, we want to save the segment registers.
709	 * We also change eflags to be our emulated eflags, not the actual
710	 * eflags.
711	 */
712	if (regs->tf_eflags & PSL_VM) {
713		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
714		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
715
716		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
717		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
718		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
719		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
720
721		if (vm86->vm86_has_vme == 0)
722			sf.sf_uc.uc_mcontext.mc_eflags =
723			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
724			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
725
726		/*
727		 * We should never have PSL_T set when returning from vm86
728		 * mode.  It may be set here if we deliver a signal before
729		 * getting to vm86 mode, so turn it off.
730		 *
731		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
732		 * syscalls made by the signal handler.  This just avoids
733		 * wasting time for our lazy fixup of such faults.  PSL_NT
734		 * does nothing in vm86 mode, but vm86 programs can set it
735		 * almost legitimately in probes for old cpu types.
736		 */
737		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
738	}
739
740	/* Copy the sigframe out to the user's stack. */
741	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
742		/*
743		 * Something is wrong with the stack pointer.
744		 * ...Kill the process.
745		 */
746		PROC_LOCK(p);
747		sigexit(p, SIGILL);
748		/* NOTREACHED */
749	}
750
751	regs->tf_esp = (int)sfp;
752	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
753	regs->tf_cs = _ucodesel;
754	regs->tf_ds = _udatasel;
755	regs->tf_es = _udatasel;
756	regs->tf_fs = _udatasel;
757	load_gs(_udatasel);
758	regs->tf_ss = _udatasel;
759}
760
761/*
762 * System call to cleanup state after a signal
763 * has been taken.  Reset signal mask and
764 * stack state from context left by sendsig (above).
765 * Return to previous pc and psl as specified by
766 * context left by sendsig. Check carefully to
767 * make sure that the user has not modified the
768 * state to gain improper privileges.
769 */
770int
771osigreturn(p, uap)
772	struct proc *p;
773	struct osigreturn_args /* {
774		struct osigcontext *sigcntxp;
775	} */ *uap;
776{
777	struct trapframe *regs;
778	struct osigcontext *scp;
779	int eflags;
780
781	regs = p->p_md.md_regs;
782	scp = uap->sigcntxp;
783	if (!useracc((caddr_t)scp, sizeof(*scp), VM_PROT_READ))
784		return (EFAULT);
785	eflags = scp->sc_ps;
786	if (eflags & PSL_VM) {
787		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
788		struct vm86_kernel *vm86;
789
790		/*
791		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
792		 * set up the vm86 area, and we can't enter vm86 mode.
793		 */
794		if (p->p_addr->u_pcb.pcb_ext == 0)
795			return (EINVAL);
796		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
797		if (vm86->vm86_inited == 0)
798			return (EINVAL);
799
800		/* Go back to user mode if both flags are set. */
801		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
802			trapsignal(p, SIGBUS, 0);
803
804		if (vm86->vm86_has_vme) {
805			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
806			    (eflags & VME_USERCHANGE) | PSL_VM;
807		} else {
808			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
809			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
810		}
811		tf->tf_vm86_ds = scp->sc_ds;
812		tf->tf_vm86_es = scp->sc_es;
813		tf->tf_vm86_fs = scp->sc_fs;
814		tf->tf_vm86_gs = scp->sc_gs;
815		tf->tf_ds = _udatasel;
816		tf->tf_es = _udatasel;
817		tf->tf_fs = _udatasel;
818	} else {
819		/*
820		 * Don't allow users to change privileged or reserved flags.
821		 */
822		/*
823		 * XXX do allow users to change the privileged flag PSL_RF.
824		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
825		 * should sometimes set it there too.  tf_eflags is kept in
826		 * the signal context during signal handling and there is no
827		 * other place to remember it, so the PSL_RF bit may be
828		 * corrupted by the signal handler without us knowing.
829		 * Corruption of the PSL_RF bit at worst causes one more or
830		 * one less debugger trap, so allowing it is fairly harmless.
831		 */
832		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
833	    		return (EINVAL);
834		}
835
836		/*
837		 * Don't allow users to load a valid privileged %cs.  Let the
838		 * hardware check for invalid selectors, excess privilege in
839		 * other selectors, invalid %eip's and invalid %esp's.
840		 */
841		if (!CS_SECURE(scp->sc_cs)) {
842			trapsignal(p, SIGBUS, T_PROTFLT);
843			return (EINVAL);
844		}
845		regs->tf_ds = scp->sc_ds;
846		regs->tf_es = scp->sc_es;
847		regs->tf_fs = scp->sc_fs;
848	}
849
850	/* Restore remaining registers. */
851	regs->tf_eax = scp->sc_eax;
852	regs->tf_ebx = scp->sc_ebx;
853	regs->tf_ecx = scp->sc_ecx;
854	regs->tf_edx = scp->sc_edx;
855	regs->tf_esi = scp->sc_esi;
856	regs->tf_edi = scp->sc_edi;
857	regs->tf_cs = scp->sc_cs;
858	regs->tf_ss = scp->sc_ss;
859	regs->tf_isp = scp->sc_isp;
860
861	PROC_LOCK(p);
862#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
863	if (scp->sc_onstack & 1)
864		p->p_sigstk.ss_flags |= SS_ONSTACK;
865	else
866		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
867#endif
868
869	SIGSETOLD(p->p_sigmask, scp->sc_mask);
870	SIG_CANTMASK(p->p_sigmask);
871	PROC_UNLOCK(p);
872	regs->tf_ebp = scp->sc_fp;
873	regs->tf_esp = scp->sc_sp;
874	regs->tf_eip = scp->sc_pc;
875	regs->tf_eflags = eflags;
876	return (EJUSTRETURN);
877}
878
879int
880sigreturn(p, uap)
881	struct proc *p;
882	struct sigreturn_args /* {
883		ucontext_t *sigcntxp;
884	} */ *uap;
885{
886	struct trapframe *regs;
887	ucontext_t *ucp;
888	int cs, eflags;
889
890	ucp = uap->sigcntxp;
891	if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
892		return (EFAULT);
893	if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
894		return (osigreturn(p, (struct osigreturn_args *)uap));
895
896	/*
897	 * Since ucp is not an osigcontext but a ucontext_t, we have to
898	 * check again if all of it is accessible.  A ucontext_t is
899	 * much larger, so instead of just checking for the pointer
900	 * being valid for the size of an osigcontext, now check for
901	 * it being valid for a whole, new-style ucontext_t.
902	 */
903	if (!useracc((caddr_t)ucp, sizeof(*ucp), VM_PROT_READ))
904		return (EFAULT);
905
906	regs = p->p_md.md_regs;
907	eflags = ucp->uc_mcontext.mc_eflags;
908	if (eflags & PSL_VM) {
909		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
910		struct vm86_kernel *vm86;
911
912		/*
913		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
914		 * set up the vm86 area, and we can't enter vm86 mode.
915		 */
916		if (p->p_addr->u_pcb.pcb_ext == 0)
917			return (EINVAL);
918		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
919		if (vm86->vm86_inited == 0)
920			return (EINVAL);
921
922		/* Go back to user mode if both flags are set. */
923		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
924			trapsignal(p, SIGBUS, 0);
925
926		if (vm86->vm86_has_vme) {
927			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
928			    (eflags & VME_USERCHANGE) | PSL_VM;
929		} else {
930			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
931			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
932		}
933		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
934		tf->tf_eflags = eflags;
935		tf->tf_vm86_ds = tf->tf_ds;
936		tf->tf_vm86_es = tf->tf_es;
937		tf->tf_vm86_fs = tf->tf_fs;
938		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
939		tf->tf_ds = _udatasel;
940		tf->tf_es = _udatasel;
941		tf->tf_fs = _udatasel;
942	} else {
943		/*
944		 * Don't allow users to change privileged or reserved flags.
945		 */
946		/*
947		 * XXX do allow users to change the privileged flag PSL_RF.
948		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
949		 * should sometimes set it there too.  tf_eflags is kept in
950		 * the signal context during signal handling and there is no
951		 * other place to remember it, so the PSL_RF bit may be
952		 * corrupted by the signal handler without us knowing.
953		 * Corruption of the PSL_RF bit at worst causes one more or
954		 * one less debugger trap, so allowing it is fairly harmless.
955		 */
956		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
957			printf("sigreturn: eflags = 0x%x\n", eflags);
958	    		return (EINVAL);
959		}
960
961		/*
962		 * Don't allow users to load a valid privileged %cs.  Let the
963		 * hardware check for invalid selectors, excess privilege in
964		 * other selectors, invalid %eip's and invalid %esp's.
965		 */
966		cs = ucp->uc_mcontext.mc_cs;
967		if (!CS_SECURE(cs)) {
968			printf("sigreturn: cs = 0x%x\n", cs);
969			trapsignal(p, SIGBUS, T_PROTFLT);
970			return (EINVAL);
971		}
972
973		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
974	}
975
976	PROC_LOCK(p);
977#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
978	if (ucp->uc_mcontext.mc_onstack & 1)
979		p->p_sigstk.ss_flags |= SS_ONSTACK;
980	else
981		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
982#endif
983
984	p->p_sigmask = ucp->uc_sigmask;
985	SIG_CANTMASK(p->p_sigmask);
986	PROC_UNLOCK(p);
987	return (EJUSTRETURN);
988}
989
990/*
991 * Machine dependent boot() routine
992 *
993 * I haven't seen anything to put here yet
994 * Possibly some stuff might be grafted back here from boot()
995 */
996void
997cpu_boot(int howto)
998{
999}
1000
1001/*
1002 * Shutdown the CPU as much as possible
1003 */
1004void
1005cpu_halt(void)
1006{
1007	for (;;)
1008		__asm__ ("hlt");
1009}
1010
1011/*
1012 * Hook to idle the CPU when possible.  This currently only works in
1013 * the !SMP case, as there is no clean way to ensure that a CPU will be
1014 * woken when there is work available for it.
1015 */
1016static int	cpu_idle_hlt = 1;
1017SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1018    &cpu_idle_hlt, 0, "Idle loop HLT enable");
1019
1020/*
1021 * Note that we have to be careful here to avoid a race between checking
1022 * procrunnable() and actually halting.  If we don't do this, we may waste
1023 * the time between calling hlt and the next interrupt even though there
1024 * is a runnable process.
1025 */
1026void
1027cpu_idle(void)
1028{
1029#ifndef SMP
1030	if (cpu_idle_hlt) {
1031		disable_intr();
1032  		if (procrunnable())
1033			enable_intr();
1034		else {
1035			enable_intr();
1036			__asm __volatile("hlt");
1037		}
1038	}
1039#endif
1040}
1041
1042/*
1043 * Clear registers on exec
1044 */
1045void
1046setregs(p, entry, stack, ps_strings)
1047	struct proc *p;
1048	u_long entry;
1049	u_long stack;
1050	u_long ps_strings;
1051{
1052	struct trapframe *regs = p->p_md.md_regs;
1053	struct pcb *pcb = &p->p_addr->u_pcb;
1054
1055	if (pcb->pcb_ldt)
1056		user_ldt_free(pcb);
1057
1058	bzero((char *)regs, sizeof(struct trapframe));
1059	regs->tf_eip = entry;
1060	regs->tf_esp = stack;
1061	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1062	regs->tf_ss = _udatasel;
1063	regs->tf_ds = _udatasel;
1064	regs->tf_es = _udatasel;
1065	regs->tf_fs = _udatasel;
1066	regs->tf_cs = _ucodesel;
1067
1068	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1069	regs->tf_ebx = ps_strings;
1070
1071	/* reset %gs as well */
1072	if (pcb == PCPU_GET(curpcb))
1073		load_gs(_udatasel);
1074	else
1075		pcb->pcb_gs = _udatasel;
1076
1077        /*
1078         * Reset the hardware debug registers if they were in use.
1079         * They won't have any meaning for the newly exec'd process.
1080         */
1081        if (pcb->pcb_flags & PCB_DBREGS) {
1082                pcb->pcb_dr0 = 0;
1083                pcb->pcb_dr1 = 0;
1084                pcb->pcb_dr2 = 0;
1085                pcb->pcb_dr3 = 0;
1086                pcb->pcb_dr6 = 0;
1087                pcb->pcb_dr7 = 0;
1088                if (pcb == PCPU_GET(curpcb)) {
1089		        /*
1090			 * Clear the debug registers on the running
1091			 * CPU, otherwise they will end up affecting
1092			 * the next process we switch to.
1093			 */
1094		        reset_dbregs();
1095                }
1096                pcb->pcb_flags &= ~PCB_DBREGS;
1097        }
1098
1099	/*
1100	 * Initialize the math emulator (if any) for the current process.
1101	 * Actually, just clear the bit that says that the emulator has
1102	 * been initialized.  Initialization is delayed until the process
1103	 * traps to the emulator (if it is done at all) mainly because
1104	 * emulators don't provide an entry point for initialization.
1105	 */
1106	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
1107
1108	/*
1109	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1110	 * for why fwait must be trapped at least if there is an npx or an
1111	 * emulator).  This is mainly to handle the case where npx0 is not
1112	 * configured, since the npx routines normally set up the trap
1113	 * otherwise.  It should be done only at boot time, but doing it
1114	 * here allows modifying `npx_exists' for testing the emulator on
1115	 * systems with an npx.
1116	 */
1117	load_cr0(rcr0() | CR0_MP | CR0_TS);
1118
1119#ifdef DEV_NPX
1120	/* Initialize the npx (if any) for the current process. */
1121	npxinit(__INITIAL_NPXCW__);
1122#endif
1123
1124	/*
1125	 * XXX - Linux emulator
1126	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1127	 * on it.
1128	 */
1129	p->p_retval[1] = 0;
1130}
1131
1132void
1133cpu_setregs(void)
1134{
1135	unsigned int cr0;
1136
1137	cr0 = rcr0();
1138	cr0 |= CR0_NE;			/* Done by npxinit() */
1139	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1140#ifndef I386_CPU
1141	cr0 |= CR0_WP | CR0_AM;
1142#endif
1143	load_cr0(cr0);
1144	load_gs(_udatasel);
1145}
1146
1147static int
1148sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1149{
1150	int error;
1151	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1152		req);
1153	if (!error && req->newptr)
1154		resettodr();
1155	return (error);
1156}
1157
1158SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1159	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1160
1161SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1162	CTLFLAG_RW, &disable_rtc_set, 0, "");
1163
1164SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1165	CTLFLAG_RD, &bootinfo, bootinfo, "");
1166
1167SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1168	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1169
1170/*
1171 * Initialize 386 and configure to run kernel
1172 */
1173
1174/*
1175 * Initialize segments & interrupt table
1176 */
1177
1178int _default_ldt;
1179union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1180static struct gate_descriptor idt0[NIDT];
1181struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1182union descriptor ldt[NLDT];		/* local descriptor table */
1183#ifdef SMP
1184/* table descriptors - used to load tables by microp */
1185struct region_descriptor r_gdt, r_idt;
1186#endif
1187
1188int private_tss;			/* flag indicating private tss */
1189
1190#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1191extern int has_f00f_bug;
1192#endif
1193
1194static struct i386tss dblfault_tss;
1195static char dblfault_stack[PAGE_SIZE];
1196
1197extern  struct user *proc0paddr;
1198
1199
1200/* software prototypes -- in more palatable form */
1201struct soft_segment_descriptor gdt_segs[] = {
1202/* GNULL_SEL	0 Null Descriptor */
1203{	0x0,			/* segment base address  */
1204	0x0,			/* length */
1205	0,			/* segment type */
1206	0,			/* segment descriptor priority level */
1207	0,			/* segment descriptor present */
1208	0, 0,
1209	0,			/* default 32 vs 16 bit size */
1210	0  			/* limit granularity (byte/page units)*/ },
1211/* GCODE_SEL	1 Code Descriptor for kernel */
1212{	0x0,			/* segment base address  */
1213	0xfffff,		/* length - all address space */
1214	SDT_MEMERA,		/* segment type */
1215	0,			/* segment descriptor priority level */
1216	1,			/* segment descriptor present */
1217	0, 0,
1218	1,			/* default 32 vs 16 bit size */
1219	1  			/* limit granularity (byte/page units)*/ },
1220/* GDATA_SEL	2 Data Descriptor for kernel */
1221{	0x0,			/* segment base address  */
1222	0xfffff,		/* length - all address space */
1223	SDT_MEMRWA,		/* segment type */
1224	0,			/* segment descriptor priority level */
1225	1,			/* segment descriptor present */
1226	0, 0,
1227	1,			/* default 32 vs 16 bit size */
1228	1  			/* limit granularity (byte/page units)*/ },
1229/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1230{	0x0,			/* segment base address  */
1231	0xfffff,		/* length - all address space */
1232	SDT_MEMRWA,		/* segment type */
1233	0,			/* segment descriptor priority level */
1234	1,			/* segment descriptor present */
1235	0, 0,
1236	1,			/* default 32 vs 16 bit size */
1237	1  			/* limit granularity (byte/page units)*/ },
1238/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1239{
1240	0x0,			/* segment base address */
1241	sizeof(struct i386tss)-1,/* length - all address space */
1242	SDT_SYS386TSS,		/* segment type */
1243	0,			/* segment descriptor priority level */
1244	1,			/* segment descriptor present */
1245	0, 0,
1246	0,			/* unused - default 32 vs 16 bit size */
1247	0  			/* limit granularity (byte/page units)*/ },
1248/* GLDT_SEL	5 LDT Descriptor */
1249{	(int) ldt,		/* segment base address  */
1250	sizeof(ldt)-1,		/* length - all address space */
1251	SDT_SYSLDT,		/* segment type */
1252	SEL_UPL,		/* segment descriptor priority level */
1253	1,			/* segment descriptor present */
1254	0, 0,
1255	0,			/* unused - default 32 vs 16 bit size */
1256	0  			/* limit granularity (byte/page units)*/ },
1257/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1258{	(int) ldt,		/* segment base address  */
1259	(512 * sizeof(union descriptor)-1),		/* length */
1260	SDT_SYSLDT,		/* segment type */
1261	0,			/* segment descriptor priority level */
1262	1,			/* segment descriptor present */
1263	0, 0,
1264	0,			/* unused - default 32 vs 16 bit size */
1265	0  			/* limit granularity (byte/page units)*/ },
1266/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1267{	0x0,			/* segment base address  */
1268	0x0,			/* length - all address space */
1269	0,			/* segment type */
1270	0,			/* segment descriptor priority level */
1271	0,			/* segment descriptor present */
1272	0, 0,
1273	0,			/* default 32 vs 16 bit size */
1274	0  			/* limit granularity (byte/page units)*/ },
1275/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1276{	0x400,			/* segment base address */
1277	0xfffff,		/* length */
1278	SDT_MEMRWA,		/* segment type */
1279	0,			/* segment descriptor priority level */
1280	1,			/* segment descriptor present */
1281	0, 0,
1282	1,			/* default 32 vs 16 bit size */
1283	1  			/* limit granularity (byte/page units)*/ },
1284/* GPANIC_SEL	9 Panic Tss Descriptor */
1285{	(int) &dblfault_tss,	/* segment base address  */
1286	sizeof(struct i386tss)-1,/* length - all address space */
1287	SDT_SYS386TSS,		/* segment type */
1288	0,			/* segment descriptor priority level */
1289	1,			/* segment descriptor present */
1290	0, 0,
1291	0,			/* unused - default 32 vs 16 bit size */
1292	0  			/* limit granularity (byte/page units)*/ },
1293/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1294{	0,			/* segment base address (overwritten)  */
1295	0xfffff,		/* length */
1296	SDT_MEMERA,		/* segment type */
1297	0,			/* segment descriptor priority level */
1298	1,			/* segment descriptor present */
1299	0, 0,
1300	0,			/* default 32 vs 16 bit size */
1301	1  			/* limit granularity (byte/page units)*/ },
1302/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1303{	0,			/* segment base address (overwritten)  */
1304	0xfffff,		/* length */
1305	SDT_MEMERA,		/* segment type */
1306	0,			/* segment descriptor priority level */
1307	1,			/* segment descriptor present */
1308	0, 0,
1309	0,			/* default 32 vs 16 bit size */
1310	1  			/* limit granularity (byte/page units)*/ },
1311/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1312{	0,			/* segment base address (overwritten) */
1313	0xfffff,		/* length */
1314	SDT_MEMRWA,		/* segment type */
1315	0,			/* segment descriptor priority level */
1316	1,			/* segment descriptor present */
1317	0, 0,
1318	1,			/* default 32 vs 16 bit size */
1319	1  			/* limit granularity (byte/page units)*/ },
1320/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1321{	0,			/* segment base address (overwritten) */
1322	0xfffff,		/* length */
1323	SDT_MEMRWA,		/* segment type */
1324	0,			/* segment descriptor priority level */
1325	1,			/* segment descriptor present */
1326	0, 0,
1327	0,			/* default 32 vs 16 bit size */
1328	1  			/* limit granularity (byte/page units)*/ },
1329/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1330{	0,			/* segment base address (overwritten) */
1331	0xfffff,		/* length */
1332	SDT_MEMRWA,		/* segment type */
1333	0,			/* segment descriptor priority level */
1334	1,			/* segment descriptor present */
1335	0, 0,
1336	0,			/* default 32 vs 16 bit size */
1337	1  			/* limit granularity (byte/page units)*/ },
1338};
1339
1340static struct soft_segment_descriptor ldt_segs[] = {
1341	/* Null Descriptor - overwritten by call gate */
1342{	0x0,			/* segment base address  */
1343	0x0,			/* length - all address space */
1344	0,			/* segment type */
1345	0,			/* segment descriptor priority level */
1346	0,			/* segment descriptor present */
1347	0, 0,
1348	0,			/* default 32 vs 16 bit size */
1349	0  			/* limit granularity (byte/page units)*/ },
1350	/* Null Descriptor - overwritten by call gate */
1351{	0x0,			/* segment base address  */
1352	0x0,			/* length - all address space */
1353	0,			/* segment type */
1354	0,			/* segment descriptor priority level */
1355	0,			/* segment descriptor present */
1356	0, 0,
1357	0,			/* default 32 vs 16 bit size */
1358	0  			/* limit granularity (byte/page units)*/ },
1359	/* Null Descriptor - overwritten by call gate */
1360{	0x0,			/* segment base address  */
1361	0x0,			/* length - all address space */
1362	0,			/* segment type */
1363	0,			/* segment descriptor priority level */
1364	0,			/* segment descriptor present */
1365	0, 0,
1366	0,			/* default 32 vs 16 bit size */
1367	0  			/* limit granularity (byte/page units)*/ },
1368	/* Code Descriptor for user */
1369{	0x0,			/* segment base address  */
1370	0xfffff,		/* length - all address space */
1371	SDT_MEMERA,		/* segment type */
1372	SEL_UPL,		/* segment descriptor priority level */
1373	1,			/* segment descriptor present */
1374	0, 0,
1375	1,			/* default 32 vs 16 bit size */
1376	1  			/* limit granularity (byte/page units)*/ },
1377	/* Null Descriptor - overwritten by call gate */
1378{	0x0,			/* segment base address  */
1379	0x0,			/* length - all address space */
1380	0,			/* segment type */
1381	0,			/* segment descriptor priority level */
1382	0,			/* segment descriptor present */
1383	0, 0,
1384	0,			/* default 32 vs 16 bit size */
1385	0  			/* limit granularity (byte/page units)*/ },
1386	/* Data Descriptor for user */
1387{	0x0,			/* segment base address  */
1388	0xfffff,		/* length - all address space */
1389	SDT_MEMRWA,		/* segment type */
1390	SEL_UPL,		/* segment descriptor priority level */
1391	1,			/* segment descriptor present */
1392	0, 0,
1393	1,			/* default 32 vs 16 bit size */
1394	1  			/* limit granularity (byte/page units)*/ },
1395};
1396
1397void
1398setidt(idx, func, typ, dpl, selec)
1399	int idx;
1400	inthand_t *func;
1401	int typ;
1402	int dpl;
1403	int selec;
1404{
1405	struct gate_descriptor *ip;
1406
1407	ip = idt + idx;
1408	ip->gd_looffset = (int)func;
1409	ip->gd_selector = selec;
1410	ip->gd_stkcpy = 0;
1411	ip->gd_xx = 0;
1412	ip->gd_type = typ;
1413	ip->gd_dpl = dpl;
1414	ip->gd_p = 1;
1415	ip->gd_hioffset = ((int)func)>>16 ;
1416}
1417
1418#define	IDTVEC(name)	__CONCAT(X,name)
1419
1420extern inthand_t
1421	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1422	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1423	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1424	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1425	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1426
1427void
1428sdtossd(sd, ssd)
1429	struct segment_descriptor *sd;
1430	struct soft_segment_descriptor *ssd;
1431{
1432	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1433	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1434	ssd->ssd_type  = sd->sd_type;
1435	ssd->ssd_dpl   = sd->sd_dpl;
1436	ssd->ssd_p     = sd->sd_p;
1437	ssd->ssd_def32 = sd->sd_def32;
1438	ssd->ssd_gran  = sd->sd_gran;
1439}
1440
1441#define PHYSMAP_SIZE	(2 * 8)
1442
1443/*
1444 * Populate the (physmap) array with base/bound pairs describing the
1445 * available physical memory in the system, then test this memory and
1446 * build the phys_avail array describing the actually-available memory.
1447 *
1448 * If we cannot accurately determine the physical memory map, then use
1449 * value from the 0xE801 call, and failing that, the RTC.
1450 *
1451 * Total memory size may be set by the kernel environment variable
1452 * hw.physmem or the compile-time define MAXMEM.
1453 */
1454static void
1455getmemsize(int first)
1456{
1457	int i, physmap_idx, pa_indx;
1458	u_int basemem, extmem;
1459	struct vm86frame vmf;
1460	struct vm86context vmc;
1461	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1462	pt_entry_t pte;
1463	const char *cp;
1464	struct bios_smap *smap;
1465
1466	bzero(&vmf, sizeof(struct vm86frame));
1467	bzero(physmap, sizeof(physmap));
1468
1469	/*
1470	 * Perform "base memory" related probes & setup
1471	 */
1472	vm86_intcall(0x12, &vmf);
1473	basemem = vmf.vmf_ax;
1474	if (basemem > 640) {
1475		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1476			basemem);
1477		basemem = 640;
1478	}
1479
1480	/*
1481	 * XXX if biosbasemem is now < 640, there is a `hole'
1482	 * between the end of base memory and the start of
1483	 * ISA memory.  The hole may be empty or it may
1484	 * contain BIOS code or data.  Map it read/write so
1485	 * that the BIOS can write to it.  (Memory from 0 to
1486	 * the physical end of the kernel is mapped read-only
1487	 * to begin with and then parts of it are remapped.
1488	 * The parts that aren't remapped form holes that
1489	 * remain read-only and are unused by the kernel.
1490	 * The base memory area is below the physical end of
1491	 * the kernel and right now forms a read-only hole.
1492	 * The part of it from PAGE_SIZE to
1493	 * (trunc_page(biosbasemem * 1024) - 1) will be
1494	 * remapped and used by the kernel later.)
1495	 *
1496	 * This code is similar to the code used in
1497	 * pmap_mapdev, but since no memory needs to be
1498	 * allocated we simply change the mapping.
1499	 */
1500	for (pa = trunc_page(basemem * 1024);
1501	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1502		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1503		*pte = pa | PG_RW | PG_V;
1504	}
1505
1506	/*
1507	 * if basemem != 640, map pages r/w into vm86 page table so
1508	 * that the bios can scribble on it.
1509	 */
1510	pte = (pt_entry_t)vm86paddr;
1511	for (i = basemem / 4; i < 160; i++)
1512		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1513
1514	/*
1515	 * map page 1 R/W into the kernel page table so we can use it
1516	 * as a buffer.  The kernel will unmap this page later.
1517	 */
1518	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1519	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1520
1521	/*
1522	 * get memory map with INT 15:E820
1523	 */
1524	vmc.npages = 0;
1525	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1526	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1527
1528	physmap_idx = 0;
1529	vmf.vmf_ebx = 0;
1530	do {
1531		vmf.vmf_eax = 0xE820;
1532		vmf.vmf_edx = SMAP_SIG;
1533		vmf.vmf_ecx = sizeof(struct bios_smap);
1534		i = vm86_datacall(0x15, &vmf, &vmc);
1535		if (i || vmf.vmf_eax != SMAP_SIG)
1536			break;
1537		if (boothowto & RB_VERBOSE)
1538			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1539				smap->type,
1540				*(u_int32_t *)((char *)&smap->base + 4),
1541				(u_int32_t)smap->base,
1542				*(u_int32_t *)((char *)&smap->length + 4),
1543				(u_int32_t)smap->length);
1544
1545		if (smap->type != 0x01)
1546			goto next_run;
1547
1548		if (smap->length == 0)
1549			goto next_run;
1550
1551		if (smap->base >= 0xffffffff) {
1552			printf("%uK of memory above 4GB ignored\n",
1553			    (u_int)(smap->length / 1024));
1554			goto next_run;
1555		}
1556
1557		for (i = 0; i <= physmap_idx; i += 2) {
1558			if (smap->base < physmap[i + 1]) {
1559				if (boothowto & RB_VERBOSE)
1560					printf(
1561	"Overlapping or non-montonic memory region, ignoring second region\n");
1562				goto next_run;
1563			}
1564		}
1565
1566		if (smap->base == physmap[physmap_idx + 1]) {
1567			physmap[physmap_idx + 1] += smap->length;
1568			goto next_run;
1569		}
1570
1571		physmap_idx += 2;
1572		if (physmap_idx == PHYSMAP_SIZE) {
1573			printf(
1574		"Too many segments in the physical address map, giving up\n");
1575			break;
1576		}
1577		physmap[physmap_idx] = smap->base;
1578		physmap[physmap_idx + 1] = smap->base + smap->length;
1579next_run:
1580	} while (vmf.vmf_ebx != 0);
1581
1582	if (physmap[1] != 0)
1583		goto physmap_done;
1584
1585	/*
1586	 * If we failed above, try memory map with INT 15:E801
1587	 */
1588	vmf.vmf_ax = 0xE801;
1589	if (vm86_intcall(0x15, &vmf) == 0) {
1590		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1591	} else {
1592#if 0
1593		vmf.vmf_ah = 0x88;
1594		vm86_intcall(0x15, &vmf);
1595		extmem = vmf.vmf_ax;
1596#else
1597		/*
1598		 * Prefer the RTC value for extended memory.
1599		 */
1600		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1601#endif
1602	}
1603
1604	/*
1605	 * Special hack for chipsets that still remap the 384k hole when
1606	 * there's 16MB of memory - this really confuses people that
1607	 * are trying to use bus mastering ISA controllers with the
1608	 * "16MB limit"; they only have 16MB, but the remapping puts
1609	 * them beyond the limit.
1610	 *
1611	 * If extended memory is between 15-16MB (16-17MB phys address range),
1612	 *	chop it to 15MB.
1613	 */
1614	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1615		extmem = 15 * 1024;
1616
1617	physmap[0] = 0;
1618	physmap[1] = basemem * 1024;
1619	physmap_idx = 2;
1620	physmap[physmap_idx] = 0x100000;
1621	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1622
1623physmap_done:
1624	/*
1625	 * Now, physmap contains a map of physical memory.
1626	 */
1627
1628#ifdef SMP
1629	/* make hole for AP bootstrap code */
1630	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1631
1632	/* look for the MP hardware - needed for apic addresses */
1633	mp_probe();
1634#endif
1635
1636	/*
1637	 * Maxmem isn't the "maximum memory", it's one larger than the
1638	 * highest page of the physical address space.  It should be
1639	 * called something like "Maxphyspage".  We may adjust this
1640	 * based on ``hw.physmem'' and the results of the memory test.
1641	 */
1642	Maxmem = atop(physmap[physmap_idx + 1]);
1643
1644#ifdef MAXMEM
1645	Maxmem = MAXMEM / 4;
1646#endif
1647
1648	/*
1649	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1650	 * for the appropriate modifiers.  This overrides MAXMEM.
1651	 */
1652	if ((cp = getenv("hw.physmem")) != NULL) {
1653		u_int64_t AllowMem, sanity;
1654		char *ep;
1655
1656		sanity = AllowMem = strtouq(cp, &ep, 0);
1657		if ((ep != cp) && (*ep != 0)) {
1658			switch(*ep) {
1659			case 'g':
1660			case 'G':
1661				AllowMem <<= 10;
1662			case 'm':
1663			case 'M':
1664				AllowMem <<= 10;
1665			case 'k':
1666			case 'K':
1667				AllowMem <<= 10;
1668				break;
1669			default:
1670				AllowMem = sanity = 0;
1671			}
1672			if (AllowMem < sanity)
1673				AllowMem = 0;
1674		}
1675		if (AllowMem == 0)
1676			printf("Ignoring invalid memory size of '%s'\n", cp);
1677		else
1678			Maxmem = atop(AllowMem);
1679	}
1680
1681	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1682	    (boothowto & RB_VERBOSE))
1683		printf("Physical memory use set to %uK\n", Maxmem * 4);
1684
1685	/*
1686	 * If Maxmem has been increased beyond what the system has detected,
1687	 * extend the last memory segment to the new limit.
1688	 */
1689	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1690		physmap[physmap_idx + 1] = ptoa(Maxmem);
1691
1692	/* call pmap initialization to make new kernel address space */
1693	pmap_bootstrap(first, 0);
1694
1695	/*
1696	 * Size up each available chunk of physical memory.
1697	 */
1698	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1699	pa_indx = 0;
1700	phys_avail[pa_indx++] = physmap[0];
1701	phys_avail[pa_indx] = physmap[0];
1702#if 0
1703	pte = (pt_entry_t)vtopte(KERNBASE);
1704#else
1705	pte = (pt_entry_t)CMAP1;
1706#endif
1707
1708	/*
1709	 * physmap is in bytes, so when converting to page boundaries,
1710	 * round up the start address and round down the end address.
1711	 */
1712	for (i = 0; i <= physmap_idx; i += 2) {
1713		vm_offset_t end;
1714
1715		end = ptoa(Maxmem);
1716		if (physmap[i + 1] < end)
1717			end = trunc_page(physmap[i + 1]);
1718		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1719			int tmp, page_bad;
1720#if 0
1721			int *ptr = 0;
1722#else
1723			int *ptr = (int *)CADDR1;
1724#endif
1725
1726			/*
1727			 * block out kernel memory as not available.
1728			 */
1729			if (pa >= 0x100000 && pa < first)
1730				continue;
1731
1732			page_bad = FALSE;
1733
1734			/*
1735			 * map page into kernel: valid, read/write,non-cacheable
1736			 */
1737			*pte = pa | PG_V | PG_RW | PG_N;
1738			invltlb();
1739
1740			tmp = *(int *)ptr;
1741			/*
1742			 * Test for alternating 1's and 0's
1743			 */
1744			*(volatile int *)ptr = 0xaaaaaaaa;
1745			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1746				page_bad = TRUE;
1747			}
1748			/*
1749			 * Test for alternating 0's and 1's
1750			 */
1751			*(volatile int *)ptr = 0x55555555;
1752			if (*(volatile int *)ptr != 0x55555555) {
1753			page_bad = TRUE;
1754			}
1755			/*
1756			 * Test for all 1's
1757			 */
1758			*(volatile int *)ptr = 0xffffffff;
1759			if (*(volatile int *)ptr != 0xffffffff) {
1760				page_bad = TRUE;
1761			}
1762			/*
1763			 * Test for all 0's
1764			 */
1765			*(volatile int *)ptr = 0x0;
1766			if (*(volatile int *)ptr != 0x0) {
1767				page_bad = TRUE;
1768			}
1769			/*
1770			 * Restore original value.
1771			 */
1772			*(int *)ptr = tmp;
1773
1774			/*
1775			 * Adjust array of valid/good pages.
1776			 */
1777			if (page_bad == TRUE) {
1778				continue;
1779			}
1780			/*
1781			 * If this good page is a continuation of the
1782			 * previous set of good pages, then just increase
1783			 * the end pointer. Otherwise start a new chunk.
1784			 * Note that "end" points one higher than end,
1785			 * making the range >= start and < end.
1786			 * If we're also doing a speculative memory
1787			 * test and we at or past the end, bump up Maxmem
1788			 * so that we keep going. The first bad page
1789			 * will terminate the loop.
1790			 */
1791			if (phys_avail[pa_indx] == pa) {
1792				phys_avail[pa_indx] += PAGE_SIZE;
1793			} else {
1794				pa_indx++;
1795				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1796					printf("Too many holes in the physical address space, giving up\n");
1797					pa_indx--;
1798					break;
1799				}
1800				phys_avail[pa_indx++] = pa;	/* start */
1801				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1802			}
1803			physmem++;
1804		}
1805	}
1806	*pte = 0;
1807	invltlb();
1808
1809	/*
1810	 * XXX
1811	 * The last chunk must contain at least one page plus the message
1812	 * buffer to avoid complicating other code (message buffer address
1813	 * calculation, etc.).
1814	 */
1815	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1816	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1817		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1818		phys_avail[pa_indx--] = 0;
1819		phys_avail[pa_indx--] = 0;
1820	}
1821
1822	Maxmem = atop(phys_avail[pa_indx]);
1823
1824	/* Trim off space for the message buffer. */
1825	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1826
1827	avail_end = phys_avail[pa_indx];
1828}
1829
1830void
1831init386(first)
1832	int first;
1833{
1834	int x;
1835	struct gate_descriptor *gdp;
1836	int gsel_tss;
1837#ifndef SMP
1838	/* table descriptors - used to load tables by microp */
1839	struct region_descriptor r_gdt, r_idt;
1840#endif
1841	int off;
1842
1843	proc0.p_addr = proc0paddr;
1844
1845	atdevbase = ISA_HOLE_START + KERNBASE;
1846
1847	if (bootinfo.bi_modulep) {
1848		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1849		preload_bootstrap_relocate(KERNBASE);
1850	} else {
1851		printf("WARNING: loader(8) metadata is missing!\n");
1852	}
1853	if (bootinfo.bi_envp)
1854		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1855
1856	/*
1857	 * make gdt memory segments, the code segment goes up to end of the
1858	 * page with etext in it, the data segment goes to the end of
1859	 * the address space
1860	 */
1861	/*
1862	 * XXX text protection is temporarily (?) disabled.  The limit was
1863	 * i386_btop(round_page(etext)) - 1.
1864	 */
1865	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1866	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1867#ifdef SMP
1868	gdt_segs[GPRIV_SEL].ssd_limit =
1869		i386_btop(sizeof(struct privatespace)) - 1;
1870	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1871	gdt_segs[GPROC0_SEL].ssd_base =
1872		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1873	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0].globaldata;
1874#else
1875	gdt_segs[GPRIV_SEL].ssd_limit =
1876		i386_btop(sizeof(struct globaldata)) - 1;
1877	gdt_segs[GPRIV_SEL].ssd_base = (int) &__globaldata;
1878	gdt_segs[GPROC0_SEL].ssd_base =
1879		(int) &__globaldata.gd_common_tss;
1880	__globaldata.gd_prvspace = &__globaldata;
1881#endif
1882
1883	for (x = 0; x < NGDT; x++) {
1884#ifdef BDE_DEBUGGER
1885		/* avoid overwriting db entries with APM ones */
1886		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1887			continue;
1888#endif
1889		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1890	}
1891
1892	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1893	r_gdt.rd_base =  (int) gdt;
1894	lgdt(&r_gdt);
1895
1896	/* setup curproc so that mutexes work */
1897	PCPU_SET(curproc, &proc0);
1898
1899	LIST_INIT(&proc0.p_heldmtx);
1900	LIST_INIT(&proc0.p_contested);
1901
1902	mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE);
1903#ifdef SMP
1904	/*
1905	 * Interrupts can happen very early, so initialize imen_mtx here, rather
1906	 * than in init_locks().
1907	 */
1908	mtx_init(&imen_mtx, "imen", MTX_SPIN);
1909#endif
1910
1911	/*
1912	 * Giant is used early for at least debugger traps and unexpected traps.
1913	 */
1914	mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE);
1915	mtx_init(&proc0.p_mtx, "process lock", MTX_DEF);
1916	mtx_lock(&Giant);
1917
1918	/* make ldt memory segments */
1919	/*
1920	 * The data segment limit must not cover the user area because we
1921	 * don't want the user area to be writable in copyout() etc. (page
1922	 * level protection is lost in kernel mode on 386's).  Also, we
1923	 * don't want the user area to be writable directly (page level
1924	 * protection of the user area is not available on 486's with
1925	 * CR0_WP set, because there is no user-read/kernel-write mode).
1926	 *
1927	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1928	 * should be spelled ...MAX_USER...
1929	 */
1930#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1931	/*
1932	 * The code segment limit has to cover the user area until we move
1933	 * the signal trampoline out of the user area.  This is safe because
1934	 * the code segment cannot be written to directly.
1935	 */
1936#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1937	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1938	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1939	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1940		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1941
1942	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1943	lldt(_default_ldt);
1944	PCPU_SET(currentldt, _default_ldt);
1945
1946	/* exceptions */
1947	for (x = 0; x < NIDT; x++)
1948		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1949	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1950	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1951	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1952 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1953	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1954	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1955	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1956	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1957	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1958	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1959	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1960	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1961	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1962	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1963	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1964	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1965	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1966	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1967	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1968 	setidt(0x80, &IDTVEC(int0x80_syscall),
1969			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1970
1971	r_idt.rd_limit = sizeof(idt0) - 1;
1972	r_idt.rd_base = (int) idt;
1973	lidt(&r_idt);
1974
1975	/*
1976	 * We need this mutex before the console probe.
1977	 */
1978	mtx_init(&clock_lock, "clk", MTX_SPIN | MTX_RECURSE);
1979
1980	/*
1981	 * Initialize the console before we print anything out.
1982	 */
1983	cninit();
1984
1985#ifdef DEV_ISA
1986	isa_defaultirq();
1987#endif
1988
1989#ifdef DDB
1990	kdb_init();
1991	if (boothowto & RB_KDB)
1992		Debugger("Boot flags requested debugger");
1993#endif
1994
1995	finishidentcpu();	/* Final stage of CPU initialization */
1996	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1997	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1998	initializecpu();	/* Initialize CPU registers */
1999
2000	/* make an initial tss so cpu can get interrupt stack on syscall! */
2001	PCPU_SET(common_tss.tss_esp0,
2002	    (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16);
2003	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2004	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2005	private_tss = 0;
2006	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2007	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2008	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2009	ltr(gsel_tss);
2010
2011	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2012	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
2013	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2014	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2015	dblfault_tss.tss_cr3 = (int)IdlePTD;
2016	dblfault_tss.tss_eip = (int) dblfault_handler;
2017	dblfault_tss.tss_eflags = PSL_KERNEL;
2018	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2019	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2020	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2021	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2022	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2023
2024	vm86_initialize();
2025	getmemsize(first);
2026
2027	/* now running on new page tables, configured,and u/iom is accessible */
2028
2029	/* Map the message buffer. */
2030	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2031		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2032
2033	msgbufinit(msgbufp, MSGBUF_SIZE);
2034
2035	/* make a call gate to reenter kernel with */
2036	gdp = &ldt[LSYS5CALLS_SEL].gd;
2037
2038	x = (int) &IDTVEC(lcall_syscall);
2039	gdp->gd_looffset = x;
2040	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2041	gdp->gd_stkcpy = 1;
2042	gdp->gd_type = SDT_SYS386CGT;
2043	gdp->gd_dpl = SEL_UPL;
2044	gdp->gd_p = 1;
2045	gdp->gd_hioffset = x >> 16;
2046
2047	/* XXX does this work? */
2048	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2049	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2050
2051	/* transfer to user mode */
2052
2053	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2054	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2055
2056	/* setup proc 0's pcb */
2057	proc0.p_addr->u_pcb.pcb_flags = 0;
2058	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
2059	proc0.p_addr->u_pcb.pcb_ext = 0;
2060	proc0.p_md.md_regs = &proc0_tf;
2061}
2062
2063#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2064static void f00f_hack(void *unused);
2065SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2066
2067static void
2068f00f_hack(void *unused) {
2069	struct gate_descriptor *new_idt;
2070#ifndef SMP
2071	struct region_descriptor r_idt;
2072#endif
2073	vm_offset_t tmp;
2074
2075	if (!has_f00f_bug)
2076		return;
2077
2078	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2079
2080	r_idt.rd_limit = sizeof(idt0) - 1;
2081
2082	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2083	if (tmp == 0)
2084		panic("kmem_alloc returned 0");
2085	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2086		panic("kmem_alloc returned non-page-aligned memory");
2087	/* Put the first seven entries in the lower page */
2088	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2089	bcopy(idt, new_idt, sizeof(idt0));
2090	r_idt.rd_base = (int)new_idt;
2091	lidt(&r_idt);
2092	idt = new_idt;
2093	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2094			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2095		panic("vm_map_protect failed");
2096	return;
2097}
2098#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2099
2100int
2101ptrace_set_pc(p, addr)
2102	struct proc *p;
2103	unsigned long addr;
2104{
2105	p->p_md.md_regs->tf_eip = addr;
2106	return (0);
2107}
2108
2109int
2110ptrace_single_step(p)
2111	struct proc *p;
2112{
2113	p->p_md.md_regs->tf_eflags |= PSL_T;
2114	return (0);
2115}
2116
2117int ptrace_read_u_check(p, addr, len)
2118	struct proc *p;
2119	vm_offset_t addr;
2120	size_t len;
2121{
2122	vm_offset_t gap;
2123
2124	if ((vm_offset_t) (addr + len) < addr)
2125		return EPERM;
2126	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2127		return 0;
2128
2129	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2130
2131	if ((vm_offset_t) addr < gap)
2132		return EPERM;
2133	if ((vm_offset_t) (addr + len) <=
2134	    (vm_offset_t) (gap + sizeof(struct trapframe)))
2135		return 0;
2136	return EPERM;
2137}
2138
2139int ptrace_write_u(p, off, data)
2140	struct proc *p;
2141	vm_offset_t off;
2142	long data;
2143{
2144	struct trapframe frame_copy;
2145	vm_offset_t min;
2146	struct trapframe *tp;
2147
2148	/*
2149	 * Privileged kernel state is scattered all over the user area.
2150	 * Only allow write access to parts of regs and to fpregs.
2151	 */
2152	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2153	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2154		tp = p->p_md.md_regs;
2155		frame_copy = *tp;
2156		*(int *)((char *)&frame_copy + (off - min)) = data;
2157		if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2158		    !CS_SECURE(frame_copy.tf_cs))
2159			return (EINVAL);
2160		*(int*)((char *)p->p_addr + off) = data;
2161		return (0);
2162	}
2163	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
2164	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
2165		*(int*)((char *)p->p_addr + off) = data;
2166		return (0);
2167	}
2168	return (EFAULT);
2169}
2170
2171int
2172fill_regs(p, regs)
2173	struct proc *p;
2174	struct reg *regs;
2175{
2176	struct pcb *pcb;
2177	struct trapframe *tp;
2178
2179	tp = p->p_md.md_regs;
2180	regs->r_fs = tp->tf_fs;
2181	regs->r_es = tp->tf_es;
2182	regs->r_ds = tp->tf_ds;
2183	regs->r_edi = tp->tf_edi;
2184	regs->r_esi = tp->tf_esi;
2185	regs->r_ebp = tp->tf_ebp;
2186	regs->r_ebx = tp->tf_ebx;
2187	regs->r_edx = tp->tf_edx;
2188	regs->r_ecx = tp->tf_ecx;
2189	regs->r_eax = tp->tf_eax;
2190	regs->r_eip = tp->tf_eip;
2191	regs->r_cs = tp->tf_cs;
2192	regs->r_eflags = tp->tf_eflags;
2193	regs->r_esp = tp->tf_esp;
2194	regs->r_ss = tp->tf_ss;
2195	pcb = &p->p_addr->u_pcb;
2196	regs->r_gs = pcb->pcb_gs;
2197	return (0);
2198}
2199
2200int
2201set_regs(p, regs)
2202	struct proc *p;
2203	struct reg *regs;
2204{
2205	struct pcb *pcb;
2206	struct trapframe *tp;
2207
2208	tp = p->p_md.md_regs;
2209	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2210	    !CS_SECURE(regs->r_cs))
2211		return (EINVAL);
2212	tp->tf_fs = regs->r_fs;
2213	tp->tf_es = regs->r_es;
2214	tp->tf_ds = regs->r_ds;
2215	tp->tf_edi = regs->r_edi;
2216	tp->tf_esi = regs->r_esi;
2217	tp->tf_ebp = regs->r_ebp;
2218	tp->tf_ebx = regs->r_ebx;
2219	tp->tf_edx = regs->r_edx;
2220	tp->tf_ecx = regs->r_ecx;
2221	tp->tf_eax = regs->r_eax;
2222	tp->tf_eip = regs->r_eip;
2223	tp->tf_cs = regs->r_cs;
2224	tp->tf_eflags = regs->r_eflags;
2225	tp->tf_esp = regs->r_esp;
2226	tp->tf_ss = regs->r_ss;
2227	pcb = &p->p_addr->u_pcb;
2228	pcb->pcb_gs = regs->r_gs;
2229	return (0);
2230}
2231
2232int
2233fill_fpregs(p, fpregs)
2234	struct proc *p;
2235	struct fpreg *fpregs;
2236{
2237	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
2238	return (0);
2239}
2240
2241int
2242set_fpregs(p, fpregs)
2243	struct proc *p;
2244	struct fpreg *fpregs;
2245{
2246	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
2247	return (0);
2248}
2249
2250int
2251fill_dbregs(p, dbregs)
2252	struct proc *p;
2253	struct dbreg *dbregs;
2254{
2255	struct pcb *pcb;
2256
2257	pcb = &p->p_addr->u_pcb;
2258	dbregs->dr0 = pcb->pcb_dr0;
2259	dbregs->dr1 = pcb->pcb_dr1;
2260	dbregs->dr2 = pcb->pcb_dr2;
2261	dbregs->dr3 = pcb->pcb_dr3;
2262	dbregs->dr4 = 0;
2263	dbregs->dr5 = 0;
2264	dbregs->dr6 = pcb->pcb_dr6;
2265	dbregs->dr7 = pcb->pcb_dr7;
2266	return (0);
2267}
2268
2269int
2270set_dbregs(p, dbregs)
2271	struct proc *p;
2272	struct dbreg *dbregs;
2273{
2274	struct pcb *pcb;
2275	int i;
2276	u_int32_t mask1, mask2;
2277
2278	/*
2279	 * Don't let an illegal value for dr7 get set.  Specifically,
2280	 * check for undefined settings.  Setting these bit patterns
2281	 * result in undefined behaviour and can lead to an unexpected
2282	 * TRCTRAP.
2283	 */
2284	for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2285	     i++, mask1 <<= 2, mask2 <<= 2)
2286		if ((dbregs->dr7 & mask1) == mask2)
2287			return (EINVAL);
2288
2289	if (dbregs->dr7 & 0x0000fc00)
2290		return (EINVAL);
2291
2292
2293
2294	pcb = &p->p_addr->u_pcb;
2295
2296	/*
2297	 * Don't let a process set a breakpoint that is not within the
2298	 * process's address space.  If a process could do this, it
2299	 * could halt the system by setting a breakpoint in the kernel
2300	 * (if ddb was enabled).  Thus, we need to check to make sure
2301	 * that no breakpoints are being enabled for addresses outside
2302	 * process's address space, unless, perhaps, we were called by
2303	 * uid 0.
2304	 *
2305	 * XXX - what about when the watched area of the user's
2306	 * address space is written into from within the kernel
2307	 * ... wouldn't that still cause a breakpoint to be generated
2308	 * from within kernel mode?
2309	 */
2310
2311	if (suser(p) != 0) {
2312		if (dbregs->dr7 & 0x3) {
2313			/* dr0 is enabled */
2314			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2315				return (EINVAL);
2316		}
2317
2318		if (dbregs->dr7 & (0x3<<2)) {
2319			/* dr1 is enabled */
2320			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2321				return (EINVAL);
2322		}
2323
2324		if (dbregs->dr7 & (0x3<<4)) {
2325			/* dr2 is enabled */
2326			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2327       				return (EINVAL);
2328		}
2329
2330		if (dbregs->dr7 & (0x3<<6)) {
2331			/* dr3 is enabled */
2332			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2333				return (EINVAL);
2334		}
2335	}
2336
2337	pcb->pcb_dr0 = dbregs->dr0;
2338	pcb->pcb_dr1 = dbregs->dr1;
2339	pcb->pcb_dr2 = dbregs->dr2;
2340	pcb->pcb_dr3 = dbregs->dr3;
2341	pcb->pcb_dr6 = dbregs->dr6;
2342	pcb->pcb_dr7 = dbregs->dr7;
2343
2344	pcb->pcb_flags |= PCB_DBREGS;
2345
2346	return (0);
2347}
2348
2349/*
2350 * Return > 0 if a hardware breakpoint has been hit, and the
2351 * breakpoint was in user space.  Return 0, otherwise.
2352 */
2353int
2354user_dbreg_trap(void)
2355{
2356        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2357        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2358        int nbp;            /* number of breakpoints that triggered */
2359        caddr_t addr[4];    /* breakpoint addresses */
2360        int i;
2361
2362        dr7 = rdr7();
2363        if ((dr7 & 0x000000ff) == 0) {
2364                /*
2365                 * all GE and LE bits in the dr7 register are zero,
2366                 * thus the trap couldn't have been caused by the
2367                 * hardware debug registers
2368                 */
2369                return 0;
2370        }
2371
2372        nbp = 0;
2373        dr6 = rdr6();
2374        bp = dr6 & 0x0000000f;
2375
2376        if (!bp) {
2377                /*
2378                 * None of the breakpoint bits are set meaning this
2379                 * trap was not caused by any of the debug registers
2380                 */
2381                return 0;
2382        }
2383
2384        /*
2385         * at least one of the breakpoints were hit, check to see
2386         * which ones and if any of them are user space addresses
2387         */
2388
2389        if (bp & 0x01) {
2390                addr[nbp++] = (caddr_t)rdr0();
2391        }
2392        if (bp & 0x02) {
2393                addr[nbp++] = (caddr_t)rdr1();
2394        }
2395        if (bp & 0x04) {
2396                addr[nbp++] = (caddr_t)rdr2();
2397        }
2398        if (bp & 0x08) {
2399                addr[nbp++] = (caddr_t)rdr3();
2400        }
2401
2402        for (i=0; i<nbp; i++) {
2403                if (addr[i] <
2404                    (caddr_t)VM_MAXUSER_ADDRESS) {
2405                        /*
2406                         * addr[i] is in user space
2407                         */
2408                        return nbp;
2409                }
2410        }
2411
2412        /*
2413         * None of the breakpoints are in user space.
2414         */
2415        return 0;
2416}
2417
2418
2419#ifndef DDB
2420void
2421Debugger(const char *msg)
2422{
2423	printf("Debugger(\"%s\") called.\n", msg);
2424}
2425#endif /* no DDB */
2426
2427#include <sys/disklabel.h>
2428
2429/*
2430 * Determine the size of the transfer, and make sure it is
2431 * within the boundaries of the partition. Adjust transfer
2432 * if needed, and signal errors or early completion.
2433 */
2434int
2435bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
2436{
2437        struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
2438        int labelsect = lp->d_partitions[0].p_offset;
2439        int maxsz = p->p_size,
2440                sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2441
2442        /* overwriting disk label ? */
2443        /* XXX should also protect bootstrap in first 8K */
2444        if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2445#if LABELSECTOR != 0
2446            bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2447#endif
2448            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2449                bp->bio_error = EROFS;
2450                goto bad;
2451        }
2452
2453#if     defined(DOSBBSECTOR) && defined(notyet)
2454        /* overwriting master boot record? */
2455        if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
2456            (bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
2457                bp->bio_error = EROFS;
2458                goto bad;
2459        }
2460#endif
2461
2462        /* beyond partition? */
2463        if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
2464                /* if exactly at end of disk, return an EOF */
2465                if (bp->bio_blkno == maxsz) {
2466                        bp->bio_resid = bp->bio_bcount;
2467                        return(0);
2468                }
2469                /* or truncate if part of it fits */
2470                sz = maxsz - bp->bio_blkno;
2471                if (sz <= 0) {
2472                        bp->bio_error = EINVAL;
2473                        goto bad;
2474                }
2475                bp->bio_bcount = sz << DEV_BSHIFT;
2476        }
2477
2478        bp->bio_pblkno = bp->bio_blkno + p->p_offset;
2479        return(1);
2480
2481bad:
2482        bp->bio_flags |= BIO_ERROR;
2483        return(-1);
2484}
2485
2486#ifdef DDB
2487
2488/*
2489 * Provide inb() and outb() as functions.  They are normally only
2490 * available as macros calling inlined functions, thus cannot be
2491 * called inside DDB.
2492 *
2493 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2494 */
2495
2496#undef inb
2497#undef outb
2498
2499/* silence compiler warnings */
2500u_char inb(u_int);
2501void outb(u_int, u_char);
2502
2503u_char
2504inb(u_int port)
2505{
2506	u_char	data;
2507	/*
2508	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2509	 * %edx, while gcc generates inferior code (movw instead of movl)
2510	 * if we tell it to load (u_short) port.
2511	 */
2512	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2513	return (data);
2514}
2515
2516void
2517outb(u_int port, u_char data)
2518{
2519	u_char	al;
2520	/*
2521	 * Use an unnecessary assignment to help gcc's register allocator.
2522	 * This make a large difference for gcc-1.40 and a tiny difference
2523	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2524	 * best results.  gcc-2.6.0 can't handle this.
2525	 */
2526	al = data;
2527	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2528}
2529
2530#endif /* DDB */
2531