machdep.c revision 49558
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.357 1999/07/29 01:49:18 msmith Exp $
39 */
40
41#include "apm.h"
42#include "ether.h"
43#include "npx.h"
44#include "opt_atalk.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_maxmem.h"
50#include "opt_msgbuf.h"
51#include "opt_perfmon.h"
52#include "opt_smp.h"
53#include "opt_sysvipc.h"
54#include "opt_user_ldt.h"
55#include "opt_userconfig.h"
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/sysproto.h>
60#include <sys/signalvar.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/proc.h>
64#include <sys/buf.h>
65#include <sys/reboot.h>
66#include <sys/callout.h>
67#include <sys/malloc.h>
68#include <sys/mbuf.h>
69#include <sys/msgbuf.h>
70#include <sys/sysent.h>
71#include <sys/sysctl.h>
72#include <sys/vmmeter.h>
73#include <sys/bus.h>
74
75#ifdef SYSVSHM
76#include <sys/shm.h>
77#endif
78
79#ifdef SYSVMSG
80#include <sys/msg.h>
81#endif
82
83#ifdef SYSVSEM
84#include <sys/sem.h>
85#endif
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/vm_prot.h>
90#include <sys/lock.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_extern.h>
97
98#include <sys/user.h>
99#include <sys/exec.h>
100#include <sys/cons.h>
101
102#include <ddb/ddb.h>
103
104#include <net/netisr.h>
105
106#include <machine/cpu.h>
107#include <machine/reg.h>
108#include <machine/clock.h>
109#include <machine/specialreg.h>
110#include <machine/bootinfo.h>
111#include <machine/ipl.h>
112#include <machine/md_var.h>
113#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
114#ifdef SMP
115#include <machine/smp.h>
116#include <machine/globaldata.h>
117#endif
118#ifdef PERFMON
119#include <machine/perfmon.h>
120#endif
121
122#ifdef OLD_BUS_ARCH
123#include <i386/isa/isa_device.h>
124#endif
125#include <i386/isa/intr_machdep.h>
126#include <isa/rtc.h>
127#include <machine/vm86.h>
128#include <machine/random.h>
129#include <sys/ptrace.h>
130
131extern void init386 __P((int first));
132extern void dblfault_handler __P((void));
133
134extern void printcpuinfo(void);	/* XXX header file */
135extern void earlysetcpuclass(void);	/* same header file */
136extern void finishidentcpu(void);
137extern void panicifcpuunsupported(void);
138extern void initializecpu(void);
139
140static void cpu_startup __P((void *));
141SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
142
143static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
144
145int	_udatasel, _ucodesel;
146u_int	atdevbase;
147
148#if defined(SWTCH_OPTIM_STATS)
149extern int swtch_optim_stats;
150SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
151	CTLFLAG_RD, &swtch_optim_stats, 0, "");
152SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
153	CTLFLAG_RD, &tlb_flush_count, 0, "");
154#endif
155
156#ifdef PC98
157static int	ispc98 = 1;
158#else
159static int	ispc98 = 0;
160#endif
161SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
162
163int physmem = 0;
164int cold = 1;
165
166static int
167sysctl_hw_physmem SYSCTL_HANDLER_ARGS
168{
169	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
170	return (error);
171}
172
173SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
174	0, 0, sysctl_hw_physmem, "I", "");
175
176static int
177sysctl_hw_usermem SYSCTL_HANDLER_ARGS
178{
179	int error = sysctl_handle_int(oidp, 0,
180		ctob(physmem - cnt.v_wire_count), req);
181	return (error);
182}
183
184SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
185	0, 0, sysctl_hw_usermem, "I", "");
186
187static int
188sysctl_hw_availpages SYSCTL_HANDLER_ARGS
189{
190	int error = sysctl_handle_int(oidp, 0,
191		i386_btop(avail_end - avail_start), req);
192	return (error);
193}
194
195SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
196	0, 0, sysctl_hw_availpages, "I", "");
197
198static int
199sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
200{
201	int error;
202
203	/* Unwind the buffer, so that it's linear (possibly starting with
204	 * some initial nulls).
205	 */
206	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
207		msgbufp->msg_size-msgbufp->msg_bufr,req);
208	if(error) return(error);
209	if(msgbufp->msg_bufr>0) {
210		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
211			msgbufp->msg_bufr,req);
212	}
213	return(error);
214}
215
216SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
217	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
218
219static int msgbuf_clear;
220
221static int
222sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
223{
224	int error;
225	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
226		req);
227	if (!error && req->newptr) {
228		/* Clear the buffer and reset write pointer */
229		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
230		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
231		msgbuf_clear=0;
232	}
233	return (error);
234}
235
236SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
237	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
238	"Clear kernel message buffer");
239
240int bootverbose = 0, Maxmem = 0;
241long dumplo;
242
243vm_offset_t phys_avail[10];
244
245/* must be 2 less so 0 0 can signal end of chunks */
246#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
247
248static vm_offset_t buffer_sva, buffer_eva;
249vm_offset_t clean_sva, clean_eva;
250static vm_offset_t pager_sva, pager_eva;
251
252#define offsetof(type, member)	((size_t)(&((type *)0)->member))
253
254static void
255cpu_startup(dummy)
256	void *dummy;
257{
258	register unsigned i;
259	register caddr_t v;
260	vm_offset_t maxaddr;
261	vm_size_t size = 0;
262	int firstaddr;
263	vm_offset_t minaddr;
264
265	if (boothowto & RB_VERBOSE)
266		bootverbose++;
267
268	/*
269	 * Good {morning,afternoon,evening,night}.
270	 */
271	printf(version);
272	earlysetcpuclass();
273	startrtclock();
274	printcpuinfo();
275	panicifcpuunsupported();
276#ifdef PERFMON
277	perfmon_init();
278#endif
279	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
280	/*
281	 * Display any holes after the first chunk of extended memory.
282	 */
283	if (bootverbose) {
284		int indx;
285
286		printf("Physical memory chunk(s):\n");
287		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
288			int size1 = phys_avail[indx + 1] - phys_avail[indx];
289
290			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
291			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
292			    size1 / PAGE_SIZE);
293		}
294	}
295
296	/*
297	 * Calculate callout wheel size
298	 */
299	for (callwheelsize = 1, callwheelbits = 0;
300	     callwheelsize < ncallout;
301	     callwheelsize <<= 1, ++callwheelbits)
302		;
303	callwheelmask = callwheelsize - 1;
304
305	/*
306	 * Allocate space for system data structures.
307	 * The first available kernel virtual address is in "v".
308	 * As pages of kernel virtual memory are allocated, "v" is incremented.
309	 * As pages of memory are allocated and cleared,
310	 * "firstaddr" is incremented.
311	 * An index into the kernel page table corresponding to the
312	 * virtual memory address maintained in "v" is kept in "mapaddr".
313	 */
314
315	/*
316	 * Make two passes.  The first pass calculates how much memory is
317	 * needed and allocates it.  The second pass assigns virtual
318	 * addresses to the various data structures.
319	 */
320	firstaddr = 0;
321again:
322	v = (caddr_t)firstaddr;
323
324#define	valloc(name, type, num) \
325	    (name) = (type *)v; v = (caddr_t)((name)+(num))
326#define	valloclim(name, type, num, lim) \
327	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
328
329	valloc(callout, struct callout, ncallout);
330	valloc(callwheel, struct callout_tailq, callwheelsize);
331#ifdef SYSVSHM
332	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
333#endif
334#ifdef SYSVSEM
335	valloc(sema, struct semid_ds, seminfo.semmni);
336	valloc(sem, struct sem, seminfo.semmns);
337	/* This is pretty disgusting! */
338	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
339#endif
340#ifdef SYSVMSG
341	valloc(msgpool, char, msginfo.msgmax);
342	valloc(msgmaps, struct msgmap, msginfo.msgseg);
343	valloc(msghdrs, struct msg, msginfo.msgtql);
344	valloc(msqids, struct msqid_ds, msginfo.msgmni);
345#endif
346
347	if (nbuf == 0) {
348		nbuf = 30;
349		if (physmem > 1024)
350			nbuf += min((physmem - 1024) / 8, 2048);
351		if (physmem > 16384)
352			nbuf += (physmem - 16384) / 20;
353	}
354	nswbuf = max(min(nbuf/4, 256), 16);
355
356	valloc(swbuf, struct buf, nswbuf);
357	valloc(buf, struct buf, nbuf);
358	v = bufhashinit(v);
359
360	/*
361	 * End of first pass, size has been calculated so allocate memory
362	 */
363	if (firstaddr == 0) {
364		size = (vm_size_t)(v - firstaddr);
365		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
366		if (firstaddr == 0)
367			panic("startup: no room for tables");
368		goto again;
369	}
370
371	/*
372	 * End of second pass, addresses have been assigned
373	 */
374	if ((vm_size_t)(v - firstaddr) != size)
375		panic("startup: table size inconsistency");
376
377	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
378			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
379	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
380				(nbuf*BKVASIZE));
381	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
382				(nswbuf*MAXPHYS) + pager_map_size);
383	pager_map->system_map = 1;
384	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
385				(16*(ARG_MAX+(PAGE_SIZE*3))));
386
387	/*
388	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
389	 * we use the more space efficient malloc in place of kmem_alloc.
390	 */
391	{
392		vm_offset_t mb_map_size;
393
394		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
395		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
396		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
397		bzero(mclrefcnt, mb_map_size / MCLBYTES);
398		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
399			mb_map_size);
400		mb_map->system_map = 1;
401	}
402
403	/*
404	 * Initialize callouts
405	 */
406	SLIST_INIT(&callfree);
407	for (i = 0; i < ncallout; i++) {
408		callout_init(&callout[i]);
409		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
410		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
411	}
412
413	for (i = 0; i < callwheelsize; i++) {
414		TAILQ_INIT(&callwheel[i]);
415	}
416
417#if defined(USERCONFIG)
418	userconfig();
419	cninit();		/* the preferred console may have changed */
420#endif
421
422	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
423	    ptoa(cnt.v_free_count) / 1024);
424
425	/*
426	 * Set up buffers, so they can be used to read disk labels.
427	 */
428	bufinit();
429	vm_pager_bufferinit();
430
431#ifdef SMP
432	/*
433	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
434	 */
435	mp_start();			/* fire up the APs and APICs */
436	mp_announce();
437#endif  /* SMP */
438}
439
440int
441register_netisr(num, handler)
442	int num;
443	netisr_t *handler;
444{
445
446	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
447		printf("register_netisr: bad isr number: %d\n", num);
448		return (EINVAL);
449	}
450	netisrs[num] = handler;
451	return (0);
452}
453
454void
455netisr_sysinit(data)
456	void *data;
457{
458	const struct netisrtab *nit;
459
460	nit = (const struct netisrtab *)data;
461	register_netisr(nit->nit_num, nit->nit_isr);
462}
463
464/*
465 * Send an interrupt to process.
466 *
467 * Stack is set up to allow sigcode stored
468 * at top to call routine, followed by kcall
469 * to sigreturn routine below.  After sigreturn
470 * resets the signal mask, the stack, and the
471 * frame pointer, it returns to the user
472 * specified pc, psl.
473 */
474void
475sendsig(catcher, sig, mask, code)
476	sig_t catcher;
477	int sig, mask;
478	u_long code;
479{
480	register struct proc *p = curproc;
481	register struct trapframe *regs;
482	register struct sigframe *fp;
483	struct sigframe sf;
484	struct sigacts *psp = p->p_sigacts;
485	int oonstack;
486
487	regs = p->p_md.md_regs;
488        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
489	/*
490	 * Allocate and validate space for the signal handler context.
491	 */
492        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
493	    (psp->ps_sigonstack & sigmask(sig))) {
494		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
495		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
496		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
497	} else {
498		fp = (struct sigframe *)regs->tf_esp - 1;
499	}
500
501	/*
502	 * grow() will return FALSE if the fp will not fit inside the stack
503	 *	and the stack can not be grown. useracc will return FALSE
504	 *	if access is denied.
505	 */
506	if ((grow_stack (p, (int)fp) == FALSE) ||
507	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
508		/*
509		 * Process has trashed its stack; give it an illegal
510		 * instruction to halt it in its tracks.
511		 */
512#ifdef DEBUG
513		printf("process %d has trashed its stack\n", p->p_pid);
514#endif
515		SIGACTION(p, SIGILL) = SIG_DFL;
516		sig = sigmask(SIGILL);
517		p->p_sigignore &= ~sig;
518		p->p_sigcatch &= ~sig;
519		p->p_sigmask &= ~sig;
520		psignal(p, SIGILL);
521		return;
522	}
523
524	/*
525	 * Build the argument list for the signal handler.
526	 */
527	if (p->p_sysent->sv_sigtbl) {
528		if (sig < p->p_sysent->sv_sigsize)
529			sig = p->p_sysent->sv_sigtbl[sig];
530		else
531			sig = p->p_sysent->sv_sigsize + 1;
532	}
533	sf.sf_signum = sig;
534	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
535 	if (p->p_sigacts->ps_siginfo & sigmask(sig)) {
536		/*
537		 * Signal handler installed with SA_SIGINFO.
538		 */
539		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
540		sf.sf_siginfo.si_signo = sig;
541		sf.sf_siginfo.si_code = code;
542		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
543	} else {
544		/*
545		 * Old FreeBSD-style arguments.
546		 */
547		sf.sf_arg2 = code;
548		sf.sf_ahu.sf_handler = catcher;
549	}
550
551	sf.sf_addr = (char *) regs->tf_err;
552
553	/* save scratch registers */
554	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
555	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
556	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
557	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
558	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
559	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
560	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
561	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
562	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
563	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
564	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
565	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
566
567	/*
568	 * Build the signal context to be used by sigreturn.
569	 */
570	sf.sf_siginfo.si_sc.sc_onstack = oonstack;
571	sf.sf_siginfo.si_sc.sc_mask = mask;
572	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
573	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
574	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
575	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
576	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
577	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
578
579	/*
580	 * If we're a vm86 process, we want to save the segment registers.
581	 * We also change eflags to be our emulated eflags, not the actual
582	 * eflags.
583	 */
584	if (regs->tf_eflags & PSL_VM) {
585		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
586		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
587
588		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
589		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
590		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
591		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
592
593		if (vm86->vm86_has_vme == 0)
594			sf.sf_siginfo.si_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
595			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
596
597		/*
598		 * We should never have PSL_T set when returning from vm86
599		 * mode.  It may be set here if we deliver a signal before
600		 * getting to vm86 mode, so turn it off.
601		 *
602		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
603		 * syscalls made by the signal handler.  This just avoids
604		 * wasting time for our lazy fixup of such faults.  PSL_NT
605		 * does nothing in vm86 mode, but vm86 programs can set it
606		 * almost legitimately in probes for old cpu types.
607		 */
608		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_T | PSL_VIF | PSL_VIP);
609	}
610
611	/*
612	 * Copy the sigframe out to the user's stack.
613	 */
614	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
615		/*
616		 * Something is wrong with the stack pointer.
617		 * ...Kill the process.
618		 */
619		sigexit(p, SIGILL);
620	}
621
622	regs->tf_esp = (int)fp;
623	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
624	regs->tf_cs = _ucodesel;
625	regs->tf_ds = _udatasel;
626	regs->tf_es = _udatasel;
627	regs->tf_fs = _udatasel;
628	regs->tf_ss = _udatasel;
629}
630
631/*
632 * System call to cleanup state after a signal
633 * has been taken.  Reset signal mask and
634 * stack state from context left by sendsig (above).
635 * Return to previous pc and psl as specified by
636 * context left by sendsig. Check carefully to
637 * make sure that the user has not modified the
638 * state to gain improper privileges.
639 */
640int
641sigreturn(p, uap)
642	struct proc *p;
643	struct sigreturn_args /* {
644		struct sigcontext *sigcntxp;
645	} */ *uap;
646{
647	register struct sigcontext *scp;
648	register struct sigframe *fp;
649	register struct trapframe *regs = p->p_md.md_regs;
650	int eflags;
651
652	/*
653	 * (XXX old comment) regs->tf_esp points to the return address.
654	 * The user scp pointer is above that.
655	 * The return address is faked in the signal trampoline code
656	 * for consistency.
657	 */
658	scp = uap->sigcntxp;
659	fp = (struct sigframe *)
660	     ((caddr_t)scp - offsetof(struct sigframe, sf_siginfo.si_sc));
661
662	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
663		return(EFAULT);
664
665	eflags = scp->sc_ps;
666	if (eflags & PSL_VM) {
667		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
668		struct vm86_kernel *vm86;
669
670		/*
671		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
672		 * set up the vm86 area, and we can't enter vm86 mode.
673		 */
674		if (p->p_addr->u_pcb.pcb_ext == 0)
675			return (EINVAL);
676		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
677		if (vm86->vm86_inited == 0)
678			return (EINVAL);
679
680		/* go back to user mode if both flags are set */
681		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
682			trapsignal(p, SIGBUS, 0);
683
684		if (vm86->vm86_has_vme) {
685			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
686			    (eflags & VME_USERCHANGE) | PSL_VM;
687		} else {
688			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
689			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
690		}
691		tf->tf_vm86_ds = scp->sc_ds;
692		tf->tf_vm86_es = scp->sc_es;
693		tf->tf_vm86_fs = scp->sc_fs;
694		tf->tf_vm86_gs = scp->sc_gs;
695		tf->tf_ds = _udatasel;
696		tf->tf_es = _udatasel;
697		tf->tf_fs = _udatasel;
698	} else {
699		/*
700		 * Don't allow users to change privileged or reserved flags.
701		 */
702#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
703		/*
704		 * XXX do allow users to change the privileged flag PSL_RF.
705		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
706		 * should sometimes set it there too.  tf_eflags is kept in
707		 * the signal context during signal handling and there is no
708		 * other place to remember it, so the PSL_RF bit may be
709		 * corrupted by the signal handler without us knowing.
710		 * Corruption of the PSL_RF bit at worst causes one more or
711		 * one less debugger trap, so allowing it is fairly harmless.
712		 */
713		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
714#ifdef DEBUG
715	    		printf("sigreturn: eflags = 0x%x\n", eflags);
716#endif
717	    		return(EINVAL);
718		}
719
720		/*
721		 * Don't allow users to load a valid privileged %cs.  Let the
722		 * hardware check for invalid selectors, excess privilege in
723		 * other selectors, invalid %eip's and invalid %esp's.
724		 */
725#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
726		if (!CS_SECURE(scp->sc_cs)) {
727#ifdef DEBUG
728    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
729#endif
730			trapsignal(p, SIGBUS, T_PROTFLT);
731			return(EINVAL);
732		}
733		regs->tf_ds = scp->sc_ds;
734		regs->tf_es = scp->sc_es;
735		regs->tf_fs = scp->sc_fs;
736	}
737
738	/* restore scratch registers */
739	regs->tf_eax = scp->sc_eax;
740	regs->tf_ebx = scp->sc_ebx;
741	regs->tf_ecx = scp->sc_ecx;
742	regs->tf_edx = scp->sc_edx;
743	regs->tf_esi = scp->sc_esi;
744	regs->tf_edi = scp->sc_edi;
745	regs->tf_cs = scp->sc_cs;
746	regs->tf_ss = scp->sc_ss;
747	regs->tf_isp = scp->sc_isp;
748
749	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
750		return(EINVAL);
751
752	if (scp->sc_onstack & 01)
753		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
754	else
755		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
756	p->p_sigmask = scp->sc_mask & ~sigcantmask;
757	regs->tf_ebp = scp->sc_fp;
758	regs->tf_esp = scp->sc_sp;
759	regs->tf_eip = scp->sc_pc;
760	regs->tf_eflags = eflags;
761	return(EJUSTRETURN);
762}
763
764/*
765 * Machine dependent boot() routine
766 *
767 * I haven't seen anything to put here yet
768 * Possibly some stuff might be grafted back here from boot()
769 */
770void
771cpu_boot(int howto)
772{
773}
774
775/*
776 * Shutdown the CPU as much as possible
777 */
778void
779cpu_halt(void)
780{
781	for (;;)
782		__asm__ ("hlt");
783}
784
785/*
786 * Clear registers on exec
787 */
788void
789setregs(p, entry, stack, ps_strings)
790	struct proc *p;
791	u_long entry;
792	u_long stack;
793	u_long ps_strings;
794{
795	struct trapframe *regs = p->p_md.md_regs;
796	struct pcb *pcb = &p->p_addr->u_pcb;
797
798#ifdef USER_LDT
799	/* was i386_user_cleanup() in NetBSD */
800	if (pcb->pcb_ldt) {
801		if (pcb == curpcb) {
802			lldt(_default_ldt);
803			currentldt = _default_ldt;
804		}
805		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
806			pcb->pcb_ldt_len * sizeof(union descriptor));
807		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
808 	}
809#endif
810
811	bzero((char *)regs, sizeof(struct trapframe));
812	regs->tf_eip = entry;
813	regs->tf_esp = stack;
814	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
815	regs->tf_ss = _udatasel;
816	regs->tf_ds = _udatasel;
817	regs->tf_es = _udatasel;
818	regs->tf_fs = _udatasel;
819	regs->tf_cs = _ucodesel;
820
821	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
822	regs->tf_ebx = ps_strings;
823
824	/* reset %gs as well */
825	pcb->pcb_gs = _udatasel;
826	if (pcb == curpcb) {
827		load_gs(_udatasel);
828	}
829
830	/*
831	 * Initialize the math emulator (if any) for the current process.
832	 * Actually, just clear the bit that says that the emulator has
833	 * been initialized.  Initialization is delayed until the process
834	 * traps to the emulator (if it is done at all) mainly because
835	 * emulators don't provide an entry point for initialization.
836	 */
837	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
838
839	/*
840	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
841	 * for why fwait must be trapped at least if there is an npx or an
842	 * emulator).  This is mainly to handle the case where npx0 is not
843	 * configured, since the npx routines normally set up the trap
844	 * otherwise.  It should be done only at boot time, but doing it
845	 * here allows modifying `npx_exists' for testing the emulator on
846	 * systems with an npx.
847	 */
848	load_cr0(rcr0() | CR0_MP | CR0_TS);
849
850#if NNPX > 0
851	/* Initialize the npx (if any) for the current process. */
852	npxinit(__INITIAL_NPXCW__);
853#endif
854
855      /*
856       * XXX - Linux emulator
857       * Make sure sure edx is 0x0 on entry. Linux binaries depend
858       * on it.
859       */
860      p->p_retval[1] = 0;
861}
862
863static int
864sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
865{
866	int error;
867	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
868		req);
869	if (!error && req->newptr)
870		resettodr();
871	return (error);
872}
873
874SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
875	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
876
877SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
878	CTLFLAG_RW, &disable_rtc_set, 0, "");
879
880SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
881	CTLFLAG_RD, &bootinfo, bootinfo, "");
882
883SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
884	CTLFLAG_RW, &wall_cmos_clock, 0, "");
885
886/*
887 * Initialize 386 and configure to run kernel
888 */
889
890/*
891 * Initialize segments & interrupt table
892 */
893
894int _default_ldt;
895#ifdef SMP
896union descriptor gdt[NGDT * NCPU];	/* global descriptor table */
897#else
898union descriptor gdt[NGDT];		/* global descriptor table */
899#endif
900static struct gate_descriptor idt0[NIDT];
901struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
902union descriptor ldt[NLDT];		/* local descriptor table */
903#ifdef SMP
904/* table descriptors - used to load tables by microp */
905struct region_descriptor r_gdt, r_idt;
906#endif
907
908#ifndef SMP
909extern struct segment_descriptor common_tssd, *tss_gdt;
910#endif
911int private_tss;			/* flag indicating private tss */
912
913#if defined(I586_CPU) && !defined(NO_F00F_HACK)
914extern int has_f00f_bug;
915#endif
916
917static struct i386tss dblfault_tss;
918static char dblfault_stack[PAGE_SIZE];
919
920extern  struct user *proc0paddr;
921
922
923/* software prototypes -- in more palatable form */
924struct soft_segment_descriptor gdt_segs[] = {
925/* GNULL_SEL	0 Null Descriptor */
926{	0x0,			/* segment base address  */
927	0x0,			/* length */
928	0,			/* segment type */
929	0,			/* segment descriptor priority level */
930	0,			/* segment descriptor present */
931	0, 0,
932	0,			/* default 32 vs 16 bit size */
933	0  			/* limit granularity (byte/page units)*/ },
934/* GCODE_SEL	1 Code Descriptor for kernel */
935{	0x0,			/* segment base address  */
936	0xfffff,		/* length - all address space */
937	SDT_MEMERA,		/* segment type */
938	0,			/* segment descriptor priority level */
939	1,			/* segment descriptor present */
940	0, 0,
941	1,			/* default 32 vs 16 bit size */
942	1  			/* limit granularity (byte/page units)*/ },
943/* GDATA_SEL	2 Data Descriptor for kernel */
944{	0x0,			/* segment base address  */
945	0xfffff,		/* length - all address space */
946	SDT_MEMRWA,		/* segment type */
947	0,			/* segment descriptor priority level */
948	1,			/* segment descriptor present */
949	0, 0,
950	1,			/* default 32 vs 16 bit size */
951	1  			/* limit granularity (byte/page units)*/ },
952/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
953{	0x0,			/* segment base address  */
954	0xfffff,		/* length - all address space */
955	SDT_MEMRWA,		/* segment type */
956	0,			/* segment descriptor priority level */
957	1,			/* segment descriptor present */
958	0, 0,
959	1,			/* default 32 vs 16 bit size */
960	1  			/* limit granularity (byte/page units)*/ },
961/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
962{
963	0x0,			/* segment base address */
964	sizeof(struct i386tss)-1,/* length - all address space */
965	SDT_SYS386TSS,		/* segment type */
966	0,			/* segment descriptor priority level */
967	1,			/* segment descriptor present */
968	0, 0,
969	0,			/* unused - default 32 vs 16 bit size */
970	0  			/* limit granularity (byte/page units)*/ },
971/* GLDT_SEL	5 LDT Descriptor */
972{	(int) ldt,		/* segment base address  */
973	sizeof(ldt)-1,		/* length - all address space */
974	SDT_SYSLDT,		/* segment type */
975	SEL_UPL,		/* segment descriptor priority level */
976	1,			/* segment descriptor present */
977	0, 0,
978	0,			/* unused - default 32 vs 16 bit size */
979	0  			/* limit granularity (byte/page units)*/ },
980/* GUSERLDT_SEL	6 User LDT Descriptor per process */
981{	(int) ldt,		/* segment base address  */
982	(512 * sizeof(union descriptor)-1),		/* length */
983	SDT_SYSLDT,		/* segment type */
984	0,			/* segment descriptor priority level */
985	1,			/* segment descriptor present */
986	0, 0,
987	0,			/* unused - default 32 vs 16 bit size */
988	0  			/* limit granularity (byte/page units)*/ },
989/* GTGATE_SEL	7 Null Descriptor - Placeholder */
990{	0x0,			/* segment base address  */
991	0x0,			/* length - all address space */
992	0,			/* segment type */
993	0,			/* segment descriptor priority level */
994	0,			/* segment descriptor present */
995	0, 0,
996	0,			/* default 32 vs 16 bit size */
997	0  			/* limit granularity (byte/page units)*/ },
998/* GPANIC_SEL	8 Panic Tss Descriptor */
999{	(int) &dblfault_tss,	/* segment base address  */
1000	sizeof(struct i386tss)-1,/* length - all address space */
1001	SDT_SYS386TSS,		/* segment type */
1002	0,			/* segment descriptor priority level */
1003	1,			/* segment descriptor present */
1004	0, 0,
1005	0,			/* unused - default 32 vs 16 bit size */
1006	0  			/* limit granularity (byte/page units)*/ },
1007/* GBIOSCODE32_SEL 9 BIOS 32-bit interface (32bit Code) */
1008{	0,			/* segment base address (overwritten)  */
1009	0xfffff,		/* length */
1010	SDT_MEMERA,		/* segment type */
1011	0,			/* segment descriptor priority level */
1012	1,			/* segment descriptor present */
1013	0, 0,
1014	1,			/* default 32 vs 16 bit size */
1015	1  			/* limit granularity (byte/page units)*/ },
1016/* GBIOSCODE16_SEL 10 BIOS 32-bit interface (16bit Code) */
1017{	0,			/* segment base address (overwritten)  */
1018	0xfffff,		/* length */
1019	SDT_MEMERA,		/* segment type */
1020	0,			/* segment descriptor priority level */
1021	1,			/* segment descriptor present */
1022	0, 0,
1023	0,			/* default 32 vs 16 bit size */
1024	1  			/* limit granularity (byte/page units)*/ },
1025/* GBIOSDATA_SEL 11 BIOS 32-bit interface (Data) */
1026{	0,			/* segment base address (overwritten) */
1027	0xfffff,		/* length */
1028	SDT_MEMRWA,		/* segment type */
1029	0,			/* segment descriptor priority level */
1030	1,			/* segment descriptor present */
1031	0, 0,
1032	1,			/* default 32 vs 16 bit size */
1033	1  			/* limit granularity (byte/page units)*/ },
1034/* GBIOSUTIL_SEL 12 BIOS 16-bit interface (Utility) */
1035{	0,			/* segment base address (overwritten) */
1036	0xfffff,		/* length */
1037	SDT_MEMRWA,		/* segment type */
1038	0,			/* segment descriptor priority level */
1039	1,			/* segment descriptor present */
1040	0, 0,
1041	0,			/* default 32 vs 16 bit size */
1042	1  			/* limit granularity (byte/page units)*/ },
1043/* GBIOSARGS_SEL 13 BIOS 16-bit interface (Arguments) */
1044{	0,			/* segment base address (overwritten) */
1045	0xfffff,		/* length */
1046	SDT_MEMRWA,		/* segment type */
1047	0,			/* segment descriptor priority level */
1048	1,			/* segment descriptor present */
1049	0, 0,
1050	0,			/* default 32 vs 16 bit size */
1051	1  			/* limit granularity (byte/page units)*/ },
1052};
1053
1054static struct soft_segment_descriptor ldt_segs[] = {
1055	/* Null Descriptor - overwritten by call gate */
1056{	0x0,			/* segment base address  */
1057	0x0,			/* length - all address space */
1058	0,			/* segment type */
1059	0,			/* segment descriptor priority level */
1060	0,			/* segment descriptor present */
1061	0, 0,
1062	0,			/* default 32 vs 16 bit size */
1063	0  			/* limit granularity (byte/page units)*/ },
1064	/* Null Descriptor - overwritten by call gate */
1065{	0x0,			/* segment base address  */
1066	0x0,			/* length - all address space */
1067	0,			/* segment type */
1068	0,			/* segment descriptor priority level */
1069	0,			/* segment descriptor present */
1070	0, 0,
1071	0,			/* default 32 vs 16 bit size */
1072	0  			/* limit granularity (byte/page units)*/ },
1073	/* Null Descriptor - overwritten by call gate */
1074{	0x0,			/* segment base address  */
1075	0x0,			/* length - all address space */
1076	0,			/* segment type */
1077	0,			/* segment descriptor priority level */
1078	0,			/* segment descriptor present */
1079	0, 0,
1080	0,			/* default 32 vs 16 bit size */
1081	0  			/* limit granularity (byte/page units)*/ },
1082	/* Code Descriptor for user */
1083{	0x0,			/* segment base address  */
1084	0xfffff,		/* length - all address space */
1085	SDT_MEMERA,		/* segment type */
1086	SEL_UPL,		/* segment descriptor priority level */
1087	1,			/* segment descriptor present */
1088	0, 0,
1089	1,			/* default 32 vs 16 bit size */
1090	1  			/* limit granularity (byte/page units)*/ },
1091	/* Null Descriptor - overwritten by call gate */
1092{	0x0,			/* segment base address  */
1093	0x0,			/* length - all address space */
1094	0,			/* segment type */
1095	0,			/* segment descriptor priority level */
1096	0,			/* segment descriptor present */
1097	0, 0,
1098	0,			/* default 32 vs 16 bit size */
1099	0  			/* limit granularity (byte/page units)*/ },
1100	/* Data Descriptor for user */
1101{	0x0,			/* segment base address  */
1102	0xfffff,		/* length - all address space */
1103	SDT_MEMRWA,		/* segment type */
1104	SEL_UPL,		/* segment descriptor priority level */
1105	1,			/* segment descriptor present */
1106	0, 0,
1107	1,			/* default 32 vs 16 bit size */
1108	1  			/* limit granularity (byte/page units)*/ },
1109};
1110
1111void
1112setidt(idx, func, typ, dpl, selec)
1113	int idx;
1114	inthand_t *func;
1115	int typ;
1116	int dpl;
1117	int selec;
1118{
1119	struct gate_descriptor *ip;
1120
1121	ip = idt + idx;
1122	ip->gd_looffset = (int)func;
1123	ip->gd_selector = selec;
1124	ip->gd_stkcpy = 0;
1125	ip->gd_xx = 0;
1126	ip->gd_type = typ;
1127	ip->gd_dpl = dpl;
1128	ip->gd_p = 1;
1129	ip->gd_hioffset = ((int)func)>>16 ;
1130}
1131
1132#define	IDTVEC(name)	__CONCAT(X,name)
1133
1134extern inthand_t
1135	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1136	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1137	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1138	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1139	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1140
1141void
1142sdtossd(sd, ssd)
1143	struct segment_descriptor *sd;
1144	struct soft_segment_descriptor *ssd;
1145{
1146	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1147	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1148	ssd->ssd_type  = sd->sd_type;
1149	ssd->ssd_dpl   = sd->sd_dpl;
1150	ssd->ssd_p     = sd->sd_p;
1151	ssd->ssd_def32 = sd->sd_def32;
1152	ssd->ssd_gran  = sd->sd_gran;
1153}
1154
1155#define PHYSMAP_SIZE	(2 * 8)
1156
1157/*
1158 * Populate the (physmap) array with base/bound pairs describing the
1159 * available physical memory in the system, then test this memory and
1160 * build the phys_avail array describing the actually-available memory.
1161 *
1162 * If we cannot accurately determine the physical memory map, then use
1163 * value from the 0xE801 call, and failing that, the RTC.
1164 *
1165 * Total memory size may be set by the kernel environment variable
1166 * hw.physmem or the compile-time define MAXMEM.
1167 */
1168static void
1169getmemsize(int first)
1170{
1171	int i, physmap_idx, pa_indx;
1172	u_int basemem, extmem;
1173	struct vm86frame vmf;
1174	struct vm86context vmc;
1175	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1176	pt_entry_t pte;
1177	const char *cp;
1178	struct {
1179		u_int64_t base;
1180		u_int64_t length;
1181		u_int32_t type;
1182	} *smap;
1183
1184	bzero(&vmf, sizeof(struct vm86frame));
1185	bzero(physmap, sizeof(physmap));
1186
1187	/*
1188	 * Perform "base memory" related probes & setup
1189	 */
1190	vm86_intcall(0x12, &vmf);
1191	basemem = vmf.vmf_ax;
1192	if (basemem > 640) {
1193		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1194			basemem);
1195		basemem = 640;
1196	}
1197
1198	/*
1199	 * XXX if biosbasemem is now < 640, there is a `hole'
1200	 * between the end of base memory and the start of
1201	 * ISA memory.  The hole may be empty or it may
1202	 * contain BIOS code or data.  Map it read/write so
1203	 * that the BIOS can write to it.  (Memory from 0 to
1204	 * the physical end of the kernel is mapped read-only
1205	 * to begin with and then parts of it are remapped.
1206	 * The parts that aren't remapped form holes that
1207	 * remain read-only and are unused by the kernel.
1208	 * The base memory area is below the physical end of
1209	 * the kernel and right now forms a read-only hole.
1210	 * The part of it from PAGE_SIZE to
1211	 * (trunc_page(biosbasemem * 1024) - 1) will be
1212	 * remapped and used by the kernel later.)
1213	 *
1214	 * This code is similar to the code used in
1215	 * pmap_mapdev, but since no memory needs to be
1216	 * allocated we simply change the mapping.
1217	 */
1218	for (pa = trunc_page(basemem * 1024);
1219	     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1220		pte = (pt_entry_t)vtopte(pa + KERNBASE);
1221		*pte = pa | PG_RW | PG_V;
1222	}
1223
1224	/*
1225	 * if basemem != 640, map pages r/w into vm86 page table so
1226	 * that the bios can scribble on it.
1227	 */
1228	pte = (pt_entry_t)vm86paddr;
1229	for (i = basemem / 4; i < 160; i++)
1230		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1231
1232	/*
1233	 * map page 1 R/W into the kernel page table so we can use it
1234	 * as a buffer.  The kernel will unmap this page later.
1235	 */
1236	pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
1237	*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1238
1239	/*
1240	 * get memory map with INT 15:E820
1241	 */
1242#define SMAPSIZ 	sizeof(*smap)
1243#define SMAP_SIG	0x534D4150			/* 'SMAP' */
1244
1245	vmc.npages = 0;
1246	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1247	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1248
1249	physmap_idx = 0;
1250	vmf.vmf_ebx = 0;
1251	do {
1252		vmf.vmf_eax = 0xE820;
1253		vmf.vmf_edx = SMAP_SIG;
1254		vmf.vmf_ecx = SMAPSIZ;
1255		i = vm86_datacall(0x15, &vmf, &vmc);
1256		if (i || vmf.vmf_eax != SMAP_SIG)
1257			break;
1258		if (boothowto & RB_VERBOSE)
1259			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1260				smap->type,
1261				*(u_int32_t *)((char *)&smap->base + 4),
1262				(u_int32_t)smap->base,
1263				*(u_int32_t *)((char *)&smap->length + 4),
1264				(u_int32_t)smap->length);
1265
1266		if (smap->type != 0x01)
1267			goto next_run;
1268
1269		if (smap->length == 0)
1270			goto next_run;
1271
1272		if (smap->base >= 0xffffffff) {
1273			printf("%uK of memory above 4GB ignored\n",
1274			    (u_int)(smap->length / 1024));
1275			goto next_run;
1276		}
1277
1278		for (i = 0; i <= physmap_idx; i += 2) {
1279			if (smap->base < physmap[i + 1]) {
1280				if (boothowto & RB_VERBOSE)
1281					printf(
1282	"Overlapping or non-montonic memory region, ignoring second region\n");
1283				goto next_run;
1284			}
1285		}
1286
1287		if (smap->base == physmap[physmap_idx + 1]) {
1288			physmap[physmap_idx + 1] += smap->length;
1289			goto next_run;
1290		}
1291
1292		physmap_idx += 2;
1293		if (physmap_idx == PHYSMAP_SIZE) {
1294			printf(
1295		"Too many segments in the physical address map, giving up\n");
1296			break;
1297		}
1298		physmap[physmap_idx] = smap->base;
1299		physmap[physmap_idx + 1] = smap->base + smap->length;
1300next_run:
1301	} while (vmf.vmf_ebx != 0);
1302
1303	if (physmap[1] != 0)
1304		goto physmap_done;
1305
1306	/*
1307	 * If we failed above, try memory map with INT 15:E801
1308	 */
1309	vmf.vmf_ax = 0xE801;
1310	if (vm86_intcall(0x15, &vmf) == 0) {
1311		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1312	} else {
1313#if 0
1314		vmf.vmf_ah = 0x88;
1315		vm86_intcall(0x15, &vmf);
1316		extmem = vmf.vmf_ax;
1317#else
1318		/*
1319		 * Prefer the RTC value for extended memory.
1320		 */
1321		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1322#endif
1323	}
1324
1325	/*
1326	 * Special hack for chipsets that still remap the 384k hole when
1327	 * there's 16MB of memory - this really confuses people that
1328	 * are trying to use bus mastering ISA controllers with the
1329	 * "16MB limit"; they only have 16MB, but the remapping puts
1330	 * them beyond the limit.
1331	 *
1332	 * If extended memory is between 15-16MB (16-17MB phys address range),
1333	 *	chop it to 15MB.
1334	 */
1335	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1336		extmem = 15 * 1024;
1337
1338	physmap[0] = 0;
1339	physmap[1] = basemem * 1024;
1340	physmap_idx = 2;
1341	physmap[physmap_idx] = 0x100000;
1342	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1343
1344physmap_done:
1345	/*
1346	 * Now, physmap contains a map of physical memory.
1347	 */
1348
1349#ifdef SMP
1350	/* make hole for AP bootstrap code */
1351	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1352
1353	/* look for the MP hardware - needed for apic addresses */
1354	mp_probe();
1355#endif
1356
1357	/*
1358	 * Maxmem isn't the "maximum memory", it's one larger than the
1359	 * highest page of the physical address space.  It should be
1360	 * called something like "Maxphyspage".  We may adjust this
1361	 * based on ``hw.physmem'' and the results of the memory test.
1362	 */
1363	Maxmem = atop(physmap[physmap_idx + 1]);
1364
1365#ifdef MAXMEM
1366	Maxmem = MAXMEM / 4;
1367#endif
1368
1369	/*
1370	 * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
1371	 * for the appropriate modifiers.  This overrides MAXMEM.
1372	 */
1373	if ((cp = getenv("hw.physmem")) != NULL) {
1374		u_int64_t AllowMem, sanity;
1375		const char *ep;
1376
1377		sanity = AllowMem = strtouq(cp, &ep, 0);
1378		if ((ep != cp) && (*ep != 0)) {
1379			switch(*ep) {
1380			case 'g':
1381			case 'G':
1382				AllowMem <<= 10;
1383			case 'm':
1384			case 'M':
1385				AllowMem <<= 10;
1386			case 'k':
1387			case 'K':
1388				AllowMem <<= 10;
1389				break;
1390			default:
1391				AllowMem = sanity = 0;
1392			}
1393			if (AllowMem < sanity)
1394				AllowMem = 0;
1395		}
1396		if (AllowMem == 0)
1397			printf("Ignoring invalid memory size of '%s'\n", cp);
1398		else
1399			Maxmem = atop(AllowMem);
1400	}
1401
1402	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1403	    (boothowto & RB_VERBOSE))
1404		printf("Physical memory use set to %uK\n", Maxmem * 4);
1405
1406	/*
1407	 * If Maxmem has been increased beyond what the system has detected,
1408	 * extend the last memory segment to the new limit.
1409	 */
1410	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1411		physmap[physmap_idx + 1] = ptoa(Maxmem);
1412
1413	/* call pmap initialization to make new kernel address space */
1414	pmap_bootstrap(first, 0);
1415
1416	/*
1417	 * Size up each available chunk of physical memory.
1418	 */
1419	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1420	pa_indx = 0;
1421	phys_avail[pa_indx++] = physmap[0];
1422	phys_avail[pa_indx] = physmap[0];
1423#if 0
1424	pte = (pt_entry_t)vtopte(KERNBASE);
1425#else
1426	pte = (pt_entry_t)CMAP1;
1427#endif
1428
1429	/*
1430	 * physmap is in bytes, so when converting to page boundaries,
1431	 * round up the start address and round down the end address.
1432	 */
1433	for (i = 0; i <= physmap_idx; i += 2) {
1434		vm_offset_t end;
1435
1436		end = ptoa(Maxmem);
1437		if (physmap[i + 1] < end)
1438			end = trunc_page(physmap[i + 1]);
1439		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1440			int tmp, page_bad;
1441#if 0
1442			int *ptr = 0;
1443#else
1444			int *ptr = (int *)CADDR1;
1445#endif
1446
1447			/*
1448			 * block out kernel memory as not available.
1449			 */
1450			if (pa >= 0x100000 && pa < first)
1451				continue;
1452
1453			page_bad = FALSE;
1454
1455			/*
1456			 * map page into kernel: valid, read/write,non-cacheable
1457			 */
1458			*pte = pa | PG_V | PG_RW | PG_N;
1459			invltlb();
1460
1461			tmp = *(int *)ptr;
1462			/*
1463			 * Test for alternating 1's and 0's
1464			 */
1465			*(volatile int *)ptr = 0xaaaaaaaa;
1466			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1467				page_bad = TRUE;
1468			}
1469			/*
1470			 * Test for alternating 0's and 1's
1471			 */
1472			*(volatile int *)ptr = 0x55555555;
1473			if (*(volatile int *)ptr != 0x55555555) {
1474			page_bad = TRUE;
1475			}
1476			/*
1477			 * Test for all 1's
1478			 */
1479			*(volatile int *)ptr = 0xffffffff;
1480			if (*(volatile int *)ptr != 0xffffffff) {
1481				page_bad = TRUE;
1482			}
1483			/*
1484			 * Test for all 0's
1485			 */
1486			*(volatile int *)ptr = 0x0;
1487			if (*(volatile int *)ptr != 0x0) {
1488				page_bad = TRUE;
1489			}
1490			/*
1491			 * Restore original value.
1492			 */
1493			*(int *)ptr = tmp;
1494
1495			/*
1496			 * Adjust array of valid/good pages.
1497			 */
1498			if (page_bad == TRUE) {
1499				continue;
1500			}
1501			/*
1502			 * If this good page is a continuation of the
1503			 * previous set of good pages, then just increase
1504			 * the end pointer. Otherwise start a new chunk.
1505			 * Note that "end" points one higher than end,
1506			 * making the range >= start and < end.
1507			 * If we're also doing a speculative memory
1508			 * test and we at or past the end, bump up Maxmem
1509			 * so that we keep going. The first bad page
1510			 * will terminate the loop.
1511			 */
1512			if (phys_avail[pa_indx] == pa) {
1513				phys_avail[pa_indx] += PAGE_SIZE;
1514			} else {
1515				pa_indx++;
1516				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1517					printf("Too many holes in the physical address space, giving up\n");
1518					pa_indx--;
1519					break;
1520				}
1521				phys_avail[pa_indx++] = pa;	/* start */
1522				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1523			}
1524			physmem++;
1525		}
1526	}
1527	*pte = 0;
1528	invltlb();
1529
1530	/*
1531	 * XXX
1532	 * The last chunk must contain at least one page plus the message
1533	 * buffer to avoid complicating other code (message buffer address
1534	 * calculation, etc.).
1535	 */
1536	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1537	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1538		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1539		phys_avail[pa_indx--] = 0;
1540		phys_avail[pa_indx--] = 0;
1541	}
1542
1543	Maxmem = atop(phys_avail[pa_indx]);
1544
1545	/* Trim off space for the message buffer. */
1546	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1547
1548	avail_end = phys_avail[pa_indx];
1549}
1550
1551void
1552init386(first)
1553	int first;
1554{
1555	int x;
1556	struct gate_descriptor *gdp;
1557	int gsel_tss;
1558#ifndef SMP
1559	/* table descriptors - used to load tables by microp */
1560	struct region_descriptor r_gdt, r_idt;
1561#endif
1562	int off;
1563
1564	/*
1565	 * Prevent lowering of the ipl if we call tsleep() early.
1566	 */
1567	safepri = cpl;
1568
1569	proc0.p_addr = proc0paddr;
1570
1571	atdevbase = ISA_HOLE_START + KERNBASE;
1572
1573	if (bootinfo.bi_modulep) {
1574		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1575		preload_bootstrap_relocate(KERNBASE);
1576	}
1577	if (bootinfo.bi_envp)
1578		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1579
1580	/*
1581	 * make gdt memory segments, the code segment goes up to end of the
1582	 * page with etext in it, the data segment goes to the end of
1583	 * the address space
1584	 */
1585	/*
1586	 * XXX text protection is temporarily (?) disabled.  The limit was
1587	 * i386_btop(round_page(etext)) - 1.
1588	 */
1589	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1590	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1591#ifdef SMP
1592	gdt_segs[GPRIV_SEL].ssd_limit =
1593		i386_btop(sizeof(struct privatespace)) - 1;
1594	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
1595	gdt_segs[GPROC0_SEL].ssd_base =
1596		(int) &SMP_prvspace[0].globaldata.gd_common_tss;
1597	SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
1598#else
1599	gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
1600	gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
1601#endif
1602
1603	for (x = 0; x < NGDT; x++) {
1604#ifdef BDE_DEBUGGER
1605		/* avoid overwriting db entries with APM ones */
1606		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1607			continue;
1608#endif
1609		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1610	}
1611
1612	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1613	r_gdt.rd_base =  (int) gdt;
1614	lgdt(&r_gdt);
1615
1616	/* make ldt memory segments */
1617	/*
1618	 * The data segment limit must not cover the user area because we
1619	 * don't want the user area to be writable in copyout() etc. (page
1620	 * level protection is lost in kernel mode on 386's).  Also, we
1621	 * don't want the user area to be writable directly (page level
1622	 * protection of the user area is not available on 486's with
1623	 * CR0_WP set, because there is no user-read/kernel-write mode).
1624	 *
1625	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1626	 * should be spelled ...MAX_USER...
1627	 */
1628#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1629	/*
1630	 * The code segment limit has to cover the user area until we move
1631	 * the signal trampoline out of the user area.  This is safe because
1632	 * the code segment cannot be written to directly.
1633	 */
1634#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1635	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1636	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1637	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1638		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1639
1640	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1641	lldt(_default_ldt);
1642#ifdef USER_LDT
1643	currentldt = _default_ldt;
1644#endif
1645
1646	/* exceptions */
1647	for (x = 0; x < NIDT; x++)
1648		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1649	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1650	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1651	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1652 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1653	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1654	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1655	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1656	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1657	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1658	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1659	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1660	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1661	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1662	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1663	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1664	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1665	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1666	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1667	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1668 	setidt(0x80, &IDTVEC(int0x80_syscall),
1669			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1670
1671	r_idt.rd_limit = sizeof(idt0) - 1;
1672	r_idt.rd_base = (int) idt;
1673	lidt(&r_idt);
1674
1675	/*
1676	 * Initialize the console before we print anything out.
1677	 */
1678	cninit();
1679
1680#include	"isa.h"
1681#if	NISA >0
1682	isa_defaultirq();
1683#endif
1684	rand_initialize();
1685
1686#ifdef DDB
1687	kdb_init();
1688	if (boothowto & RB_KDB)
1689		Debugger("Boot flags requested debugger");
1690#endif
1691
1692	finishidentcpu();	/* Final stage of CPU initialization */
1693	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1694	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1695	initializecpu();	/* Initialize CPU registers */
1696
1697	/* make an initial tss so cpu can get interrupt stack on syscall! */
1698	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1699	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1700	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1701	private_tss = 0;
1702	tss_gdt = &gdt[GPROC0_SEL].sd;
1703	common_tssd = *tss_gdt;
1704	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1705	ltr(gsel_tss);
1706
1707	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1708	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1709	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1710	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1711	dblfault_tss.tss_cr3 = (int)IdlePTD;
1712	dblfault_tss.tss_eip = (int) dblfault_handler;
1713	dblfault_tss.tss_eflags = PSL_KERNEL;
1714	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1715	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1716	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1717	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1718	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1719
1720	vm86_initialize();
1721	getmemsize(first);
1722
1723	/* now running on new page tables, configured,and u/iom is accessible */
1724
1725	/* Map the message buffer. */
1726	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1727		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1728
1729	msgbufinit(msgbufp, MSGBUF_SIZE);
1730
1731	/* make a call gate to reenter kernel with */
1732	gdp = &ldt[LSYS5CALLS_SEL].gd;
1733
1734	x = (int) &IDTVEC(syscall);
1735	gdp->gd_looffset = x++;
1736	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1737	gdp->gd_stkcpy = 1;
1738	gdp->gd_type = SDT_SYS386CGT;
1739	gdp->gd_dpl = SEL_UPL;
1740	gdp->gd_p = 1;
1741	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1742
1743	/* XXX does this work? */
1744	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1745	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1746
1747	/* transfer to user mode */
1748
1749	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1750	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1751
1752	/* setup proc 0's pcb */
1753	proc0.p_addr->u_pcb.pcb_flags = 0;
1754	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1755#ifdef SMP
1756	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1757#endif
1758	proc0.p_addr->u_pcb.pcb_ext = 0;
1759}
1760
1761#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1762static void f00f_hack(void *unused);
1763SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1764
1765static void
1766f00f_hack(void *unused) {
1767	struct gate_descriptor *new_idt;
1768#ifndef SMP
1769	struct region_descriptor r_idt;
1770#endif
1771	vm_offset_t tmp;
1772
1773	if (!has_f00f_bug)
1774		return;
1775
1776	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1777
1778	r_idt.rd_limit = sizeof(idt0) - 1;
1779
1780	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1781	if (tmp == 0)
1782		panic("kmem_alloc returned 0");
1783	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1784		panic("kmem_alloc returned non-page-aligned memory");
1785	/* Put the first seven entries in the lower page */
1786	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1787	bcopy(idt, new_idt, sizeof(idt0));
1788	r_idt.rd_base = (int)new_idt;
1789	lidt(&r_idt);
1790	idt = new_idt;
1791	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1792			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1793		panic("vm_map_protect failed");
1794	return;
1795}
1796#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1797
1798int
1799ptrace_set_pc(p, addr)
1800	struct proc *p;
1801	unsigned long addr;
1802{
1803	p->p_md.md_regs->tf_eip = addr;
1804	return (0);
1805}
1806
1807int
1808ptrace_single_step(p)
1809	struct proc *p;
1810{
1811	p->p_md.md_regs->tf_eflags |= PSL_T;
1812	return (0);
1813}
1814
1815int ptrace_read_u_check(p, addr, len)
1816	struct proc *p;
1817	vm_offset_t addr;
1818	size_t len;
1819{
1820	vm_offset_t gap;
1821
1822	if ((vm_offset_t) (addr + len) < addr)
1823		return EPERM;
1824	if ((vm_offset_t) (addr + len) <= sizeof(struct user))
1825		return 0;
1826
1827	gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
1828
1829	if ((vm_offset_t) addr < gap)
1830		return EPERM;
1831	if ((vm_offset_t) (addr + len) <=
1832	    (vm_offset_t) (gap + sizeof(struct trapframe)))
1833		return 0;
1834	return EPERM;
1835}
1836
1837int ptrace_write_u(p, off, data)
1838	struct proc *p;
1839	vm_offset_t off;
1840	long data;
1841{
1842	struct trapframe frame_copy;
1843	vm_offset_t min;
1844	struct trapframe *tp;
1845
1846	/*
1847	 * Privileged kernel state is scattered all over the user area.
1848	 * Only allow write access to parts of regs and to fpregs.
1849	 */
1850	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1851	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1852		tp = p->p_md.md_regs;
1853		frame_copy = *tp;
1854		*(int *)((char *)&frame_copy + (off - min)) = data;
1855		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1856		    !CS_SECURE(frame_copy.tf_cs))
1857			return (EINVAL);
1858		*(int*)((char *)p->p_addr + off) = data;
1859		return (0);
1860	}
1861	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1862	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1863		*(int*)((char *)p->p_addr + off) = data;
1864		return (0);
1865	}
1866	return (EFAULT);
1867}
1868
1869int
1870fill_regs(p, regs)
1871	struct proc *p;
1872	struct reg *regs;
1873{
1874	struct pcb *pcb;
1875	struct trapframe *tp;
1876
1877	tp = p->p_md.md_regs;
1878	regs->r_fs = tp->tf_fs;
1879	regs->r_es = tp->tf_es;
1880	regs->r_ds = tp->tf_ds;
1881	regs->r_edi = tp->tf_edi;
1882	regs->r_esi = tp->tf_esi;
1883	regs->r_ebp = tp->tf_ebp;
1884	regs->r_ebx = tp->tf_ebx;
1885	regs->r_edx = tp->tf_edx;
1886	regs->r_ecx = tp->tf_ecx;
1887	regs->r_eax = tp->tf_eax;
1888	regs->r_eip = tp->tf_eip;
1889	regs->r_cs = tp->tf_cs;
1890	regs->r_eflags = tp->tf_eflags;
1891	regs->r_esp = tp->tf_esp;
1892	regs->r_ss = tp->tf_ss;
1893	pcb = &p->p_addr->u_pcb;
1894	regs->r_gs = pcb->pcb_gs;
1895	return (0);
1896}
1897
1898int
1899set_regs(p, regs)
1900	struct proc *p;
1901	struct reg *regs;
1902{
1903	struct pcb *pcb;
1904	struct trapframe *tp;
1905
1906	tp = p->p_md.md_regs;
1907	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1908	    !CS_SECURE(regs->r_cs))
1909		return (EINVAL);
1910	tp->tf_fs = regs->r_fs;
1911	tp->tf_es = regs->r_es;
1912	tp->tf_ds = regs->r_ds;
1913	tp->tf_edi = regs->r_edi;
1914	tp->tf_esi = regs->r_esi;
1915	tp->tf_ebp = regs->r_ebp;
1916	tp->tf_ebx = regs->r_ebx;
1917	tp->tf_edx = regs->r_edx;
1918	tp->tf_ecx = regs->r_ecx;
1919	tp->tf_eax = regs->r_eax;
1920	tp->tf_eip = regs->r_eip;
1921	tp->tf_cs = regs->r_cs;
1922	tp->tf_eflags = regs->r_eflags;
1923	tp->tf_esp = regs->r_esp;
1924	tp->tf_ss = regs->r_ss;
1925	pcb = &p->p_addr->u_pcb;
1926	pcb->pcb_gs = regs->r_gs;
1927	return (0);
1928}
1929
1930int
1931fill_fpregs(p, fpregs)
1932	struct proc *p;
1933	struct fpreg *fpregs;
1934{
1935	bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
1936	return (0);
1937}
1938
1939int
1940set_fpregs(p, fpregs)
1941	struct proc *p;
1942	struct fpreg *fpregs;
1943{
1944	bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
1945	return (0);
1946}
1947
1948int
1949fill_dbregs(p, dbregs)
1950	struct proc *p;
1951	struct dbreg *dbregs;
1952{
1953	struct pcb *pcb;
1954
1955	pcb = &p->p_addr->u_pcb;
1956	dbregs->dr0 = pcb->pcb_dr0;
1957	dbregs->dr1 = pcb->pcb_dr1;
1958	dbregs->dr2 = pcb->pcb_dr2;
1959	dbregs->dr3 = pcb->pcb_dr3;
1960	dbregs->dr4 = 0;
1961	dbregs->dr5 = 0;
1962	dbregs->dr6 = pcb->pcb_dr6;
1963	dbregs->dr7 = pcb->pcb_dr7;
1964	return (0);
1965}
1966
1967int
1968set_dbregs(p, dbregs)
1969	struct proc *p;
1970	struct dbreg *dbregs;
1971{
1972	struct pcb *pcb;
1973
1974	pcb = &p->p_addr->u_pcb;
1975
1976	/*
1977	 * Don't let a process set a breakpoint that is not within the
1978	 * process's address space.  If a process could do this, it
1979	 * could halt the system by setting a breakpoint in the kernel
1980	 * (if ddb was enabled).  Thus, we need to check to make sure
1981	 * that no breakpoints are being enabled for addresses outside
1982	 * process's address space, unless, perhaps, we were called by
1983	 * uid 0.
1984	 *
1985	 * XXX - what about when the watched area of the user's
1986	 * address space is written into from within the kernel
1987	 * ... wouldn't that still cause a breakpoint to be generated
1988	 * from within kernel mode?
1989	 */
1990
1991	if (p->p_cred->pc_ucred->cr_uid != 0) {
1992		if (dbregs->dr7 & 0x3) {
1993			/* dr0 is enabled */
1994			if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
1995				return (EINVAL);
1996		}
1997
1998		if (dbregs->dr7 & (0x3<<2)) {
1999			/* dr1 is enabled */
2000			if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2001				return (EINVAL);
2002		}
2003
2004		if (dbregs->dr7 & (0x3<<4)) {
2005			/* dr2 is enabled */
2006			if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2007       				return (EINVAL);
2008		}
2009
2010		if (dbregs->dr7 & (0x3<<6)) {
2011			/* dr3 is enabled */
2012			if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2013				return (EINVAL);
2014		}
2015	}
2016
2017	pcb->pcb_dr0 = dbregs->dr0;
2018	pcb->pcb_dr1 = dbregs->dr1;
2019	pcb->pcb_dr2 = dbregs->dr2;
2020	pcb->pcb_dr3 = dbregs->dr3;
2021	pcb->pcb_dr6 = dbregs->dr6;
2022	pcb->pcb_dr7 = dbregs->dr7;
2023
2024	pcb->pcb_flags |= PCB_DBREGS;
2025
2026	return (0);
2027}
2028
2029#ifndef DDB
2030void
2031Debugger(const char *msg)
2032{
2033	printf("Debugger(\"%s\") called.\n", msg);
2034}
2035#endif /* no DDB */
2036
2037#include <sys/disklabel.h>
2038
2039/*
2040 * Determine the size of the transfer, and make sure it is
2041 * within the boundaries of the partition. Adjust transfer
2042 * if needed, and signal errors or early completion.
2043 */
2044int
2045bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
2046{
2047        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
2048        int labelsect = lp->d_partitions[0].p_offset;
2049        int maxsz = p->p_size,
2050                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2051
2052        /* overwriting disk label ? */
2053        /* XXX should also protect bootstrap in first 8K */
2054        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
2055#if LABELSECTOR != 0
2056            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2057#endif
2058            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2059                bp->b_error = EROFS;
2060                goto bad;
2061        }
2062
2063#if     defined(DOSBBSECTOR) && defined(notyet)
2064        /* overwriting master boot record? */
2065        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
2066            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
2067                bp->b_error = EROFS;
2068                goto bad;
2069        }
2070#endif
2071
2072        /* beyond partition? */
2073        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
2074                /* if exactly at end of disk, return an EOF */
2075                if (bp->b_blkno == maxsz) {
2076                        bp->b_resid = bp->b_bcount;
2077                        return(0);
2078                }
2079                /* or truncate if part of it fits */
2080                sz = maxsz - bp->b_blkno;
2081                if (sz <= 0) {
2082                        bp->b_error = EINVAL;
2083                        goto bad;
2084                }
2085                bp->b_bcount = sz << DEV_BSHIFT;
2086        }
2087
2088        bp->b_pblkno = bp->b_blkno + p->p_offset;
2089        return(1);
2090
2091bad:
2092        bp->b_flags |= B_ERROR;
2093        return(-1);
2094}
2095
2096#ifdef DDB
2097
2098/*
2099 * Provide inb() and outb() as functions.  They are normally only
2100 * available as macros calling inlined functions, thus cannot be
2101 * called inside DDB.
2102 *
2103 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2104 */
2105
2106#undef inb
2107#undef outb
2108
2109/* silence compiler warnings */
2110u_char inb(u_int);
2111void outb(u_int, u_char);
2112
2113u_char
2114inb(u_int port)
2115{
2116	u_char	data;
2117	/*
2118	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2119	 * %edx, while gcc generates inferior code (movw instead of movl)
2120	 * if we tell it to load (u_short) port.
2121	 */
2122	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2123	return (data);
2124}
2125
2126void
2127outb(u_int port, u_char data)
2128{
2129	u_char	al;
2130	/*
2131	 * Use an unnecessary assignment to help gcc's register allocator.
2132	 * This make a large difference for gcc-1.40 and a tiny difference
2133	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2134	 * best results.  gcc-2.6.0 can't handle this.
2135	 */
2136	al = data;
2137	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2138}
2139
2140#endif /* DDB */
2141