machdep.c revision 32464
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.280 1997/12/27 02:28:27 peter Exp $
39 */
40
41#include "apm.h"
42#include "npx.h"
43#include "opt_bounce.h"
44#include "opt_cpu.h"
45#include "opt_ddb.h"
46#include "opt_maxmem.h"
47#include "opt_perfmon.h"
48#include "opt_smp.h"
49#include "opt_sysvipc.h"
50#include "opt_user_ldt.h"
51#include "opt_userconfig.h"
52#include "opt_vm86.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/kernel.h>
59#include <sys/proc.h>
60#include <sys/buf.h>
61#include <sys/reboot.h>
62#include <sys/conf.h>
63#include <sys/callout.h>
64#include <sys/malloc.h>
65#include <sys/mbuf.h>
66#include <sys/msgbuf.h>
67#include <sys/sysent.h>
68#include <sys/sysctl.h>
69#include <sys/vmmeter.h>
70
71#ifdef SYSVSHM
72#include <sys/shm.h>
73#endif
74
75#ifdef SYSVMSG
76#include <sys/msg.h>
77#endif
78
79#ifdef SYSVSEM
80#include <sys/sem.h>
81#endif
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <vm/vm_prot.h>
86#include <sys/lock.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_object.h>
89#include <vm/vm_page.h>
90#include <vm/vm_map.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_extern.h>
93
94#include <sys/user.h>
95#include <sys/exec.h>
96
97#include <ddb/ddb.h>
98
99#include <net/netisr.h>
100
101#if NAPM > 0
102#include <machine/apm_bios.h>
103#endif
104#include <machine/cpu.h>
105#include <machine/reg.h>
106#include <machine/clock.h>
107#include <machine/specialreg.h>
108#include <machine/cons.h>
109#include <machine/bootinfo.h>
110#include <machine/ipl.h>
111#include <machine/md_var.h>
112#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
113#ifdef SMP
114#include <machine/smp.h>
115#endif
116#ifdef PERFMON
117#include <machine/perfmon.h>
118#endif
119
120#include <i386/isa/isa_device.h>
121#include <i386/isa/intr_machdep.h>
122#include <i386/isa/rtc.h>
123#include <machine/random.h>
124
125extern void init386 __P((int first));
126extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
127extern int ptrace_single_step __P((struct proc *p));
128extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
129extern void dblfault_handler __P((void));
130
131extern void printcpuinfo(void);	/* XXX header file */
132extern void earlysetcpuclass(void);	/* same header file */
133extern void finishidentcpu(void);
134extern void panicifcpuunsupported(void);
135extern void initializecpu(void);
136
137static void cpu_startup __P((void *));
138SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
139
140static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
141
142#ifdef BOUNCE_BUFFERS
143#ifdef BOUNCEPAGES
144int	bouncepages = BOUNCEPAGES;
145#else
146int	bouncepages = 0;
147#endif
148#endif	/* BOUNCE_BUFFERS */
149
150int	msgbufmapped = 0;		/* set when safe to use msgbuf */
151int _udatasel, _ucodesel;
152u_int	atdevbase;
153
154#if defined(SWTCH_OPTIM_STATS)
155extern int swtch_optim_stats;
156SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
157	CTLFLAG_RD, &swtch_optim_stats, 0, "");
158SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
159	CTLFLAG_RD, &tlb_flush_count, 0, "");
160#endif
161
162
163int physmem = 0;
164int cold = 1;
165
166static int
167sysctl_hw_physmem SYSCTL_HANDLER_ARGS
168{
169	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
170	return (error);
171}
172
173SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
174	0, 0, sysctl_hw_physmem, "I", "");
175
176static int
177sysctl_hw_usermem SYSCTL_HANDLER_ARGS
178{
179	int error = sysctl_handle_int(oidp, 0,
180		ctob(physmem - cnt.v_wire_count), req);
181	return (error);
182}
183
184SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
185	0, 0, sysctl_hw_usermem, "I", "");
186
187int bootverbose = 0, Maxmem = 0;
188long dumplo;
189
190vm_offset_t phys_avail[10];
191
192/* must be 2 less so 0 0 can signal end of chunks */
193#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
194
195static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
196
197static vm_offset_t buffer_sva, buffer_eva;
198vm_offset_t clean_sva, clean_eva;
199static vm_offset_t pager_sva, pager_eva;
200extern struct linker_set netisr_set;
201
202#define offsetof(type, member)	((size_t)(&((type *)0)->member))
203
204static void
205cpu_startup(dummy)
206	void *dummy;
207{
208	register unsigned i;
209	register caddr_t v;
210	vm_offset_t maxaddr;
211	vm_size_t size = 0;
212	int firstaddr;
213	vm_offset_t minaddr;
214
215	if (boothowto & RB_VERBOSE)
216		bootverbose++;
217
218	/*
219	 * Good {morning,afternoon,evening,night}.
220	 */
221	printf(version);
222	earlysetcpuclass();
223	startrtclock();
224	printcpuinfo();
225	panicifcpuunsupported();
226#ifdef PERFMON
227	perfmon_init();
228#endif
229	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
230	/*
231	 * Display any holes after the first chunk of extended memory.
232	 */
233	if (bootverbose) {
234		int indx;
235
236		printf("Physical memory chunk(s):\n");
237		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
238			int size1 = phys_avail[indx + 1] - phys_avail[indx];
239
240			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
241			    phys_avail[indx + 1] - 1, size1, size1 / PAGE_SIZE);
242		}
243	}
244
245	/*
246	 * Quickly wire in netisrs.
247	 */
248	setup_netisrs(&netisr_set);
249
250	/*
251	 * Calculate callout wheel size
252	 */
253	for (callwheelsize = 1, callwheelbits = 0;
254	     callwheelsize < ncallout;
255	     callwheelsize <<= 1, ++callwheelbits)
256		;
257	callwheelmask = callwheelsize - 1;
258
259	/*
260	 * Allocate space for system data structures.
261	 * The first available kernel virtual address is in "v".
262	 * As pages of kernel virtual memory are allocated, "v" is incremented.
263	 * As pages of memory are allocated and cleared,
264	 * "firstaddr" is incremented.
265	 * An index into the kernel page table corresponding to the
266	 * virtual memory address maintained in "v" is kept in "mapaddr".
267	 */
268
269	/*
270	 * Make two passes.  The first pass calculates how much memory is
271	 * needed and allocates it.  The second pass assigns virtual
272	 * addresses to the various data structures.
273	 */
274	firstaddr = 0;
275again:
276	v = (caddr_t)firstaddr;
277
278#define	valloc(name, type, num) \
279	    (name) = (type *)v; v = (caddr_t)((name)+(num))
280#define	valloclim(name, type, num, lim) \
281	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
282	valloc(callout, struct callout, ncallout);
283	valloc(callwheel, struct callout_tailq, callwheelsize);
284#ifdef SYSVSHM
285	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
286#endif
287#ifdef SYSVSEM
288	valloc(sema, struct semid_ds, seminfo.semmni);
289	valloc(sem, struct sem, seminfo.semmns);
290	/* This is pretty disgusting! */
291	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
292#endif
293#ifdef SYSVMSG
294	valloc(msgpool, char, msginfo.msgmax);
295	valloc(msgmaps, struct msgmap, msginfo.msgseg);
296	valloc(msghdrs, struct msg, msginfo.msgtql);
297	valloc(msqids, struct msqid_ds, msginfo.msgmni);
298#endif
299
300	if (nbuf == 0) {
301		nbuf = 30;
302		if( physmem > 1024)
303			nbuf += min((physmem - 1024) / 8, 2048);
304	}
305	nswbuf = max(min(nbuf/4, 128), 16);
306
307	valloc(swbuf, struct buf, nswbuf);
308	valloc(buf, struct buf, nbuf);
309
310#ifdef BOUNCE_BUFFERS
311	/*
312	 * If there is more than 16MB of memory, allocate some bounce buffers
313	 */
314	if (Maxmem > 4096) {
315		if (bouncepages == 0) {
316			bouncepages = 64;
317			bouncepages += ((Maxmem - 4096) / 2048) * 32;
318			if (bouncepages > 128)
319				bouncepages = 128;
320		}
321		v = (caddr_t)((vm_offset_t)round_page(v));
322		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
323	}
324#endif
325
326	/*
327	 * End of first pass, size has been calculated so allocate memory
328	 */
329	if (firstaddr == 0) {
330		size = (vm_size_t)(v - firstaddr);
331		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
332		if (firstaddr == 0)
333			panic("startup: no room for tables");
334		goto again;
335	}
336
337	/*
338	 * End of second pass, addresses have been assigned
339	 */
340	if ((vm_size_t)(v - firstaddr) != size)
341		panic("startup: table size inconsistency");
342
343#ifdef BOUNCE_BUFFERS
344	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
345			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
346				maxbkva + pager_map_size, TRUE);
347	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
348#else
349	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
350			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
351#endif
352	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
353				(nbuf*BKVASIZE), TRUE);
354	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
355				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
356	pager_map->system_map = 1;
357	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
358				(16*(ARG_MAX+PAGE_SIZE)), TRUE);
359	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
360				(maxproc*UPAGES*PAGE_SIZE), FALSE);
361
362	/*
363	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
364	 * we use the more space efficient malloc in place of kmem_alloc.
365	 */
366	{
367		vm_offset_t mb_map_size;
368
369		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
370		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
371		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
372		bzero(mclrefcnt, mb_map_size / MCLBYTES);
373		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
374			mb_map_size, FALSE);
375		mb_map->system_map = 1;
376	}
377
378	/*
379	 * Initialize callouts
380	 */
381	SLIST_INIT(&callfree);
382	for (i = 0; i < ncallout; i++) {
383		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
384	}
385
386	for (i = 0; i < callwheelsize; i++) {
387		TAILQ_INIT(&callwheel[i]);
388	}
389
390#if defined(USERCONFIG)
391#if defined(USERCONFIG_BOOT)
392	if (1) {
393#else
394        if (boothowto & RB_CONFIG) {
395#endif
396		userconfig();
397		cninit();	/* the preferred console may have changed */
398	}
399#endif
400
401#ifdef BOUNCE_BUFFERS
402	/*
403	 * init bounce buffers
404	 */
405	vm_bounce_init();
406#endif
407
408	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
409	    ptoa(cnt.v_free_count) / 1024);
410
411	/*
412	 * Set up buffers, so they can be used to read disk labels.
413	 */
414	bufinit();
415	vm_pager_bufferinit();
416
417#ifdef SMP
418	/*
419	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
420	 */
421	mp_start();			/* fire up the APs and APICs */
422	mp_announce();
423#endif  /* SMP */
424}
425
426int
427register_netisr(num, handler)
428	int num;
429	netisr_t *handler;
430{
431
432	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
433		printf("register_netisr: bad isr number: %d\n", num);
434		return (EINVAL);
435	}
436	netisrs[num] = handler;
437	return (0);
438}
439
440static void
441setup_netisrs(ls)
442	struct linker_set *ls;
443{
444	int i;
445	const struct netisrtab *nit;
446
447	for(i = 0; ls->ls_items[i]; i++) {
448		nit = (const struct netisrtab *)ls->ls_items[i];
449		register_netisr(nit->nit_num, nit->nit_isr);
450	}
451}
452
453/*
454 * Send an interrupt to process.
455 *
456 * Stack is set up to allow sigcode stored
457 * at top to call routine, followed by kcall
458 * to sigreturn routine below.  After sigreturn
459 * resets the signal mask, the stack, and the
460 * frame pointer, it returns to the user
461 * specified pc, psl.
462 */
463void
464sendsig(catcher, sig, mask, code)
465	sig_t catcher;
466	int sig, mask;
467	u_long code;
468{
469	register struct proc *p = curproc;
470	register struct trapframe *regs;
471	register struct sigframe *fp;
472	struct sigframe sf;
473	struct sigacts *psp = p->p_sigacts;
474	int oonstack;
475
476	regs = p->p_md.md_regs;
477        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
478	/*
479	 * Allocate and validate space for the signal handler context.
480	 */
481        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
482	    (psp->ps_sigonstack & sigmask(sig))) {
483		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
484		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
485		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
486	} else {
487		fp = (struct sigframe *)regs->tf_esp - 1;
488	}
489
490	/*
491	 * grow() will return FALSE if the fp will not fit inside the stack
492	 *	and the stack can not be grown. useracc will return FALSE
493	 *	if access is denied.
494	 */
495	if ((grow(p, (int)fp) == FALSE) ||
496	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
497		/*
498		 * Process has trashed its stack; give it an illegal
499		 * instruction to halt it in its tracks.
500		 */
501		SIGACTION(p, SIGILL) = SIG_DFL;
502		sig = sigmask(SIGILL);
503		p->p_sigignore &= ~sig;
504		p->p_sigcatch &= ~sig;
505		p->p_sigmask &= ~sig;
506		psignal(p, SIGILL);
507		return;
508	}
509
510	/*
511	 * Build the argument list for the signal handler.
512	 */
513	if (p->p_sysent->sv_sigtbl) {
514		if (sig < p->p_sysent->sv_sigsize)
515			sig = p->p_sysent->sv_sigtbl[sig];
516		else
517			sig = p->p_sysent->sv_sigsize + 1;
518	}
519	sf.sf_signum = sig;
520	sf.sf_code = code;
521	sf.sf_scp = &fp->sf_sc;
522	sf.sf_addr = (char *) regs->tf_err;
523	sf.sf_handler = catcher;
524
525	/* save scratch registers */
526	sf.sf_sc.sc_eax = regs->tf_eax;
527	sf.sf_sc.sc_ebx = regs->tf_ebx;
528	sf.sf_sc.sc_ecx = regs->tf_ecx;
529	sf.sf_sc.sc_edx = regs->tf_edx;
530	sf.sf_sc.sc_esi = regs->tf_esi;
531	sf.sf_sc.sc_edi = regs->tf_edi;
532	sf.sf_sc.sc_cs = regs->tf_cs;
533	sf.sf_sc.sc_ds = regs->tf_ds;
534	sf.sf_sc.sc_ss = regs->tf_ss;
535	sf.sf_sc.sc_es = regs->tf_es;
536	sf.sf_sc.sc_isp = regs->tf_isp;
537
538	/*
539	 * Build the signal context to be used by sigreturn.
540	 */
541	sf.sf_sc.sc_onstack = oonstack;
542	sf.sf_sc.sc_mask = mask;
543	sf.sf_sc.sc_sp = regs->tf_esp;
544	sf.sf_sc.sc_fp = regs->tf_ebp;
545	sf.sf_sc.sc_pc = regs->tf_eip;
546	sf.sf_sc.sc_ps = regs->tf_eflags;
547	sf.sf_sc.sc_trapno = regs->tf_trapno;
548	sf.sf_sc.sc_err = regs->tf_err;
549
550	/*
551	 * If we're a vm86 process, we want to save the segment registers.
552	 * We also change eflags to be our emulated eflags, not the actual
553	 * eflags.
554	 */
555	if (regs->tf_eflags & PSL_VM) {
556		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
557		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
558
559		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
560		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
561		sf.sf_sc.sc_es = tf->tf_vm86_es;
562		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
563
564		if (vm86->vm86_has_vme == 0)
565			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
566			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
567
568		/*
569		 * We should never have PSL_T set when returning from vm86
570		 * mode.  It may be set here if we deliver a signal before
571		 * getting to vm86 mode, so turn it off.
572		 */
573		tf->tf_eflags &= ~(PSL_VM | PSL_T | PSL_VIF | PSL_VIP);
574	}
575
576	/*
577	 * Copy the sigframe out to the user's stack.
578	 */
579	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
580		/*
581		 * Something is wrong with the stack pointer.
582		 * ...Kill the process.
583		 */
584		sigexit(p, SIGILL);
585	}
586
587	regs->tf_esp = (int)fp;
588	regs->tf_eip = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
589	regs->tf_cs = _ucodesel;
590	regs->tf_ds = _udatasel;
591	regs->tf_es = _udatasel;
592	regs->tf_ss = _udatasel;
593}
594
595/*
596 * System call to cleanup state after a signal
597 * has been taken.  Reset signal mask and
598 * stack state from context left by sendsig (above).
599 * Return to previous pc and psl as specified by
600 * context left by sendsig. Check carefully to
601 * make sure that the user has not modified the
602 * state to gain improper privileges.
603 */
604int
605sigreturn(p, uap)
606	struct proc *p;
607	struct sigreturn_args /* {
608		struct sigcontext *sigcntxp;
609	} */ *uap;
610{
611	register struct sigcontext *scp;
612	register struct sigframe *fp;
613	register struct trapframe *regs = p->p_md.md_regs;
614	int eflags;
615
616	/*
617	 * (XXX old comment) regs->tf_esp points to the return address.
618	 * The user scp pointer is above that.
619	 * The return address is faked in the signal trampoline code
620	 * for consistency.
621	 */
622	scp = uap->sigcntxp;
623	fp = (struct sigframe *)
624	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
625
626	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
627		return(EFAULT);
628
629	eflags = scp->sc_ps;
630	if (eflags & PSL_VM) {
631		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
632		struct vm86_kernel *vm86;
633
634		/*
635		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
636		 * set up the vm86 area, and we can't enter vm86 mode.
637		 */
638		if (p->p_addr->u_pcb.pcb_ext == 0)
639			return (EINVAL);
640		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
641		if (vm86->vm86_inited == 0)
642			return (EINVAL);
643
644		/* go back to user mode if both flags are set */
645		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
646			trapsignal(p, SIGBUS, 0);
647
648#define VM_USERCHANGE	(PSL_USERCHANGE | PSL_RF)
649#define VME_USERCHANGE	(VM_USERCHANGE | PSL_VIP | PSL_VIF)
650		if (vm86->vm86_has_vme) {
651			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
652			    (eflags & VME_USERCHANGE) | PSL_VM;
653		} else {
654			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
655			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
656		}
657		tf->tf_vm86_ds = scp->sc_ds;
658		tf->tf_vm86_es = scp->sc_es;
659		tf->tf_vm86_fs = scp->sc_fs;
660		tf->tf_vm86_gs = scp->sc_gs;
661		tf->tf_ds = _udatasel;
662		tf->tf_es = _udatasel;
663	} else {
664		/*
665		 * Don't allow users to change privileged or reserved flags.
666		 */
667#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
668		/*
669		 * XXX do allow users to change the privileged flag PSL_RF.
670		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
671		 * should sometimes set it there too.  tf_eflags is kept in
672		 * the signal context during signal handling and there is no
673		 * other place to remember it, so the PSL_RF bit may be
674		 * corrupted by the signal handler without us knowing.
675		 * Corruption of the PSL_RF bit at worst causes one more or
676		 * one less debugger trap, so allowing it is fairly harmless.
677		 */
678		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
679#ifdef DEBUG
680	    		printf("sigreturn: eflags = 0x%x\n", eflags);
681#endif
682	    		return(EINVAL);
683		}
684
685		/*
686		 * Don't allow users to load a valid privileged %cs.  Let the
687		 * hardware check for invalid selectors, excess privilege in
688		 * other selectors, invalid %eip's and invalid %esp's.
689		 */
690#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
691		if (!CS_SECURE(scp->sc_cs)) {
692#ifdef DEBUG
693    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
694#endif
695			trapsignal(p, SIGBUS, T_PROTFLT);
696			return(EINVAL);
697		}
698		regs->tf_ds = scp->sc_ds;
699		regs->tf_es = scp->sc_es;
700	}
701	/* restore scratch registers */
702	regs->tf_eax = scp->sc_eax;
703	regs->tf_ebx = scp->sc_ebx;
704	regs->tf_ecx = scp->sc_ecx;
705	regs->tf_edx = scp->sc_edx;
706	regs->tf_esi = scp->sc_esi;
707	regs->tf_edi = scp->sc_edi;
708	regs->tf_cs = scp->sc_cs;
709	regs->tf_ss = scp->sc_ss;
710	regs->tf_isp = scp->sc_isp;
711
712	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
713		return(EINVAL);
714
715	if (scp->sc_onstack & 01)
716		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
717	else
718		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
719	p->p_sigmask = scp->sc_mask & ~sigcantmask;
720	regs->tf_ebp = scp->sc_fp;
721	regs->tf_esp = scp->sc_sp;
722	regs->tf_eip = scp->sc_pc;
723	regs->tf_eflags = eflags;
724	return(EJUSTRETURN);
725}
726
727/*
728 * Machine dependent boot() routine
729 *
730 * I haven't seen anything to put here yet
731 * Possibly some stuff might be grafted back here from boot()
732 */
733void
734cpu_boot(int howto)
735{
736}
737
738/*
739 * Shutdown the CPU as much as possible
740 */
741void
742cpu_halt(void)
743{
744	for (;;)
745		__asm__ ("hlt");
746}
747
748/*
749 * Turn the power off.
750 */
751void
752cpu_power_down(void)
753{
754#if NAPM > 0
755	apm_power_off();
756#endif
757}
758
759/*
760 * Clear registers on exec
761 */
762void
763setregs(p, entry, stack)
764	struct proc *p;
765	u_long entry;
766	u_long stack;
767{
768	struct trapframe *regs = p->p_md.md_regs;
769
770#ifdef USER_LDT
771	struct pcb *pcb = &p->p_addr->u_pcb;
772
773	/* was i386_user_cleanup() in NetBSD */
774	if (pcb->pcb_ldt) {
775		if (pcb == curpcb)
776			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
777		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
778			pcb->pcb_ldt_len * sizeof(union descriptor));
779		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
780 	}
781#endif
782
783	bzero((char *)regs, sizeof(struct trapframe));
784	regs->tf_eip = entry;
785	regs->tf_esp = stack;
786	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
787	regs->tf_ss = _udatasel;
788	regs->tf_ds = _udatasel;
789	regs->tf_es = _udatasel;
790	regs->tf_cs = _ucodesel;
791
792	/*
793	 * Initialize the math emulator (if any) for the current process.
794	 * Actually, just clear the bit that says that the emulator has
795	 * been initialized.  Initialization is delayed until the process
796	 * traps to the emulator (if it is done at all) mainly because
797	 * emulators don't provide an entry point for initialization.
798	 */
799	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
800
801	/*
802	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
803	 * for why fwait must be trapped at least if there is an npx or an
804	 * emulator).  This is mainly to handle the case where npx0 is not
805	 * configured, since the npx routines normally set up the trap
806	 * otherwise.  It should be done only at boot time, but doing it
807	 * here allows modifying `npx_exists' for testing the emulator on
808	 * systems with an npx.
809	 */
810	load_cr0(rcr0() | CR0_MP | CR0_TS);
811
812#if NNPX > 0
813	/* Initialize the npx (if any) for the current process. */
814	npxinit(__INITIAL_NPXCW__);
815#endif
816}
817
818static int
819sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
820{
821	int error;
822	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
823		req);
824	if (!error && req->newptr)
825		resettodr();
826	return (error);
827}
828
829SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
830	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
831
832SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
833	CTLFLAG_RW, &disable_rtc_set, 0, "");
834
835SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
836	CTLFLAG_RD, &bootinfo, bootinfo, "");
837
838SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
839	CTLFLAG_RW, &wall_cmos_clock, 0, "");
840
841/*
842 * Initialize 386 and configure to run kernel
843 */
844
845/*
846 * Initialize segments & interrupt table
847 */
848
849int currentldt;
850int _default_ldt;
851#ifdef SMP
852union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
853#else
854union descriptor gdt[NGDT];		/* global descriptor table */
855#endif
856struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
857union descriptor ldt[NLDT];		/* local descriptor table */
858#ifdef SMP
859/* table descriptors - used to load tables by microp */
860struct region_descriptor r_gdt, r_idt;
861#endif
862
863#ifdef SMP
864extern struct i386tss common_tss;	/* One tss per cpu */
865#ifdef VM86
866extern struct segment_descriptor common_tssd;
867extern int private_tss;
868extern u_int my_tr;
869#endif /* VM86 */
870#else
871struct i386tss common_tss;
872#ifdef VM86
873struct segment_descriptor common_tssd;
874u_int private_tss;			/* flag indicating private tss */
875u_int my_tr;				/* which task register setting */
876#endif /* VM86 */
877#endif
878
879#if defined(I586_CPU) && !defined(NO_F00F_HACK)
880struct gate_descriptor *t_idt;
881extern int has_f00f_bug;
882#endif
883
884static struct i386tss dblfault_tss;
885static char dblfault_stack[PAGE_SIZE];
886
887extern  struct user *proc0paddr;
888
889
890/* software prototypes -- in more palatable form */
891struct soft_segment_descriptor gdt_segs[
892#ifdef SMP
893					NGDT + NCPU
894#endif
895						   ] = {
896/* GNULL_SEL	0 Null Descriptor */
897{	0x0,			/* segment base address  */
898	0x0,			/* length */
899	0,			/* segment type */
900	0,			/* segment descriptor priority level */
901	0,			/* segment descriptor present */
902	0, 0,
903	0,			/* default 32 vs 16 bit size */
904	0  			/* limit granularity (byte/page units)*/ },
905/* GCODE_SEL	1 Code Descriptor for kernel */
906{	0x0,			/* segment base address  */
907	0xfffff,		/* length - all address space */
908	SDT_MEMERA,		/* segment type */
909	0,			/* segment descriptor priority level */
910	1,			/* segment descriptor present */
911	0, 0,
912	1,			/* default 32 vs 16 bit size */
913	1  			/* limit granularity (byte/page units)*/ },
914/* GDATA_SEL	2 Data Descriptor for kernel */
915{	0x0,			/* segment base address  */
916	0xfffff,		/* length - all address space */
917	SDT_MEMRWA,		/* segment type */
918	0,			/* segment descriptor priority level */
919	1,			/* segment descriptor present */
920	0, 0,
921	1,			/* default 32 vs 16 bit size */
922	1  			/* limit granularity (byte/page units)*/ },
923/* GLDT_SEL	3 LDT Descriptor */
924{	(int) ldt,		/* segment base address  */
925	sizeof(ldt)-1,		/* length - all address space */
926	SDT_SYSLDT,		/* segment type */
927	SEL_UPL,		/* segment descriptor priority level */
928	1,			/* segment descriptor present */
929	0, 0,
930	0,			/* unused - default 32 vs 16 bit size */
931	0  			/* limit granularity (byte/page units)*/ },
932/* GTGATE_SEL	4 Null Descriptor - Placeholder */
933{	0x0,			/* segment base address  */
934	0x0,			/* length - all address space */
935	0,			/* segment type */
936	0,			/* segment descriptor priority level */
937	0,			/* segment descriptor present */
938	0, 0,
939	0,			/* default 32 vs 16 bit size */
940	0  			/* limit granularity (byte/page units)*/ },
941/* GPANIC_SEL	5 Panic Tss Descriptor */
942{	(int) &dblfault_tss,	/* segment base address  */
943	sizeof(struct i386tss)-1,/* length - all address space */
944	SDT_SYS386TSS,		/* segment type */
945	0,			/* segment descriptor priority level */
946	1,			/* segment descriptor present */
947	0, 0,
948	0,			/* unused - default 32 vs 16 bit size */
949	0  			/* limit granularity (byte/page units)*/ },
950/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
951{
952	(int) &common_tss,	/* segment base address */
953	sizeof(struct i386tss)-1,/* length - all address space */
954	SDT_SYS386TSS,		/* segment type */
955	0,			/* segment descriptor priority level */
956	1,			/* segment descriptor present */
957	0, 0,
958	0,			/* unused - default 32 vs 16 bit size */
959	0  			/* limit granularity (byte/page units)*/ },
960/* GUSERLDT_SEL	7 User LDT Descriptor per process */
961{	(int) ldt,		/* segment base address  */
962	(512 * sizeof(union descriptor)-1),		/* length */
963	SDT_SYSLDT,		/* segment type */
964	0,			/* segment descriptor priority level */
965	1,			/* segment descriptor present */
966	0, 0,
967	0,			/* unused - default 32 vs 16 bit size */
968	0  			/* limit granularity (byte/page units)*/ },
969/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
970{	0,			/* segment base address (overwritten by APM)  */
971	0xfffff,		/* length */
972	SDT_MEMERA,		/* segment type */
973	0,			/* segment descriptor priority level */
974	1,			/* segment descriptor present */
975	0, 0,
976	1,			/* default 32 vs 16 bit size */
977	1  			/* limit granularity (byte/page units)*/ },
978/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
979{	0,			/* segment base address (overwritten by APM)  */
980	0xfffff,		/* length */
981	SDT_MEMERA,		/* segment type */
982	0,			/* segment descriptor priority level */
983	1,			/* segment descriptor present */
984	0, 0,
985	0,			/* default 32 vs 16 bit size */
986	1  			/* limit granularity (byte/page units)*/ },
987/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
988{	0,			/* segment base address (overwritten by APM) */
989	0xfffff,		/* length */
990	SDT_MEMRWA,		/* segment type */
991	0,			/* segment descriptor priority level */
992	1,			/* segment descriptor present */
993	0, 0,
994	1,			/* default 32 vs 16 bit size */
995	1  			/* limit granularity (byte/page units)*/ },
996};
997
998static struct soft_segment_descriptor ldt_segs[] = {
999	/* Null Descriptor - overwritten by call gate */
1000{	0x0,			/* segment base address  */
1001	0x0,			/* length - all address space */
1002	0,			/* segment type */
1003	0,			/* segment descriptor priority level */
1004	0,			/* segment descriptor present */
1005	0, 0,
1006	0,			/* default 32 vs 16 bit size */
1007	0  			/* limit granularity (byte/page units)*/ },
1008	/* Null Descriptor - overwritten by call gate */
1009{	0x0,			/* segment base address  */
1010	0x0,			/* length - all address space */
1011	0,			/* segment type */
1012	0,			/* segment descriptor priority level */
1013	0,			/* segment descriptor present */
1014	0, 0,
1015	0,			/* default 32 vs 16 bit size */
1016	0  			/* limit granularity (byte/page units)*/ },
1017	/* Null Descriptor - overwritten by call gate */
1018{	0x0,			/* segment base address  */
1019	0x0,			/* length - all address space */
1020	0,			/* segment type */
1021	0,			/* segment descriptor priority level */
1022	0,			/* segment descriptor present */
1023	0, 0,
1024	0,			/* default 32 vs 16 bit size */
1025	0  			/* limit granularity (byte/page units)*/ },
1026	/* Code Descriptor for user */
1027{	0x0,			/* segment base address  */
1028	0xfffff,		/* length - all address space */
1029	SDT_MEMERA,		/* segment type */
1030	SEL_UPL,		/* segment descriptor priority level */
1031	1,			/* segment descriptor present */
1032	0, 0,
1033	1,			/* default 32 vs 16 bit size */
1034	1  			/* limit granularity (byte/page units)*/ },
1035	/* Data Descriptor for user */
1036{	0x0,			/* segment base address  */
1037	0xfffff,		/* length - all address space */
1038	SDT_MEMRWA,		/* segment type */
1039	SEL_UPL,		/* segment descriptor priority level */
1040	1,			/* segment descriptor present */
1041	0, 0,
1042	1,			/* default 32 vs 16 bit size */
1043	1  			/* limit granularity (byte/page units)*/ },
1044};
1045
1046void
1047setidt(idx, func, typ, dpl, selec)
1048	int idx;
1049	inthand_t *func;
1050	int typ;
1051	int dpl;
1052	int selec;
1053{
1054	struct gate_descriptor *ip = idt + idx;
1055
1056	ip->gd_looffset = (int)func;
1057	ip->gd_selector = selec;
1058	ip->gd_stkcpy = 0;
1059	ip->gd_xx = 0;
1060	ip->gd_type = typ;
1061	ip->gd_dpl = dpl;
1062	ip->gd_p = 1;
1063	ip->gd_hioffset = ((int)func)>>16 ;
1064}
1065
1066#define	IDTVEC(name)	__CONCAT(X,name)
1067
1068extern inthand_t
1069	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1070	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1071	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1072	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1073	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1074
1075void
1076sdtossd(sd, ssd)
1077	struct segment_descriptor *sd;
1078	struct soft_segment_descriptor *ssd;
1079{
1080	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1081	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1082	ssd->ssd_type  = sd->sd_type;
1083	ssd->ssd_dpl   = sd->sd_dpl;
1084	ssd->ssd_p     = sd->sd_p;
1085	ssd->ssd_def32 = sd->sd_def32;
1086	ssd->ssd_gran  = sd->sd_gran;
1087}
1088
1089void
1090init386(first)
1091	int first;
1092{
1093	int x;
1094	unsigned biosbasemem, biosextmem;
1095	struct gate_descriptor *gdp;
1096	int gsel_tss;
1097
1098	struct isa_device *idp;
1099#ifndef SMP
1100	/* table descriptors - used to load tables by microp */
1101	struct region_descriptor r_gdt, r_idt;
1102#endif
1103	int pagesinbase, pagesinext;
1104	int target_page, pa_indx;
1105	int off;
1106	int speculative_mprobe;
1107
1108	/*
1109	 * Prevent lowering of the ipl if we call tsleep() early.
1110	 */
1111	safepri = cpl;
1112
1113	proc0.p_addr = proc0paddr;
1114
1115	atdevbase = ISA_HOLE_START + KERNBASE;
1116
1117	/*
1118	 * Initialize the console before we print anything out.
1119	 */
1120	cninit();
1121
1122	/*
1123	 * make gdt memory segments, the code segment goes up to end of the
1124	 * page with etext in it, the data segment goes to the end of
1125	 * the address space
1126	 */
1127	/*
1128	 * XXX text protection is temporarily (?) disabled.  The limit was
1129	 * i386_btop(round_page(etext)) - 1.
1130	 */
1131	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1132	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1133#ifdef BDE_DEBUGGER
1134#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1135#else
1136#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1137#endif
1138	for (x = 0; x < NGDT1; x++)
1139		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1140#ifdef VM86
1141	common_tssd = gdt[GPROC0_SEL].sd;
1142#endif /* VM86 */
1143
1144#ifdef SMP
1145	/*
1146	 * Spin these up now.  init_secondary() grabs them.  We could use
1147	 * #for(x,y,z) / #endfor cpp directives if they existed.
1148	 */
1149	for (x = 0; x < NCPU; x++) {
1150		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1151		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1152	}
1153#endif
1154
1155	/* make ldt memory segments */
1156	/*
1157	 * The data segment limit must not cover the user area because we
1158	 * don't want the user area to be writable in copyout() etc. (page
1159	 * level protection is lost in kernel mode on 386's).  Also, we
1160	 * don't want the user area to be writable directly (page level
1161	 * protection of the user area is not available on 486's with
1162	 * CR0_WP set, because there is no user-read/kernel-write mode).
1163	 *
1164	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1165	 * should be spelled ...MAX_USER...
1166	 */
1167#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1168	/*
1169	 * The code segment limit has to cover the user area until we move
1170	 * the signal trampoline out of the user area.  This is safe because
1171	 * the code segment cannot be written to directly.
1172	 */
1173#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1174	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1175	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1176	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1177		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1178
1179	/* exceptions */
1180	for (x = 0; x < NIDT; x++)
1181		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1182	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1183	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1184	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1185 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1186	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1187	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1188	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1189	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1190	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1191	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1192	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1193	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1194	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1195	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1196	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1197	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1198	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1199	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1200	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1201 	setidt(0x80, &IDTVEC(int0x80_syscall),
1202			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1203
1204#include	"isa.h"
1205#if	NISA >0
1206	isa_defaultirq();
1207#endif
1208	rand_initialize();
1209
1210	r_gdt.rd_limit = sizeof(gdt) - 1;
1211	r_gdt.rd_base =  (int) gdt;
1212	lgdt(&r_gdt);
1213
1214	r_idt.rd_limit = sizeof(idt) - 1;
1215	r_idt.rd_base = (int) idt;
1216	lidt(&r_idt);
1217
1218	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1219	lldt(_default_ldt);
1220	currentldt = _default_ldt;
1221
1222#ifdef DDB
1223	kdb_init();
1224	if (boothowto & RB_KDB)
1225		Debugger("Boot flags requested debugger");
1226#endif
1227
1228	finishidentcpu();	/* Final stage of CPU initialization */
1229	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1230	initializecpu();	/* Initialize CPU registers */
1231
1232	/* Use BIOS values stored in RTC CMOS RAM, since probing
1233	 * breaks certain 386 AT relics.
1234	 */
1235	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1236	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1237
1238	/*
1239	 * If BIOS tells us that it has more than 640k in the basemem,
1240	 *	don't believe it - set it to 640k.
1241	 */
1242	if (biosbasemem > 640) {
1243		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1244		       biosbasemem);
1245		biosbasemem = 640;
1246	}
1247	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1248		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1249		       bootinfo.bi_basemem);
1250		bootinfo.bi_basemem = 640;
1251	}
1252
1253	/*
1254	 * Warn if the official BIOS interface disagrees with the RTC
1255	 * interface used above about the amount of base memory or the
1256	 * amount of extended memory.  Prefer the BIOS value for the base
1257	 * memory.  This is necessary for machines that `steal' base
1258	 * memory for use as BIOS memory, at least if we are going to use
1259	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1260	 * Eventually the hackish interface shouldn't even be looked at.
1261	 */
1262	if (bootinfo.bi_memsizes_valid) {
1263		if (bootinfo.bi_basemem != biosbasemem) {
1264			vm_offset_t pa;
1265
1266			printf(
1267	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1268			       bootinfo.bi_basemem, biosbasemem);
1269			biosbasemem = bootinfo.bi_basemem;
1270
1271			/*
1272			 * XXX if biosbasemem is now < 640, there is `hole'
1273			 * between the end of base memory and the start of
1274			 * ISA memory.  The hole may be empty or it may
1275			 * contain BIOS code or data.  Map it read/write so
1276			 * that the BIOS can write to it.  (Memory from 0 to
1277			 * the physical end of the kernel is mapped read-only
1278			 * to begin with and then parts of it are remapped.
1279			 * The parts that aren't remapped form holes that
1280			 * remain read-only and are unused by the kernel.
1281			 * The base memory area is below the physical end of
1282			 * the kernel and right now forms a read-only hole.
1283			 * The part of it from 0 to
1284			 * (trunc_page(biosbasemem * 1024) - 1) will be
1285			 * remapped and used by the kernel later.)
1286			 *
1287			 * This code is similar to the code used in
1288			 * pmap_mapdev, but since no memory needs to be
1289			 * allocated we simply change the mapping.
1290			 */
1291			for (pa = trunc_page(biosbasemem * 1024);
1292			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1293				unsigned *pte;
1294
1295				pte = (unsigned *)vtopte(pa + KERNBASE);
1296				*pte = pa | PG_RW | PG_V;
1297			}
1298		}
1299		if (bootinfo.bi_extmem != biosextmem)
1300			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1301			       bootinfo.bi_extmem, biosextmem);
1302	}
1303
1304#ifdef SMP
1305	/* make hole for AP bootstrap code */
1306	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1307#else
1308	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1309#endif
1310
1311	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1312
1313	/*
1314	 * Special hack for chipsets that still remap the 384k hole when
1315	 *	there's 16MB of memory - this really confuses people that
1316	 *	are trying to use bus mastering ISA controllers with the
1317	 *	"16MB limit"; they only have 16MB, but the remapping puts
1318	 *	them beyond the limit.
1319	 */
1320	/*
1321	 * If extended memory is between 15-16MB (16-17MB phys address range),
1322	 *	chop it to 15MB.
1323	 */
1324	if ((pagesinext > 3840) && (pagesinext < 4096))
1325		pagesinext = 3840;
1326
1327	/*
1328	 * Maxmem isn't the "maximum memory", it's one larger than the
1329	 * highest page of the physical address space.  It should be
1330	 * called something like "Maxphyspage".
1331	 */
1332	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1333	/*
1334	 * Indicate that we wish to do a speculative search for memory beyond
1335	 * the end of the reported size if the indicated amount is 64MB (0x4000
1336	 * pages) - which is the largest amount that the BIOS/bootblocks can
1337	 * currently report. If a specific amount of memory is indicated via
1338	 * the MAXMEM option or the npx0 "msize", then don't do the speculative
1339	 * memory probe.
1340	 */
1341	if (Maxmem >= 0x4000)
1342		speculative_mprobe = TRUE;
1343	else
1344		speculative_mprobe = FALSE;
1345
1346#ifdef MAXMEM
1347	Maxmem = MAXMEM/4;
1348	speculative_mprobe = FALSE;
1349#endif
1350
1351#if NNPX > 0
1352	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1353	if (idp != NULL && idp->id_msize != 0) {
1354		Maxmem = idp->id_msize / 4;
1355		speculative_mprobe = FALSE;
1356	}
1357#endif
1358
1359#ifdef SMP
1360	/* look for the MP hardware - needed for apic addresses */
1361	mp_probe();
1362#endif
1363
1364	/* call pmap initialization to make new kernel address space */
1365	pmap_bootstrap (first, 0);
1366
1367	/*
1368	 * Size up each available chunk of physical memory.
1369	 */
1370
1371	/*
1372	 * We currently don't bother testing base memory.
1373	 * XXX  ...but we probably should.
1374	 */
1375	pa_indx = 0;
1376	if (pagesinbase > 1) {
1377		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1378		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1379		physmem = pagesinbase - 1;
1380	} else {
1381		/* point at first chunk end */
1382		pa_indx++;
1383	}
1384
1385	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1386		int tmp, page_bad;
1387
1388		page_bad = FALSE;
1389
1390		/*
1391		 * map page into kernel: valid, read/write, non-cacheable
1392		 */
1393		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1394		invltlb();
1395
1396		tmp = *(int *)CADDR1;
1397		/*
1398		 * Test for alternating 1's and 0's
1399		 */
1400		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1401		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1402			page_bad = TRUE;
1403		}
1404		/*
1405		 * Test for alternating 0's and 1's
1406		 */
1407		*(volatile int *)CADDR1 = 0x55555555;
1408		if (*(volatile int *)CADDR1 != 0x55555555) {
1409			page_bad = TRUE;
1410		}
1411		/*
1412		 * Test for all 1's
1413		 */
1414		*(volatile int *)CADDR1 = 0xffffffff;
1415		if (*(volatile int *)CADDR1 != 0xffffffff) {
1416			page_bad = TRUE;
1417		}
1418		/*
1419		 * Test for all 0's
1420		 */
1421		*(volatile int *)CADDR1 = 0x0;
1422		if (*(volatile int *)CADDR1 != 0x0) {
1423			/*
1424			 * test of page failed
1425			 */
1426			page_bad = TRUE;
1427		}
1428		/*
1429		 * Restore original value.
1430		 */
1431		*(int *)CADDR1 = tmp;
1432
1433		/*
1434		 * Adjust array of valid/good pages.
1435		 */
1436		if (page_bad == FALSE) {
1437			/*
1438			 * If this good page is a continuation of the
1439			 * previous set of good pages, then just increase
1440			 * the end pointer. Otherwise start a new chunk.
1441			 * Note that "end" points one higher than end,
1442			 * making the range >= start and < end.
1443			 * If we're also doing a speculative memory
1444			 * test and we at or past the end, bump up Maxmem
1445			 * so that we keep going. The first bad page
1446			 * will terminate the loop.
1447			 */
1448			if (phys_avail[pa_indx] == target_page) {
1449				phys_avail[pa_indx] += PAGE_SIZE;
1450				if (speculative_mprobe == TRUE &&
1451				    phys_avail[pa_indx] >= (64*1024*1024))
1452					Maxmem++;
1453			} else {
1454				pa_indx++;
1455				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1456					printf("Too many holes in the physical address space, giving up\n");
1457					pa_indx--;
1458					break;
1459				}
1460				phys_avail[pa_indx++] = target_page;	/* start */
1461				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1462			}
1463			physmem++;
1464		}
1465	}
1466
1467	*(int *)CMAP1 = 0;
1468	invltlb();
1469
1470	/*
1471	 * XXX
1472	 * The last chunk must contain at least one page plus the message
1473	 * buffer to avoid complicating other code (message buffer address
1474	 * calculation, etc.).
1475	 */
1476	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1477	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1478		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1479		phys_avail[pa_indx--] = 0;
1480		phys_avail[pa_indx--] = 0;
1481	}
1482
1483	Maxmem = atop(phys_avail[pa_indx]);
1484
1485	/* Trim off space for the message buffer. */
1486	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1487
1488	avail_end = phys_avail[pa_indx];
1489
1490	/* now running on new page tables, configured,and u/iom is accessible */
1491
1492	/* Map the message buffer. */
1493	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1494		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1495			   avail_end + off, VM_PROT_ALL, TRUE);
1496	msgbufmapped = 1;
1497
1498	/* make an initial tss so cpu can get interrupt stack on syscall! */
1499#ifdef VM86
1500	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1501#else
1502	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1503#endif /* VM86 */
1504	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1505	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1506	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1507	ltr(gsel_tss);
1508#ifdef VM86
1509	private_tss = 0;
1510	my_tr = GPROC0_SEL;
1511#endif
1512
1513	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1514	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1515	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1516	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1517	dblfault_tss.tss_cr3 = (int)IdlePTD;
1518	dblfault_tss.tss_eip = (int) dblfault_handler;
1519	dblfault_tss.tss_eflags = PSL_KERNEL;
1520	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1521	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1522	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1523	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1524
1525	/* make a call gate to reenter kernel with */
1526	gdp = &ldt[LSYS5CALLS_SEL].gd;
1527
1528	x = (int) &IDTVEC(syscall);
1529	gdp->gd_looffset = x++;
1530	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1531	gdp->gd_stkcpy = 1;
1532	gdp->gd_type = SDT_SYS386CGT;
1533	gdp->gd_dpl = SEL_UPL;
1534	gdp->gd_p = 1;
1535	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1536
1537	/* XXX does this work? */
1538	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1539
1540	/* transfer to user mode */
1541
1542	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1543	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1544
1545	/* setup proc 0's pcb */
1546	proc0.p_addr->u_pcb.pcb_flags = 0;
1547	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1548	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1549	proc0.p_addr->u_pcb.pcb_ext = 0;
1550}
1551
1552#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1553void f00f_hack(void);
1554SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1555
1556void
1557f00f_hack(void) {
1558	struct region_descriptor r_idt;
1559	unsigned char *tmp;
1560	int i;
1561
1562	if (!has_f00f_bug)
1563		return;
1564
1565	printf("Intel Pentium F00F detected, installing workaround\n");
1566
1567	r_idt.rd_limit = sizeof(idt) - 1;
1568
1569	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1570	if (tmp == 0)
1571		panic("kmem_alloc returned 0");
1572	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1573		panic("kmem_alloc returned non-page-aligned memory");
1574	/* Put the first seven entries in the lower page */
1575	t_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1576	bcopy(idt, t_idt, sizeof(idt));
1577	r_idt.rd_base = (int)t_idt;
1578	lidt(&r_idt);
1579	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1580			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1581		panic("vm_map_protect failed");
1582	return;
1583}
1584#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1585
1586int
1587ptrace_set_pc(p, addr)
1588	struct proc *p;
1589	unsigned int addr;
1590{
1591	p->p_md.md_regs->tf_eip = addr;
1592	return (0);
1593}
1594
1595int
1596ptrace_single_step(p)
1597	struct proc *p;
1598{
1599	p->p_md.md_regs->tf_eflags |= PSL_T;
1600	return (0);
1601}
1602
1603int ptrace_write_u(p, off, data)
1604	struct proc *p;
1605	vm_offset_t off;
1606	int data;
1607{
1608	struct trapframe frame_copy;
1609	vm_offset_t min;
1610	struct trapframe *tp;
1611
1612	/*
1613	 * Privileged kernel state is scattered all over the user area.
1614	 * Only allow write access to parts of regs and to fpregs.
1615	 */
1616	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1617	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1618		tp = p->p_md.md_regs;
1619		frame_copy = *tp;
1620		*(int *)((char *)&frame_copy + (off - min)) = data;
1621		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1622		    !CS_SECURE(frame_copy.tf_cs))
1623			return (EINVAL);
1624		*(int*)((char *)p->p_addr + off) = data;
1625		return (0);
1626	}
1627	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1628	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1629		*(int*)((char *)p->p_addr + off) = data;
1630		return (0);
1631	}
1632	return (EFAULT);
1633}
1634
1635int
1636fill_regs(p, regs)
1637	struct proc *p;
1638	struct reg *regs;
1639{
1640	struct pcb *pcb;
1641	struct trapframe *tp;
1642
1643	tp = p->p_md.md_regs;
1644	regs->r_es = tp->tf_es;
1645	regs->r_ds = tp->tf_ds;
1646	regs->r_edi = tp->tf_edi;
1647	regs->r_esi = tp->tf_esi;
1648	regs->r_ebp = tp->tf_ebp;
1649	regs->r_ebx = tp->tf_ebx;
1650	regs->r_edx = tp->tf_edx;
1651	regs->r_ecx = tp->tf_ecx;
1652	regs->r_eax = tp->tf_eax;
1653	regs->r_eip = tp->tf_eip;
1654	regs->r_cs = tp->tf_cs;
1655	regs->r_eflags = tp->tf_eflags;
1656	regs->r_esp = tp->tf_esp;
1657	regs->r_ss = tp->tf_ss;
1658	pcb = &p->p_addr->u_pcb;
1659	regs->r_fs = pcb->pcb_fs;
1660	regs->r_gs = pcb->pcb_gs;
1661	return (0);
1662}
1663
1664int
1665set_regs(p, regs)
1666	struct proc *p;
1667	struct reg *regs;
1668{
1669	struct pcb *pcb;
1670	struct trapframe *tp;
1671
1672	tp = p->p_md.md_regs;
1673	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1674	    !CS_SECURE(regs->r_cs))
1675		return (EINVAL);
1676	tp->tf_es = regs->r_es;
1677	tp->tf_ds = regs->r_ds;
1678	tp->tf_edi = regs->r_edi;
1679	tp->tf_esi = regs->r_esi;
1680	tp->tf_ebp = regs->r_ebp;
1681	tp->tf_ebx = regs->r_ebx;
1682	tp->tf_edx = regs->r_edx;
1683	tp->tf_ecx = regs->r_ecx;
1684	tp->tf_eax = regs->r_eax;
1685	tp->tf_eip = regs->r_eip;
1686	tp->tf_cs = regs->r_cs;
1687	tp->tf_eflags = regs->r_eflags;
1688	tp->tf_esp = regs->r_esp;
1689	tp->tf_ss = regs->r_ss;
1690	pcb = &p->p_addr->u_pcb;
1691	pcb->pcb_fs = regs->r_fs;
1692	pcb->pcb_gs = regs->r_gs;
1693	return (0);
1694}
1695
1696#ifndef DDB
1697void
1698Debugger(const char *msg)
1699{
1700	printf("Debugger(\"%s\") called.\n", msg);
1701}
1702#endif /* no DDB */
1703
1704#include <sys/disklabel.h>
1705
1706/*
1707 * Determine the size of the transfer, and make sure it is
1708 * within the boundaries of the partition. Adjust transfer
1709 * if needed, and signal errors or early completion.
1710 */
1711int
1712bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1713{
1714        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1715        int labelsect = lp->d_partitions[0].p_offset;
1716        int maxsz = p->p_size,
1717                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1718
1719        /* overwriting disk label ? */
1720        /* XXX should also protect bootstrap in first 8K */
1721        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1722#if LABELSECTOR != 0
1723            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1724#endif
1725            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1726                bp->b_error = EROFS;
1727                goto bad;
1728        }
1729
1730#if     defined(DOSBBSECTOR) && defined(notyet)
1731        /* overwriting master boot record? */
1732        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1733            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1734                bp->b_error = EROFS;
1735                goto bad;
1736        }
1737#endif
1738
1739        /* beyond partition? */
1740        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1741                /* if exactly at end of disk, return an EOF */
1742                if (bp->b_blkno == maxsz) {
1743                        bp->b_resid = bp->b_bcount;
1744                        return(0);
1745                }
1746                /* or truncate if part of it fits */
1747                sz = maxsz - bp->b_blkno;
1748                if (sz <= 0) {
1749                        bp->b_error = EINVAL;
1750                        goto bad;
1751                }
1752                bp->b_bcount = sz << DEV_BSHIFT;
1753        }
1754
1755        bp->b_pblkno = bp->b_blkno + p->p_offset;
1756        return(1);
1757
1758bad:
1759        bp->b_flags |= B_ERROR;
1760        return(-1);
1761}
1762
1763#ifdef DDB
1764
1765/*
1766 * Provide inb() and outb() as functions.  They are normally only
1767 * available as macros calling inlined functions, thus cannot be
1768 * called inside DDB.
1769 *
1770 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1771 */
1772
1773#undef inb
1774#undef outb
1775
1776/* silence compiler warnings */
1777u_char inb(u_int);
1778void outb(u_int, u_char);
1779
1780u_char
1781inb(u_int port)
1782{
1783	u_char	data;
1784	/*
1785	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1786	 * %edx, while gcc generates inferior code (movw instead of movl)
1787	 * if we tell it to load (u_short) port.
1788	 */
1789	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1790	return (data);
1791}
1792
1793void
1794outb(u_int port, u_char data)
1795{
1796	u_char	al;
1797	/*
1798	 * Use an unnecessary assignment to help gcc's register allocator.
1799	 * This make a large difference for gcc-1.40 and a tiny difference
1800	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1801	 * best results.  gcc-2.6.0 can't handle this.
1802	 */
1803	al = data;
1804	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1805}
1806
1807#endif /* DDB */
1808