machdep.c revision 291948
1228753Smm/*-
2228753Smm * Copyright (c) 2003 Peter Wemm.
3228753Smm * Copyright (c) 1992 Terrence R. Lambert.
4228753Smm * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5228753Smm * All rights reserved.
6228753Smm *
7228753Smm * This code is derived from software contributed to Berkeley by
8228753Smm * William Jolitz.
9228753Smm *
10228753Smm * Redistribution and use in source and binary forms, with or without
11228753Smm * modification, are permitted provided that the following conditions
12228753Smm * are met:
13228753Smm * 1. Redistributions of source code must retain the above copyright
14228753Smm *    notice, this list of conditions and the following disclaimer.
15228753Smm * 2. Redistributions in binary form must reproduce the above copyright
16228753Smm *    notice, this list of conditions and the following disclaimer in the
17228753Smm *    documentation and/or other materials provided with the distribution.
18228753Smm * 3. All advertising materials mentioning features or use of this software
19228753Smm *    must display the following acknowledgement:
20228753Smm *	This product includes software developed by the University of
21228753Smm *	California, Berkeley and its contributors.
22228753Smm * 4. Neither the name of the University nor the names of its contributors
23228753Smm *    may be used to endorse or promote products derived from this software
24228753Smm *    without specific prior written permission.
25228753Smm *
26228753Smm * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27228753Smm * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28232153Smm * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29232153Smm * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30232153Smm * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31228753Smm * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32228753Smm * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33228753Smm * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34228753Smm * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35228753Smm * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36232153Smm * SUCH DAMAGE.
37232153Smm *
38232153Smm *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39228753Smm */
40228753Smm
41228753Smm#include <sys/cdefs.h>
42228753Smm__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 291948 2015-12-07 17:24:55Z kib $");
43228753Smm
44228753Smm#include "opt_atpic.h"
45228753Smm#include "opt_compat.h"
46228753Smm#include "opt_cpu.h"
47228753Smm#include "opt_ddb.h"
48228753Smm#include "opt_inet.h"
49228753Smm#include "opt_isa.h"
50228753Smm#include "opt_kstack_pages.h"
51228753Smm#include "opt_maxmem.h"
52228753Smm#include "opt_mp_watchdog.h"
53228753Smm#include "opt_perfmon.h"
54228753Smm#include "opt_platform.h"
55228753Smm#include "opt_sched.h"
56228753Smm
57228753Smm#include <sys/param.h>
58228753Smm#include <sys/proc.h>
59228753Smm#include <sys/systm.h>
60228753Smm#include <sys/bio.h>
61228753Smm#include <sys/buf.h>
62228753Smm#include <sys/bus.h>
63228753Smm#include <sys/callout.h>
64228753Smm#include <sys/cons.h>
65228753Smm#include <sys/cpu.h>
66228753Smm#include <sys/efi.h>
67228753Smm#include <sys/eventhandler.h>
68228753Smm#include <sys/exec.h>
69228753Smm#include <sys/imgact.h>
70228753Smm#include <sys/kdb.h>
71228753Smm#include <sys/kernel.h>
72228753Smm#include <sys/ktr.h>
73228753Smm#include <sys/linker.h>
74228753Smm#include <sys/lock.h>
75228753Smm#include <sys/malloc.h>
76228753Smm#include <sys/memrange.h>
77228753Smm#include <sys/msgbuf.h>
78228753Smm#include <sys/mutex.h>
79228753Smm#include <sys/pcpu.h>
80228753Smm#include <sys/ptrace.h>
81228753Smm#include <sys/reboot.h>
82228753Smm#include <sys/rwlock.h>
83228753Smm#include <sys/sched.h>
84232153Smm#include <sys/signalvar.h>
85232153Smm#ifdef SMP
86232153Smm#include <sys/smp.h>
87232153Smm#endif
88232153Smm#include <sys/syscallsubr.h>
89232153Smm#include <sys/sysctl.h>
90232153Smm#include <sys/sysent.h>
91232153Smm#include <sys/sysproto.h>
92232153Smm#include <sys/ucontext.h>
93232153Smm#include <sys/vmmeter.h>
94232153Smm
95232153Smm#include <vm/vm.h>
96232153Smm#include <vm/vm_extern.h>
97232153Smm#include <vm/vm_kern.h>
98228753Smm#include <vm/vm_page.h>
99228753Smm#include <vm/vm_map.h>
100228753Smm#include <vm/vm_object.h>
101228753Smm#include <vm/vm_pager.h>
102228753Smm#include <vm/vm_param.h>
103228753Smm
104228753Smm#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#include <net/netisr.h>
113
114#include <machine/clock.h>
115#include <machine/cpu.h>
116#include <machine/cputypes.h>
117#include <machine/intr_machdep.h>
118#include <x86/mca.h>
119#include <machine/md_var.h>
120#include <machine/metadata.h>
121#include <machine/mp_watchdog.h>
122#include <machine/pc/bios.h>
123#include <machine/pcb.h>
124#include <machine/proc.h>
125#include <machine/reg.h>
126#include <machine/sigframe.h>
127#include <machine/specialreg.h>
128#ifdef PERFMON
129#include <machine/perfmon.h>
130#endif
131#include <machine/tss.h>
132#ifdef SMP
133#include <machine/smp.h>
134#endif
135#ifdef FDT
136#include <x86/fdt.h>
137#endif
138
139#ifdef DEV_ATPIC
140#include <x86/isa/icu.h>
141#else
142#include <x86/apicvar.h>
143#endif
144
145#include <isa/isareg.h>
146#include <isa/rtc.h>
147#include <x86/init.h>
148
149/* Sanity check for __curthread() */
150CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
151
152extern u_int64_t hammer_time(u_int64_t, u_int64_t);
153
154#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
155#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
156
157static void cpu_startup(void *);
158static void get_fpcontext(struct thread *td, mcontext_t *mcp,
159    char *xfpusave, size_t xfpusave_len);
160static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
161    char *xfpustate, size_t xfpustate_len);
162SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
163
164/* Preload data parse function */
165static caddr_t native_parse_preload_data(u_int64_t);
166
167/* Native function to fetch and parse the e820 map */
168static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
169
170/* Default init_ops implementation. */
171struct init_ops init_ops = {
172	.parse_preload_data =	native_parse_preload_data,
173	.early_clock_source_init =	i8254_init,
174	.early_delay =			i8254_delay,
175	.parse_memmap =			native_parse_memmap,
176#ifdef SMP
177	.mp_bootaddress =		mp_bootaddress,
178	.start_all_aps =		native_start_all_aps,
179#endif
180	.msi_init =			msi_init,
181};
182
183/*
184 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
185 * the physical address at which the kernel is loaded.
186 */
187extern char kernphys[];
188
189struct msgbuf *msgbufp;
190
191/* Intel ICH registers */
192#define ICH_PMBASE	0x400
193#define ICH_SMI_EN	ICH_PMBASE + 0x30
194
195int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
196
197int cold = 1;
198
199long Maxmem = 0;
200long realmem = 0;
201
202/*
203 * The number of PHYSMAP entries must be one less than the number of
204 * PHYSSEG entries because the PHYSMAP entry that spans the largest
205 * physical address that is accessible by ISA DMA is split into two
206 * PHYSSEG entries.
207 */
208#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
209
210vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
211vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
212
213/* must be 2 less so 0 0 can signal end of chunks */
214#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
215#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
216
217struct kva_md_info kmi;
218
219static struct trapframe proc0_tf;
220struct region_descriptor r_gdt, r_idt;
221
222struct pcpu __pcpu[MAXCPU];
223
224struct mtx icu_lock;
225
226struct mem_range_softc mem_range_softc;
227
228struct mtx dt_lock;	/* lock for GDT and LDT */
229
230void (*vmm_resume_p)(void);
231
232static void
233cpu_startup(dummy)
234	void *dummy;
235{
236	uintmax_t memsize;
237	char *sysenv;
238
239	/*
240	 * On MacBooks, we need to disallow the legacy USB circuit to
241	 * generate an SMI# because this can cause several problems,
242	 * namely: incorrect CPU frequency detection and failure to
243	 * start the APs.
244	 * We do this by disabling a bit in the SMI_EN (SMI Control and
245	 * Enable register) of the Intel ICH LPC Interface Bridge.
246	 */
247	sysenv = kern_getenv("smbios.system.product");
248	if (sysenv != NULL) {
249		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
250		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
251		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
252		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
253		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
254		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
255		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
256		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
257			if (bootverbose)
258				printf("Disabling LEGACY_USB_EN bit on "
259				    "Intel ICH.\n");
260			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
261		}
262		freeenv(sysenv);
263	}
264
265	/*
266	 * Good {morning,afternoon,evening,night}.
267	 */
268	startrtclock();
269	printcpuinfo();
270	panicifcpuunsupported();
271#ifdef PERFMON
272	perfmon_init();
273#endif
274
275	/*
276	 * Display physical memory if SMBIOS reports reasonable amount.
277	 */
278	memsize = 0;
279	sysenv = kern_getenv("smbios.memory.enabled");
280	if (sysenv != NULL) {
281		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
282		freeenv(sysenv);
283	}
284	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
285		memsize = ptoa((uintmax_t)Maxmem);
286	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
287	realmem = atop(memsize);
288
289	/*
290	 * Display any holes after the first chunk of extended memory.
291	 */
292	if (bootverbose) {
293		int indx;
294
295		printf("Physical memory chunk(s):\n");
296		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
297			vm_paddr_t size;
298
299			size = phys_avail[indx + 1] - phys_avail[indx];
300			printf(
301			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
302			    (uintmax_t)phys_avail[indx],
303			    (uintmax_t)phys_avail[indx + 1] - 1,
304			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
305		}
306	}
307
308	vm_ksubmap_init(&kmi);
309
310	printf("avail memory = %ju (%ju MB)\n",
311	    ptoa((uintmax_t)vm_cnt.v_free_count),
312	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
313
314	/*
315	 * Set up buffers, so they can be used to read disk labels.
316	 */
317	bufinit();
318	vm_pager_bufferinit();
319
320	cpu_setregs();
321}
322
323/*
324 * Send an interrupt to process.
325 *
326 * Stack is set up to allow sigcode stored
327 * at top to call routine, followed by call
328 * to sigreturn routine below.  After sigreturn
329 * resets the signal mask, the stack, and the
330 * frame pointer, it returns to the user
331 * specified pc, psl.
332 */
333void
334sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
335{
336	struct sigframe sf, *sfp;
337	struct pcb *pcb;
338	struct proc *p;
339	struct thread *td;
340	struct sigacts *psp;
341	char *sp;
342	struct trapframe *regs;
343	char *xfpusave;
344	size_t xfpusave_len;
345	int sig;
346	int oonstack;
347
348	td = curthread;
349	pcb = td->td_pcb;
350	p = td->td_proc;
351	PROC_LOCK_ASSERT(p, MA_OWNED);
352	sig = ksi->ksi_signo;
353	psp = p->p_sigacts;
354	mtx_assert(&psp->ps_mtx, MA_OWNED);
355	regs = td->td_frame;
356	oonstack = sigonstack(regs->tf_rsp);
357
358	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
359		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
360		xfpusave = __builtin_alloca(xfpusave_len);
361	} else {
362		xfpusave_len = 0;
363		xfpusave = NULL;
364	}
365
366	/* Save user context. */
367	bzero(&sf, sizeof(sf));
368	sf.sf_uc.uc_sigmask = *mask;
369	sf.sf_uc.uc_stack = td->td_sigstk;
370	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
371	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
372	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
373	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
374	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
375	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
376	fpstate_drop(td);
377	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
378	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
379	bzero(sf.sf_uc.uc_mcontext.mc_spare,
380	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
381	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
382
383	/* Allocate space for the signal handler context. */
384	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
385	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
386		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
387#if defined(COMPAT_43)
388		td->td_sigstk.ss_flags |= SS_ONSTACK;
389#endif
390	} else
391		sp = (char *)regs->tf_rsp - 128;
392	if (xfpusave != NULL) {
393		sp -= xfpusave_len;
394		sp = (char *)((unsigned long)sp & ~0x3Ful);
395		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
396	}
397	sp -= sizeof(struct sigframe);
398	/* Align to 16 bytes. */
399	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
400
401	/* Build the argument list for the signal handler. */
402	regs->tf_rdi = sig;			/* arg 1 in %rdi */
403	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
404	bzero(&sf.sf_si, sizeof(sf.sf_si));
405	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
406		/* Signal handler installed with SA_SIGINFO. */
407		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
408		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
409
410		/* Fill in POSIX parts */
411		sf.sf_si = ksi->ksi_info;
412		sf.sf_si.si_signo = sig; /* maybe a translated signal */
413		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
414	} else {
415		/* Old FreeBSD-style arguments. */
416		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
417		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
418		sf.sf_ahu.sf_handler = catcher;
419	}
420	mtx_unlock(&psp->ps_mtx);
421	PROC_UNLOCK(p);
422
423	/*
424	 * Copy the sigframe out to the user's stack.
425	 */
426	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
427	    (xfpusave != NULL && copyout(xfpusave,
428	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
429	    != 0)) {
430#ifdef DEBUG
431		printf("process %ld has trashed its stack\n", (long)p->p_pid);
432#endif
433		PROC_LOCK(p);
434		sigexit(td, SIGILL);
435	}
436
437	regs->tf_rsp = (long)sfp;
438	regs->tf_rip = p->p_sysent->sv_sigcode_base;
439	regs->tf_rflags &= ~(PSL_T | PSL_D);
440	regs->tf_cs = _ucodesel;
441	regs->tf_ds = _udatasel;
442	regs->tf_ss = _udatasel;
443	regs->tf_es = _udatasel;
444	regs->tf_fs = _ufssel;
445	regs->tf_gs = _ugssel;
446	regs->tf_flags = TF_HASSEGS;
447	set_pcb_flags(pcb, PCB_FULL_IRET);
448	PROC_LOCK(p);
449	mtx_lock(&psp->ps_mtx);
450}
451
452/*
453 * System call to cleanup state after a signal
454 * has been taken.  Reset signal mask and
455 * stack state from context left by sendsig (above).
456 * Return to previous pc and psl as specified by
457 * context left by sendsig. Check carefully to
458 * make sure that the user has not modified the
459 * state to gain improper privileges.
460 *
461 * MPSAFE
462 */
463int
464sys_sigreturn(td, uap)
465	struct thread *td;
466	struct sigreturn_args /* {
467		const struct __ucontext *sigcntxp;
468	} */ *uap;
469{
470	ucontext_t uc;
471	struct pcb *pcb;
472	struct proc *p;
473	struct trapframe *regs;
474	ucontext_t *ucp;
475	char *xfpustate;
476	size_t xfpustate_len;
477	long rflags;
478	int cs, error, ret;
479	ksiginfo_t ksi;
480
481	pcb = td->td_pcb;
482	p = td->td_proc;
483
484	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
485	if (error != 0) {
486		uprintf("pid %d (%s): sigreturn copyin failed\n",
487		    p->p_pid, td->td_name);
488		return (error);
489	}
490	ucp = &uc;
491	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
492		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
493		    td->td_name, ucp->uc_mcontext.mc_flags);
494		return (EINVAL);
495	}
496	regs = td->td_frame;
497	rflags = ucp->uc_mcontext.mc_rflags;
498	/*
499	 * Don't allow users to change privileged or reserved flags.
500	 */
501	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
502		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
503		    td->td_name, rflags);
504		return (EINVAL);
505	}
506
507	/*
508	 * Don't allow users to load a valid privileged %cs.  Let the
509	 * hardware check for invalid selectors, excess privilege in
510	 * other selectors, invalid %eip's and invalid %esp's.
511	 */
512	cs = ucp->uc_mcontext.mc_cs;
513	if (!CS_SECURE(cs)) {
514		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
515		    td->td_name, cs);
516		ksiginfo_init_trap(&ksi);
517		ksi.ksi_signo = SIGBUS;
518		ksi.ksi_code = BUS_OBJERR;
519		ksi.ksi_trapno = T_PROTFLT;
520		ksi.ksi_addr = (void *)regs->tf_rip;
521		trapsignal(td, &ksi);
522		return (EINVAL);
523	}
524
525	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
526		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
527		if (xfpustate_len > cpu_max_ext_state_size -
528		    sizeof(struct savefpu)) {
529			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
530			    p->p_pid, td->td_name, xfpustate_len);
531			return (EINVAL);
532		}
533		xfpustate = __builtin_alloca(xfpustate_len);
534		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
535		    xfpustate, xfpustate_len);
536		if (error != 0) {
537			uprintf(
538	"pid %d (%s): sigreturn copying xfpustate failed\n",
539			    p->p_pid, td->td_name);
540			return (error);
541		}
542	} else {
543		xfpustate = NULL;
544		xfpustate_len = 0;
545	}
546	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
547	if (ret != 0) {
548		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
549		    p->p_pid, td->td_name, ret);
550		return (ret);
551	}
552	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
553	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
554	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
555
556#if defined(COMPAT_43)
557	if (ucp->uc_mcontext.mc_onstack & 1)
558		td->td_sigstk.ss_flags |= SS_ONSTACK;
559	else
560		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
561#endif
562
563	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
564	set_pcb_flags(pcb, PCB_FULL_IRET);
565	return (EJUSTRETURN);
566}
567
568#ifdef COMPAT_FREEBSD4
569int
570freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
571{
572
573	return sys_sigreturn(td, (struct sigreturn_args *)uap);
574}
575#endif
576
577/*
578 * Reset registers to default values on exec.
579 */
580void
581exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
582{
583	struct trapframe *regs = td->td_frame;
584	struct pcb *pcb = td->td_pcb;
585
586	mtx_lock(&dt_lock);
587	if (td->td_proc->p_md.md_ldt != NULL)
588		user_ldt_free(td);
589	else
590		mtx_unlock(&dt_lock);
591
592	pcb->pcb_fsbase = 0;
593	pcb->pcb_gsbase = 0;
594	clear_pcb_flags(pcb, PCB_32BIT);
595	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
596	set_pcb_flags(pcb, PCB_FULL_IRET);
597
598	bzero((char *)regs, sizeof(struct trapframe));
599	regs->tf_rip = imgp->entry_addr;
600	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
601	regs->tf_rdi = stack;		/* argv */
602	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
603	regs->tf_ss = _udatasel;
604	regs->tf_cs = _ucodesel;
605	regs->tf_ds = _udatasel;
606	regs->tf_es = _udatasel;
607	regs->tf_fs = _ufssel;
608	regs->tf_gs = _ugssel;
609	regs->tf_flags = TF_HASSEGS;
610	td->td_retval[1] = 0;
611
612	/*
613	 * Reset the hardware debug registers if they were in use.
614	 * They won't have any meaning for the newly exec'd process.
615	 */
616	if (pcb->pcb_flags & PCB_DBREGS) {
617		pcb->pcb_dr0 = 0;
618		pcb->pcb_dr1 = 0;
619		pcb->pcb_dr2 = 0;
620		pcb->pcb_dr3 = 0;
621		pcb->pcb_dr6 = 0;
622		pcb->pcb_dr7 = 0;
623		if (pcb == curpcb) {
624			/*
625			 * Clear the debug registers on the running
626			 * CPU, otherwise they will end up affecting
627			 * the next process we switch to.
628			 */
629			reset_dbregs();
630		}
631		clear_pcb_flags(pcb, PCB_DBREGS);
632	}
633
634	/*
635	 * Drop the FP state if we hold it, so that the process gets a
636	 * clean FP state if it uses the FPU again.
637	 */
638	fpstate_drop(td);
639}
640
641void
642cpu_setregs(void)
643{
644	register_t cr0;
645
646	cr0 = rcr0();
647	/*
648	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
649	 * BSP.  See the comments there about why we set them.
650	 */
651	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
652	load_cr0(cr0);
653}
654
655/*
656 * Initialize amd64 and configure to run kernel
657 */
658
659/*
660 * Initialize segments & interrupt table
661 */
662
663struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
664static struct gate_descriptor idt0[NIDT];
665struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
666
667static char dblfault_stack[PAGE_SIZE] __aligned(16);
668
669static char nmi0_stack[PAGE_SIZE] __aligned(16);
670CTASSERT(sizeof(struct nmi_pcpu) == 16);
671
672struct amd64tss common_tss[MAXCPU];
673
674/*
675 * Software prototypes -- in more palatable form.
676 *
677 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
678 * slots as corresponding segments for i386 kernel.
679 */
680struct soft_segment_descriptor gdt_segs[] = {
681/* GNULL_SEL	0 Null Descriptor */
682{	.ssd_base = 0x0,
683	.ssd_limit = 0x0,
684	.ssd_type = 0,
685	.ssd_dpl = 0,
686	.ssd_p = 0,
687	.ssd_long = 0,
688	.ssd_def32 = 0,
689	.ssd_gran = 0		},
690/* GNULL2_SEL	1 Null Descriptor */
691{	.ssd_base = 0x0,
692	.ssd_limit = 0x0,
693	.ssd_type = 0,
694	.ssd_dpl = 0,
695	.ssd_p = 0,
696	.ssd_long = 0,
697	.ssd_def32 = 0,
698	.ssd_gran = 0		},
699/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
700{	.ssd_base = 0x0,
701	.ssd_limit = 0xfffff,
702	.ssd_type = SDT_MEMRWA,
703	.ssd_dpl = SEL_UPL,
704	.ssd_p = 1,
705	.ssd_long = 0,
706	.ssd_def32 = 1,
707	.ssd_gran = 1		},
708/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
709{	.ssd_base = 0x0,
710	.ssd_limit = 0xfffff,
711	.ssd_type = SDT_MEMRWA,
712	.ssd_dpl = SEL_UPL,
713	.ssd_p = 1,
714	.ssd_long = 0,
715	.ssd_def32 = 1,
716	.ssd_gran = 1		},
717/* GCODE_SEL	4 Code Descriptor for kernel */
718{	.ssd_base = 0x0,
719	.ssd_limit = 0xfffff,
720	.ssd_type = SDT_MEMERA,
721	.ssd_dpl = SEL_KPL,
722	.ssd_p = 1,
723	.ssd_long = 1,
724	.ssd_def32 = 0,
725	.ssd_gran = 1		},
726/* GDATA_SEL	5 Data Descriptor for kernel */
727{	.ssd_base = 0x0,
728	.ssd_limit = 0xfffff,
729	.ssd_type = SDT_MEMRWA,
730	.ssd_dpl = SEL_KPL,
731	.ssd_p = 1,
732	.ssd_long = 1,
733	.ssd_def32 = 0,
734	.ssd_gran = 1		},
735/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
736{	.ssd_base = 0x0,
737	.ssd_limit = 0xfffff,
738	.ssd_type = SDT_MEMERA,
739	.ssd_dpl = SEL_UPL,
740	.ssd_p = 1,
741	.ssd_long = 0,
742	.ssd_def32 = 1,
743	.ssd_gran = 1		},
744/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
745{	.ssd_base = 0x0,
746	.ssd_limit = 0xfffff,
747	.ssd_type = SDT_MEMRWA,
748	.ssd_dpl = SEL_UPL,
749	.ssd_p = 1,
750	.ssd_long = 0,
751	.ssd_def32 = 1,
752	.ssd_gran = 1		},
753/* GUCODE_SEL	8 64 bit Code Descriptor for user */
754{	.ssd_base = 0x0,
755	.ssd_limit = 0xfffff,
756	.ssd_type = SDT_MEMERA,
757	.ssd_dpl = SEL_UPL,
758	.ssd_p = 1,
759	.ssd_long = 1,
760	.ssd_def32 = 0,
761	.ssd_gran = 1		},
762/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
763{	.ssd_base = 0x0,
764	.ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
765	.ssd_type = SDT_SYSTSS,
766	.ssd_dpl = SEL_KPL,
767	.ssd_p = 1,
768	.ssd_long = 0,
769	.ssd_def32 = 0,
770	.ssd_gran = 0		},
771/* Actually, the TSS is a system descriptor which is double size */
772{	.ssd_base = 0x0,
773	.ssd_limit = 0x0,
774	.ssd_type = 0,
775	.ssd_dpl = 0,
776	.ssd_p = 0,
777	.ssd_long = 0,
778	.ssd_def32 = 0,
779	.ssd_gran = 0		},
780/* GUSERLDT_SEL	11 LDT Descriptor */
781{	.ssd_base = 0x0,
782	.ssd_limit = 0x0,
783	.ssd_type = 0,
784	.ssd_dpl = 0,
785	.ssd_p = 0,
786	.ssd_long = 0,
787	.ssd_def32 = 0,
788	.ssd_gran = 0		},
789/* GUSERLDT_SEL	12 LDT Descriptor, double size */
790{	.ssd_base = 0x0,
791	.ssd_limit = 0x0,
792	.ssd_type = 0,
793	.ssd_dpl = 0,
794	.ssd_p = 0,
795	.ssd_long = 0,
796	.ssd_def32 = 0,
797	.ssd_gran = 0		},
798};
799
800void
801setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
802{
803	struct gate_descriptor *ip;
804
805	ip = idt + idx;
806	ip->gd_looffset = (uintptr_t)func;
807	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
808	ip->gd_ist = ist;
809	ip->gd_xx = 0;
810	ip->gd_type = typ;
811	ip->gd_dpl = dpl;
812	ip->gd_p = 1;
813	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
814}
815
816extern inthand_t
817	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
818	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
819	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
820	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
821	IDTVEC(xmm), IDTVEC(dblfault),
822#ifdef KDTRACE_HOOKS
823	IDTVEC(dtrace_ret),
824#endif
825#ifdef XENHVM
826	IDTVEC(xen_intr_upcall),
827#endif
828	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
829
830#ifdef DDB
831/*
832 * Display the index and function name of any IDT entries that don't use
833 * the default 'rsvd' entry point.
834 */
835DB_SHOW_COMMAND(idt, db_show_idt)
836{
837	struct gate_descriptor *ip;
838	int idx;
839	uintptr_t func;
840
841	ip = idt;
842	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
843		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
844		if (func != (uintptr_t)&IDTVEC(rsvd)) {
845			db_printf("%3d\t", idx);
846			db_printsym(func, DB_STGY_PROC);
847			db_printf("\n");
848		}
849		ip++;
850	}
851}
852
853/* Show privileged registers. */
854DB_SHOW_COMMAND(sysregs, db_show_sysregs)
855{
856	struct {
857		uint16_t limit;
858		uint64_t base;
859	} __packed idtr, gdtr;
860	uint16_t ldt, tr;
861
862	__asm __volatile("sidt %0" : "=m" (idtr));
863	db_printf("idtr\t0x%016lx/%04x\n",
864	    (u_long)idtr.base, (u_int)idtr.limit);
865	__asm __volatile("sgdt %0" : "=m" (gdtr));
866	db_printf("gdtr\t0x%016lx/%04x\n",
867	    (u_long)gdtr.base, (u_int)gdtr.limit);
868	__asm __volatile("sldt %0" : "=r" (ldt));
869	db_printf("ldtr\t0x%04x\n", ldt);
870	__asm __volatile("str %0" : "=r" (tr));
871	db_printf("tr\t0x%04x\n", tr);
872	db_printf("cr0\t0x%016lx\n", rcr0());
873	db_printf("cr2\t0x%016lx\n", rcr2());
874	db_printf("cr3\t0x%016lx\n", rcr3());
875	db_printf("cr4\t0x%016lx\n", rcr4());
876	if (rcr4() & CR4_XSAVE)
877		db_printf("xcr0\t0x%016lx\n", rxcr(0));
878	db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER));
879	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
880		db_printf("FEATURES_CTL\t%016lx\n",
881		    rdmsr(MSR_IA32_FEATURE_CONTROL));
882	db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
883	db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT));
884	db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE));
885}
886
887DB_SHOW_COMMAND(dbregs, db_show_dbregs)
888{
889
890	db_printf("dr0\t0x%016lx\n", rdr0());
891	db_printf("dr1\t0x%016lx\n", rdr1());
892	db_printf("dr2\t0x%016lx\n", rdr2());
893	db_printf("dr3\t0x%016lx\n", rdr3());
894	db_printf("dr6\t0x%016lx\n", rdr6());
895	db_printf("dr7\t0x%016lx\n", rdr7());
896}
897#endif
898
899void
900sdtossd(sd, ssd)
901	struct user_segment_descriptor *sd;
902	struct soft_segment_descriptor *ssd;
903{
904
905	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
906	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
907	ssd->ssd_type  = sd->sd_type;
908	ssd->ssd_dpl   = sd->sd_dpl;
909	ssd->ssd_p     = sd->sd_p;
910	ssd->ssd_long  = sd->sd_long;
911	ssd->ssd_def32 = sd->sd_def32;
912	ssd->ssd_gran  = sd->sd_gran;
913}
914
915void
916ssdtosd(ssd, sd)
917	struct soft_segment_descriptor *ssd;
918	struct user_segment_descriptor *sd;
919{
920
921	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
922	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
923	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
924	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
925	sd->sd_type  = ssd->ssd_type;
926	sd->sd_dpl   = ssd->ssd_dpl;
927	sd->sd_p     = ssd->ssd_p;
928	sd->sd_long  = ssd->ssd_long;
929	sd->sd_def32 = ssd->ssd_def32;
930	sd->sd_gran  = ssd->ssd_gran;
931}
932
933void
934ssdtosyssd(ssd, sd)
935	struct soft_segment_descriptor *ssd;
936	struct system_segment_descriptor *sd;
937{
938
939	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
940	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
941	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
942	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
943	sd->sd_type  = ssd->ssd_type;
944	sd->sd_dpl   = ssd->ssd_dpl;
945	sd->sd_p     = ssd->ssd_p;
946	sd->sd_gran  = ssd->ssd_gran;
947}
948
949#if !defined(DEV_ATPIC) && defined(DEV_ISA)
950#include <isa/isavar.h>
951#include <isa/isareg.h>
952/*
953 * Return a bitmap of the current interrupt requests.  This is 8259-specific
954 * and is only suitable for use at probe time.
955 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
956 * It shouldn't be here.  There should probably be an APIC centric
957 * implementation in the apic driver code, if at all.
958 */
959intrmask_t
960isa_irq_pending(void)
961{
962	u_char irr1;
963	u_char irr2;
964
965	irr1 = inb(IO_ICU1);
966	irr2 = inb(IO_ICU2);
967	return ((irr2 << 8) | irr1);
968}
969#endif
970
971u_int basemem;
972
973static int
974add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
975    int *physmap_idxp)
976{
977	int i, insert_idx, physmap_idx;
978
979	physmap_idx = *physmap_idxp;
980
981	if (length == 0)
982		return (1);
983
984	/*
985	 * Find insertion point while checking for overlap.  Start off by
986	 * assuming the new entry will be added to the end.
987	 *
988	 * NB: physmap_idx points to the next free slot.
989	 */
990	insert_idx = physmap_idx;
991	for (i = 0; i <= physmap_idx; i += 2) {
992		if (base < physmap[i + 1]) {
993			if (base + length <= physmap[i]) {
994				insert_idx = i;
995				break;
996			}
997			if (boothowto & RB_VERBOSE)
998				printf(
999		    "Overlapping memory regions, ignoring second region\n");
1000			return (1);
1001		}
1002	}
1003
1004	/* See if we can prepend to the next entry. */
1005	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1006		physmap[insert_idx] = base;
1007		return (1);
1008	}
1009
1010	/* See if we can append to the previous entry. */
1011	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1012		physmap[insert_idx - 1] += length;
1013		return (1);
1014	}
1015
1016	physmap_idx += 2;
1017	*physmap_idxp = physmap_idx;
1018	if (physmap_idx == PHYSMAP_SIZE) {
1019		printf(
1020		"Too many segments in the physical address map, giving up\n");
1021		return (0);
1022	}
1023
1024	/*
1025	 * Move the last 'N' entries down to make room for the new
1026	 * entry if needed.
1027	 */
1028	for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
1029		physmap[i] = physmap[i - 2];
1030		physmap[i + 1] = physmap[i - 1];
1031	}
1032
1033	/* Insert the new entry. */
1034	physmap[insert_idx] = base;
1035	physmap[insert_idx + 1] = base + length;
1036	return (1);
1037}
1038
1039void
1040bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
1041                      vm_paddr_t *physmap, int *physmap_idx)
1042{
1043	struct bios_smap *smap, *smapend;
1044
1045	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1046
1047	for (smap = smapbase; smap < smapend; smap++) {
1048		if (boothowto & RB_VERBOSE)
1049			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1050			    smap->type, smap->base, smap->length);
1051
1052		if (smap->type != SMAP_TYPE_MEMORY)
1053			continue;
1054
1055		if (!add_physmap_entry(smap->base, smap->length, physmap,
1056		    physmap_idx))
1057			break;
1058	}
1059}
1060
1061#define efi_next_descriptor(ptr, size) \
1062	((struct efi_md *)(((uint8_t *) ptr) + size))
1063
1064static void
1065add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1066    int *physmap_idx)
1067{
1068	struct efi_md *map, *p;
1069	const char *type;
1070	size_t efisz;
1071	int ndesc, i;
1072
1073	static const char *types[] = {
1074		"Reserved",
1075		"LoaderCode",
1076		"LoaderData",
1077		"BootServicesCode",
1078		"BootServicesData",
1079		"RuntimeServicesCode",
1080		"RuntimeServicesData",
1081		"ConventionalMemory",
1082		"UnusableMemory",
1083		"ACPIReclaimMemory",
1084		"ACPIMemoryNVS",
1085		"MemoryMappedIO",
1086		"MemoryMappedIOPortSpace",
1087		"PalCode"
1088	};
1089
1090	/*
1091	 * Memory map data provided by UEFI via the GetMemoryMap
1092	 * Boot Services API.
1093	 */
1094	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1095	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1096
1097	if (efihdr->descriptor_size == 0)
1098		return;
1099	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1100
1101	if (boothowto & RB_VERBOSE)
1102		printf("%23s %12s %12s %8s %4s\n",
1103		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1104
1105	for (i = 0, p = map; i < ndesc; i++,
1106	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1107		if (boothowto & RB_VERBOSE) {
1108			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1109				type = types[p->md_type];
1110			else
1111				type = "<INVALID>";
1112			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1113			    p->md_virt, p->md_pages);
1114			if (p->md_attr & EFI_MD_ATTR_UC)
1115				printf("UC ");
1116			if (p->md_attr & EFI_MD_ATTR_WC)
1117				printf("WC ");
1118			if (p->md_attr & EFI_MD_ATTR_WT)
1119				printf("WT ");
1120			if (p->md_attr & EFI_MD_ATTR_WB)
1121				printf("WB ");
1122			if (p->md_attr & EFI_MD_ATTR_UCE)
1123				printf("UCE ");
1124			if (p->md_attr & EFI_MD_ATTR_WP)
1125				printf("WP ");
1126			if (p->md_attr & EFI_MD_ATTR_RP)
1127				printf("RP ");
1128			if (p->md_attr & EFI_MD_ATTR_XP)
1129				printf("XP ");
1130			if (p->md_attr & EFI_MD_ATTR_RT)
1131				printf("RUNTIME");
1132			printf("\n");
1133		}
1134
1135		switch (p->md_type) {
1136		case EFI_MD_TYPE_CODE:
1137		case EFI_MD_TYPE_DATA:
1138		case EFI_MD_TYPE_BS_CODE:
1139		case EFI_MD_TYPE_BS_DATA:
1140		case EFI_MD_TYPE_FREE:
1141			/*
1142			 * We're allowed to use any entry with these types.
1143			 */
1144			break;
1145		default:
1146			continue;
1147		}
1148
1149		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1150		    physmap, physmap_idx))
1151			break;
1152	}
1153}
1154
1155static char bootmethod[16] = "";
1156SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1157    "System firmware boot method");
1158
1159static void
1160native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
1161{
1162	struct bios_smap *smap;
1163	struct efi_map_header *efihdr;
1164	u_int32_t size;
1165
1166	/*
1167	 * Memory map from INT 15:E820.
1168	 *
1169	 * subr_module.c says:
1170	 * "Consumer may safely assume that size value precedes data."
1171	 * ie: an int32_t immediately precedes smap.
1172	 */
1173
1174	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1175	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1176	smap = (struct bios_smap *)preload_search_info(kmdp,
1177	    MODINFO_METADATA | MODINFOMD_SMAP);
1178	if (efihdr == NULL && smap == NULL)
1179		panic("No BIOS smap or EFI map info from loader!");
1180
1181	if (efihdr != NULL) {
1182		add_efi_map_entries(efihdr, physmap, physmap_idx);
1183		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1184	} else {
1185		size = *((u_int32_t *)smap - 1);
1186		bios_add_smap_entries(smap, size, physmap, physmap_idx);
1187		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1188	}
1189}
1190
1191#define	PAGES_PER_GB	(1024 * 1024 * 1024 / PAGE_SIZE)
1192
1193/*
1194 * Populate the (physmap) array with base/bound pairs describing the
1195 * available physical memory in the system, then test this memory and
1196 * build the phys_avail array describing the actually-available memory.
1197 *
1198 * Total memory size may be set by the kernel environment variable
1199 * hw.physmem or the compile-time define MAXMEM.
1200 *
1201 * XXX first should be vm_paddr_t.
1202 */
1203static void
1204getmemsize(caddr_t kmdp, u_int64_t first)
1205{
1206	int i, physmap_idx, pa_indx, da_indx;
1207	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1208	u_long physmem_start, physmem_tunable, memtest;
1209	pt_entry_t *pte;
1210	quad_t dcons_addr, dcons_size;
1211	int page_counter;
1212
1213	bzero(physmap, sizeof(physmap));
1214	physmap_idx = 0;
1215
1216	init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
1217	physmap_idx -= 2;
1218
1219	/*
1220	 * Find the 'base memory' segment for SMP
1221	 */
1222	basemem = 0;
1223	for (i = 0; i <= physmap_idx; i += 2) {
1224		if (physmap[i] <= 0xA0000) {
1225			basemem = physmap[i + 1] / 1024;
1226			break;
1227		}
1228	}
1229	if (basemem == 0 || basemem > 640) {
1230		if (bootverbose)
1231			printf(
1232		"Memory map doesn't contain a basemem segment, faking it");
1233		basemem = 640;
1234	}
1235
1236	/*
1237	 * Make hole for "AP -> long mode" bootstrap code.  The
1238	 * mp_bootaddress vector is only available when the kernel
1239	 * is configured to support APs and APs for the system start
1240	 * in 32bit mode (e.g. SMP bare metal).
1241	 */
1242	if (init_ops.mp_bootaddress) {
1243		if (physmap[1] >= 0x100000000)
1244			panic(
1245	"Basemem segment is not suitable for AP bootstrap code!");
1246		physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
1247	}
1248
1249	/*
1250	 * Maxmem isn't the "maximum memory", it's one larger than the
1251	 * highest page of the physical address space.  It should be
1252	 * called something like "Maxphyspage".  We may adjust this
1253	 * based on ``hw.physmem'' and the results of the memory test.
1254	 */
1255	Maxmem = atop(physmap[physmap_idx + 1]);
1256
1257#ifdef MAXMEM
1258	Maxmem = MAXMEM / 4;
1259#endif
1260
1261	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1262		Maxmem = atop(physmem_tunable);
1263
1264	/*
1265	 * The boot memory test is disabled by default, as it takes a
1266	 * significant amount of time on large-memory systems, and is
1267	 * unfriendly to virtual machines as it unnecessarily touches all
1268	 * pages.
1269	 *
1270	 * A general name is used as the code may be extended to support
1271	 * additional tests beyond the current "page present" test.
1272	 */
1273	memtest = 0;
1274	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1275
1276	/*
1277	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1278	 * in the system.
1279	 */
1280	if (Maxmem > atop(physmap[physmap_idx + 1]))
1281		Maxmem = atop(physmap[physmap_idx + 1]);
1282
1283	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1284	    (boothowto & RB_VERBOSE))
1285		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1286
1287	/* call pmap initialization to make new kernel address space */
1288	pmap_bootstrap(&first);
1289
1290	/*
1291	 * Size up each available chunk of physical memory.
1292	 *
1293	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1294	 * By default, mask off the first 16 pages unless we appear to be
1295	 * running in a VM.
1296	 */
1297	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1298	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1299	if (physmap[0] < physmem_start) {
1300		if (physmem_start < PAGE_SIZE)
1301			physmap[0] = PAGE_SIZE;
1302		else if (physmem_start >= physmap[1])
1303			physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1304		else
1305			physmap[0] = round_page(physmem_start);
1306	}
1307	pa_indx = 0;
1308	da_indx = 1;
1309	phys_avail[pa_indx++] = physmap[0];
1310	phys_avail[pa_indx] = physmap[0];
1311	dump_avail[da_indx] = physmap[0];
1312	pte = CMAP1;
1313
1314	/*
1315	 * Get dcons buffer address
1316	 */
1317	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1318	    getenv_quad("dcons.size", &dcons_size) == 0)
1319		dcons_addr = 0;
1320
1321	/*
1322	 * physmap is in bytes, so when converting to page boundaries,
1323	 * round up the start address and round down the end address.
1324	 */
1325	page_counter = 0;
1326	if (memtest != 0)
1327		printf("Testing system memory");
1328	for (i = 0; i <= physmap_idx; i += 2) {
1329		vm_paddr_t end;
1330
1331		end = ptoa((vm_paddr_t)Maxmem);
1332		if (physmap[i + 1] < end)
1333			end = trunc_page(physmap[i + 1]);
1334		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1335			int tmp, page_bad, full;
1336			int *ptr = (int *)CADDR1;
1337
1338			full = FALSE;
1339			/*
1340			 * block out kernel memory as not available.
1341			 */
1342			if (pa >= (vm_paddr_t)kernphys && pa < first)
1343				goto do_dump_avail;
1344
1345			/*
1346			 * block out dcons buffer
1347			 */
1348			if (dcons_addr > 0
1349			    && pa >= trunc_page(dcons_addr)
1350			    && pa < dcons_addr + dcons_size)
1351				goto do_dump_avail;
1352
1353			page_bad = FALSE;
1354			if (memtest == 0)
1355				goto skip_memtest;
1356
1357			/*
1358			 * Print a "." every GB to show we're making
1359			 * progress.
1360			 */
1361			page_counter++;
1362			if ((page_counter % PAGES_PER_GB) == 0)
1363				printf(".");
1364
1365			/*
1366			 * map page into kernel: valid, read/write,non-cacheable
1367			 */
1368			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1369			invltlb();
1370
1371			tmp = *(int *)ptr;
1372			/*
1373			 * Test for alternating 1's and 0's
1374			 */
1375			*(volatile int *)ptr = 0xaaaaaaaa;
1376			if (*(volatile int *)ptr != 0xaaaaaaaa)
1377				page_bad = TRUE;
1378			/*
1379			 * Test for alternating 0's and 1's
1380			 */
1381			*(volatile int *)ptr = 0x55555555;
1382			if (*(volatile int *)ptr != 0x55555555)
1383				page_bad = TRUE;
1384			/*
1385			 * Test for all 1's
1386			 */
1387			*(volatile int *)ptr = 0xffffffff;
1388			if (*(volatile int *)ptr != 0xffffffff)
1389				page_bad = TRUE;
1390			/*
1391			 * Test for all 0's
1392			 */
1393			*(volatile int *)ptr = 0x0;
1394			if (*(volatile int *)ptr != 0x0)
1395				page_bad = TRUE;
1396			/*
1397			 * Restore original value.
1398			 */
1399			*(int *)ptr = tmp;
1400
1401skip_memtest:
1402			/*
1403			 * Adjust array of valid/good pages.
1404			 */
1405			if (page_bad == TRUE)
1406				continue;
1407			/*
1408			 * If this good page is a continuation of the
1409			 * previous set of good pages, then just increase
1410			 * the end pointer. Otherwise start a new chunk.
1411			 * Note that "end" points one higher than end,
1412			 * making the range >= start and < end.
1413			 * If we're also doing a speculative memory
1414			 * test and we at or past the end, bump up Maxmem
1415			 * so that we keep going. The first bad page
1416			 * will terminate the loop.
1417			 */
1418			if (phys_avail[pa_indx] == pa) {
1419				phys_avail[pa_indx] += PAGE_SIZE;
1420			} else {
1421				pa_indx++;
1422				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1423					printf(
1424		"Too many holes in the physical address space, giving up\n");
1425					pa_indx--;
1426					full = TRUE;
1427					goto do_dump_avail;
1428				}
1429				phys_avail[pa_indx++] = pa;	/* start */
1430				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1431			}
1432			physmem++;
1433do_dump_avail:
1434			if (dump_avail[da_indx] == pa) {
1435				dump_avail[da_indx] += PAGE_SIZE;
1436			} else {
1437				da_indx++;
1438				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1439					da_indx--;
1440					goto do_next;
1441				}
1442				dump_avail[da_indx++] = pa; /* start */
1443				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1444			}
1445do_next:
1446			if (full)
1447				break;
1448		}
1449	}
1450	*pte = 0;
1451	invltlb();
1452	if (memtest != 0)
1453		printf("\n");
1454
1455	/*
1456	 * XXX
1457	 * The last chunk must contain at least one page plus the message
1458	 * buffer to avoid complicating other code (message buffer address
1459	 * calculation, etc.).
1460	 */
1461	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1462	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1463		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1464		phys_avail[pa_indx--] = 0;
1465		phys_avail[pa_indx--] = 0;
1466	}
1467
1468	Maxmem = atop(phys_avail[pa_indx]);
1469
1470	/* Trim off space for the message buffer. */
1471	phys_avail[pa_indx] -= round_page(msgbufsize);
1472
1473	/* Map the message buffer. */
1474	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1475}
1476
1477static caddr_t
1478native_parse_preload_data(u_int64_t modulep)
1479{
1480	caddr_t kmdp;
1481#ifdef DDB
1482	vm_offset_t ksym_start;
1483	vm_offset_t ksym_end;
1484#endif
1485
1486	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1487	preload_bootstrap_relocate(KERNBASE);
1488	kmdp = preload_search_by_type("elf kernel");
1489	if (kmdp == NULL)
1490		kmdp = preload_search_by_type("elf64 kernel");
1491	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1492	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1493#ifdef DDB
1494	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1495	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1496	db_fetch_ksymtab(ksym_start, ksym_end);
1497#endif
1498
1499	return (kmdp);
1500}
1501
1502u_int64_t
1503hammer_time(u_int64_t modulep, u_int64_t physfree)
1504{
1505	caddr_t kmdp;
1506	int gsel_tss, x;
1507	struct pcpu *pc;
1508	struct nmi_pcpu *np;
1509	struct xstate_hdr *xhdr;
1510	u_int64_t msr;
1511	char *env;
1512	size_t kstack0_sz;
1513
1514	/*
1515 	 * This may be done better later if it gets more high level
1516 	 * components in it. If so just link td->td_proc here.
1517	 */
1518	proc_linkup0(&proc0, &thread0);
1519
1520	kmdp = init_ops.parse_preload_data(modulep);
1521
1522	/* Init basic tunables, hz etc */
1523	init_param1();
1524
1525	thread0.td_kstack = physfree + KERNBASE;
1526	thread0.td_kstack_pages = kstack_pages;
1527	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1528	bzero((void *)thread0.td_kstack, kstack0_sz);
1529	physfree += kstack0_sz;
1530
1531	/*
1532	 * make gdt memory segments
1533	 */
1534	for (x = 0; x < NGDT; x++) {
1535		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1536		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1537			ssdtosd(&gdt_segs[x], &gdt[x]);
1538	}
1539	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1540	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1541	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1542
1543	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1544	r_gdt.rd_base =  (long) gdt;
1545	lgdt(&r_gdt);
1546	pc = &__pcpu[0];
1547
1548	wrmsr(MSR_FSBASE, 0);		/* User value */
1549	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1550	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1551
1552	pcpu_init(pc, 0, sizeof(struct pcpu));
1553	dpcpu_init((void *)(physfree + KERNBASE), 0);
1554	physfree += DPCPU_SIZE;
1555	PCPU_SET(prvspace, pc);
1556	PCPU_SET(curthread, &thread0);
1557	PCPU_SET(tssp, &common_tss[0]);
1558	PCPU_SET(commontssp, &common_tss[0]);
1559	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1560	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1561	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1562	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1563
1564	/*
1565	 * Initialize mutexes.
1566	 *
1567	 * icu_lock: in order to allow an interrupt to occur in a critical
1568	 * 	     section, to set pcpu->ipending (etc...) properly, we
1569	 *	     must be able to get the icu lock, so it can't be
1570	 *	     under witness.
1571	 */
1572	mutex_init();
1573	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1574	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1575
1576	/* exceptions */
1577	for (x = 0; x < NIDT; x++)
1578		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1579	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1580	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1581	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1582 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1583	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1584	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1585	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1586	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1587	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1588	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1589	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1590	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1591	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1592	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1593	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1594	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1595	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1596	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1597	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1598#ifdef KDTRACE_HOOKS
1599	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1600#endif
1601#ifdef XENHVM
1602	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1603#endif
1604
1605	r_idt.rd_limit = sizeof(idt0) - 1;
1606	r_idt.rd_base = (long) idt;
1607	lidt(&r_idt);
1608
1609	/*
1610	 * Initialize the clock before the console so that console
1611	 * initialization can use DELAY().
1612	 */
1613	clock_init();
1614
1615	/*
1616	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1617	 * transition).
1618	 */
1619	if (preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP)
1620	    != NULL)
1621		vty_set_preferred(VTY_VT);
1622
1623	identify_cpu();		/* Final stage of CPU initialization */
1624	initializecpu();	/* Initialize CPU registers */
1625	initializecpucache();
1626
1627	/* doublefault stack space, runs on ist1 */
1628	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1629
1630	/*
1631	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1632	 * above the start of the ist2 stack.
1633	 */
1634	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1635	np->np_pcpu = (register_t) pc;
1636	common_tss[0].tss_ist2 = (long) np;
1637
1638	/* Set the IO permission bitmap (empty due to tss seg limit) */
1639	common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
1640
1641	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1642	ltr(gsel_tss);
1643
1644	/* Set up the fast syscall stuff */
1645	msr = rdmsr(MSR_EFER) | EFER_SCE;
1646	wrmsr(MSR_EFER, msr);
1647	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1648	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1649	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1650	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1651	wrmsr(MSR_STAR, msr);
1652	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1653
1654	getmemsize(kmdp, physfree);
1655	init_param2(physmem);
1656
1657	/* now running on new page tables, configured,and u/iom is accessible */
1658
1659	cninit();
1660
1661#ifdef DEV_ISA
1662#ifdef DEV_ATPIC
1663	elcr_probe();
1664	atpic_startup();
1665#else
1666	/* Reset and mask the atpics and leave them shut down. */
1667	atpic_reset();
1668
1669	/*
1670	 * Point the ICU spurious interrupt vectors at the APIC spurious
1671	 * interrupt handler.
1672	 */
1673	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1674	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1675#endif
1676#else
1677#error "have you forgotten the isa device?";
1678#endif
1679
1680	kdb_init();
1681
1682#ifdef KDB
1683	if (boothowto & RB_KDB)
1684		kdb_enter(KDB_WHY_BOOTFLAGS,
1685		    "Boot flags requested debugger");
1686#endif
1687
1688	msgbufinit(msgbufp, msgbufsize);
1689	fpuinit();
1690
1691	/*
1692	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1693	 * area size.  Zero out the extended state header in fpu save
1694	 * area.
1695	 */
1696	thread0.td_pcb = get_pcb_td(&thread0);
1697	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1698	if (use_xsave) {
1699		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1700		    1);
1701		xhdr->xstate_bv = xsave_mask;
1702	}
1703	/* make an initial tss so cpu can get interrupt stack on syscall! */
1704	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1705	/* Ensure the stack is aligned to 16 bytes */
1706	common_tss[0].tss_rsp0 &= ~0xFul;
1707	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1708	PCPU_SET(curpcb, thread0.td_pcb);
1709
1710	/* transfer to user mode */
1711
1712	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1713	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1714	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1715	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1716	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1717
1718	load_ds(_udatasel);
1719	load_es(_udatasel);
1720	load_fs(_ufssel);
1721
1722	/* setup proc 0's pcb */
1723	thread0.td_pcb->pcb_flags = 0;
1724	thread0.td_frame = &proc0_tf;
1725
1726        env = kern_getenv("kernelname");
1727	if (env != NULL)
1728		strlcpy(kernelname, env, sizeof(kernelname));
1729
1730	cpu_probe_amdc1e();
1731
1732#ifdef FDT
1733	x86_init_fdt();
1734#endif
1735
1736	/* Location of kernel stack for locore */
1737	return ((u_int64_t)thread0.td_pcb);
1738}
1739
1740void
1741cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1742{
1743
1744	pcpu->pc_acpi_id = 0xffffffff;
1745}
1746
1747static int
1748smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
1749{
1750	struct bios_smap *smapbase;
1751	struct bios_smap_xattr smap;
1752	caddr_t kmdp;
1753	uint32_t *smapattr;
1754	int count, error, i;
1755
1756	/* Retrieve the system memory map from the loader. */
1757	kmdp = preload_search_by_type("elf kernel");
1758	if (kmdp == NULL)
1759		kmdp = preload_search_by_type("elf64 kernel");
1760	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1761	    MODINFO_METADATA | MODINFOMD_SMAP);
1762	if (smapbase == NULL)
1763		return (0);
1764	smapattr = (uint32_t *)preload_search_info(kmdp,
1765	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
1766	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
1767	error = 0;
1768	for (i = 0; i < count; i++) {
1769		smap.base = smapbase[i].base;
1770		smap.length = smapbase[i].length;
1771		smap.type = smapbase[i].type;
1772		if (smapattr != NULL)
1773			smap.xattr = smapattr[i];
1774		else
1775			smap.xattr = 0;
1776		error = SYSCTL_OUT(req, &smap, sizeof(smap));
1777	}
1778	return (error);
1779}
1780SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1781    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
1782
1783static int
1784efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1785{
1786	struct efi_map_header *efihdr;
1787	caddr_t kmdp;
1788	uint32_t efisize;
1789
1790	kmdp = preload_search_by_type("elf kernel");
1791	if (kmdp == NULL)
1792		kmdp = preload_search_by_type("elf64 kernel");
1793	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1794	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1795	if (efihdr == NULL)
1796		return (0);
1797	efisize = *((uint32_t *)efihdr - 1);
1798	return (SYSCTL_OUT(req, efihdr, efisize));
1799}
1800SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1801    efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1802
1803void
1804spinlock_enter(void)
1805{
1806	struct thread *td;
1807	register_t flags;
1808
1809	td = curthread;
1810	if (td->td_md.md_spinlock_count == 0) {
1811		flags = intr_disable();
1812		td->td_md.md_spinlock_count = 1;
1813		td->td_md.md_saved_flags = flags;
1814	} else
1815		td->td_md.md_spinlock_count++;
1816	critical_enter();
1817}
1818
1819void
1820spinlock_exit(void)
1821{
1822	struct thread *td;
1823	register_t flags;
1824
1825	td = curthread;
1826	critical_exit();
1827	flags = td->td_md.md_saved_flags;
1828	td->td_md.md_spinlock_count--;
1829	if (td->td_md.md_spinlock_count == 0)
1830		intr_restore(flags);
1831}
1832
1833/*
1834 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1835 * we want to start a backtrace from the function that caused us to enter
1836 * the debugger. We have the context in the trapframe, but base the trace
1837 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1838 * enough for a backtrace.
1839 */
1840void
1841makectx(struct trapframe *tf, struct pcb *pcb)
1842{
1843
1844	pcb->pcb_r12 = tf->tf_r12;
1845	pcb->pcb_r13 = tf->tf_r13;
1846	pcb->pcb_r14 = tf->tf_r14;
1847	pcb->pcb_r15 = tf->tf_r15;
1848	pcb->pcb_rbp = tf->tf_rbp;
1849	pcb->pcb_rbx = tf->tf_rbx;
1850	pcb->pcb_rip = tf->tf_rip;
1851	pcb->pcb_rsp = tf->tf_rsp;
1852}
1853
1854int
1855ptrace_set_pc(struct thread *td, unsigned long addr)
1856{
1857
1858	td->td_frame->tf_rip = addr;
1859	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1860	return (0);
1861}
1862
1863int
1864ptrace_single_step(struct thread *td)
1865{
1866	td->td_frame->tf_rflags |= PSL_T;
1867	return (0);
1868}
1869
1870int
1871ptrace_clear_single_step(struct thread *td)
1872{
1873	td->td_frame->tf_rflags &= ~PSL_T;
1874	return (0);
1875}
1876
1877int
1878fill_regs(struct thread *td, struct reg *regs)
1879{
1880	struct trapframe *tp;
1881
1882	tp = td->td_frame;
1883	return (fill_frame_regs(tp, regs));
1884}
1885
1886int
1887fill_frame_regs(struct trapframe *tp, struct reg *regs)
1888{
1889	regs->r_r15 = tp->tf_r15;
1890	regs->r_r14 = tp->tf_r14;
1891	regs->r_r13 = tp->tf_r13;
1892	regs->r_r12 = tp->tf_r12;
1893	regs->r_r11 = tp->tf_r11;
1894	regs->r_r10 = tp->tf_r10;
1895	regs->r_r9  = tp->tf_r9;
1896	regs->r_r8  = tp->tf_r8;
1897	regs->r_rdi = tp->tf_rdi;
1898	regs->r_rsi = tp->tf_rsi;
1899	regs->r_rbp = tp->tf_rbp;
1900	regs->r_rbx = tp->tf_rbx;
1901	regs->r_rdx = tp->tf_rdx;
1902	regs->r_rcx = tp->tf_rcx;
1903	regs->r_rax = tp->tf_rax;
1904	regs->r_rip = tp->tf_rip;
1905	regs->r_cs = tp->tf_cs;
1906	regs->r_rflags = tp->tf_rflags;
1907	regs->r_rsp = tp->tf_rsp;
1908	regs->r_ss = tp->tf_ss;
1909	if (tp->tf_flags & TF_HASSEGS) {
1910		regs->r_ds = tp->tf_ds;
1911		regs->r_es = tp->tf_es;
1912		regs->r_fs = tp->tf_fs;
1913		regs->r_gs = tp->tf_gs;
1914	} else {
1915		regs->r_ds = 0;
1916		regs->r_es = 0;
1917		regs->r_fs = 0;
1918		regs->r_gs = 0;
1919	}
1920	return (0);
1921}
1922
1923int
1924set_regs(struct thread *td, struct reg *regs)
1925{
1926	struct trapframe *tp;
1927	register_t rflags;
1928
1929	tp = td->td_frame;
1930	rflags = regs->r_rflags & 0xffffffff;
1931	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1932		return (EINVAL);
1933	tp->tf_r15 = regs->r_r15;
1934	tp->tf_r14 = regs->r_r14;
1935	tp->tf_r13 = regs->r_r13;
1936	tp->tf_r12 = regs->r_r12;
1937	tp->tf_r11 = regs->r_r11;
1938	tp->tf_r10 = regs->r_r10;
1939	tp->tf_r9  = regs->r_r9;
1940	tp->tf_r8  = regs->r_r8;
1941	tp->tf_rdi = regs->r_rdi;
1942	tp->tf_rsi = regs->r_rsi;
1943	tp->tf_rbp = regs->r_rbp;
1944	tp->tf_rbx = regs->r_rbx;
1945	tp->tf_rdx = regs->r_rdx;
1946	tp->tf_rcx = regs->r_rcx;
1947	tp->tf_rax = regs->r_rax;
1948	tp->tf_rip = regs->r_rip;
1949	tp->tf_cs = regs->r_cs;
1950	tp->tf_rflags = rflags;
1951	tp->tf_rsp = regs->r_rsp;
1952	tp->tf_ss = regs->r_ss;
1953	if (0) {	/* XXXKIB */
1954		tp->tf_ds = regs->r_ds;
1955		tp->tf_es = regs->r_es;
1956		tp->tf_fs = regs->r_fs;
1957		tp->tf_gs = regs->r_gs;
1958		tp->tf_flags = TF_HASSEGS;
1959	}
1960	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1961	return (0);
1962}
1963
1964/* XXX check all this stuff! */
1965/* externalize from sv_xmm */
1966static void
1967fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1968{
1969	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1970	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1971	int i;
1972
1973	/* pcb -> fpregs */
1974	bzero(fpregs, sizeof(*fpregs));
1975
1976	/* FPU control/status */
1977	penv_fpreg->en_cw = penv_xmm->en_cw;
1978	penv_fpreg->en_sw = penv_xmm->en_sw;
1979	penv_fpreg->en_tw = penv_xmm->en_tw;
1980	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1981	penv_fpreg->en_rip = penv_xmm->en_rip;
1982	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1983	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1984	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1985
1986	/* FPU registers */
1987	for (i = 0; i < 8; ++i)
1988		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1989
1990	/* SSE registers */
1991	for (i = 0; i < 16; ++i)
1992		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1993}
1994
1995/* internalize from fpregs into sv_xmm */
1996static void
1997set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1998{
1999	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2000	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2001	int i;
2002
2003	/* fpregs -> pcb */
2004	/* FPU control/status */
2005	penv_xmm->en_cw = penv_fpreg->en_cw;
2006	penv_xmm->en_sw = penv_fpreg->en_sw;
2007	penv_xmm->en_tw = penv_fpreg->en_tw;
2008	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2009	penv_xmm->en_rip = penv_fpreg->en_rip;
2010	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2011	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2012	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2013
2014	/* FPU registers */
2015	for (i = 0; i < 8; ++i)
2016		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2017
2018	/* SSE registers */
2019	for (i = 0; i < 16; ++i)
2020		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2021}
2022
2023/* externalize from td->pcb */
2024int
2025fill_fpregs(struct thread *td, struct fpreg *fpregs)
2026{
2027
2028	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2029	    P_SHOULDSTOP(td->td_proc),
2030	    ("not suspended thread %p", td));
2031	fpugetregs(td);
2032	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2033	return (0);
2034}
2035
2036/* internalize to td->pcb */
2037int
2038set_fpregs(struct thread *td, struct fpreg *fpregs)
2039{
2040
2041	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2042	fpuuserinited(td);
2043	return (0);
2044}
2045
2046/*
2047 * Get machine context.
2048 */
2049int
2050get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2051{
2052	struct pcb *pcb;
2053	struct trapframe *tp;
2054
2055	pcb = td->td_pcb;
2056	tp = td->td_frame;
2057	PROC_LOCK(curthread->td_proc);
2058	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2059	PROC_UNLOCK(curthread->td_proc);
2060	mcp->mc_r15 = tp->tf_r15;
2061	mcp->mc_r14 = tp->tf_r14;
2062	mcp->mc_r13 = tp->tf_r13;
2063	mcp->mc_r12 = tp->tf_r12;
2064	mcp->mc_r11 = tp->tf_r11;
2065	mcp->mc_r10 = tp->tf_r10;
2066	mcp->mc_r9  = tp->tf_r9;
2067	mcp->mc_r8  = tp->tf_r8;
2068	mcp->mc_rdi = tp->tf_rdi;
2069	mcp->mc_rsi = tp->tf_rsi;
2070	mcp->mc_rbp = tp->tf_rbp;
2071	mcp->mc_rbx = tp->tf_rbx;
2072	mcp->mc_rcx = tp->tf_rcx;
2073	mcp->mc_rflags = tp->tf_rflags;
2074	if (flags & GET_MC_CLEAR_RET) {
2075		mcp->mc_rax = 0;
2076		mcp->mc_rdx = 0;
2077		mcp->mc_rflags &= ~PSL_C;
2078	} else {
2079		mcp->mc_rax = tp->tf_rax;
2080		mcp->mc_rdx = tp->tf_rdx;
2081	}
2082	mcp->mc_rip = tp->tf_rip;
2083	mcp->mc_cs = tp->tf_cs;
2084	mcp->mc_rsp = tp->tf_rsp;
2085	mcp->mc_ss = tp->tf_ss;
2086	mcp->mc_ds = tp->tf_ds;
2087	mcp->mc_es = tp->tf_es;
2088	mcp->mc_fs = tp->tf_fs;
2089	mcp->mc_gs = tp->tf_gs;
2090	mcp->mc_flags = tp->tf_flags;
2091	mcp->mc_len = sizeof(*mcp);
2092	get_fpcontext(td, mcp, NULL, 0);
2093	mcp->mc_fsbase = pcb->pcb_fsbase;
2094	mcp->mc_gsbase = pcb->pcb_gsbase;
2095	mcp->mc_xfpustate = 0;
2096	mcp->mc_xfpustate_len = 0;
2097	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2098	return (0);
2099}
2100
2101/*
2102 * Set machine context.
2103 *
2104 * However, we don't set any but the user modifiable flags, and we won't
2105 * touch the cs selector.
2106 */
2107int
2108set_mcontext(struct thread *td, mcontext_t *mcp)
2109{
2110	struct pcb *pcb;
2111	struct trapframe *tp;
2112	char *xfpustate;
2113	long rflags;
2114	int ret;
2115
2116	pcb = td->td_pcb;
2117	tp = td->td_frame;
2118	if (mcp->mc_len != sizeof(*mcp) ||
2119	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2120		return (EINVAL);
2121	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2122	    (tp->tf_rflags & ~PSL_USERCHANGE);
2123	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2124		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2125		    sizeof(struct savefpu))
2126			return (EINVAL);
2127		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2128		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2129		    mcp->mc_xfpustate_len);
2130		if (ret != 0)
2131			return (ret);
2132	} else
2133		xfpustate = NULL;
2134	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2135	if (ret != 0)
2136		return (ret);
2137	tp->tf_r15 = mcp->mc_r15;
2138	tp->tf_r14 = mcp->mc_r14;
2139	tp->tf_r13 = mcp->mc_r13;
2140	tp->tf_r12 = mcp->mc_r12;
2141	tp->tf_r11 = mcp->mc_r11;
2142	tp->tf_r10 = mcp->mc_r10;
2143	tp->tf_r9  = mcp->mc_r9;
2144	tp->tf_r8  = mcp->mc_r8;
2145	tp->tf_rdi = mcp->mc_rdi;
2146	tp->tf_rsi = mcp->mc_rsi;
2147	tp->tf_rbp = mcp->mc_rbp;
2148	tp->tf_rbx = mcp->mc_rbx;
2149	tp->tf_rdx = mcp->mc_rdx;
2150	tp->tf_rcx = mcp->mc_rcx;
2151	tp->tf_rax = mcp->mc_rax;
2152	tp->tf_rip = mcp->mc_rip;
2153	tp->tf_rflags = rflags;
2154	tp->tf_rsp = mcp->mc_rsp;
2155	tp->tf_ss = mcp->mc_ss;
2156	tp->tf_flags = mcp->mc_flags;
2157	if (tp->tf_flags & TF_HASSEGS) {
2158		tp->tf_ds = mcp->mc_ds;
2159		tp->tf_es = mcp->mc_es;
2160		tp->tf_fs = mcp->mc_fs;
2161		tp->tf_gs = mcp->mc_gs;
2162	}
2163	if (mcp->mc_flags & _MC_HASBASES) {
2164		pcb->pcb_fsbase = mcp->mc_fsbase;
2165		pcb->pcb_gsbase = mcp->mc_gsbase;
2166	}
2167	set_pcb_flags(pcb, PCB_FULL_IRET);
2168	return (0);
2169}
2170
2171static void
2172get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2173    size_t xfpusave_len)
2174{
2175	size_t max_len, len;
2176
2177	mcp->mc_ownedfp = fpugetregs(td);
2178	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2179	    sizeof(mcp->mc_fpstate));
2180	mcp->mc_fpformat = fpuformat();
2181	if (!use_xsave || xfpusave_len == 0)
2182		return;
2183	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2184	len = xfpusave_len;
2185	if (len > max_len) {
2186		len = max_len;
2187		bzero(xfpusave + max_len, len - max_len);
2188	}
2189	mcp->mc_flags |= _MC_HASFPXSTATE;
2190	mcp->mc_xfpustate_len = len;
2191	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2192}
2193
2194static int
2195set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
2196    size_t xfpustate_len)
2197{
2198	struct savefpu *fpstate;
2199	int error;
2200
2201	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2202		return (0);
2203	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2204		return (EINVAL);
2205	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2206		/* We don't care what state is left in the FPU or PCB. */
2207		fpstate_drop(td);
2208		error = 0;
2209	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2210	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2211		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2212		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2213		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2214	} else
2215		return (EINVAL);
2216	return (error);
2217}
2218
2219void
2220fpstate_drop(struct thread *td)
2221{
2222
2223	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2224	critical_enter();
2225	if (PCPU_GET(fpcurthread) == td)
2226		fpudrop();
2227	/*
2228	 * XXX force a full drop of the fpu.  The above only drops it if we
2229	 * owned it.
2230	 *
2231	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2232	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2233	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2234	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2235	 * have too many layers.
2236	 */
2237	clear_pcb_flags(curthread->td_pcb,
2238	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2239	critical_exit();
2240}
2241
2242int
2243fill_dbregs(struct thread *td, struct dbreg *dbregs)
2244{
2245	struct pcb *pcb;
2246
2247	if (td == NULL) {
2248		dbregs->dr[0] = rdr0();
2249		dbregs->dr[1] = rdr1();
2250		dbregs->dr[2] = rdr2();
2251		dbregs->dr[3] = rdr3();
2252		dbregs->dr[6] = rdr6();
2253		dbregs->dr[7] = rdr7();
2254	} else {
2255		pcb = td->td_pcb;
2256		dbregs->dr[0] = pcb->pcb_dr0;
2257		dbregs->dr[1] = pcb->pcb_dr1;
2258		dbregs->dr[2] = pcb->pcb_dr2;
2259		dbregs->dr[3] = pcb->pcb_dr3;
2260		dbregs->dr[6] = pcb->pcb_dr6;
2261		dbregs->dr[7] = pcb->pcb_dr7;
2262	}
2263	dbregs->dr[4] = 0;
2264	dbregs->dr[5] = 0;
2265	dbregs->dr[8] = 0;
2266	dbregs->dr[9] = 0;
2267	dbregs->dr[10] = 0;
2268	dbregs->dr[11] = 0;
2269	dbregs->dr[12] = 0;
2270	dbregs->dr[13] = 0;
2271	dbregs->dr[14] = 0;
2272	dbregs->dr[15] = 0;
2273	return (0);
2274}
2275
2276int
2277set_dbregs(struct thread *td, struct dbreg *dbregs)
2278{
2279	struct pcb *pcb;
2280	int i;
2281
2282	if (td == NULL) {
2283		load_dr0(dbregs->dr[0]);
2284		load_dr1(dbregs->dr[1]);
2285		load_dr2(dbregs->dr[2]);
2286		load_dr3(dbregs->dr[3]);
2287		load_dr6(dbregs->dr[6]);
2288		load_dr7(dbregs->dr[7]);
2289	} else {
2290		/*
2291		 * Don't let an illegal value for dr7 get set.  Specifically,
2292		 * check for undefined settings.  Setting these bit patterns
2293		 * result in undefined behaviour and can lead to an unexpected
2294		 * TRCTRAP or a general protection fault right here.
2295		 * Upper bits of dr6 and dr7 must not be set
2296		 */
2297		for (i = 0; i < 4; i++) {
2298			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2299				return (EINVAL);
2300			if (td->td_frame->tf_cs == _ucode32sel &&
2301			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2302				return (EINVAL);
2303		}
2304		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2305		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2306			return (EINVAL);
2307
2308		pcb = td->td_pcb;
2309
2310		/*
2311		 * Don't let a process set a breakpoint that is not within the
2312		 * process's address space.  If a process could do this, it
2313		 * could halt the system by setting a breakpoint in the kernel
2314		 * (if ddb was enabled).  Thus, we need to check to make sure
2315		 * that no breakpoints are being enabled for addresses outside
2316		 * process's address space.
2317		 *
2318		 * XXX - what about when the watched area of the user's
2319		 * address space is written into from within the kernel
2320		 * ... wouldn't that still cause a breakpoint to be generated
2321		 * from within kernel mode?
2322		 */
2323
2324		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2325			/* dr0 is enabled */
2326			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2327				return (EINVAL);
2328		}
2329		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2330			/* dr1 is enabled */
2331			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2332				return (EINVAL);
2333		}
2334		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2335			/* dr2 is enabled */
2336			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2337				return (EINVAL);
2338		}
2339		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2340			/* dr3 is enabled */
2341			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2342				return (EINVAL);
2343		}
2344
2345		pcb->pcb_dr0 = dbregs->dr[0];
2346		pcb->pcb_dr1 = dbregs->dr[1];
2347		pcb->pcb_dr2 = dbregs->dr[2];
2348		pcb->pcb_dr3 = dbregs->dr[3];
2349		pcb->pcb_dr6 = dbregs->dr[6];
2350		pcb->pcb_dr7 = dbregs->dr[7];
2351
2352		set_pcb_flags(pcb, PCB_DBREGS);
2353	}
2354
2355	return (0);
2356}
2357
2358void
2359reset_dbregs(void)
2360{
2361
2362	load_dr7(0);	/* Turn off the control bits first */
2363	load_dr0(0);
2364	load_dr1(0);
2365	load_dr2(0);
2366	load_dr3(0);
2367	load_dr6(0);
2368}
2369
2370/*
2371 * Return > 0 if a hardware breakpoint has been hit, and the
2372 * breakpoint was in user space.  Return 0, otherwise.
2373 */
2374int
2375user_dbreg_trap(void)
2376{
2377        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2378        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2379        int nbp;            /* number of breakpoints that triggered */
2380        caddr_t addr[4];    /* breakpoint addresses */
2381        int i;
2382
2383        dr7 = rdr7();
2384        if ((dr7 & 0x000000ff) == 0) {
2385                /*
2386                 * all GE and LE bits in the dr7 register are zero,
2387                 * thus the trap couldn't have been caused by the
2388                 * hardware debug registers
2389                 */
2390                return 0;
2391        }
2392
2393        nbp = 0;
2394        dr6 = rdr6();
2395        bp = dr6 & 0x0000000f;
2396
2397        if (!bp) {
2398                /*
2399                 * None of the breakpoint bits are set meaning this
2400                 * trap was not caused by any of the debug registers
2401                 */
2402                return 0;
2403        }
2404
2405        /*
2406         * at least one of the breakpoints were hit, check to see
2407         * which ones and if any of them are user space addresses
2408         */
2409
2410        if (bp & 0x01) {
2411                addr[nbp++] = (caddr_t)rdr0();
2412        }
2413        if (bp & 0x02) {
2414                addr[nbp++] = (caddr_t)rdr1();
2415        }
2416        if (bp & 0x04) {
2417                addr[nbp++] = (caddr_t)rdr2();
2418        }
2419        if (bp & 0x08) {
2420                addr[nbp++] = (caddr_t)rdr3();
2421        }
2422
2423        for (i = 0; i < nbp; i++) {
2424                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2425                        /*
2426                         * addr[i] is in user space
2427                         */
2428                        return nbp;
2429                }
2430        }
2431
2432        /*
2433         * None of the breakpoints are in user space.
2434         */
2435        return 0;
2436}
2437
2438#ifdef KDB
2439
2440/*
2441 * Provide inb() and outb() as functions.  They are normally only available as
2442 * inline functions, thus cannot be called from the debugger.
2443 */
2444
2445/* silence compiler warnings */
2446u_char inb_(u_short);
2447void outb_(u_short, u_char);
2448
2449u_char
2450inb_(u_short port)
2451{
2452	return inb(port);
2453}
2454
2455void
2456outb_(u_short port, u_char data)
2457{
2458	outb(port, data);
2459}
2460
2461#endif /* KDB */
2462