machdep.c revision 29041
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.260 1997/09/01 01:54:50 bde Exp $
39 */
40
41#include "apm.h"
42#include "npx.h"
43#include "opt_sysvipc.h"
44#include "opt_ddb.h"
45#include "opt_bounce.h"
46#include "opt_maxmem.h"
47#include "opt_perfmon.h"
48#include "opt_smp.h"
49#include "opt_userconfig.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/sysproto.h>
54#include <sys/signalvar.h>
55#include <sys/kernel.h>
56#include <sys/proc.h>
57#include <sys/buf.h>
58#include <sys/reboot.h>
59#include <sys/conf.h>
60#include <sys/callout.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/msgbuf.h>
64#include <sys/sysent.h>
65#include <sys/sysctl.h>
66#include <sys/vmmeter.h>
67
68#ifdef SYSVSHM
69#include <sys/shm.h>
70#endif
71
72#ifdef SYSVMSG
73#include <sys/msg.h>
74#endif
75
76#ifdef SYSVSEM
77#include <sys/sem.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_prot.h>
83#include <sys/lock.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_extern.h>
90
91#include <sys/user.h>
92#include <sys/exec.h>
93
94#include <ddb/ddb.h>
95
96#include <net/netisr.h>
97
98#if NAPM > 0
99#include <machine/apm_bios.h>
100#endif
101#include <machine/cpu.h>
102#include <machine/reg.h>
103#include <machine/clock.h>
104#include <machine/specialreg.h>
105#include <machine/cons.h>
106#include <machine/bootinfo.h>
107#include <machine/md_var.h>
108#ifdef SMP
109#include <machine/smp.h>
110#endif
111#ifdef PERFMON
112#include <machine/perfmon.h>
113#endif
114
115#include <i386/isa/isa_device.h>
116#include <i386/isa/intr_machdep.h>
117#include <i386/isa/rtc.h>
118#include <machine/random.h>
119
120extern void init386 __P((int first));
121extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
122extern int ptrace_single_step __P((struct proc *p));
123extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
124extern void dblfault_handler __P((void));
125
126extern void printcpuinfo(void);	/* XXX header file */
127extern void earlysetcpuclass(void);	/* same header file */
128extern void finishidentcpu(void);
129extern void panicifcpuunsupported(void);
130extern void initializecpu(void);
131
132static void cpu_startup __P((void *));
133SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
134
135
136#ifdef BOUNCE_BUFFERS
137extern char *bouncememory;
138extern int maxbkva;
139#ifdef BOUNCEPAGES
140int	bouncepages = BOUNCEPAGES;
141#else
142int	bouncepages = 0;
143#endif
144#endif	/* BOUNCE_BUFFERS */
145
146extern int freebufspace;
147int	msgbufmapped = 0;		/* set when safe to use msgbuf */
148int _udatasel, _ucodesel;
149u_int	atdevbase;
150
151
152int physmem = 0;
153int cold = 1;
154
155static int
156sysctl_hw_physmem SYSCTL_HANDLER_ARGS
157{
158	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
159	return (error);
160}
161
162SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
163	0, 0, sysctl_hw_physmem, "I", "");
164
165static int
166sysctl_hw_usermem SYSCTL_HANDLER_ARGS
167{
168	int error = sysctl_handle_int(oidp, 0,
169		ctob(physmem - cnt.v_wire_count), req);
170	return (error);
171}
172
173SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
174	0, 0, sysctl_hw_usermem, "I", "");
175
176int boothowto = 0, bootverbose = 0, Maxmem = 0;
177static int	badpages = 0;
178long dumplo;
179extern int bootdev;
180
181vm_offset_t phys_avail[10];
182
183/* must be 2 less so 0 0 can signal end of chunks */
184#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
185
186static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
187
188static vm_offset_t buffer_sva, buffer_eva;
189vm_offset_t clean_sva, clean_eva;
190static vm_offset_t pager_sva, pager_eva;
191extern struct linker_set netisr_set;
192
193#define offsetof(type, member)	((size_t)(&((type *)0)->member))
194
195static void
196cpu_startup(dummy)
197	void *dummy;
198{
199	register unsigned i;
200	register caddr_t v;
201	vm_offset_t maxaddr;
202	vm_size_t size = 0;
203	int firstaddr;
204	vm_offset_t minaddr;
205
206	if (boothowto & RB_VERBOSE)
207		bootverbose++;
208
209	/*
210	 * Good {morning,afternoon,evening,night}.
211	 */
212	printf(version);
213	earlysetcpuclass();
214	startrtclock();
215	printcpuinfo();
216	panicifcpuunsupported();
217#ifdef PERFMON
218	perfmon_init();
219#endif
220	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
221	/*
222	 * Display any holes after the first chunk of extended memory.
223	 */
224	if (badpages != 0) {
225		int indx = 1;
226
227		/*
228		 * XXX skip reporting ISA hole & unmanaged kernel memory
229		 */
230		if (phys_avail[0] == PAGE_SIZE)
231			indx += 2;
232
233		printf("Physical memory hole(s):\n");
234		for (; phys_avail[indx + 1] != 0; indx += 2) {
235			int size = phys_avail[indx + 1] - phys_avail[indx];
236
237			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
238			    phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
239		}
240	}
241
242	/*
243	 * Quickly wire in netisrs.
244	 */
245	setup_netisrs(&netisr_set);
246
247	/*
248	 * Allocate space for system data structures.
249	 * The first available kernel virtual address is in "v".
250	 * As pages of kernel virtual memory are allocated, "v" is incremented.
251	 * As pages of memory are allocated and cleared,
252	 * "firstaddr" is incremented.
253	 * An index into the kernel page table corresponding to the
254	 * virtual memory address maintained in "v" is kept in "mapaddr".
255	 */
256
257	/*
258	 * Make two passes.  The first pass calculates how much memory is
259	 * needed and allocates it.  The second pass assigns virtual
260	 * addresses to the various data structures.
261	 */
262	firstaddr = 0;
263again:
264	v = (caddr_t)firstaddr;
265
266#define	valloc(name, type, num) \
267	    (name) = (type *)v; v = (caddr_t)((name)+(num))
268#define	valloclim(name, type, num, lim) \
269	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
270	valloc(callout, struct callout, ncallout);
271#ifdef SYSVSHM
272	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
273#endif
274#ifdef SYSVSEM
275	valloc(sema, struct semid_ds, seminfo.semmni);
276	valloc(sem, struct sem, seminfo.semmns);
277	/* This is pretty disgusting! */
278	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
279#endif
280#ifdef SYSVMSG
281	valloc(msgpool, char, msginfo.msgmax);
282	valloc(msgmaps, struct msgmap, msginfo.msgseg);
283	valloc(msghdrs, struct msg, msginfo.msgtql);
284	valloc(msqids, struct msqid_ds, msginfo.msgmni);
285#endif
286
287	if (nbuf == 0) {
288		nbuf = 30;
289		if( physmem > 1024)
290			nbuf += min((physmem - 1024) / 8, 2048);
291	}
292	nswbuf = max(min(nbuf/4, 128), 16);
293
294	valloc(swbuf, struct buf, nswbuf);
295	valloc(buf, struct buf, nbuf);
296
297#ifdef BOUNCE_BUFFERS
298	/*
299	 * If there is more than 16MB of memory, allocate some bounce buffers
300	 */
301	if (Maxmem > 4096) {
302		if (bouncepages == 0) {
303			bouncepages = 64;
304			bouncepages += ((Maxmem - 4096) / 2048) * 32;
305			if (bouncepages > 128)
306				bouncepages = 128;
307		}
308		v = (caddr_t)((vm_offset_t)round_page(v));
309		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
310	}
311#endif
312
313	/*
314	 * End of first pass, size has been calculated so allocate memory
315	 */
316	if (firstaddr == 0) {
317		size = (vm_size_t)(v - firstaddr);
318		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
319		if (firstaddr == 0)
320			panic("startup: no room for tables");
321		goto again;
322	}
323
324	/*
325	 * End of second pass, addresses have been assigned
326	 */
327	if ((vm_size_t)(v - firstaddr) != size)
328		panic("startup: table size inconsistency");
329
330#ifdef BOUNCE_BUFFERS
331	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
332			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
333				maxbkva + pager_map_size, TRUE);
334	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
335#else
336	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
337			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
338#endif
339	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
340				(nbuf*BKVASIZE), TRUE);
341	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
342				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
343	pager_map->system_map = 1;
344	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
345				(16*ARG_MAX), TRUE);
346	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
347				(maxproc*UPAGES*PAGE_SIZE), FALSE);
348
349	/*
350	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
351	 * we use the more space efficient malloc in place of kmem_alloc.
352	 */
353	{
354		vm_offset_t mb_map_size;
355
356		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
357		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
358		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
359		bzero(mclrefcnt, mb_map_size / MCLBYTES);
360		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
361			mb_map_size, FALSE);
362		mb_map->system_map = 1;
363	}
364
365	/*
366	 * Initialize callouts
367	 */
368	callfree = callout;
369	for (i = 1; i < ncallout; i++)
370		callout[i-1].c_next = &callout[i];
371
372#if defined(USERCONFIG)
373#if defined(USERCONFIG_BOOT)
374	if (1) {
375#else
376        if (boothowto & RB_CONFIG) {
377#endif
378		userconfig();
379		cninit();	/* the preferred console may have changed */
380	}
381#endif
382
383#ifdef BOUNCE_BUFFERS
384	/*
385	 * init bounce buffers
386	 */
387	vm_bounce_init();
388#endif
389
390	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
391	    ptoa(cnt.v_free_count) / 1024);
392
393	/*
394	 * Set up buffers, so they can be used to read disk labels.
395	 */
396	bufinit();
397	vm_pager_bufferinit();
398
399#ifdef SMP
400	/*
401	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
402	 */
403	mp_start();			/* fire up the APs and APICs */
404	mp_announce();
405#endif  /* SMP */
406}
407
408int
409register_netisr(num, handler)
410	int num;
411	netisr_t *handler;
412{
413
414	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
415		printf("register_netisr: bad isr number: %d\n", num);
416		return (EINVAL);
417	}
418	netisrs[num] = handler;
419	return (0);
420}
421
422static void
423setup_netisrs(ls)
424	struct linker_set *ls;
425{
426	int i;
427	const struct netisrtab *nit;
428
429	for(i = 0; ls->ls_items[i]; i++) {
430		nit = (const struct netisrtab *)ls->ls_items[i];
431		register_netisr(nit->nit_num, nit->nit_isr);
432	}
433}
434
435/*
436 * Send an interrupt to process.
437 *
438 * Stack is set up to allow sigcode stored
439 * at top to call routine, followed by kcall
440 * to sigreturn routine below.  After sigreturn
441 * resets the signal mask, the stack, and the
442 * frame pointer, it returns to the user
443 * specified pc, psl.
444 */
445void
446sendsig(catcher, sig, mask, code)
447	sig_t catcher;
448	int sig, mask;
449	u_long code;
450{
451	register struct proc *p = curproc;
452	register struct trapframe *regs;
453	register struct sigframe *fp;
454	struct sigframe sf;
455	struct sigacts *psp = p->p_sigacts;
456	int oonstack;
457
458	regs = p->p_md.md_regs;
459        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
460	/*
461	 * Allocate and validate space for the signal handler context.
462	 */
463        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
464	    (psp->ps_sigonstack & sigmask(sig))) {
465		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
466		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
467		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
468	} else {
469		fp = (struct sigframe *)regs->tf_esp - 1;
470	}
471
472	/*
473	 * grow() will return FALSE if the fp will not fit inside the stack
474	 *	and the stack can not be grown. useracc will return FALSE
475	 *	if access is denied.
476	 */
477	if ((grow(p, (int)fp) == FALSE) ||
478	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
479		/*
480		 * Process has trashed its stack; give it an illegal
481		 * instruction to halt it in its tracks.
482		 */
483		SIGACTION(p, SIGILL) = SIG_DFL;
484		sig = sigmask(SIGILL);
485		p->p_sigignore &= ~sig;
486		p->p_sigcatch &= ~sig;
487		p->p_sigmask &= ~sig;
488		psignal(p, SIGILL);
489		return;
490	}
491
492	/*
493	 * Build the argument list for the signal handler.
494	 */
495	if (p->p_sysent->sv_sigtbl) {
496		if (sig < p->p_sysent->sv_sigsize)
497			sig = p->p_sysent->sv_sigtbl[sig];
498		else
499			sig = p->p_sysent->sv_sigsize + 1;
500	}
501	sf.sf_signum = sig;
502	sf.sf_code = code;
503	sf.sf_scp = &fp->sf_sc;
504	sf.sf_addr = (char *) regs->tf_err;
505	sf.sf_handler = catcher;
506
507	/* save scratch registers */
508	sf.sf_sc.sc_eax = regs->tf_eax;
509	sf.sf_sc.sc_ebx = regs->tf_ebx;
510	sf.sf_sc.sc_ecx = regs->tf_ecx;
511	sf.sf_sc.sc_edx = regs->tf_edx;
512	sf.sf_sc.sc_esi = regs->tf_esi;
513	sf.sf_sc.sc_edi = regs->tf_edi;
514	sf.sf_sc.sc_cs = regs->tf_cs;
515	sf.sf_sc.sc_ds = regs->tf_ds;
516	sf.sf_sc.sc_ss = regs->tf_ss;
517	sf.sf_sc.sc_es = regs->tf_es;
518	sf.sf_sc.sc_isp = regs->tf_isp;
519
520	/*
521	 * Build the signal context to be used by sigreturn.
522	 */
523	sf.sf_sc.sc_onstack = oonstack;
524	sf.sf_sc.sc_mask = mask;
525	sf.sf_sc.sc_sp = regs->tf_esp;
526	sf.sf_sc.sc_fp = regs->tf_ebp;
527	sf.sf_sc.sc_pc = regs->tf_eip;
528	sf.sf_sc.sc_ps = regs->tf_eflags;
529	sf.sf_sc.sc_trapno = regs->tf_trapno;
530	sf.sf_sc.sc_err = regs->tf_err;
531
532	/*
533	 * If we're a vm86 process, we want to save the segment registers.
534	 * We also change eflags to be our emulated eflags, not the actual
535	 * eflags.
536	 */
537	if (regs->tf_eflags & PSL_VM) {
538		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
539		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
540
541		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
542		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
543		sf.sf_sc.sc_es = tf->tf_vm86_es;
544		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
545
546		if (vm86->vm86_has_vme == 0)
547			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
548			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
549
550		/*
551		 * We should never have PSL_T set when returning from vm86
552		 * mode.  It may be set here if we deliver a signal before
553		 * getting to vm86 mode, so turn it off.
554		 */
555		tf->tf_eflags &= ~(PSL_VM | PSL_T | PSL_VIF | PSL_VIP);
556	}
557
558	/*
559	 * Copy the sigframe out to the user's stack.
560	 */
561	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
562		/*
563		 * Something is wrong with the stack pointer.
564		 * ...Kill the process.
565		 */
566		sigexit(p, SIGILL);
567	}
568
569	regs->tf_esp = (int)fp;
570	regs->tf_eip = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
571	regs->tf_cs = _ucodesel;
572	regs->tf_ds = _udatasel;
573	regs->tf_es = _udatasel;
574	regs->tf_ss = _udatasel;
575}
576
577/*
578 * System call to cleanup state after a signal
579 * has been taken.  Reset signal mask and
580 * stack state from context left by sendsig (above).
581 * Return to previous pc and psl as specified by
582 * context left by sendsig. Check carefully to
583 * make sure that the user has not modified the
584 * state to gain improper privileges.
585 */
586int
587sigreturn(p, uap, retval)
588	struct proc *p;
589	struct sigreturn_args /* {
590		struct sigcontext *sigcntxp;
591	} */ *uap;
592	int *retval;
593{
594	register struct sigcontext *scp;
595	register struct sigframe *fp;
596	register struct trapframe *regs = p->p_md.md_regs;
597	int eflags;
598
599	/*
600	 * (XXX old comment) regs->tf_esp points to the return address.
601	 * The user scp pointer is above that.
602	 * The return address is faked in the signal trampoline code
603	 * for consistency.
604	 */
605	scp = uap->sigcntxp;
606	fp = (struct sigframe *)
607	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
608
609	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
610		return(EFAULT);
611
612	eflags = scp->sc_ps;
613	if (eflags & PSL_VM) {
614		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
615		struct vm86_kernel *vm86;
616
617		/*
618		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
619		 * set up the vm86 area, and we can't enter vm86 mode.
620		 */
621		if (p->p_addr->u_pcb.pcb_ext == 0)
622			return (EINVAL);
623		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
624		if (vm86->vm86_inited == 0)
625			return (EINVAL);
626
627		/* go back to user mode if both flags are set */
628		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
629			trapsignal(p, SIGBUS, 0);
630
631#define VM_USERCHANGE	(PSL_USERCHANGE | PSL_RF)
632#define VME_USERCHANGE	(VM_USERCHANGE | PSL_VIP | PSL_VIF)
633		if (vm86->vm86_has_vme) {
634			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
635			    (eflags & VME_USERCHANGE) | PSL_VM;
636		} else {
637			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
638			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
639		}
640		tf->tf_vm86_ds = scp->sc_ds;
641		tf->tf_vm86_es = scp->sc_es;
642		tf->tf_vm86_fs = scp->sc_fs;
643		tf->tf_vm86_gs = scp->sc_gs;
644		tf->tf_ds = _udatasel;
645		tf->tf_es = _udatasel;
646	} else {
647		/*
648		 * Don't allow users to change privileged or reserved flags.
649		 */
650#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
651		/*
652		 * XXX do allow users to change the privileged flag PSL_RF.
653		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
654		 * should sometimes set it there too.  tf_eflags is kept in
655		 * the signal context during signal handling and there is no
656		 * other place to remember it, so the PSL_RF bit may be
657		 * corrupted by the signal handler without us knowing.
658		 * Corruption of the PSL_RF bit at worst causes one more or
659		 * one less debugger trap, so allowing it is fairly harmless.
660		 */
661		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
662#ifdef DEBUG
663	    		printf("sigreturn: eflags = 0x%x\n", eflags);
664#endif
665	    		return(EINVAL);
666		}
667
668		/*
669		 * Don't allow users to load a valid privileged %cs.  Let the
670		 * hardware check for invalid selectors, excess privilege in
671		 * other selectors, invalid %eip's and invalid %esp's.
672		 */
673#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
674		if (!CS_SECURE(scp->sc_cs)) {
675#ifdef DEBUG
676    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
677#endif
678			trapsignal(p, SIGBUS, T_PROTFLT);
679			return(EINVAL);
680		}
681		regs->tf_ds = scp->sc_ds;
682		regs->tf_es = scp->sc_es;
683	}
684	/* restore scratch registers */
685	regs->tf_eax = scp->sc_eax;
686	regs->tf_ebx = scp->sc_ebx;
687	regs->tf_ecx = scp->sc_ecx;
688	regs->tf_edx = scp->sc_edx;
689	regs->tf_esi = scp->sc_esi;
690	regs->tf_edi = scp->sc_edi;
691	regs->tf_cs = scp->sc_cs;
692	regs->tf_ss = scp->sc_ss;
693	regs->tf_isp = scp->sc_isp;
694
695	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
696		return(EINVAL);
697
698	if (scp->sc_onstack & 01)
699		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
700	else
701		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
702	p->p_sigmask = scp->sc_mask & ~sigcantmask;
703	regs->tf_ebp = scp->sc_fp;
704	regs->tf_esp = scp->sc_sp;
705	regs->tf_eip = scp->sc_pc;
706	regs->tf_eflags = eflags;
707	return(EJUSTRETURN);
708}
709
710/*
711 * Machine dependent boot() routine
712 *
713 * I haven't seen anything to put here yet
714 * Possibly some stuff might be grafted back here from boot()
715 */
716void
717cpu_boot(int howto)
718{
719}
720
721/*
722 * Shutdown the CPU as much as possible
723 */
724void
725cpu_halt(void)
726{
727	for (;;)
728		__asm__ ("hlt");
729}
730
731/*
732 * Turn the power off.
733 */
734void
735cpu_power_down(void)
736{
737#if NAPM > 0
738	apm_power_off();
739#endif
740}
741
742/*
743 * Clear registers on exec
744 */
745void
746setregs(p, entry, stack)
747	struct proc *p;
748	u_long entry;
749	u_long stack;
750{
751	struct trapframe *regs = p->p_md.md_regs;
752
753#ifdef USER_LDT
754	struct pcb *pcb = &p->p_addr->u_pcb;
755
756	/* was i386_user_cleanup() in NetBSD */
757	if (pcb->pcb_ldt) {
758		if (pcb == curpcb)
759			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
760		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
761			pcb->pcb_ldt_len * sizeof(union descriptor));
762		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
763 	}
764#endif
765
766	bzero((char *)regs, sizeof(struct trapframe));
767	regs->tf_eip = entry;
768	regs->tf_esp = stack;
769	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
770	regs->tf_ss = _udatasel;
771	regs->tf_ds = _udatasel;
772	regs->tf_es = _udatasel;
773	regs->tf_cs = _ucodesel;
774
775	/*
776	 * Initialize the math emulator (if any) for the current process.
777	 * Actually, just clear the bit that says that the emulator has
778	 * been initialized.  Initialization is delayed until the process
779	 * traps to the emulator (if it is done at all) mainly because
780	 * emulators don't provide an entry point for initialization.
781	 */
782	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
783
784	/*
785	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
786	 * for why fwait must be trapped at least if there is an npx or an
787	 * emulator).  This is mainly to handle the case where npx0 is not
788	 * configured, since the npx routines normally set up the trap
789	 * otherwise.  It should be done only at boot time, but doing it
790	 * here allows modifying `npx_exists' for testing the emulator on
791	 * systems with an npx.
792	 */
793	load_cr0(rcr0() | CR0_MP | CR0_TS);
794
795#if NNPX > 0
796	/* Initialize the npx (if any) for the current process. */
797	npxinit(__INITIAL_NPXCW__);
798#endif
799}
800
801static int
802sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
803{
804	int error;
805	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
806		req);
807	if (!error && req->newptr)
808		resettodr();
809	return (error);
810}
811
812SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
813	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
814
815SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
816	CTLFLAG_RW, &disable_rtc_set, 0, "");
817
818SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
819	CTLFLAG_RD, &bootinfo, bootinfo, "");
820
821SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
822	CTLFLAG_RW, &wall_cmos_clock, 0, "");
823
824/*
825 * Initialize 386 and configure to run kernel
826 */
827
828/*
829 * Initialize segments & interrupt table
830 */
831
832int currentldt;
833int _default_ldt;
834#ifdef SMP
835union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
836#else
837union descriptor gdt[NGDT];		/* global descriptor table */
838#endif
839struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
840union descriptor ldt[NLDT];		/* local descriptor table */
841#ifdef SMP
842/* table descriptors - used to load tables by microp */
843struct region_descriptor r_gdt, r_idt;
844#endif
845
846#ifdef SMP
847extern struct i386tss common_tss;	/* One tss per cpu */
848#ifdef VM86
849extern struct segment_descriptor common_tssd;
850#endif /* VM86 */
851#else
852struct i386tss common_tss;
853#ifdef VM86
854struct segment_descriptor common_tssd;
855u_int private_tss = 0;			/* flag indicating private tss */
856#endif /* VM86 */
857#endif
858
859static struct i386tss dblfault_tss;
860static char dblfault_stack[PAGE_SIZE];
861
862extern  struct user *proc0paddr;
863
864
865/* software prototypes -- in more palatable form */
866struct soft_segment_descriptor gdt_segs[
867#ifdef SMP
868					NGDT + NCPU
869#endif
870						   ] = {
871/* GNULL_SEL	0 Null Descriptor */
872{	0x0,			/* segment base address  */
873	0x0,			/* length */
874	0,			/* segment type */
875	0,			/* segment descriptor priority level */
876	0,			/* segment descriptor present */
877	0, 0,
878	0,			/* default 32 vs 16 bit size */
879	0  			/* limit granularity (byte/page units)*/ },
880/* GCODE_SEL	1 Code Descriptor for kernel */
881{	0x0,			/* segment base address  */
882	0xfffff,		/* length - all address space */
883	SDT_MEMERA,		/* segment type */
884	0,			/* segment descriptor priority level */
885	1,			/* segment descriptor present */
886	0, 0,
887	1,			/* default 32 vs 16 bit size */
888	1  			/* limit granularity (byte/page units)*/ },
889/* GDATA_SEL	2 Data Descriptor for kernel */
890{	0x0,			/* segment base address  */
891	0xfffff,		/* length - all address space */
892	SDT_MEMRWA,		/* segment type */
893	0,			/* segment descriptor priority level */
894	1,			/* segment descriptor present */
895	0, 0,
896	1,			/* default 32 vs 16 bit size */
897	1  			/* limit granularity (byte/page units)*/ },
898/* GLDT_SEL	3 LDT Descriptor */
899{	(int) ldt,		/* segment base address  */
900	sizeof(ldt)-1,		/* length - all address space */
901	SDT_SYSLDT,		/* segment type */
902	SEL_UPL,		/* segment descriptor priority level */
903	1,			/* segment descriptor present */
904	0, 0,
905	0,			/* unused - default 32 vs 16 bit size */
906	0  			/* limit granularity (byte/page units)*/ },
907/* GTGATE_SEL	4 Null Descriptor - Placeholder */
908{	0x0,			/* segment base address  */
909	0x0,			/* length - all address space */
910	0,			/* segment type */
911	0,			/* segment descriptor priority level */
912	0,			/* segment descriptor present */
913	0, 0,
914	0,			/* default 32 vs 16 bit size */
915	0  			/* limit granularity (byte/page units)*/ },
916/* GPANIC_SEL	5 Panic Tss Descriptor */
917{	(int) &dblfault_tss,	/* segment base address  */
918	sizeof(struct i386tss)-1,/* length - all address space */
919	SDT_SYS386TSS,		/* segment type */
920	0,			/* segment descriptor priority level */
921	1,			/* segment descriptor present */
922	0, 0,
923	0,			/* unused - default 32 vs 16 bit size */
924	0  			/* limit granularity (byte/page units)*/ },
925/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
926{
927	(int) &common_tss,	/* segment base address */
928	sizeof(struct i386tss)-1,/* length - all address space */
929	SDT_SYS386TSS,		/* segment type */
930	0,			/* segment descriptor priority level */
931	1,			/* segment descriptor present */
932	0, 0,
933	0,			/* unused - default 32 vs 16 bit size */
934	0  			/* limit granularity (byte/page units)*/ },
935/* GUSERLDT_SEL	7 User LDT Descriptor per process */
936{	(int) ldt,		/* segment base address  */
937	(512 * sizeof(union descriptor)-1),		/* length */
938	SDT_SYSLDT,		/* segment type */
939	0,			/* segment descriptor priority level */
940	1,			/* segment descriptor present */
941	0, 0,
942	0,			/* unused - default 32 vs 16 bit size */
943	0  			/* limit granularity (byte/page units)*/ },
944/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
945{	0,			/* segment base address (overwritten by APM)  */
946	0xfffff,		/* length */
947	SDT_MEMERA,		/* segment type */
948	0,			/* segment descriptor priority level */
949	1,			/* segment descriptor present */
950	0, 0,
951	1,			/* default 32 vs 16 bit size */
952	1  			/* limit granularity (byte/page units)*/ },
953/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
954{	0,			/* segment base address (overwritten by APM)  */
955	0xfffff,		/* length */
956	SDT_MEMERA,		/* segment type */
957	0,			/* segment descriptor priority level */
958	1,			/* segment descriptor present */
959	0, 0,
960	0,			/* default 32 vs 16 bit size */
961	1  			/* limit granularity (byte/page units)*/ },
962/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
963{	0,			/* segment base address (overwritten by APM) */
964	0xfffff,		/* length */
965	SDT_MEMRWA,		/* segment type */
966	0,			/* segment descriptor priority level */
967	1,			/* segment descriptor present */
968	0, 0,
969	1,			/* default 32 vs 16 bit size */
970	1  			/* limit granularity (byte/page units)*/ },
971};
972
973static struct soft_segment_descriptor ldt_segs[] = {
974	/* Null Descriptor - overwritten by call gate */
975{	0x0,			/* segment base address  */
976	0x0,			/* length - all address space */
977	0,			/* segment type */
978	0,			/* segment descriptor priority level */
979	0,			/* segment descriptor present */
980	0, 0,
981	0,			/* default 32 vs 16 bit size */
982	0  			/* limit granularity (byte/page units)*/ },
983	/* Null Descriptor - overwritten by call gate */
984{	0x0,			/* segment base address  */
985	0x0,			/* length - all address space */
986	0,			/* segment type */
987	0,			/* segment descriptor priority level */
988	0,			/* segment descriptor present */
989	0, 0,
990	0,			/* default 32 vs 16 bit size */
991	0  			/* limit granularity (byte/page units)*/ },
992	/* Null Descriptor - overwritten by call gate */
993{	0x0,			/* segment base address  */
994	0x0,			/* length - all address space */
995	0,			/* segment type */
996	0,			/* segment descriptor priority level */
997	0,			/* segment descriptor present */
998	0, 0,
999	0,			/* default 32 vs 16 bit size */
1000	0  			/* limit granularity (byte/page units)*/ },
1001	/* Code Descriptor for user */
1002{	0x0,			/* segment base address  */
1003	0xfffff,		/* length - all address space */
1004	SDT_MEMERA,		/* segment type */
1005	SEL_UPL,		/* segment descriptor priority level */
1006	1,			/* segment descriptor present */
1007	0, 0,
1008	1,			/* default 32 vs 16 bit size */
1009	1  			/* limit granularity (byte/page units)*/ },
1010	/* Data Descriptor for user */
1011{	0x0,			/* segment base address  */
1012	0xfffff,		/* length - all address space */
1013	SDT_MEMRWA,		/* segment type */
1014	SEL_UPL,		/* segment descriptor priority level */
1015	1,			/* segment descriptor present */
1016	0, 0,
1017	1,			/* default 32 vs 16 bit size */
1018	1  			/* limit granularity (byte/page units)*/ },
1019};
1020
1021void
1022setidt(idx, func, typ, dpl, selec)
1023	int idx;
1024	inthand_t *func;
1025	int typ;
1026	int dpl;
1027	int selec;
1028{
1029	struct gate_descriptor *ip = idt + idx;
1030
1031	ip->gd_looffset = (int)func;
1032	ip->gd_selector = selec;
1033	ip->gd_stkcpy = 0;
1034	ip->gd_xx = 0;
1035	ip->gd_type = typ;
1036	ip->gd_dpl = dpl;
1037	ip->gd_p = 1;
1038	ip->gd_hioffset = ((int)func)>>16 ;
1039}
1040
1041#define	IDTVEC(name)	__CONCAT(X,name)
1042
1043extern inthand_t
1044	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1045	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1046	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1047	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1048	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1049
1050void
1051sdtossd(sd, ssd)
1052	struct segment_descriptor *sd;
1053	struct soft_segment_descriptor *ssd;
1054{
1055	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1056	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1057	ssd->ssd_type  = sd->sd_type;
1058	ssd->ssd_dpl   = sd->sd_dpl;
1059	ssd->ssd_p     = sd->sd_p;
1060	ssd->ssd_def32 = sd->sd_def32;
1061	ssd->ssd_gran  = sd->sd_gran;
1062}
1063
1064void
1065init386(first)
1066	int first;
1067{
1068	int x;
1069	unsigned biosbasemem, biosextmem;
1070	struct gate_descriptor *gdp;
1071	int gsel_tss;
1072
1073	struct isa_device *idp;
1074#ifndef SMP
1075	/* table descriptors - used to load tables by microp */
1076	struct region_descriptor r_gdt, r_idt;
1077#endif
1078	int	pagesinbase, pagesinext;
1079	int	target_page, pa_indx;
1080	int	off;
1081
1082	proc0.p_addr = proc0paddr;
1083
1084	atdevbase = ISA_HOLE_START + KERNBASE;
1085
1086	/*
1087	 * Initialize the console before we print anything out.
1088	 */
1089	cninit();
1090
1091	/*
1092	 * make gdt memory segments, the code segment goes up to end of the
1093	 * page with etext in it, the data segment goes to the end of
1094	 * the address space
1095	 */
1096	/*
1097	 * XXX text protection is temporarily (?) disabled.  The limit was
1098	 * i386_btop(round_page(etext)) - 1.
1099	 */
1100	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1101	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1102#ifdef BDE_DEBUGGER
1103#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1104#else
1105#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1106#endif
1107	for (x = 0; x < NGDT1; x++)
1108		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1109#ifdef VM86
1110	common_tssd = gdt[GPROC0_SEL].sd;
1111#endif /* VM86 */
1112
1113#ifdef SMP
1114	/*
1115	 * Spin these up now.  init_secondary() grabs them.  We could use
1116	 * #for(x,y,z) / #endfor cpp directives if they existed.
1117	 */
1118	for (x = 0; x < NCPU; x++) {
1119		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1120		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1121	}
1122#endif
1123
1124	/* make ldt memory segments */
1125	/*
1126	 * The data segment limit must not cover the user area because we
1127	 * don't want the user area to be writable in copyout() etc. (page
1128	 * level protection is lost in kernel mode on 386's).  Also, we
1129	 * don't want the user area to be writable directly (page level
1130	 * protection of the user area is not available on 486's with
1131	 * CR0_WP set, because there is no user-read/kernel-write mode).
1132	 *
1133	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1134	 * should be spelled ...MAX_USER...
1135	 */
1136#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1137	/*
1138	 * The code segment limit has to cover the user area until we move
1139	 * the signal trampoline out of the user area.  This is safe because
1140	 * the code segment cannot be written to directly.
1141	 */
1142#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1143	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1144	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1145	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1146		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1147
1148	/* exceptions */
1149	for (x = 0; x < NIDT; x++)
1150		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1151	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1152	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1153	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1154 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1155	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1156	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1157	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1158	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1159	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1160	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1161	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1162	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1163	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1164	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1165	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1166	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1167	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1168	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1169	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1170 	setidt(0x80, &IDTVEC(int0x80_syscall),
1171			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1172
1173#include	"isa.h"
1174#if	NISA >0
1175	isa_defaultirq();
1176#endif
1177	rand_initialize();
1178
1179	r_gdt.rd_limit = sizeof(gdt) - 1;
1180	r_gdt.rd_base =  (int) gdt;
1181	lgdt(&r_gdt);
1182
1183	r_idt.rd_limit = sizeof(idt) - 1;
1184	r_idt.rd_base = (int) idt;
1185	lidt(&r_idt);
1186
1187	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1188	lldt(_default_ldt);
1189	currentldt = _default_ldt;
1190
1191#ifdef DDB
1192	kdb_init();
1193	if (boothowto & RB_KDB)
1194		Debugger("Boot flags requested debugger");
1195#endif
1196
1197	finishidentcpu();	/* Final stage of CPU initialization */
1198	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1199	initializecpu();	/* Initialize CPU registers */
1200
1201	/* Use BIOS values stored in RTC CMOS RAM, since probing
1202	 * breaks certain 386 AT relics.
1203	 */
1204	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1205	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1206
1207	/*
1208	 * If BIOS tells us that it has more than 640k in the basemem,
1209	 *	don't believe it - set it to 640k.
1210	 */
1211	if (biosbasemem > 640) {
1212		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1213		       biosbasemem);
1214		biosbasemem = 640;
1215	}
1216	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1217		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1218		       bootinfo.bi_basemem);
1219		bootinfo.bi_basemem = 640;
1220	}
1221
1222	/*
1223	 * Warn if the official BIOS interface disagrees with the RTC
1224	 * interface used above about the amount of base memory or the
1225	 * amount of extended memory.  Prefer the BIOS value for the base
1226	 * memory.  This is necessary for machines that `steal' base
1227	 * memory for use as BIOS memory, at least if we are going to use
1228	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1229	 * Eventually the hackish interface shouldn't even be looked at.
1230	 */
1231	if (bootinfo.bi_memsizes_valid) {
1232		if (bootinfo.bi_basemem != biosbasemem) {
1233			vm_offset_t pa;
1234
1235			printf(
1236	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1237			       bootinfo.bi_basemem, biosbasemem);
1238			biosbasemem = bootinfo.bi_basemem;
1239
1240			/*
1241			 * XXX if biosbasemem is now < 640, there is `hole'
1242			 * between the end of base memory and the start of
1243			 * ISA memory.  The hole may be empty or it may
1244			 * contain BIOS code or data.  Map it read/write so
1245			 * that the BIOS can write to it.  (Memory from 0 to
1246			 * the physical end of the kernel is mapped read-only
1247			 * to begin with and then parts of it are remapped.
1248			 * The parts that aren't remapped form holes that
1249			 * remain read-only and are unused by the kernel.
1250			 * The base memory area is below the physical end of
1251			 * the kernel and right now forms a read-only hole.
1252			 * The part of it from 0 to
1253			 * (trunc_page(biosbasemem * 1024) - 1) will be
1254			 * remapped and used by the kernel later.)
1255			 *
1256			 * This code is similar to the code used in
1257			 * pmap_mapdev, but since no memory needs to be
1258			 * allocated we simply change the mapping.
1259			 */
1260			for (pa = trunc_page(biosbasemem * 1024);
1261			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1262				unsigned *pte;
1263
1264				pte = (unsigned *)vtopte(pa + KERNBASE);
1265				*pte = pa | PG_RW | PG_V;
1266			}
1267		}
1268		if (bootinfo.bi_extmem != biosextmem)
1269			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1270			       bootinfo.bi_extmem, biosextmem);
1271	}
1272
1273#ifdef SMP
1274	/* make hole for AP bootstrap code */
1275	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1276#else
1277	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1278#endif
1279
1280	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1281
1282	/*
1283	 * Special hack for chipsets that still remap the 384k hole when
1284	 *	there's 16MB of memory - this really confuses people that
1285	 *	are trying to use bus mastering ISA controllers with the
1286	 *	"16MB limit"; they only have 16MB, but the remapping puts
1287	 *	them beyond the limit.
1288	 */
1289	/*
1290	 * If extended memory is between 15-16MB (16-17MB phys address range),
1291	 *	chop it to 15MB.
1292	 */
1293	if ((pagesinext > 3840) && (pagesinext < 4096))
1294		pagesinext = 3840;
1295
1296	/*
1297	 * Maxmem isn't the "maximum memory", it's one larger than the
1298	 * highest page of the physical address space.  It should be
1299	 * called something like "Maxphyspage".
1300	 */
1301	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1302
1303#ifdef MAXMEM
1304	Maxmem = MAXMEM/4;
1305#endif
1306
1307#if NNPX > 0
1308	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1309	if (idp != NULL && idp->id_msize != 0)
1310		Maxmem = idp->id_msize / 4;
1311#endif
1312
1313#ifdef SMP
1314	/* look for the MP hardware - needed for apic addresses */
1315	mp_probe();
1316#endif
1317
1318	/* call pmap initialization to make new kernel address space */
1319	pmap_bootstrap (first, 0);
1320
1321	/*
1322	 * Size up each available chunk of physical memory.
1323	 */
1324
1325	/*
1326	 * We currently don't bother testing base memory.
1327	 * XXX  ...but we probably should.
1328	 */
1329	pa_indx = 0;
1330	badpages = 0;
1331	if (pagesinbase > 1) {
1332		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1333		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1334		physmem = pagesinbase - 1;
1335	} else {
1336		/* point at first chunk end */
1337		pa_indx++;
1338	}
1339
1340	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1341		int tmp, page_bad = FALSE;
1342
1343		/*
1344		 * map page into kernel: valid, read/write, non-cacheable
1345		 */
1346		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1347		invltlb();
1348
1349		tmp = *(int *)CADDR1;
1350		/*
1351		 * Test for alternating 1's and 0's
1352		 */
1353		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1354		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1355			page_bad = TRUE;
1356		}
1357		/*
1358		 * Test for alternating 0's and 1's
1359		 */
1360		*(volatile int *)CADDR1 = 0x55555555;
1361		if (*(volatile int *)CADDR1 != 0x55555555) {
1362			page_bad = TRUE;
1363		}
1364		/*
1365		 * Test for all 1's
1366		 */
1367		*(volatile int *)CADDR1 = 0xffffffff;
1368		if (*(volatile int *)CADDR1 != 0xffffffff) {
1369			page_bad = TRUE;
1370		}
1371		/*
1372		 * Test for all 0's
1373		 */
1374		*(volatile int *)CADDR1 = 0x0;
1375		if (*(volatile int *)CADDR1 != 0x0) {
1376			/*
1377			 * test of page failed
1378			 */
1379			page_bad = TRUE;
1380		}
1381		/*
1382		 * Restore original value.
1383		 */
1384		*(int *)CADDR1 = tmp;
1385
1386		/*
1387		 * Adjust array of valid/good pages.
1388		 */
1389		if (page_bad == FALSE) {
1390			/*
1391			 * If this good page is a continuation of the
1392			 * previous set of good pages, then just increase
1393			 * the end pointer. Otherwise start a new chunk.
1394			 * Note that "end" points one higher than end,
1395			 * making the range >= start and < end.
1396			 */
1397			if (phys_avail[pa_indx] == target_page) {
1398				phys_avail[pa_indx] += PAGE_SIZE;
1399			} else {
1400				pa_indx++;
1401				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1402					printf("Too many holes in the physical address space, giving up\n");
1403					pa_indx--;
1404					break;
1405				}
1406				phys_avail[pa_indx++] = target_page;	/* start */
1407				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1408			}
1409			physmem++;
1410		} else {
1411			badpages++;
1412			page_bad = FALSE;
1413		}
1414	}
1415
1416	*(int *)CMAP1 = 0;
1417	invltlb();
1418
1419	/*
1420	 * XXX
1421	 * The last chunk must contain at least one page plus the message
1422	 * buffer to avoid complicating other code (message buffer address
1423	 * calculation, etc.).
1424	 */
1425	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1426	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1427		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1428		phys_avail[pa_indx--] = 0;
1429		phys_avail[pa_indx--] = 0;
1430	}
1431
1432	Maxmem = atop(phys_avail[pa_indx]);
1433
1434	/* Trim off space for the message buffer. */
1435	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1436
1437	avail_end = phys_avail[pa_indx];
1438
1439	/* now running on new page tables, configured,and u/iom is accessible */
1440
1441	/* Map the message buffer. */
1442	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1443		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1444			   avail_end + off, VM_PROT_ALL, TRUE);
1445	msgbufmapped = 1;
1446
1447	/* make an initial tss so cpu can get interrupt stack on syscall! */
1448#ifdef VM86
1449	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1450#else
1451	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1452#endif /* VM86 */
1453	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1454	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1455	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1456	ltr(gsel_tss);
1457
1458	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1459	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1460	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1461	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1462	dblfault_tss.tss_cr3 = (int)IdlePTD;
1463	dblfault_tss.tss_eip = (int) dblfault_handler;
1464	dblfault_tss.tss_eflags = PSL_KERNEL;
1465	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1466	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1467	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1468	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1469
1470	/* make a call gate to reenter kernel with */
1471	gdp = &ldt[LSYS5CALLS_SEL].gd;
1472
1473	x = (int) &IDTVEC(syscall);
1474	gdp->gd_looffset = x++;
1475	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1476	gdp->gd_stkcpy = 1;
1477	gdp->gd_type = SDT_SYS386CGT;
1478	gdp->gd_dpl = SEL_UPL;
1479	gdp->gd_p = 1;
1480	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1481
1482	/* XXX does this work? */
1483	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1484
1485	/* transfer to user mode */
1486
1487	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1488	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1489
1490	/* setup proc 0's pcb */
1491	proc0.p_addr->u_pcb.pcb_flags = 0;
1492	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1493	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1494	proc0.p_addr->u_pcb.pcb_ext = 0;
1495}
1496
1497int
1498ptrace_set_pc(p, addr)
1499	struct proc *p;
1500	unsigned int addr;
1501{
1502	p->p_md.md_regs->tf_eip = addr;
1503	return (0);
1504}
1505
1506int
1507ptrace_single_step(p)
1508	struct proc *p;
1509{
1510	p->p_md.md_regs->tf_eflags |= PSL_T;
1511	return (0);
1512}
1513
1514int ptrace_write_u(p, off, data)
1515	struct proc *p;
1516	vm_offset_t off;
1517	int data;
1518{
1519	struct trapframe frame_copy;
1520	vm_offset_t min;
1521	struct trapframe *tp;
1522
1523	/*
1524	 * Privileged kernel state is scattered all over the user area.
1525	 * Only allow write access to parts of regs and to fpregs.
1526	 */
1527	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1528	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1529		tp = p->p_md.md_regs;
1530		frame_copy = *tp;
1531		*(int *)((char *)&frame_copy + (off - min)) = data;
1532		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1533		    !CS_SECURE(frame_copy.tf_cs))
1534			return (EINVAL);
1535		*(int*)((char *)p->p_addr + off) = data;
1536		return (0);
1537	}
1538	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1539	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1540		*(int*)((char *)p->p_addr + off) = data;
1541		return (0);
1542	}
1543	return (EFAULT);
1544}
1545
1546int
1547fill_regs(p, regs)
1548	struct proc *p;
1549	struct reg *regs;
1550{
1551	struct pcb *pcb;
1552	struct trapframe *tp;
1553
1554	tp = p->p_md.md_regs;
1555	regs->r_es = tp->tf_es;
1556	regs->r_ds = tp->tf_ds;
1557	regs->r_edi = tp->tf_edi;
1558	regs->r_esi = tp->tf_esi;
1559	regs->r_ebp = tp->tf_ebp;
1560	regs->r_ebx = tp->tf_ebx;
1561	regs->r_edx = tp->tf_edx;
1562	regs->r_ecx = tp->tf_ecx;
1563	regs->r_eax = tp->tf_eax;
1564	regs->r_eip = tp->tf_eip;
1565	regs->r_cs = tp->tf_cs;
1566	regs->r_eflags = tp->tf_eflags;
1567	regs->r_esp = tp->tf_esp;
1568	regs->r_ss = tp->tf_ss;
1569	pcb = &p->p_addr->u_pcb;
1570	regs->r_fs = pcb->pcb_fs;
1571	regs->r_gs = pcb->pcb_gs;
1572	return (0);
1573}
1574
1575int
1576set_regs(p, regs)
1577	struct proc *p;
1578	struct reg *regs;
1579{
1580	struct pcb *pcb;
1581	struct trapframe *tp;
1582
1583	tp = p->p_md.md_regs;
1584	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1585	    !CS_SECURE(regs->r_cs))
1586		return (EINVAL);
1587	tp->tf_es = regs->r_es;
1588	tp->tf_ds = regs->r_ds;
1589	tp->tf_edi = regs->r_edi;
1590	tp->tf_esi = regs->r_esi;
1591	tp->tf_ebp = regs->r_ebp;
1592	tp->tf_ebx = regs->r_ebx;
1593	tp->tf_edx = regs->r_edx;
1594	tp->tf_ecx = regs->r_ecx;
1595	tp->tf_eax = regs->r_eax;
1596	tp->tf_eip = regs->r_eip;
1597	tp->tf_cs = regs->r_cs;
1598	tp->tf_eflags = regs->r_eflags;
1599	tp->tf_esp = regs->r_esp;
1600	tp->tf_ss = regs->r_ss;
1601	pcb = &p->p_addr->u_pcb;
1602	pcb->pcb_fs = regs->r_fs;
1603	pcb->pcb_gs = regs->r_gs;
1604	return (0);
1605}
1606
1607#ifndef DDB
1608void
1609Debugger(const char *msg)
1610{
1611	printf("Debugger(\"%s\") called.\n", msg);
1612}
1613#endif /* no DDB */
1614
1615#include <sys/disklabel.h>
1616
1617/*
1618 * Determine the size of the transfer, and make sure it is
1619 * within the boundaries of the partition. Adjust transfer
1620 * if needed, and signal errors or early completion.
1621 */
1622int
1623bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1624{
1625        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1626        int labelsect = lp->d_partitions[0].p_offset;
1627        int maxsz = p->p_size,
1628                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1629
1630        /* overwriting disk label ? */
1631        /* XXX should also protect bootstrap in first 8K */
1632        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1633#if LABELSECTOR != 0
1634            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1635#endif
1636            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1637                bp->b_error = EROFS;
1638                goto bad;
1639        }
1640
1641#if     defined(DOSBBSECTOR) && defined(notyet)
1642        /* overwriting master boot record? */
1643        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1644            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1645                bp->b_error = EROFS;
1646                goto bad;
1647        }
1648#endif
1649
1650        /* beyond partition? */
1651        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1652                /* if exactly at end of disk, return an EOF */
1653                if (bp->b_blkno == maxsz) {
1654                        bp->b_resid = bp->b_bcount;
1655                        return(0);
1656                }
1657                /* or truncate if part of it fits */
1658                sz = maxsz - bp->b_blkno;
1659                if (sz <= 0) {
1660                        bp->b_error = EINVAL;
1661                        goto bad;
1662                }
1663                bp->b_bcount = sz << DEV_BSHIFT;
1664        }
1665
1666        bp->b_pblkno = bp->b_blkno + p->p_offset;
1667        return(1);
1668
1669bad:
1670        bp->b_flags |= B_ERROR;
1671        return(-1);
1672}
1673
1674#ifdef DDB
1675
1676/*
1677 * Provide inb() and outb() as functions.  They are normally only
1678 * available as macros calling inlined functions, thus cannot be
1679 * called inside DDB.
1680 *
1681 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1682 */
1683
1684#undef inb
1685#undef outb
1686
1687/* silence compiler warnings */
1688u_char inb(u_int);
1689void outb(u_int, u_char);
1690
1691u_char
1692inb(u_int port)
1693{
1694	u_char	data;
1695	/*
1696	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1697	 * %edx, while gcc generates inferior code (movw instead of movl)
1698	 * if we tell it to load (u_short) port.
1699	 */
1700	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1701	return (data);
1702}
1703
1704void
1705outb(u_int port, u_char data)
1706{
1707	u_char	al;
1708	/*
1709	 * Use an unnecessary assignment to help gcc's register allocator.
1710	 * This make a large difference for gcc-1.40 and a tiny difference
1711	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1712	 * best results.  gcc-2.6.0 can't handle this.
1713	 */
1714	al = data;
1715	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1716}
1717
1718#endif /* DDB */
1719