machdep.c revision 27899
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.253 1997/07/20 08:37:19 bde Exp $
39 */
40
41#include "apm.h"
42#include "npx.h"
43#include "opt_sysvipc.h"
44#include "opt_ddb.h"
45#include "opt_bounce.h"
46#include "opt_machdep.h"
47#include "opt_perfmon.h"
48#include "opt_smp.h"
49#include "opt_userconfig.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/sysproto.h>
54#include <sys/signalvar.h>
55#include <sys/kernel.h>
56#include <sys/proc.h>
57#include <sys/buf.h>
58#include <sys/reboot.h>
59#include <sys/conf.h>
60#include <sys/callout.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/msgbuf.h>
64#include <sys/sysent.h>
65#include <sys/sysctl.h>
66#include <sys/vmmeter.h>
67
68#ifdef SYSVSHM
69#include <sys/shm.h>
70#endif
71
72#ifdef SYSVMSG
73#include <sys/msg.h>
74#endif
75
76#ifdef SYSVSEM
77#include <sys/sem.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_prot.h>
83#include <sys/lock.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_extern.h>
90
91#include <sys/user.h>
92#include <sys/exec.h>
93
94#include <ddb/ddb.h>
95
96#include <net/netisr.h>
97
98#if NAPM > 0
99#include <machine/apm_bios.h>
100#endif
101#include <machine/cpu.h>
102#include <machine/reg.h>
103#include <machine/psl.h>
104#include <machine/clock.h>
105#include <machine/specialreg.h>
106#include <machine/cons.h>
107#include <machine/bootinfo.h>
108#include <machine/md_var.h>
109#ifdef SMP
110#include <machine/smp.h>
111#endif
112#ifdef PERFMON
113#include <machine/perfmon.h>
114#endif
115
116#include <i386/isa/isa_device.h>
117#include <i386/isa/intr_machdep.h>
118#include <i386/isa/rtc.h>
119#include <machine/random.h>
120
121extern void init386 __P((int first));
122extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
123extern int ptrace_single_step __P((struct proc *p));
124extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
125extern void dblfault_handler __P((void));
126
127extern void printcpuinfo(void);	/* XXX header file */
128extern void earlysetcpuclass(void);	/* same header file */
129extern void finishidentcpu(void);
130extern void panicifcpuunsupported(void);
131extern void initializecpu(void);
132
133static void cpu_startup __P((void *));
134SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
135
136
137#ifdef BOUNCE_BUFFERS
138extern char *bouncememory;
139extern int maxbkva;
140#ifdef BOUNCEPAGES
141int	bouncepages = BOUNCEPAGES;
142#else
143int	bouncepages = 0;
144#endif
145#endif	/* BOUNCE_BUFFERS */
146
147extern int freebufspace;
148int	msgbufmapped = 0;		/* set when safe to use msgbuf */
149int _udatasel, _ucodesel;
150u_int	atdevbase;
151
152
153int physmem = 0;
154int cold = 1;
155
156static int
157sysctl_hw_physmem SYSCTL_HANDLER_ARGS
158{
159	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
160	return (error);
161}
162
163SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
164	0, 0, sysctl_hw_physmem, "I", "");
165
166static int
167sysctl_hw_usermem SYSCTL_HANDLER_ARGS
168{
169	int error = sysctl_handle_int(oidp, 0,
170		ctob(physmem - cnt.v_wire_count), req);
171	return (error);
172}
173
174SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
175	0, 0, sysctl_hw_usermem, "I", "");
176
177int boothowto = 0, bootverbose = 0, Maxmem = 0;
178static int	badpages = 0;
179long dumplo;
180extern int bootdev;
181
182vm_offset_t phys_avail[10];
183
184/* must be 2 less so 0 0 can signal end of chunks */
185#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
186
187static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
188
189static vm_offset_t buffer_sva, buffer_eva;
190vm_offset_t clean_sva, clean_eva;
191static vm_offset_t pager_sva, pager_eva;
192extern struct linker_set netisr_set;
193
194#define offsetof(type, member)	((size_t)(&((type *)0)->member))
195
196static void
197cpu_startup(dummy)
198	void *dummy;
199{
200	register unsigned i;
201	register caddr_t v;
202	vm_offset_t maxaddr;
203	vm_size_t size = 0;
204	int firstaddr;
205	vm_offset_t minaddr;
206
207	if (boothowto & RB_VERBOSE)
208		bootverbose++;
209
210	/*
211	 * Good {morning,afternoon,evening,night}.
212	 */
213	printf(version);
214	earlysetcpuclass();
215	startrtclock();
216	printcpuinfo();
217	panicifcpuunsupported();
218#ifdef PERFMON
219	perfmon_init();
220#endif
221	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
222	/*
223	 * Display any holes after the first chunk of extended memory.
224	 */
225	if (badpages != 0) {
226		int indx = 1;
227
228		/*
229		 * XXX skip reporting ISA hole & unmanaged kernel memory
230		 */
231		if (phys_avail[0] == PAGE_SIZE)
232			indx += 2;
233
234		printf("Physical memory hole(s):\n");
235		for (; phys_avail[indx + 1] != 0; indx += 2) {
236			int size = phys_avail[indx + 1] - phys_avail[indx];
237
238			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
239			    phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
240		}
241	}
242
243	/*
244	 * Quickly wire in netisrs.
245	 */
246	setup_netisrs(&netisr_set);
247
248	/*
249	 * Allocate space for system data structures.
250	 * The first available kernel virtual address is in "v".
251	 * As pages of kernel virtual memory are allocated, "v" is incremented.
252	 * As pages of memory are allocated and cleared,
253	 * "firstaddr" is incremented.
254	 * An index into the kernel page table corresponding to the
255	 * virtual memory address maintained in "v" is kept in "mapaddr".
256	 */
257
258	/*
259	 * Make two passes.  The first pass calculates how much memory is
260	 * needed and allocates it.  The second pass assigns virtual
261	 * addresses to the various data structures.
262	 */
263	firstaddr = 0;
264again:
265	v = (caddr_t)firstaddr;
266
267#define	valloc(name, type, num) \
268	    (name) = (type *)v; v = (caddr_t)((name)+(num))
269#define	valloclim(name, type, num, lim) \
270	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
271	valloc(callout, struct callout, ncallout);
272#ifdef SYSVSHM
273	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
274#endif
275#ifdef SYSVSEM
276	valloc(sema, struct semid_ds, seminfo.semmni);
277	valloc(sem, struct sem, seminfo.semmns);
278	/* This is pretty disgusting! */
279	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
280#endif
281#ifdef SYSVMSG
282	valloc(msgpool, char, msginfo.msgmax);
283	valloc(msgmaps, struct msgmap, msginfo.msgseg);
284	valloc(msghdrs, struct msg, msginfo.msgtql);
285	valloc(msqids, struct msqid_ds, msginfo.msgmni);
286#endif
287
288	if (nbuf == 0) {
289		nbuf = 30;
290		if( physmem > 1024)
291			nbuf += min((physmem - 1024) / 8, 2048);
292	}
293	nswbuf = max(min(nbuf/4, 128), 16);
294
295	valloc(swbuf, struct buf, nswbuf);
296	valloc(buf, struct buf, nbuf);
297
298#ifdef BOUNCE_BUFFERS
299	/*
300	 * If there is more than 16MB of memory, allocate some bounce buffers
301	 */
302	if (Maxmem > 4096) {
303		if (bouncepages == 0) {
304			bouncepages = 64;
305			bouncepages += ((Maxmem - 4096) / 2048) * 32;
306			if (bouncepages > 128)
307				bouncepages = 128;
308		}
309		v = (caddr_t)((vm_offset_t)round_page(v));
310		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
311	}
312#endif
313
314	/*
315	 * End of first pass, size has been calculated so allocate memory
316	 */
317	if (firstaddr == 0) {
318		size = (vm_size_t)(v - firstaddr);
319		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
320		if (firstaddr == 0)
321			panic("startup: no room for tables");
322		goto again;
323	}
324
325	/*
326	 * End of second pass, addresses have been assigned
327	 */
328	if ((vm_size_t)(v - firstaddr) != size)
329		panic("startup: table size inconsistency");
330
331#ifdef BOUNCE_BUFFERS
332	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
333			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
334				maxbkva + pager_map_size, TRUE);
335	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
336#else
337	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
338			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
339#endif
340	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
341				(nbuf*BKVASIZE), TRUE);
342	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
343				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
344	pager_map->system_map = 1;
345	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
346				(16*ARG_MAX), TRUE);
347	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
348				(maxproc*UPAGES*PAGE_SIZE), FALSE);
349
350	/*
351	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
352	 * we use the more space efficient malloc in place of kmem_alloc.
353	 */
354	{
355		vm_offset_t mb_map_size;
356
357		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
358		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
359		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
360		bzero(mclrefcnt, mb_map_size / MCLBYTES);
361		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
362			mb_map_size, FALSE);
363		mb_map->system_map = 1;
364	}
365
366	/*
367	 * Initialize callouts
368	 */
369	callfree = callout;
370	for (i = 1; i < ncallout; i++)
371		callout[i-1].c_next = &callout[i];
372
373#if defined(USERCONFIG)
374#if defined(USERCONFIG_BOOT)
375	if (1) {
376#else
377        if (boothowto & RB_CONFIG) {
378#endif
379		userconfig();
380		cninit();	/* the preferred console may have changed */
381	}
382#endif
383
384#ifdef BOUNCE_BUFFERS
385	/*
386	 * init bounce buffers
387	 */
388	vm_bounce_init();
389#endif
390
391	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
392	    ptoa(cnt.v_free_count) / 1024);
393
394#ifdef SMP
395	/*
396	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
397	 */
398	mp_start();			/* fire up the APs and APICs */
399	mp_announce();
400#endif  /* SMP */
401
402	/*
403	 * Set up buffers, so they can be used to read disk labels.
404	 */
405	bufinit();
406	vm_pager_bufferinit();
407}
408
409int
410register_netisr(num, handler)
411	int num;
412	netisr_t *handler;
413{
414
415	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
416		printf("register_netisr: bad isr number: %d\n", num);
417		return (EINVAL);
418	}
419	netisrs[num] = handler;
420	return (0);
421}
422
423static void
424setup_netisrs(ls)
425	struct linker_set *ls;
426{
427	int i;
428	const struct netisrtab *nit;
429
430	for(i = 0; ls->ls_items[i]; i++) {
431		nit = (const struct netisrtab *)ls->ls_items[i];
432		register_netisr(nit->nit_num, nit->nit_isr);
433	}
434}
435
436/*
437 * Send an interrupt to process.
438 *
439 * Stack is set up to allow sigcode stored
440 * at top to call routine, followed by kcall
441 * to sigreturn routine below.  After sigreturn
442 * resets the signal mask, the stack, and the
443 * frame pointer, it returns to the user
444 * specified pc, psl.
445 */
446void
447sendsig(catcher, sig, mask, code)
448	sig_t catcher;
449	int sig, mask;
450	u_long code;
451{
452	register struct proc *p = curproc;
453	register struct trapframe *regs;
454	register struct sigframe *fp;
455	struct sigframe sf;
456	struct sigacts *psp = p->p_sigacts;
457	int oonstack;
458
459	regs = p->p_md.md_regs;
460        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
461	/*
462	 * Allocate and validate space for the signal handler context.
463	 */
464        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
465	    (psp->ps_sigonstack & sigmask(sig))) {
466		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
467		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
468		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
469	} else {
470		fp = (struct sigframe *)regs->tf_esp - 1;
471	}
472
473	/*
474	 * grow() will return FALSE if the fp will not fit inside the stack
475	 *	and the stack can not be grown. useracc will return FALSE
476	 *	if access is denied.
477	 */
478	if ((grow(p, (int)fp) == FALSE) ||
479	    (useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) {
480		/*
481		 * Process has trashed its stack; give it an illegal
482		 * instruction to halt it in its tracks.
483		 */
484		SIGACTION(p, SIGILL) = SIG_DFL;
485		sig = sigmask(SIGILL);
486		p->p_sigignore &= ~sig;
487		p->p_sigcatch &= ~sig;
488		p->p_sigmask &= ~sig;
489		psignal(p, SIGILL);
490		return;
491	}
492
493	/*
494	 * Build the argument list for the signal handler.
495	 */
496	if (p->p_sysent->sv_sigtbl) {
497		if (sig < p->p_sysent->sv_sigsize)
498			sig = p->p_sysent->sv_sigtbl[sig];
499		else
500			sig = p->p_sysent->sv_sigsize + 1;
501	}
502	sf.sf_signum = sig;
503	sf.sf_code = code;
504	sf.sf_scp = &fp->sf_sc;
505	sf.sf_addr = (char *) regs->tf_err;
506	sf.sf_handler = catcher;
507
508	/* save scratch registers */
509	sf.sf_sc.sc_eax = regs->tf_eax;
510	sf.sf_sc.sc_ebx = regs->tf_ebx;
511	sf.sf_sc.sc_ecx = regs->tf_ecx;
512	sf.sf_sc.sc_edx = regs->tf_edx;
513	sf.sf_sc.sc_esi = regs->tf_esi;
514	sf.sf_sc.sc_edi = regs->tf_edi;
515	sf.sf_sc.sc_cs = regs->tf_cs;
516	sf.sf_sc.sc_ds = regs->tf_ds;
517	sf.sf_sc.sc_ss = regs->tf_ss;
518	sf.sf_sc.sc_es = regs->tf_es;
519	sf.sf_sc.sc_isp = regs->tf_isp;
520
521	/*
522	 * Build the signal context to be used by sigreturn.
523	 */
524	sf.sf_sc.sc_onstack = oonstack;
525	sf.sf_sc.sc_mask = mask;
526	sf.sf_sc.sc_sp = regs->tf_esp;
527	sf.sf_sc.sc_fp = regs->tf_ebp;
528	sf.sf_sc.sc_pc = regs->tf_eip;
529	sf.sf_sc.sc_ps = regs->tf_eflags;
530
531	/*
532	 * Copy the sigframe out to the user's stack.
533	 */
534	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
535		/*
536		 * Something is wrong with the stack pointer.
537		 * ...Kill the process.
538		 */
539		sigexit(p, SIGILL);
540	};
541
542	regs->tf_esp = (int)fp;
543	regs->tf_eip = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
544	regs->tf_eflags &= ~PSL_VM;
545	regs->tf_cs = _ucodesel;
546	regs->tf_ds = _udatasel;
547	regs->tf_es = _udatasel;
548	regs->tf_ss = _udatasel;
549}
550
551/*
552 * System call to cleanup state after a signal
553 * has been taken.  Reset signal mask and
554 * stack state from context left by sendsig (above).
555 * Return to previous pc and psl as specified by
556 * context left by sendsig. Check carefully to
557 * make sure that the user has not modified the
558 * state to gain improper privileges.
559 */
560int
561sigreturn(p, uap, retval)
562	struct proc *p;
563	struct sigreturn_args /* {
564		struct sigcontext *sigcntxp;
565	} */ *uap;
566	int *retval;
567{
568	register struct sigcontext *scp;
569	register struct sigframe *fp;
570	register struct trapframe *regs = p->p_md.md_regs;
571	int eflags;
572
573	/*
574	 * (XXX old comment) regs->tf_esp points to the return address.
575	 * The user scp pointer is above that.
576	 * The return address is faked in the signal trampoline code
577	 * for consistency.
578	 */
579	scp = uap->sigcntxp;
580	fp = (struct sigframe *)
581	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
582
583	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
584		return(EFAULT);
585
586	/*
587	 * Don't allow users to change privileged or reserved flags.
588	 */
589#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
590	eflags = scp->sc_ps;
591	/*
592	 * XXX do allow users to change the privileged flag PSL_RF.  The
593	 * cpu sets PSL_RF in tf_eflags for faults.  Debuggers should
594	 * sometimes set it there too.  tf_eflags is kept in the signal
595	 * context during signal handling and there is no other place
596	 * to remember it, so the PSL_RF bit may be corrupted by the
597	 * signal handler without us knowing.  Corruption of the PSL_RF
598	 * bit at worst causes one more or one less debugger trap, so
599	 * allowing it is fairly harmless.
600	 */
601	if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
602#ifdef DEBUG
603    		printf("sigreturn: eflags = 0x%x\n", eflags);
604#endif
605    		return(EINVAL);
606	}
607
608	/*
609	 * Don't allow users to load a valid privileged %cs.  Let the
610	 * hardware check for invalid selectors, excess privilege in
611	 * other selectors, invalid %eip's and invalid %esp's.
612	 */
613#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
614	if (!CS_SECURE(scp->sc_cs)) {
615#ifdef DEBUG
616    		printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
617#endif
618		trapsignal(p, SIGBUS, T_PROTFLT);
619		return(EINVAL);
620	}
621
622	/* restore scratch registers */
623	regs->tf_eax = scp->sc_eax;
624	regs->tf_ebx = scp->sc_ebx;
625	regs->tf_ecx = scp->sc_ecx;
626	regs->tf_edx = scp->sc_edx;
627	regs->tf_esi = scp->sc_esi;
628	regs->tf_edi = scp->sc_edi;
629	regs->tf_cs = scp->sc_cs;
630	regs->tf_ds = scp->sc_ds;
631	regs->tf_es = scp->sc_es;
632	regs->tf_ss = scp->sc_ss;
633	regs->tf_isp = scp->sc_isp;
634
635	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
636		return(EINVAL);
637
638	if (scp->sc_onstack & 01)
639		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
640	else
641		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
642	p->p_sigmask = scp->sc_mask & ~sigcantmask;
643	regs->tf_ebp = scp->sc_fp;
644	regs->tf_esp = scp->sc_sp;
645	regs->tf_eip = scp->sc_pc;
646	regs->tf_eflags = eflags;
647	return(EJUSTRETURN);
648}
649
650/*
651 * Machine dependent boot() routine
652 *
653 * I haven't seen anything to put here yet
654 * Possibly some stuff might be grafted back here from boot()
655 */
656void
657cpu_boot(int howto)
658{
659}
660
661/*
662 * Shutdown the CPU as much as possible
663 */
664void
665cpu_halt(void)
666{
667	for (;;)
668		__asm__ ("hlt");
669}
670
671/*
672 * Turn the power off.
673 */
674void
675cpu_power_down(void)
676{
677#if NAPM > 0
678	apm_power_off();
679#endif
680}
681
682/*
683 * Clear registers on exec
684 */
685void
686setregs(p, entry, stack)
687	struct proc *p;
688	u_long entry;
689	u_long stack;
690{
691	struct trapframe *regs = p->p_md.md_regs;
692
693#ifdef USER_LDT
694	struct pcb *pcb = &p->p_addr->u_pcb;
695
696	/* was i386_user_cleanup() in NetBSD */
697	if (pcb->pcb_ldt) {
698		if (pcb == curpcb)
699			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
700		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
701			pcb->pcb_ldt_len * sizeof(union descriptor));
702		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
703 	}
704#endif
705
706	bzero((char *)regs, sizeof(struct trapframe));
707	regs->tf_eip = entry;
708	regs->tf_esp = stack;
709	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
710	regs->tf_ss = _udatasel;
711	regs->tf_ds = _udatasel;
712	regs->tf_es = _udatasel;
713	regs->tf_cs = _ucodesel;
714
715	/*
716	 * Initialize the math emulator (if any) for the current process.
717	 * Actually, just clear the bit that says that the emulator has
718	 * been initialized.  Initialization is delayed until the process
719	 * traps to the emulator (if it is done at all) mainly because
720	 * emulators don't provide an entry point for initialization.
721	 */
722	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
723
724	/*
725	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
726	 * for why fwait must be trapped at least if there is an npx or an
727	 * emulator).  This is mainly to handle the case where npx0 is not
728	 * configured, since the npx routines normally set up the trap
729	 * otherwise.  It should be done only at boot time, but doing it
730	 * here allows modifying `npx_exists' for testing the emulator on
731	 * systems with an npx.
732	 */
733	load_cr0(rcr0() | CR0_MP | CR0_TS);
734
735#if NNPX > 0
736	/* Initialize the npx (if any) for the current process. */
737	npxinit(__INITIAL_NPXCW__);
738#endif
739}
740
741static int
742sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
743{
744	int error;
745	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
746		req);
747	if (!error && req->newptr)
748		resettodr();
749	return (error);
750}
751
752SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
753	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
754
755SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
756	CTLFLAG_RW, &disable_rtc_set, 0, "");
757
758SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
759	CTLFLAG_RD, &bootinfo, bootinfo, "");
760
761SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
762	CTLFLAG_RW, &wall_cmos_clock, 0, "");
763
764/*
765 * Initialize 386 and configure to run kernel
766 */
767
768/*
769 * Initialize segments & interrupt table
770 */
771
772int currentldt;
773int _default_ldt;
774#ifdef SMP
775union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
776#else
777union descriptor gdt[NGDT];		/* global descriptor table */
778#endif
779struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
780union descriptor ldt[NLDT];		/* local descriptor table */
781#ifdef SMP
782/* table descriptors - used to load tables by microp */
783struct region_descriptor r_gdt, r_idt;
784#endif
785
786#ifdef SMP
787extern struct i386tss common_tss;	/* One tss per cpu */
788#else
789struct i386tss common_tss;
790#endif
791
792static struct i386tss dblfault_tss;
793static char dblfault_stack[PAGE_SIZE];
794
795extern  struct user *proc0paddr;
796
797#ifdef TSS_IS_CACHED			/* cpu_switch helper */
798struct segment_descriptor *tssptr;
799int gsel_tss;
800#endif
801
802/* software prototypes -- in more palatable form */
803struct soft_segment_descriptor gdt_segs[
804#ifdef SMP
805					NGDT + NCPU
806#endif
807						   ] = {
808/* GNULL_SEL	0 Null Descriptor */
809{	0x0,			/* segment base address  */
810	0x0,			/* length */
811	0,			/* segment type */
812	0,			/* segment descriptor priority level */
813	0,			/* segment descriptor present */
814	0, 0,
815	0,			/* default 32 vs 16 bit size */
816	0  			/* limit granularity (byte/page units)*/ },
817/* GCODE_SEL	1 Code Descriptor for kernel */
818{	0x0,			/* segment base address  */
819	0xfffff,		/* length - all address space */
820	SDT_MEMERA,		/* segment type */
821	0,			/* segment descriptor priority level */
822	1,			/* segment descriptor present */
823	0, 0,
824	1,			/* default 32 vs 16 bit size */
825	1  			/* limit granularity (byte/page units)*/ },
826/* GDATA_SEL	2 Data Descriptor for kernel */
827{	0x0,			/* segment base address  */
828	0xfffff,		/* length - all address space */
829	SDT_MEMRWA,		/* segment type */
830	0,			/* segment descriptor priority level */
831	1,			/* segment descriptor present */
832	0, 0,
833	1,			/* default 32 vs 16 bit size */
834	1  			/* limit granularity (byte/page units)*/ },
835/* GLDT_SEL	3 LDT Descriptor */
836{	(int) ldt,		/* segment base address  */
837	sizeof(ldt)-1,		/* length - all address space */
838	SDT_SYSLDT,		/* segment type */
839	SEL_UPL,		/* segment descriptor priority level */
840	1,			/* segment descriptor present */
841	0, 0,
842	0,			/* unused - default 32 vs 16 bit size */
843	0  			/* limit granularity (byte/page units)*/ },
844/* GTGATE_SEL	4 Null Descriptor - Placeholder */
845{	0x0,			/* segment base address  */
846	0x0,			/* length - all address space */
847	0,			/* segment type */
848	0,			/* segment descriptor priority level */
849	0,			/* segment descriptor present */
850	0, 0,
851	0,			/* default 32 vs 16 bit size */
852	0  			/* limit granularity (byte/page units)*/ },
853/* GPANIC_SEL	5 Panic Tss Descriptor */
854{	(int) &dblfault_tss,	/* segment base address  */
855	sizeof(struct i386tss)-1,/* length - all address space */
856	SDT_SYS386TSS,		/* segment type */
857	0,			/* segment descriptor priority level */
858	1,			/* segment descriptor present */
859	0, 0,
860	0,			/* unused - default 32 vs 16 bit size */
861	0  			/* limit granularity (byte/page units)*/ },
862/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
863{
864	(int) &common_tss,	/* segment base address */
865	sizeof(struct i386tss)-1,/* length - all address space */
866	SDT_SYS386TSS,		/* segment type */
867	0,			/* segment descriptor priority level */
868	1,			/* segment descriptor present */
869	0, 0,
870	0,			/* unused - default 32 vs 16 bit size */
871	0  			/* limit granularity (byte/page units)*/ },
872/* GUSERLDT_SEL	7 User LDT Descriptor per process */
873{	(int) ldt,		/* segment base address  */
874	(512 * sizeof(union descriptor)-1),		/* length */
875	SDT_SYSLDT,		/* segment type */
876	0,			/* segment descriptor priority level */
877	1,			/* segment descriptor present */
878	0, 0,
879	0,			/* unused - default 32 vs 16 bit size */
880	0  			/* limit granularity (byte/page units)*/ },
881/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
882{	0,			/* segment base address (overwritten by APM)  */
883	0xfffff,		/* length */
884	SDT_MEMERA,		/* segment type */
885	0,			/* segment descriptor priority level */
886	1,			/* segment descriptor present */
887	0, 0,
888	1,			/* default 32 vs 16 bit size */
889	1  			/* limit granularity (byte/page units)*/ },
890/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
891{	0,			/* segment base address (overwritten by APM)  */
892	0xfffff,		/* length */
893	SDT_MEMERA,		/* segment type */
894	0,			/* segment descriptor priority level */
895	1,			/* segment descriptor present */
896	0, 0,
897	0,			/* default 32 vs 16 bit size */
898	1  			/* limit granularity (byte/page units)*/ },
899/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
900{	0,			/* segment base address (overwritten by APM) */
901	0xfffff,		/* length */
902	SDT_MEMRWA,		/* segment type */
903	0,			/* segment descriptor priority level */
904	1,			/* segment descriptor present */
905	0, 0,
906	1,			/* default 32 vs 16 bit size */
907	1  			/* limit granularity (byte/page units)*/ },
908};
909
910static struct soft_segment_descriptor ldt_segs[] = {
911	/* Null Descriptor - overwritten by call gate */
912{	0x0,			/* segment base address  */
913	0x0,			/* length - all address space */
914	0,			/* segment type */
915	0,			/* segment descriptor priority level */
916	0,			/* segment descriptor present */
917	0, 0,
918	0,			/* default 32 vs 16 bit size */
919	0  			/* limit granularity (byte/page units)*/ },
920	/* Null Descriptor - overwritten by call gate */
921{	0x0,			/* segment base address  */
922	0x0,			/* length - all address space */
923	0,			/* segment type */
924	0,			/* segment descriptor priority level */
925	0,			/* segment descriptor present */
926	0, 0,
927	0,			/* default 32 vs 16 bit size */
928	0  			/* limit granularity (byte/page units)*/ },
929	/* Null Descriptor - overwritten by call gate */
930{	0x0,			/* segment base address  */
931	0x0,			/* length - all address space */
932	0,			/* segment type */
933	0,			/* segment descriptor priority level */
934	0,			/* segment descriptor present */
935	0, 0,
936	0,			/* default 32 vs 16 bit size */
937	0  			/* limit granularity (byte/page units)*/ },
938	/* Code Descriptor for user */
939{	0x0,			/* segment base address  */
940	0xfffff,		/* length - all address space */
941	SDT_MEMERA,		/* segment type */
942	SEL_UPL,		/* segment descriptor priority level */
943	1,			/* segment descriptor present */
944	0, 0,
945	1,			/* default 32 vs 16 bit size */
946	1  			/* limit granularity (byte/page units)*/ },
947	/* Data Descriptor for user */
948{	0x0,			/* segment base address  */
949	0xfffff,		/* length - all address space */
950	SDT_MEMRWA,		/* segment type */
951	SEL_UPL,		/* segment descriptor priority level */
952	1,			/* segment descriptor present */
953	0, 0,
954	1,			/* default 32 vs 16 bit size */
955	1  			/* limit granularity (byte/page units)*/ },
956};
957
958void
959setidt(idx, func, typ, dpl, selec)
960	int idx;
961	inthand_t *func;
962	int typ;
963	int dpl;
964	int selec;
965{
966	struct gate_descriptor *ip = idt + idx;
967
968	ip->gd_looffset = (int)func;
969	ip->gd_selector = selec;
970	ip->gd_stkcpy = 0;
971	ip->gd_xx = 0;
972	ip->gd_type = typ;
973	ip->gd_dpl = dpl;
974	ip->gd_p = 1;
975	ip->gd_hioffset = ((int)func)>>16 ;
976}
977
978#define	IDTVEC(name)	__CONCAT(X,name)
979
980extern inthand_t
981	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
982	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
983	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
984	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
985	IDTVEC(syscall), IDTVEC(int0x80_syscall);
986
987void
988sdtossd(sd, ssd)
989	struct segment_descriptor *sd;
990	struct soft_segment_descriptor *ssd;
991{
992	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
993	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
994	ssd->ssd_type  = sd->sd_type;
995	ssd->ssd_dpl   = sd->sd_dpl;
996	ssd->ssd_p     = sd->sd_p;
997	ssd->ssd_def32 = sd->sd_def32;
998	ssd->ssd_gran  = sd->sd_gran;
999}
1000
1001void
1002init386(first)
1003	int first;
1004{
1005	int x;
1006	unsigned biosbasemem, biosextmem;
1007	struct gate_descriptor *gdp;
1008#ifndef TSS_IS_CACHED
1009	int gsel_tss;
1010#endif
1011	struct isa_device *idp;
1012#ifndef SMP
1013	/* table descriptors - used to load tables by microp */
1014	struct region_descriptor r_gdt, r_idt;
1015#endif
1016	int	pagesinbase, pagesinext;
1017	int	target_page, pa_indx;
1018	int	off;
1019
1020	proc0.p_addr = proc0paddr;
1021
1022	atdevbase = ISA_HOLE_START + KERNBASE;
1023
1024	/*
1025	 * Initialize the console before we print anything out.
1026	 */
1027	cninit();
1028
1029	/*
1030	 * make gdt memory segments, the code segment goes up to end of the
1031	 * page with etext in it, the data segment goes to the end of
1032	 * the address space
1033	 */
1034	/*
1035	 * XXX text protection is temporarily (?) disabled.  The limit was
1036	 * i386_btop(round_page(etext)) - 1.
1037	 */
1038	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1039	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1040#ifdef BDE_DEBUGGER
1041#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1042#else
1043#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1044#endif
1045	for (x = 0; x < NGDT1; x++)
1046		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1047
1048#ifdef SMP
1049	/*
1050	 * Spin these up now.  init_secondary() grabs them.  We could use
1051	 * #for(x,y,z) / #endfor cpp directives if they existed.
1052	 */
1053	for (x = 0; x < NCPU; x++) {
1054		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1055		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1056	}
1057#endif
1058
1059	/* make ldt memory segments */
1060	/*
1061	 * The data segment limit must not cover the user area because we
1062	 * don't want the user area to be writable in copyout() etc. (page
1063	 * level protection is lost in kernel mode on 386's).  Also, we
1064	 * don't want the user area to be writable directly (page level
1065	 * protection of the user area is not available on 486's with
1066	 * CR0_WP set, because there is no user-read/kernel-write mode).
1067	 *
1068	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1069	 * should be spelled ...MAX_USER...
1070	 */
1071#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1072	/*
1073	 * The code segment limit has to cover the user area until we move
1074	 * the signal trampoline out of the user area.  This is safe because
1075	 * the code segment cannot be written to directly.
1076	 */
1077#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1078	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1079	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1080	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1081		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1082
1083	/* exceptions */
1084	for (x = 0; x < NIDT; x++)
1085		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1086	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1087	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1088	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1089 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1090	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1091	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1092	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1093	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1094	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1095	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1096	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1097	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1098	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1099	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1100	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1101	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1102	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1103	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1104	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1105 	setidt(0x80, &IDTVEC(int0x80_syscall),
1106			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1107
1108#include	"isa.h"
1109#if	NISA >0
1110	isa_defaultirq();
1111#endif
1112	rand_initialize();
1113
1114	r_gdt.rd_limit = sizeof(gdt) - 1;
1115	r_gdt.rd_base =  (int) gdt;
1116	lgdt(&r_gdt);
1117
1118	r_idt.rd_limit = sizeof(idt) - 1;
1119	r_idt.rd_base = (int) idt;
1120	lidt(&r_idt);
1121
1122	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1123	lldt(_default_ldt);
1124	currentldt = _default_ldt;
1125
1126#ifdef DDB
1127	kdb_init();
1128	if (boothowto & RB_KDB)
1129		Debugger("Boot flags requested debugger");
1130#endif
1131
1132	finishidentcpu();	/* Final stage of CPU initialization */
1133	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1134	initializecpu();	/* Initialize CPU registers */
1135
1136	/* Use BIOS values stored in RTC CMOS RAM, since probing
1137	 * breaks certain 386 AT relics.
1138	 */
1139	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1140	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1141
1142	/*
1143	 * If BIOS tells us that it has more than 640k in the basemem,
1144	 *	don't believe it - set it to 640k.
1145	 */
1146	if (biosbasemem > 640) {
1147		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1148		       biosbasemem);
1149		biosbasemem = 640;
1150	}
1151	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1152		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1153		       bootinfo.bi_basemem);
1154		bootinfo.bi_basemem = 640;
1155	}
1156
1157	/*
1158	 * Warn if the official BIOS interface disagrees with the RTC
1159	 * interface used above about the amount of base memory or the
1160	 * amount of extended memory.  Prefer the BIOS value for the base
1161	 * memory.  This is necessary for machines that `steal' base
1162	 * memory for use as BIOS memory, at least if we are going to use
1163	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1164	 * Eventually the hackish interface shouldn't even be looked at.
1165	 */
1166	if (bootinfo.bi_memsizes_valid) {
1167		if (bootinfo.bi_basemem != biosbasemem) {
1168			vm_offset_t pa;
1169
1170			printf(
1171	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1172			       bootinfo.bi_basemem, biosbasemem);
1173			biosbasemem = bootinfo.bi_basemem;
1174
1175			/*
1176			 * XXX if biosbasemem is now < 640, there is `hole'
1177			 * between the end of base memory and the start of
1178			 * ISA memory.  The hole may be empty or it may
1179			 * contain BIOS code or data.  Map it read/write so
1180			 * that the BIOS can write to it.  (Memory from 0 to
1181			 * the physical end of the kernel is mapped read-only
1182			 * to begin with and then parts of it are remapped.
1183			 * The parts that aren't remapped form holes that
1184			 * remain read-only and are unused by the kernel.
1185			 * The base memory area is below the physical end of
1186			 * the kernel and right now forms a read-only hole.
1187			 * The part of it from 0 to
1188			 * (trunc_page(biosbasemem * 1024) - 1) will be
1189			 * remapped and used by the kernel later.)
1190			 *
1191			 * This code is similar to the code used in
1192			 * pmap_mapdev, but since no memory needs to be
1193			 * allocated we simply change the mapping.
1194			 */
1195			for (pa = trunc_page(biosbasemem * 1024);
1196			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1197				unsigned *pte;
1198
1199				pte = (unsigned *)vtopte(pa + KERNBASE);
1200				*pte = pa | PG_RW | PG_V;
1201			}
1202		}
1203		if (bootinfo.bi_extmem != biosextmem)
1204			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1205			       bootinfo.bi_extmem, biosextmem);
1206	}
1207
1208#ifdef SMP
1209	/* make hole for AP bootstrap code */
1210	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1211#else
1212	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1213#endif
1214
1215	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1216
1217	/*
1218	 * Special hack for chipsets that still remap the 384k hole when
1219	 *	there's 16MB of memory - this really confuses people that
1220	 *	are trying to use bus mastering ISA controllers with the
1221	 *	"16MB limit"; they only have 16MB, but the remapping puts
1222	 *	them beyond the limit.
1223	 */
1224	/*
1225	 * If extended memory is between 15-16MB (16-17MB phys address range),
1226	 *	chop it to 15MB.
1227	 */
1228	if ((pagesinext > 3840) && (pagesinext < 4096))
1229		pagesinext = 3840;
1230
1231	/*
1232	 * Maxmem isn't the "maximum memory", it's one larger than the
1233	 * highest page of the physical address space.  It should be
1234	 * called something like "Maxphyspage".
1235	 */
1236	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1237
1238#ifdef MAXMEM
1239	Maxmem = MAXMEM/4;
1240#endif
1241
1242#if NNPX > 0
1243	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1244	if (idp != NULL && idp->id_msize != 0)
1245		Maxmem = idp->id_msize / 4;
1246#endif
1247
1248#ifdef SMP
1249	/* look for the MP hardware - needed for apic addresses */
1250	mp_probe();
1251#endif
1252
1253	/* call pmap initialization to make new kernel address space */
1254	pmap_bootstrap (first, 0);
1255
1256	/*
1257	 * Size up each available chunk of physical memory.
1258	 */
1259
1260	/*
1261	 * We currently don't bother testing base memory.
1262	 * XXX  ...but we probably should.
1263	 */
1264	pa_indx = 0;
1265	badpages = 0;
1266	if (pagesinbase > 1) {
1267		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1268		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1269		physmem = pagesinbase - 1;
1270	} else {
1271		/* point at first chunk end */
1272		pa_indx++;
1273	}
1274
1275	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1276		int tmp, page_bad = FALSE;
1277
1278		/*
1279		 * map page into kernel: valid, read/write, non-cacheable
1280		 */
1281		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1282		invltlb();
1283
1284		tmp = *(int *)CADDR1;
1285		/*
1286		 * Test for alternating 1's and 0's
1287		 */
1288		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1289		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1290			page_bad = TRUE;
1291		}
1292		/*
1293		 * Test for alternating 0's and 1's
1294		 */
1295		*(volatile int *)CADDR1 = 0x55555555;
1296		if (*(volatile int *)CADDR1 != 0x55555555) {
1297			page_bad = TRUE;
1298		}
1299		/*
1300		 * Test for all 1's
1301		 */
1302		*(volatile int *)CADDR1 = 0xffffffff;
1303		if (*(volatile int *)CADDR1 != 0xffffffff) {
1304			page_bad = TRUE;
1305		}
1306		/*
1307		 * Test for all 0's
1308		 */
1309		*(volatile int *)CADDR1 = 0x0;
1310		if (*(volatile int *)CADDR1 != 0x0) {
1311			/*
1312			 * test of page failed
1313			 */
1314			page_bad = TRUE;
1315		}
1316		/*
1317		 * Restore original value.
1318		 */
1319		*(int *)CADDR1 = tmp;
1320
1321		/*
1322		 * Adjust array of valid/good pages.
1323		 */
1324		if (page_bad == FALSE) {
1325			/*
1326			 * If this good page is a continuation of the
1327			 * previous set of good pages, then just increase
1328			 * the end pointer. Otherwise start a new chunk.
1329			 * Note that "end" points one higher than end,
1330			 * making the range >= start and < end.
1331			 */
1332			if (phys_avail[pa_indx] == target_page) {
1333				phys_avail[pa_indx] += PAGE_SIZE;
1334			} else {
1335				pa_indx++;
1336				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1337					printf("Too many holes in the physical address space, giving up\n");
1338					pa_indx--;
1339					break;
1340				}
1341				phys_avail[pa_indx++] = target_page;	/* start */
1342				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1343			}
1344			physmem++;
1345		} else {
1346			badpages++;
1347			page_bad = FALSE;
1348		}
1349	}
1350
1351	*(int *)CMAP1 = 0;
1352	invltlb();
1353
1354	/*
1355	 * XXX
1356	 * The last chunk must contain at least one page plus the message
1357	 * buffer to avoid complicating other code (message buffer address
1358	 * calculation, etc.).
1359	 */
1360	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1361	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1362		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1363		phys_avail[pa_indx--] = 0;
1364		phys_avail[pa_indx--] = 0;
1365	}
1366
1367	Maxmem = atop(phys_avail[pa_indx]);
1368
1369	/* Trim off space for the message buffer. */
1370	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1371
1372	avail_end = phys_avail[pa_indx];
1373
1374	/* now running on new page tables, configured,and u/iom is accessible */
1375
1376	/* Map the message buffer. */
1377	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1378		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1379			   avail_end + off, VM_PROT_ALL, TRUE);
1380	msgbufmapped = 1;
1381
1382	/* make an initial tss so cpu can get interrupt stack on syscall! */
1383	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1384	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1385	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1386	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1387	ltr(gsel_tss);
1388
1389	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1390	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1391	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1392	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1393	dblfault_tss.tss_cr3 = (int)IdlePTD;
1394	dblfault_tss.tss_eip = (int) dblfault_handler;
1395	dblfault_tss.tss_eflags = PSL_KERNEL;
1396	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1397	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1398	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1399	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1400
1401#ifdef TSS_IS_CACHED			/* cpu_switch helper */
1402	tssptr = &gdt[GPROC0_SEL].sd;
1403#endif
1404
1405	/* make a call gate to reenter kernel with */
1406	gdp = &ldt[LSYS5CALLS_SEL].gd;
1407
1408	x = (int) &IDTVEC(syscall);
1409	gdp->gd_looffset = x++;
1410	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1411	gdp->gd_stkcpy = 1;
1412	gdp->gd_type = SDT_SYS386CGT;
1413	gdp->gd_dpl = SEL_UPL;
1414	gdp->gd_p = 1;
1415	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1416
1417	/* XXX does this work? */
1418	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1419
1420	/* transfer to user mode */
1421
1422	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1423	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1424
1425	/* setup proc 0's pcb */
1426	proc0.p_addr->u_pcb.pcb_flags = 0;
1427	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1428	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1429}
1430
1431int
1432ptrace_set_pc(p, addr)
1433	struct proc *p;
1434	unsigned int addr;
1435{
1436	p->p_md.md_regs->tf_eip = addr;
1437	return (0);
1438}
1439
1440int
1441ptrace_single_step(p)
1442	struct proc *p;
1443{
1444	p->p_md.md_regs->tf_eflags |= PSL_T;
1445	return (0);
1446}
1447
1448int ptrace_write_u(p, off, data)
1449	struct proc *p;
1450	vm_offset_t off;
1451	int data;
1452{
1453	struct trapframe frame_copy;
1454	vm_offset_t min;
1455	struct trapframe *tp;
1456
1457	/*
1458	 * Privileged kernel state is scattered all over the user area.
1459	 * Only allow write access to parts of regs and to fpregs.
1460	 */
1461	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1462	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1463		tp = p->p_md.md_regs;
1464		frame_copy = *tp;
1465		*(int *)((char *)&frame_copy + (off - min)) = data;
1466		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1467		    !CS_SECURE(frame_copy.tf_cs))
1468			return (EINVAL);
1469		*(int*)((char *)p->p_addr + off) = data;
1470		return (0);
1471	}
1472	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1473	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1474		*(int*)((char *)p->p_addr + off) = data;
1475		return (0);
1476	}
1477	return (EFAULT);
1478}
1479
1480int
1481fill_regs(p, regs)
1482	struct proc *p;
1483	struct reg *regs;
1484{
1485	struct pcb *pcb;
1486	struct trapframe *tp;
1487
1488	tp = p->p_md.md_regs;
1489	regs->r_es = tp->tf_es;
1490	regs->r_ds = tp->tf_ds;
1491	regs->r_edi = tp->tf_edi;
1492	regs->r_esi = tp->tf_esi;
1493	regs->r_ebp = tp->tf_ebp;
1494	regs->r_ebx = tp->tf_ebx;
1495	regs->r_edx = tp->tf_edx;
1496	regs->r_ecx = tp->tf_ecx;
1497	regs->r_eax = tp->tf_eax;
1498	regs->r_eip = tp->tf_eip;
1499	regs->r_cs = tp->tf_cs;
1500	regs->r_eflags = tp->tf_eflags;
1501	regs->r_esp = tp->tf_esp;
1502	regs->r_ss = tp->tf_ss;
1503	pcb = &p->p_addr->u_pcb;
1504	regs->r_fs = pcb->pcb_fs;
1505	regs->r_gs = pcb->pcb_gs;
1506	return (0);
1507}
1508
1509int
1510set_regs(p, regs)
1511	struct proc *p;
1512	struct reg *regs;
1513{
1514	struct pcb *pcb;
1515	struct trapframe *tp;
1516
1517	tp = p->p_md.md_regs;
1518	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1519	    !CS_SECURE(regs->r_cs))
1520		return (EINVAL);
1521	tp->tf_es = regs->r_es;
1522	tp->tf_ds = regs->r_ds;
1523	tp->tf_edi = regs->r_edi;
1524	tp->tf_esi = regs->r_esi;
1525	tp->tf_ebp = regs->r_ebp;
1526	tp->tf_ebx = regs->r_ebx;
1527	tp->tf_edx = regs->r_edx;
1528	tp->tf_ecx = regs->r_ecx;
1529	tp->tf_eax = regs->r_eax;
1530	tp->tf_eip = regs->r_eip;
1531	tp->tf_cs = regs->r_cs;
1532	tp->tf_eflags = regs->r_eflags;
1533	tp->tf_esp = regs->r_esp;
1534	tp->tf_ss = regs->r_ss;
1535	pcb = &p->p_addr->u_pcb;
1536	pcb->pcb_fs = regs->r_fs;
1537	pcb->pcb_gs = regs->r_gs;
1538	return (0);
1539}
1540
1541#ifndef DDB
1542void
1543Debugger(const char *msg)
1544{
1545	printf("Debugger(\"%s\") called.\n", msg);
1546}
1547#endif /* no DDB */
1548
1549#include <sys/disklabel.h>
1550
1551/*
1552 * Determine the size of the transfer, and make sure it is
1553 * within the boundaries of the partition. Adjust transfer
1554 * if needed, and signal errors or early completion.
1555 */
1556int
1557bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1558{
1559        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1560        int labelsect = lp->d_partitions[0].p_offset;
1561        int maxsz = p->p_size,
1562                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1563
1564        /* overwriting disk label ? */
1565        /* XXX should also protect bootstrap in first 8K */
1566        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1567#if LABELSECTOR != 0
1568            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1569#endif
1570            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1571                bp->b_error = EROFS;
1572                goto bad;
1573        }
1574
1575#if     defined(DOSBBSECTOR) && defined(notyet)
1576        /* overwriting master boot record? */
1577        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1578            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1579                bp->b_error = EROFS;
1580                goto bad;
1581        }
1582#endif
1583
1584        /* beyond partition? */
1585        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1586                /* if exactly at end of disk, return an EOF */
1587                if (bp->b_blkno == maxsz) {
1588                        bp->b_resid = bp->b_bcount;
1589                        return(0);
1590                }
1591                /* or truncate if part of it fits */
1592                sz = maxsz - bp->b_blkno;
1593                if (sz <= 0) {
1594                        bp->b_error = EINVAL;
1595                        goto bad;
1596                }
1597                bp->b_bcount = sz << DEV_BSHIFT;
1598        }
1599
1600        bp->b_pblkno = bp->b_blkno + p->p_offset;
1601        return(1);
1602
1603bad:
1604        bp->b_flags |= B_ERROR;
1605        return(-1);
1606}
1607
1608#ifdef DDB
1609
1610/*
1611 * Provide inb() and outb() as functions.  They are normally only
1612 * available as macros calling inlined functions, thus cannot be
1613 * called inside DDB.
1614 *
1615 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1616 */
1617
1618#undef inb
1619#undef outb
1620
1621/* silence compiler warnings */
1622u_char inb(u_int);
1623void outb(u_int, u_char);
1624
1625u_char
1626inb(u_int port)
1627{
1628	u_char	data;
1629	/*
1630	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1631	 * %edx, while gcc generates inferior code (movw instead of movl)
1632	 * if we tell it to load (u_short) port.
1633	 */
1634	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1635	return (data);
1636}
1637
1638void
1639outb(u_int port, u_char data)
1640{
1641	u_char	al;
1642	/*
1643	 * Use an unnecessary assignment to help gcc's register allocator.
1644	 * This make a large difference for gcc-1.40 and a tiny difference
1645	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1646	 * best results.  gcc-2.6.0 can't handle this.
1647	 */
1648	al = data;
1649	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1650}
1651
1652#endif /* DDB */
1653