machdep.c revision 27535
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.252 1997/06/27 18:29:55 fsmp Exp $
39 */
40
41#include "apm.h"
42#include "npx.h"
43#include "opt_sysvipc.h"
44#include "opt_ddb.h"
45#include "opt_bounce.h"
46#include "opt_machdep.h"
47#include "opt_perfmon.h"
48#include "opt_smp.h"
49#include "opt_userconfig.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/sysproto.h>
54#include <sys/signalvar.h>
55#include <sys/kernel.h>
56#include <sys/proc.h>
57#include <sys/buf.h>
58#include <sys/reboot.h>
59#include <sys/conf.h>
60#include <sys/callout.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/msgbuf.h>
64#include <sys/sysent.h>
65#include <sys/sysctl.h>
66#include <sys/vmmeter.h>
67
68#ifdef SYSVSHM
69#include <sys/shm.h>
70#endif
71
72#ifdef SYSVMSG
73#include <sys/msg.h>
74#endif
75
76#ifdef SYSVSEM
77#include <sys/sem.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_prot.h>
83#include <sys/lock.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_extern.h>
90
91#include <sys/user.h>
92#include <sys/exec.h>
93
94#include <ddb/ddb.h>
95
96#include <net/netisr.h>
97
98#if NAPM > 0
99#include <machine/apm_bios.h>
100#endif
101#include <machine/cpu.h>
102#include <machine/reg.h>
103#include <machine/psl.h>
104#include <machine/clock.h>
105#include <machine/specialreg.h>
106#include <machine/cons.h>
107#include <machine/bootinfo.h>
108#include <machine/md_var.h>
109#ifdef SMP
110#include <machine/smp.h>
111#endif
112#ifdef PERFMON
113#include <machine/perfmon.h>
114#endif
115
116#include <i386/isa/isa_device.h>
117#include <i386/isa/intr_machdep.h>
118#include <i386/isa/rtc.h>
119#include <machine/random.h>
120
121extern void init386 __P((int first));
122extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
123extern int ptrace_single_step __P((struct proc *p));
124extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
125extern void dblfault_handler __P((void));
126
127extern void printcpuinfo(void);	/* XXX header file */
128extern void earlysetcpuclass(void);	/* same header file */
129extern void finishidentcpu(void);
130extern void panicifcpuunsupported(void);
131extern void initializecpu(void);
132
133static void cpu_startup __P((void *));
134SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
135
136
137#ifdef BOUNCE_BUFFERS
138extern char *bouncememory;
139extern int maxbkva;
140#ifdef BOUNCEPAGES
141int	bouncepages = BOUNCEPAGES;
142#else
143int	bouncepages = 0;
144#endif
145#endif	/* BOUNCE_BUFFERS */
146
147extern int freebufspace;
148int	msgbufmapped = 0;		/* set when safe to use msgbuf */
149int _udatasel, _ucodesel;
150u_int	atdevbase;
151
152
153int physmem = 0;
154int cold = 1;
155
156static int
157sysctl_hw_physmem SYSCTL_HANDLER_ARGS
158{
159	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
160	return (error);
161}
162
163SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
164	0, 0, sysctl_hw_physmem, "I", "");
165
166static int
167sysctl_hw_usermem SYSCTL_HANDLER_ARGS
168{
169	int error = sysctl_handle_int(oidp, 0,
170		ctob(physmem - cnt.v_wire_count), req);
171	return (error);
172}
173
174SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
175	0, 0, sysctl_hw_usermem, "I", "");
176
177int boothowto = 0, bootverbose = 0, Maxmem = 0;
178static int	badpages = 0;
179long dumplo;
180extern int bootdev;
181
182vm_offset_t phys_avail[10];
183
184/* must be 2 less so 0 0 can signal end of chunks */
185#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
186
187static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
188
189static vm_offset_t buffer_sva, buffer_eva;
190vm_offset_t clean_sva, clean_eva;
191static vm_offset_t pager_sva, pager_eva;
192extern struct linker_set netisr_set;
193
194#define offsetof(type, member)	((size_t)(&((type *)0)->member))
195
196static void
197cpu_startup(dummy)
198	void *dummy;
199{
200	register unsigned i;
201	register caddr_t v;
202	vm_offset_t maxaddr;
203	vm_size_t size = 0;
204	int firstaddr;
205	vm_offset_t minaddr;
206
207	if (boothowto & RB_VERBOSE)
208		bootverbose++;
209
210	/*
211	 * Good {morning,afternoon,evening,night}.
212	 */
213	printf(version);
214	earlysetcpuclass();
215	startrtclock();
216	printcpuinfo();
217	panicifcpuunsupported();
218#ifdef PERFMON
219	perfmon_init();
220#endif
221	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
222	/*
223	 * Display any holes after the first chunk of extended memory.
224	 */
225	if (badpages != 0) {
226		int indx = 1;
227
228		/*
229		 * XXX skip reporting ISA hole & unmanaged kernel memory
230		 */
231		if (phys_avail[0] == PAGE_SIZE)
232			indx += 2;
233
234		printf("Physical memory hole(s):\n");
235		for (; phys_avail[indx + 1] != 0; indx += 2) {
236			int size = phys_avail[indx + 1] - phys_avail[indx];
237
238			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
239			    phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
240		}
241	}
242
243	/*
244	 * Quickly wire in netisrs.
245	 */
246	setup_netisrs(&netisr_set);
247
248	/*
249	 * Allocate space for system data structures.
250	 * The first available kernel virtual address is in "v".
251	 * As pages of kernel virtual memory are allocated, "v" is incremented.
252	 * As pages of memory are allocated and cleared,
253	 * "firstaddr" is incremented.
254	 * An index into the kernel page table corresponding to the
255	 * virtual memory address maintained in "v" is kept in "mapaddr".
256	 */
257
258	/*
259	 * Make two passes.  The first pass calculates how much memory is
260	 * needed and allocates it.  The second pass assigns virtual
261	 * addresses to the various data structures.
262	 */
263	firstaddr = 0;
264again:
265	v = (caddr_t)firstaddr;
266
267#define	valloc(name, type, num) \
268	    (name) = (type *)v; v = (caddr_t)((name)+(num))
269#define	valloclim(name, type, num, lim) \
270	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
271	valloc(callout, struct callout, ncallout);
272#ifdef SYSVSHM
273	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
274#endif
275#ifdef SYSVSEM
276	valloc(sema, struct semid_ds, seminfo.semmni);
277	valloc(sem, struct sem, seminfo.semmns);
278	/* This is pretty disgusting! */
279	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
280#endif
281#ifdef SYSVMSG
282	valloc(msgpool, char, msginfo.msgmax);
283	valloc(msgmaps, struct msgmap, msginfo.msgseg);
284	valloc(msghdrs, struct msg, msginfo.msgtql);
285	valloc(msqids, struct msqid_ds, msginfo.msgmni);
286#endif
287
288	if (nbuf == 0) {
289		nbuf = 30;
290		if( physmem > 1024)
291			nbuf += min((physmem - 1024) / 8, 2048);
292	}
293	nswbuf = max(min(nbuf/4, 128), 16);
294
295	valloc(swbuf, struct buf, nswbuf);
296	valloc(buf, struct buf, nbuf);
297
298#ifdef BOUNCE_BUFFERS
299	/*
300	 * If there is more than 16MB of memory, allocate some bounce buffers
301	 */
302	if (Maxmem > 4096) {
303		if (bouncepages == 0) {
304			bouncepages = 64;
305			bouncepages += ((Maxmem - 4096) / 2048) * 32;
306			if (bouncepages > 128)
307				bouncepages = 128;
308		}
309		v = (caddr_t)((vm_offset_t)round_page(v));
310		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
311	}
312#endif
313
314	/*
315	 * End of first pass, size has been calculated so allocate memory
316	 */
317	if (firstaddr == 0) {
318		size = (vm_size_t)(v - firstaddr);
319		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
320		if (firstaddr == 0)
321			panic("startup: no room for tables");
322		goto again;
323	}
324
325	/*
326	 * End of second pass, addresses have been assigned
327	 */
328	if ((vm_size_t)(v - firstaddr) != size)
329		panic("startup: table size inconsistency");
330
331#ifdef BOUNCE_BUFFERS
332	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
333			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
334				maxbkva + pager_map_size, TRUE);
335	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
336#else
337	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
338			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
339#endif
340	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
341				(nbuf*BKVASIZE), TRUE);
342	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
343				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
344	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
345				(16*ARG_MAX), TRUE);
346	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
347				(maxproc*UPAGES*PAGE_SIZE), FALSE);
348
349	/*
350	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
351	 * we use the more space efficient malloc in place of kmem_alloc.
352	 */
353	{
354		vm_offset_t mb_map_size;
355
356		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
357		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
358		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
359		bzero(mclrefcnt, mb_map_size / MCLBYTES);
360		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
361			mb_map_size, FALSE);
362	}
363
364	/*
365	 * Initialize callouts
366	 */
367	callfree = callout;
368	for (i = 1; i < ncallout; i++)
369		callout[i-1].c_next = &callout[i];
370
371#if defined(USERCONFIG)
372#if defined(USERCONFIG_BOOT)
373	if (1) {
374#else
375        if (boothowto & RB_CONFIG) {
376#endif
377		userconfig();
378		cninit();	/* the preferred console may have changed */
379	}
380#endif
381
382#ifdef BOUNCE_BUFFERS
383	/*
384	 * init bounce buffers
385	 */
386	vm_bounce_init();
387#endif
388
389	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
390	    ptoa(cnt.v_free_count) / 1024);
391
392#ifdef SMP
393	/*
394	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
395	 */
396	mp_start();			/* fire up the APs and APICs */
397	mp_announce();
398#endif  /* SMP */
399
400	/*
401	 * Set up buffers, so they can be used to read disk labels.
402	 */
403	bufinit();
404	vm_pager_bufferinit();
405}
406
407int
408register_netisr(num, handler)
409	int num;
410	netisr_t *handler;
411{
412
413	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
414		printf("register_netisr: bad isr number: %d\n", num);
415		return (EINVAL);
416	}
417	netisrs[num] = handler;
418	return (0);
419}
420
421static void
422setup_netisrs(ls)
423	struct linker_set *ls;
424{
425	int i;
426	const struct netisrtab *nit;
427
428	for(i = 0; ls->ls_items[i]; i++) {
429		nit = (const struct netisrtab *)ls->ls_items[i];
430		register_netisr(nit->nit_num, nit->nit_isr);
431	}
432}
433
434/*
435 * Send an interrupt to process.
436 *
437 * Stack is set up to allow sigcode stored
438 * at top to call routine, followed by kcall
439 * to sigreturn routine below.  After sigreturn
440 * resets the signal mask, the stack, and the
441 * frame pointer, it returns to the user
442 * specified pc, psl.
443 */
444void
445sendsig(catcher, sig, mask, code)
446	sig_t catcher;
447	int sig, mask;
448	u_long code;
449{
450	register struct proc *p = curproc;
451	register struct trapframe *regs;
452	register struct sigframe *fp;
453	struct sigframe sf;
454	struct sigacts *psp = p->p_sigacts;
455	int oonstack;
456
457	regs = p->p_md.md_regs;
458        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
459	/*
460	 * Allocate and validate space for the signal handler context.
461	 */
462        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
463	    (psp->ps_sigonstack & sigmask(sig))) {
464		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
465		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
466		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
467	} else {
468		fp = (struct sigframe *)regs->tf_esp - 1;
469	}
470
471	/*
472	 * grow() will return FALSE if the fp will not fit inside the stack
473	 *	and the stack can not be grown. useracc will return FALSE
474	 *	if access is denied.
475	 */
476	if ((grow(p, (int)fp) == FALSE) ||
477	    (useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) {
478		/*
479		 * Process has trashed its stack; give it an illegal
480		 * instruction to halt it in its tracks.
481		 */
482		SIGACTION(p, SIGILL) = SIG_DFL;
483		sig = sigmask(SIGILL);
484		p->p_sigignore &= ~sig;
485		p->p_sigcatch &= ~sig;
486		p->p_sigmask &= ~sig;
487		psignal(p, SIGILL);
488		return;
489	}
490
491	/*
492	 * Build the argument list for the signal handler.
493	 */
494	if (p->p_sysent->sv_sigtbl) {
495		if (sig < p->p_sysent->sv_sigsize)
496			sig = p->p_sysent->sv_sigtbl[sig];
497		else
498			sig = p->p_sysent->sv_sigsize + 1;
499	}
500	sf.sf_signum = sig;
501	sf.sf_code = code;
502	sf.sf_scp = &fp->sf_sc;
503	sf.sf_addr = (char *) regs->tf_err;
504	sf.sf_handler = catcher;
505
506	/* save scratch registers */
507	sf.sf_sc.sc_eax = regs->tf_eax;
508	sf.sf_sc.sc_ebx = regs->tf_ebx;
509	sf.sf_sc.sc_ecx = regs->tf_ecx;
510	sf.sf_sc.sc_edx = regs->tf_edx;
511	sf.sf_sc.sc_esi = regs->tf_esi;
512	sf.sf_sc.sc_edi = regs->tf_edi;
513	sf.sf_sc.sc_cs = regs->tf_cs;
514	sf.sf_sc.sc_ds = regs->tf_ds;
515	sf.sf_sc.sc_ss = regs->tf_ss;
516	sf.sf_sc.sc_es = regs->tf_es;
517	sf.sf_sc.sc_isp = regs->tf_isp;
518
519	/*
520	 * Build the signal context to be used by sigreturn.
521	 */
522	sf.sf_sc.sc_onstack = oonstack;
523	sf.sf_sc.sc_mask = mask;
524	sf.sf_sc.sc_sp = regs->tf_esp;
525	sf.sf_sc.sc_fp = regs->tf_ebp;
526	sf.sf_sc.sc_pc = regs->tf_eip;
527	sf.sf_sc.sc_ps = regs->tf_eflags;
528
529	/*
530	 * Copy the sigframe out to the user's stack.
531	 */
532	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
533		/*
534		 * Something is wrong with the stack pointer.
535		 * ...Kill the process.
536		 */
537		sigexit(p, SIGILL);
538	};
539
540	regs->tf_esp = (int)fp;
541	regs->tf_eip = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
542	regs->tf_eflags &= ~PSL_VM;
543	regs->tf_cs = _ucodesel;
544	regs->tf_ds = _udatasel;
545	regs->tf_es = _udatasel;
546	regs->tf_ss = _udatasel;
547}
548
549/*
550 * System call to cleanup state after a signal
551 * has been taken.  Reset signal mask and
552 * stack state from context left by sendsig (above).
553 * Return to previous pc and psl as specified by
554 * context left by sendsig. Check carefully to
555 * make sure that the user has not modified the
556 * state to gain improper privileges.
557 */
558int
559sigreturn(p, uap, retval)
560	struct proc *p;
561	struct sigreturn_args /* {
562		struct sigcontext *sigcntxp;
563	} */ *uap;
564	int *retval;
565{
566	register struct sigcontext *scp;
567	register struct sigframe *fp;
568	register struct trapframe *regs = p->p_md.md_regs;
569	int eflags;
570
571	/*
572	 * (XXX old comment) regs->tf_esp points to the return address.
573	 * The user scp pointer is above that.
574	 * The return address is faked in the signal trampoline code
575	 * for consistency.
576	 */
577	scp = uap->sigcntxp;
578	fp = (struct sigframe *)
579	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
580
581	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
582		return(EFAULT);
583
584	/*
585	 * Don't allow users to change privileged or reserved flags.
586	 */
587#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
588	eflags = scp->sc_ps;
589	/*
590	 * XXX do allow users to change the privileged flag PSL_RF.  The
591	 * cpu sets PSL_RF in tf_eflags for faults.  Debuggers should
592	 * sometimes set it there too.  tf_eflags is kept in the signal
593	 * context during signal handling and there is no other place
594	 * to remember it, so the PSL_RF bit may be corrupted by the
595	 * signal handler without us knowing.  Corruption of the PSL_RF
596	 * bit at worst causes one more or one less debugger trap, so
597	 * allowing it is fairly harmless.
598	 */
599	if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
600#ifdef DEBUG
601    		printf("sigreturn: eflags = 0x%x\n", eflags);
602#endif
603    		return(EINVAL);
604	}
605
606	/*
607	 * Don't allow users to load a valid privileged %cs.  Let the
608	 * hardware check for invalid selectors, excess privilege in
609	 * other selectors, invalid %eip's and invalid %esp's.
610	 */
611#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
612	if (!CS_SECURE(scp->sc_cs)) {
613#ifdef DEBUG
614    		printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
615#endif
616		trapsignal(p, SIGBUS, T_PROTFLT);
617		return(EINVAL);
618	}
619
620	/* restore scratch registers */
621	regs->tf_eax = scp->sc_eax;
622	regs->tf_ebx = scp->sc_ebx;
623	regs->tf_ecx = scp->sc_ecx;
624	regs->tf_edx = scp->sc_edx;
625	regs->tf_esi = scp->sc_esi;
626	regs->tf_edi = scp->sc_edi;
627	regs->tf_cs = scp->sc_cs;
628	regs->tf_ds = scp->sc_ds;
629	regs->tf_es = scp->sc_es;
630	regs->tf_ss = scp->sc_ss;
631	regs->tf_isp = scp->sc_isp;
632
633	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
634		return(EINVAL);
635
636	if (scp->sc_onstack & 01)
637		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
638	else
639		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
640	p->p_sigmask = scp->sc_mask & ~sigcantmask;
641	regs->tf_ebp = scp->sc_fp;
642	regs->tf_esp = scp->sc_sp;
643	regs->tf_eip = scp->sc_pc;
644	regs->tf_eflags = eflags;
645	return(EJUSTRETURN);
646}
647
648/*
649 * Machine dependent boot() routine
650 *
651 * I haven't seen anything to put here yet
652 * Possibly some stuff might be grafted back here from boot()
653 */
654void
655cpu_boot(int howto)
656{
657}
658
659/*
660 * Shutdown the CPU as much as possible
661 */
662void
663cpu_halt(void)
664{
665	for (;;)
666		__asm__ ("hlt");
667}
668
669/*
670 * Turn the power off.
671 */
672void
673cpu_power_down(void)
674{
675#if NAPM > 0
676	apm_power_off();
677#endif
678}
679
680/*
681 * Clear registers on exec
682 */
683void
684setregs(p, entry, stack)
685	struct proc *p;
686	u_long entry;
687	u_long stack;
688{
689	struct trapframe *regs = p->p_md.md_regs;
690
691#ifdef USER_LDT
692	struct pcb *pcb = &p->p_addr->u_pcb;
693
694	/* was i386_user_cleanup() in NetBSD */
695	if (pcb->pcb_ldt) {
696		if (pcb == curpcb)
697			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
698		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
699			pcb->pcb_ldt_len * sizeof(union descriptor));
700		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
701 	}
702#endif
703
704	bzero((char *)regs, sizeof(struct trapframe));
705	regs->tf_eip = entry;
706	regs->tf_esp = stack;
707	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
708	regs->tf_ss = _udatasel;
709	regs->tf_ds = _udatasel;
710	regs->tf_es = _udatasel;
711	regs->tf_cs = _ucodesel;
712
713	/*
714	 * Initialize the math emulator (if any) for the current process.
715	 * Actually, just clear the bit that says that the emulator has
716	 * been initialized.  Initialization is delayed until the process
717	 * traps to the emulator (if it is done at all) mainly because
718	 * emulators don't provide an entry point for initialization.
719	 */
720	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
721
722	/*
723	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
724	 * for why fwait must be trapped at least if there is an npx or an
725	 * emulator).  This is mainly to handle the case where npx0 is not
726	 * configured, since the npx routines normally set up the trap
727	 * otherwise.  It should be done only at boot time, but doing it
728	 * here allows modifying `npx_exists' for testing the emulator on
729	 * systems with an npx.
730	 */
731	load_cr0(rcr0() | CR0_MP | CR0_TS);
732
733#if NNPX > 0
734	/* Initialize the npx (if any) for the current process. */
735	npxinit(__INITIAL_NPXCW__);
736#endif
737}
738
739static int
740sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
741{
742	int error;
743	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
744		req);
745	if (!error && req->newptr)
746		resettodr();
747	return (error);
748}
749
750SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
751	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
752
753SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
754	CTLFLAG_RW, &disable_rtc_set, 0, "");
755
756SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
757	CTLFLAG_RD, &bootinfo, bootinfo, "");
758
759SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
760	CTLFLAG_RW, &wall_cmos_clock, 0, "");
761
762/*
763 * Initialize 386 and configure to run kernel
764 */
765
766/*
767 * Initialize segments & interrupt table
768 */
769
770int currentldt;
771int _default_ldt;
772#ifdef SMP
773union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
774#else
775union descriptor gdt[NGDT];		/* global descriptor table */
776#endif
777struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
778union descriptor ldt[NLDT];		/* local descriptor table */
779#ifdef SMP
780/* table descriptors - used to load tables by microp */
781struct region_descriptor r_gdt, r_idt;
782#endif
783
784#ifdef SMP
785extern struct i386tss common_tss;	/* One tss per cpu */
786#else
787struct i386tss common_tss;
788#endif
789
790static struct i386tss dblfault_tss;
791static char dblfault_stack[PAGE_SIZE];
792
793extern  struct user *proc0paddr;
794
795#ifdef TSS_IS_CACHED			/* cpu_switch helper */
796struct segment_descriptor *tssptr;
797int gsel_tss;
798#endif
799
800/* software prototypes -- in more palatable form */
801struct soft_segment_descriptor gdt_segs[
802#ifdef SMP
803					NGDT + NCPU
804#endif
805						   ] = {
806/* GNULL_SEL	0 Null Descriptor */
807{	0x0,			/* segment base address  */
808	0x0,			/* length */
809	0,			/* segment type */
810	0,			/* segment descriptor priority level */
811	0,			/* segment descriptor present */
812	0, 0,
813	0,			/* default 32 vs 16 bit size */
814	0  			/* limit granularity (byte/page units)*/ },
815/* GCODE_SEL	1 Code Descriptor for kernel */
816{	0x0,			/* segment base address  */
817	0xfffff,		/* length - all address space */
818	SDT_MEMERA,		/* segment type */
819	0,			/* segment descriptor priority level */
820	1,			/* segment descriptor present */
821	0, 0,
822	1,			/* default 32 vs 16 bit size */
823	1  			/* limit granularity (byte/page units)*/ },
824/* GDATA_SEL	2 Data Descriptor for kernel */
825{	0x0,			/* segment base address  */
826	0xfffff,		/* length - all address space */
827	SDT_MEMRWA,		/* segment type */
828	0,			/* segment descriptor priority level */
829	1,			/* segment descriptor present */
830	0, 0,
831	1,			/* default 32 vs 16 bit size */
832	1  			/* limit granularity (byte/page units)*/ },
833/* GLDT_SEL	3 LDT Descriptor */
834{	(int) ldt,		/* segment base address  */
835	sizeof(ldt)-1,		/* length - all address space */
836	SDT_SYSLDT,		/* segment type */
837	SEL_UPL,		/* segment descriptor priority level */
838	1,			/* segment descriptor present */
839	0, 0,
840	0,			/* unused - default 32 vs 16 bit size */
841	0  			/* limit granularity (byte/page units)*/ },
842/* GTGATE_SEL	4 Null Descriptor - Placeholder */
843{	0x0,			/* segment base address  */
844	0x0,			/* length - all address space */
845	0,			/* segment type */
846	0,			/* segment descriptor priority level */
847	0,			/* segment descriptor present */
848	0, 0,
849	0,			/* default 32 vs 16 bit size */
850	0  			/* limit granularity (byte/page units)*/ },
851/* GPANIC_SEL	5 Panic Tss Descriptor */
852{	(int) &dblfault_tss,	/* segment base address  */
853	sizeof(struct i386tss)-1,/* length - all address space */
854	SDT_SYS386TSS,		/* segment type */
855	0,			/* segment descriptor priority level */
856	1,			/* segment descriptor present */
857	0, 0,
858	0,			/* unused - default 32 vs 16 bit size */
859	0  			/* limit granularity (byte/page units)*/ },
860/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
861{
862	(int) &common_tss,	/* segment base address */
863	sizeof(struct i386tss)-1,/* length - all address space */
864	SDT_SYS386TSS,		/* segment type */
865	0,			/* segment descriptor priority level */
866	1,			/* segment descriptor present */
867	0, 0,
868	0,			/* unused - default 32 vs 16 bit size */
869	0  			/* limit granularity (byte/page units)*/ },
870/* GUSERLDT_SEL	7 User LDT Descriptor per process */
871{	(int) ldt,		/* segment base address  */
872	(512 * sizeof(union descriptor)-1),		/* length */
873	SDT_SYSLDT,		/* segment type */
874	0,			/* segment descriptor priority level */
875	1,			/* segment descriptor present */
876	0, 0,
877	0,			/* unused - default 32 vs 16 bit size */
878	0  			/* limit granularity (byte/page units)*/ },
879/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
880{	0,			/* segment base address (overwritten by APM)  */
881	0xfffff,		/* length */
882	SDT_MEMERA,		/* segment type */
883	0,			/* segment descriptor priority level */
884	1,			/* segment descriptor present */
885	0, 0,
886	1,			/* default 32 vs 16 bit size */
887	1  			/* limit granularity (byte/page units)*/ },
888/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
889{	0,			/* segment base address (overwritten by APM)  */
890	0xfffff,		/* length */
891	SDT_MEMERA,		/* segment type */
892	0,			/* segment descriptor priority level */
893	1,			/* segment descriptor present */
894	0, 0,
895	0,			/* default 32 vs 16 bit size */
896	1  			/* limit granularity (byte/page units)*/ },
897/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
898{	0,			/* segment base address (overwritten by APM) */
899	0xfffff,		/* length */
900	SDT_MEMRWA,		/* segment type */
901	0,			/* segment descriptor priority level */
902	1,			/* segment descriptor present */
903	0, 0,
904	1,			/* default 32 vs 16 bit size */
905	1  			/* limit granularity (byte/page units)*/ },
906};
907
908static struct soft_segment_descriptor ldt_segs[] = {
909	/* Null Descriptor - overwritten by call gate */
910{	0x0,			/* segment base address  */
911	0x0,			/* length - all address space */
912	0,			/* segment type */
913	0,			/* segment descriptor priority level */
914	0,			/* segment descriptor present */
915	0, 0,
916	0,			/* default 32 vs 16 bit size */
917	0  			/* limit granularity (byte/page units)*/ },
918	/* Null Descriptor - overwritten by call gate */
919{	0x0,			/* segment base address  */
920	0x0,			/* length - all address space */
921	0,			/* segment type */
922	0,			/* segment descriptor priority level */
923	0,			/* segment descriptor present */
924	0, 0,
925	0,			/* default 32 vs 16 bit size */
926	0  			/* limit granularity (byte/page units)*/ },
927	/* Null Descriptor - overwritten by call gate */
928{	0x0,			/* segment base address  */
929	0x0,			/* length - all address space */
930	0,			/* segment type */
931	0,			/* segment descriptor priority level */
932	0,			/* segment descriptor present */
933	0, 0,
934	0,			/* default 32 vs 16 bit size */
935	0  			/* limit granularity (byte/page units)*/ },
936	/* Code Descriptor for user */
937{	0x0,			/* segment base address  */
938	0xfffff,		/* length - all address space */
939	SDT_MEMERA,		/* segment type */
940	SEL_UPL,		/* segment descriptor priority level */
941	1,			/* segment descriptor present */
942	0, 0,
943	1,			/* default 32 vs 16 bit size */
944	1  			/* limit granularity (byte/page units)*/ },
945	/* Data Descriptor for user */
946{	0x0,			/* segment base address  */
947	0xfffff,		/* length - all address space */
948	SDT_MEMRWA,		/* segment type */
949	SEL_UPL,		/* segment descriptor priority level */
950	1,			/* segment descriptor present */
951	0, 0,
952	1,			/* default 32 vs 16 bit size */
953	1  			/* limit granularity (byte/page units)*/ },
954};
955
956void
957setidt(idx, func, typ, dpl, selec)
958	int idx;
959	inthand_t *func;
960	int typ;
961	int dpl;
962	int selec;
963{
964	struct gate_descriptor *ip = idt + idx;
965
966	ip->gd_looffset = (int)func;
967	ip->gd_selector = selec;
968	ip->gd_stkcpy = 0;
969	ip->gd_xx = 0;
970	ip->gd_type = typ;
971	ip->gd_dpl = dpl;
972	ip->gd_p = 1;
973	ip->gd_hioffset = ((int)func)>>16 ;
974}
975
976#define	IDTVEC(name)	__CONCAT(X,name)
977
978extern inthand_t
979	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
980	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
981	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
982	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
983	IDTVEC(syscall), IDTVEC(int0x80_syscall);
984
985void
986sdtossd(sd, ssd)
987	struct segment_descriptor *sd;
988	struct soft_segment_descriptor *ssd;
989{
990	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
991	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
992	ssd->ssd_type  = sd->sd_type;
993	ssd->ssd_dpl   = sd->sd_dpl;
994	ssd->ssd_p     = sd->sd_p;
995	ssd->ssd_def32 = sd->sd_def32;
996	ssd->ssd_gran  = sd->sd_gran;
997}
998
999void
1000init386(first)
1001	int first;
1002{
1003	int x;
1004	unsigned biosbasemem, biosextmem;
1005	struct gate_descriptor *gdp;
1006#ifndef TSS_IS_CACHED
1007	int gsel_tss;
1008#endif
1009	struct isa_device *idp;
1010#ifndef SMP
1011	/* table descriptors - used to load tables by microp */
1012	struct region_descriptor r_gdt, r_idt;
1013#endif
1014	int	pagesinbase, pagesinext;
1015	int	target_page, pa_indx;
1016	int	off;
1017
1018	proc0.p_addr = proc0paddr;
1019
1020	atdevbase = ISA_HOLE_START + KERNBASE;
1021
1022	/*
1023	 * Initialize the console before we print anything out.
1024	 */
1025	cninit();
1026
1027	/*
1028	 * make gdt memory segments, the code segment goes up to end of the
1029	 * page with etext in it, the data segment goes to the end of
1030	 * the address space
1031	 */
1032	/*
1033	 * XXX text protection is temporarily (?) disabled.  The limit was
1034	 * i386_btop(round_page(etext)) - 1.
1035	 */
1036	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1037	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1038#ifdef BDE_DEBUGGER
1039#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1040#else
1041#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1042#endif
1043	for (x = 0; x < NGDT1; x++)
1044		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1045
1046#ifdef SMP
1047	/*
1048	 * Spin these up now.  init_secondary() grabs them.  We could use
1049	 * #for(x,y,z) / #endfor cpp directives if they existed.
1050	 */
1051	for (x = 0; x < NCPU; x++) {
1052		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1053		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1054	}
1055#endif
1056
1057	/* make ldt memory segments */
1058	/*
1059	 * The data segment limit must not cover the user area because we
1060	 * don't want the user area to be writable in copyout() etc. (page
1061	 * level protection is lost in kernel mode on 386's).  Also, we
1062	 * don't want the user area to be writable directly (page level
1063	 * protection of the user area is not available on 486's with
1064	 * CR0_WP set, because there is no user-read/kernel-write mode).
1065	 *
1066	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1067	 * should be spelled ...MAX_USER...
1068	 */
1069#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1070	/*
1071	 * The code segment limit has to cover the user area until we move
1072	 * the signal trampoline out of the user area.  This is safe because
1073	 * the code segment cannot be written to directly.
1074	 */
1075#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1076	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1077	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1078	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1079		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1080
1081	/* exceptions */
1082	for (x = 0; x < NIDT; x++)
1083		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1084	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1085	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1086	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1087 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1088	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1089	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1090	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1091	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1092	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1093	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1094	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1095	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1096	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1097	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1098	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1099	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1100	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1101	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1102	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1103 	setidt(0x80, &IDTVEC(int0x80_syscall),
1104			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1105
1106#include	"isa.h"
1107#if	NISA >0
1108	isa_defaultirq();
1109#endif
1110	rand_initialize();
1111
1112	r_gdt.rd_limit = sizeof(gdt) - 1;
1113	r_gdt.rd_base =  (int) gdt;
1114	lgdt(&r_gdt);
1115
1116	r_idt.rd_limit = sizeof(idt) - 1;
1117	r_idt.rd_base = (int) idt;
1118	lidt(&r_idt);
1119
1120	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1121	lldt(_default_ldt);
1122	currentldt = _default_ldt;
1123
1124#ifdef DDB
1125	kdb_init();
1126	if (boothowto & RB_KDB)
1127		Debugger("Boot flags requested debugger");
1128#endif
1129
1130	finishidentcpu();	/* Final stage of CPU initialization */
1131	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1132	initializecpu();	/* Initialize CPU registers */
1133
1134	/* Use BIOS values stored in RTC CMOS RAM, since probing
1135	 * breaks certain 386 AT relics.
1136	 */
1137	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1138	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1139
1140	/*
1141	 * If BIOS tells us that it has more than 640k in the basemem,
1142	 *	don't believe it - set it to 640k.
1143	 */
1144	if (biosbasemem > 640) {
1145		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1146		       biosbasemem);
1147		biosbasemem = 640;
1148	}
1149	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1150		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1151		       bootinfo.bi_basemem);
1152		bootinfo.bi_basemem = 640;
1153	}
1154
1155	/*
1156	 * Warn if the official BIOS interface disagrees with the RTC
1157	 * interface used above about the amount of base memory or the
1158	 * amount of extended memory.  Prefer the BIOS value for the base
1159	 * memory.  This is necessary for machines that `steal' base
1160	 * memory for use as BIOS memory, at least if we are going to use
1161	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1162	 * Eventually the hackish interface shouldn't even be looked at.
1163	 */
1164	if (bootinfo.bi_memsizes_valid) {
1165		if (bootinfo.bi_basemem != biosbasemem) {
1166			vm_offset_t pa;
1167
1168			printf(
1169	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1170			       bootinfo.bi_basemem, biosbasemem);
1171			biosbasemem = bootinfo.bi_basemem;
1172
1173			/*
1174			 * XXX if biosbasemem is now < 640, there is `hole'
1175			 * between the end of base memory and the start of
1176			 * ISA memory.  The hole may be empty or it may
1177			 * contain BIOS code or data.  Map it read/write so
1178			 * that the BIOS can write to it.  (Memory from 0 to
1179			 * the physical end of the kernel is mapped read-only
1180			 * to begin with and then parts of it are remapped.
1181			 * The parts that aren't remapped form holes that
1182			 * remain read-only and are unused by the kernel.
1183			 * The base memory area is below the physical end of
1184			 * the kernel and right now forms a read-only hole.
1185			 * The part of it from 0 to
1186			 * (trunc_page(biosbasemem * 1024) - 1) will be
1187			 * remapped and used by the kernel later.)
1188			 *
1189			 * This code is similar to the code used in
1190			 * pmap_mapdev, but since no memory needs to be
1191			 * allocated we simply change the mapping.
1192			 */
1193			for (pa = trunc_page(biosbasemem * 1024);
1194			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1195				unsigned *pte;
1196
1197				pte = (unsigned *)vtopte(pa + KERNBASE);
1198				*pte = pa | PG_RW | PG_V;
1199			}
1200		}
1201		if (bootinfo.bi_extmem != biosextmem)
1202			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1203			       bootinfo.bi_extmem, biosextmem);
1204	}
1205
1206#ifdef SMP
1207	/* make hole for AP bootstrap code */
1208	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1209#else
1210	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1211#endif
1212
1213	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1214
1215	/*
1216	 * Special hack for chipsets that still remap the 384k hole when
1217	 *	there's 16MB of memory - this really confuses people that
1218	 *	are trying to use bus mastering ISA controllers with the
1219	 *	"16MB limit"; they only have 16MB, but the remapping puts
1220	 *	them beyond the limit.
1221	 */
1222	/*
1223	 * If extended memory is between 15-16MB (16-17MB phys address range),
1224	 *	chop it to 15MB.
1225	 */
1226	if ((pagesinext > 3840) && (pagesinext < 4096))
1227		pagesinext = 3840;
1228
1229	/*
1230	 * Maxmem isn't the "maximum memory", it's one larger than the
1231	 * highest page of the physical address space.  It should be
1232	 * called something like "Maxphyspage".
1233	 */
1234	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1235
1236#ifdef MAXMEM
1237	Maxmem = MAXMEM/4;
1238#endif
1239
1240#if NNPX > 0
1241	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1242	if (idp != NULL && idp->id_msize != 0)
1243		Maxmem = idp->id_msize / 4;
1244#endif
1245
1246#ifdef SMP
1247	/* look for the MP hardware - needed for apic addresses */
1248	mp_probe();
1249#endif
1250
1251	/* call pmap initialization to make new kernel address space */
1252	pmap_bootstrap (first, 0);
1253
1254	/*
1255	 * Size up each available chunk of physical memory.
1256	 */
1257
1258	/*
1259	 * We currently don't bother testing base memory.
1260	 * XXX  ...but we probably should.
1261	 */
1262	pa_indx = 0;
1263	badpages = 0;
1264	if (pagesinbase > 1) {
1265		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1266		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1267		physmem = pagesinbase - 1;
1268	} else {
1269		/* point at first chunk end */
1270		pa_indx++;
1271	}
1272
1273	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1274		int tmp, page_bad = FALSE;
1275
1276		/*
1277		 * map page into kernel: valid, read/write, non-cacheable
1278		 */
1279		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1280		invltlb();
1281
1282		tmp = *(int *)CADDR1;
1283		/*
1284		 * Test for alternating 1's and 0's
1285		 */
1286		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1287		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1288			page_bad = TRUE;
1289		}
1290		/*
1291		 * Test for alternating 0's and 1's
1292		 */
1293		*(volatile int *)CADDR1 = 0x55555555;
1294		if (*(volatile int *)CADDR1 != 0x55555555) {
1295			page_bad = TRUE;
1296		}
1297		/*
1298		 * Test for all 1's
1299		 */
1300		*(volatile int *)CADDR1 = 0xffffffff;
1301		if (*(volatile int *)CADDR1 != 0xffffffff) {
1302			page_bad = TRUE;
1303		}
1304		/*
1305		 * Test for all 0's
1306		 */
1307		*(volatile int *)CADDR1 = 0x0;
1308		if (*(volatile int *)CADDR1 != 0x0) {
1309			/*
1310			 * test of page failed
1311			 */
1312			page_bad = TRUE;
1313		}
1314		/*
1315		 * Restore original value.
1316		 */
1317		*(int *)CADDR1 = tmp;
1318
1319		/*
1320		 * Adjust array of valid/good pages.
1321		 */
1322		if (page_bad == FALSE) {
1323			/*
1324			 * If this good page is a continuation of the
1325			 * previous set of good pages, then just increase
1326			 * the end pointer. Otherwise start a new chunk.
1327			 * Note that "end" points one higher than end,
1328			 * making the range >= start and < end.
1329			 */
1330			if (phys_avail[pa_indx] == target_page) {
1331				phys_avail[pa_indx] += PAGE_SIZE;
1332			} else {
1333				pa_indx++;
1334				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1335					printf("Too many holes in the physical address space, giving up\n");
1336					pa_indx--;
1337					break;
1338				}
1339				phys_avail[pa_indx++] = target_page;	/* start */
1340				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1341			}
1342			physmem++;
1343		} else {
1344			badpages++;
1345			page_bad = FALSE;
1346		}
1347	}
1348
1349	*(int *)CMAP1 = 0;
1350	invltlb();
1351
1352	/*
1353	 * XXX
1354	 * The last chunk must contain at least one page plus the message
1355	 * buffer to avoid complicating other code (message buffer address
1356	 * calculation, etc.).
1357	 */
1358	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1359	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1360		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1361		phys_avail[pa_indx--] = 0;
1362		phys_avail[pa_indx--] = 0;
1363	}
1364
1365	Maxmem = atop(phys_avail[pa_indx]);
1366
1367	/* Trim off space for the message buffer. */
1368	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1369
1370	avail_end = phys_avail[pa_indx];
1371
1372	/* now running on new page tables, configured,and u/iom is accessible */
1373
1374	/* Map the message buffer. */
1375	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1376		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1377			   avail_end + off, VM_PROT_ALL, TRUE);
1378	msgbufmapped = 1;
1379
1380	/* make an initial tss so cpu can get interrupt stack on syscall! */
1381	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1382	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1383	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1384	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1385	ltr(gsel_tss);
1386
1387	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1388	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1389	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1390	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1391	dblfault_tss.tss_cr3 = (int)IdlePTD;
1392	dblfault_tss.tss_eip = (int) dblfault_handler;
1393	dblfault_tss.tss_eflags = PSL_KERNEL;
1394	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1395	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1396	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1397	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1398
1399#ifdef TSS_IS_CACHED			/* cpu_switch helper */
1400	tssptr = &gdt[GPROC0_SEL].sd;
1401#endif
1402
1403	/* make a call gate to reenter kernel with */
1404	gdp = &ldt[LSYS5CALLS_SEL].gd;
1405
1406	x = (int) &IDTVEC(syscall);
1407	gdp->gd_looffset = x++;
1408	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1409	gdp->gd_stkcpy = 1;
1410	gdp->gd_type = SDT_SYS386CGT;
1411	gdp->gd_dpl = SEL_UPL;
1412	gdp->gd_p = 1;
1413	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1414
1415	/* XXX does this work? */
1416	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1417
1418	/* transfer to user mode */
1419
1420	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1421	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1422
1423	/* setup proc 0's pcb */
1424	proc0.p_addr->u_pcb.pcb_flags = 0;
1425	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1426	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1427}
1428
1429int
1430ptrace_set_pc(p, addr)
1431	struct proc *p;
1432	unsigned int addr;
1433{
1434	p->p_md.md_regs->tf_eip = addr;
1435	return (0);
1436}
1437
1438int
1439ptrace_single_step(p)
1440	struct proc *p;
1441{
1442	p->p_md.md_regs->tf_eflags |= PSL_T;
1443	return (0);
1444}
1445
1446int ptrace_write_u(p, off, data)
1447	struct proc *p;
1448	vm_offset_t off;
1449	int data;
1450{
1451	struct trapframe frame_copy;
1452	vm_offset_t min;
1453	struct trapframe *tp;
1454
1455	/*
1456	 * Privileged kernel state is scattered all over the user area.
1457	 * Only allow write access to parts of regs and to fpregs.
1458	 */
1459	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1460	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1461		tp = p->p_md.md_regs;
1462		frame_copy = *tp;
1463		*(int *)((char *)&frame_copy + (off - min)) = data;
1464		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1465		    !CS_SECURE(frame_copy.tf_cs))
1466			return (EINVAL);
1467		*(int*)((char *)p->p_addr + off) = data;
1468		return (0);
1469	}
1470	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1471	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1472		*(int*)((char *)p->p_addr + off) = data;
1473		return (0);
1474	}
1475	return (EFAULT);
1476}
1477
1478int
1479fill_regs(p, regs)
1480	struct proc *p;
1481	struct reg *regs;
1482{
1483	struct pcb *pcb;
1484	struct trapframe *tp;
1485
1486	tp = p->p_md.md_regs;
1487	regs->r_es = tp->tf_es;
1488	regs->r_ds = tp->tf_ds;
1489	regs->r_edi = tp->tf_edi;
1490	regs->r_esi = tp->tf_esi;
1491	regs->r_ebp = tp->tf_ebp;
1492	regs->r_ebx = tp->tf_ebx;
1493	regs->r_edx = tp->tf_edx;
1494	regs->r_ecx = tp->tf_ecx;
1495	regs->r_eax = tp->tf_eax;
1496	regs->r_eip = tp->tf_eip;
1497	regs->r_cs = tp->tf_cs;
1498	regs->r_eflags = tp->tf_eflags;
1499	regs->r_esp = tp->tf_esp;
1500	regs->r_ss = tp->tf_ss;
1501	pcb = &p->p_addr->u_pcb;
1502	regs->r_fs = pcb->pcb_fs;
1503	regs->r_gs = pcb->pcb_gs;
1504	return (0);
1505}
1506
1507int
1508set_regs(p, regs)
1509	struct proc *p;
1510	struct reg *regs;
1511{
1512	struct pcb *pcb;
1513	struct trapframe *tp;
1514
1515	tp = p->p_md.md_regs;
1516	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1517	    !CS_SECURE(regs->r_cs))
1518		return (EINVAL);
1519	tp->tf_es = regs->r_es;
1520	tp->tf_ds = regs->r_ds;
1521	tp->tf_edi = regs->r_edi;
1522	tp->tf_esi = regs->r_esi;
1523	tp->tf_ebp = regs->r_ebp;
1524	tp->tf_ebx = regs->r_ebx;
1525	tp->tf_edx = regs->r_edx;
1526	tp->tf_ecx = regs->r_ecx;
1527	tp->tf_eax = regs->r_eax;
1528	tp->tf_eip = regs->r_eip;
1529	tp->tf_cs = regs->r_cs;
1530	tp->tf_eflags = regs->r_eflags;
1531	tp->tf_esp = regs->r_esp;
1532	tp->tf_ss = regs->r_ss;
1533	pcb = &p->p_addr->u_pcb;
1534	pcb->pcb_fs = regs->r_fs;
1535	pcb->pcb_gs = regs->r_gs;
1536	return (0);
1537}
1538
1539#ifndef DDB
1540void
1541Debugger(const char *msg)
1542{
1543	printf("Debugger(\"%s\") called.\n", msg);
1544}
1545#endif /* no DDB */
1546
1547#include <sys/disklabel.h>
1548
1549/*
1550 * Determine the size of the transfer, and make sure it is
1551 * within the boundaries of the partition. Adjust transfer
1552 * if needed, and signal errors or early completion.
1553 */
1554int
1555bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1556{
1557        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1558        int labelsect = lp->d_partitions[0].p_offset;
1559        int maxsz = p->p_size,
1560                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1561
1562        /* overwriting disk label ? */
1563        /* XXX should also protect bootstrap in first 8K */
1564        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1565#if LABELSECTOR != 0
1566            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1567#endif
1568            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1569                bp->b_error = EROFS;
1570                goto bad;
1571        }
1572
1573#if     defined(DOSBBSECTOR) && defined(notyet)
1574        /* overwriting master boot record? */
1575        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1576            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1577                bp->b_error = EROFS;
1578                goto bad;
1579        }
1580#endif
1581
1582        /* beyond partition? */
1583        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1584                /* if exactly at end of disk, return an EOF */
1585                if (bp->b_blkno == maxsz) {
1586                        bp->b_resid = bp->b_bcount;
1587                        return(0);
1588                }
1589                /* or truncate if part of it fits */
1590                sz = maxsz - bp->b_blkno;
1591                if (sz <= 0) {
1592                        bp->b_error = EINVAL;
1593                        goto bad;
1594                }
1595                bp->b_bcount = sz << DEV_BSHIFT;
1596        }
1597
1598        bp->b_pblkno = bp->b_blkno + p->p_offset;
1599        return(1);
1600
1601bad:
1602        bp->b_flags |= B_ERROR;
1603        return(-1);
1604}
1605
1606#ifdef DDB
1607
1608/*
1609 * Provide inb() and outb() as functions.  They are normally only
1610 * available as macros calling inlined functions, thus cannot be
1611 * called inside DDB.
1612 *
1613 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1614 */
1615
1616#undef inb
1617#undef outb
1618
1619/* silence compiler warnings */
1620u_char inb(u_int);
1621void outb(u_int, u_char);
1622
1623u_char
1624inb(u_int port)
1625{
1626	u_char	data;
1627	/*
1628	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1629	 * %edx, while gcc generates inferior code (movw instead of movl)
1630	 * if we tell it to load (u_short) port.
1631	 */
1632	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1633	return (data);
1634}
1635
1636void
1637outb(u_int port, u_char data)
1638{
1639	u_char	al;
1640	/*
1641	 * Use an unnecessary assignment to help gcc's register allocator.
1642	 * This make a large difference for gcc-1.40 and a tiny difference
1643	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1644	 * best results.  gcc-2.6.0 can't handle this.
1645	 */
1646	al = data;
1647	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1648}
1649
1650#endif /* DDB */
1651