machdep.c revision 266093
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 266093 2014-05-14 22:24:09Z neel $");
43
44#include "opt_atpic.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_isa.h"
50#include "opt_kstack_pages.h"
51#include "opt_maxmem.h"
52#include "opt_mp_watchdog.h"
53#include "opt_perfmon.h"
54#include "opt_platform.h"
55#include "opt_sched.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/efi.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/rwlock.h>
83#include <sys/sched.h>
84#include <sys/signalvar.h>
85#ifdef SMP
86#include <sys/smp.h>
87#endif
88#include <sys/syscallsubr.h>
89#include <sys/sysctl.h>
90#include <sys/sysent.h>
91#include <sys/sysproto.h>
92#include <sys/ucontext.h>
93#include <sys/vmmeter.h>
94
95#include <vm/vm.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_page.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_pager.h>
102#include <vm/vm_param.h>
103
104#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#include <net/netisr.h>
113
114#include <machine/clock.h>
115#include <machine/cpu.h>
116#include <machine/cputypes.h>
117#include <machine/intr_machdep.h>
118#include <x86/mca.h>
119#include <machine/md_var.h>
120#include <machine/metadata.h>
121#include <machine/mp_watchdog.h>
122#include <machine/pc/bios.h>
123#include <machine/pcb.h>
124#include <machine/proc.h>
125#include <machine/reg.h>
126#include <machine/sigframe.h>
127#include <machine/specialreg.h>
128#ifdef PERFMON
129#include <machine/perfmon.h>
130#endif
131#include <machine/tss.h>
132#ifdef SMP
133#include <machine/smp.h>
134#endif
135#ifdef FDT
136#include <x86/fdt.h>
137#endif
138
139#ifdef DEV_ATPIC
140#include <x86/isa/icu.h>
141#else
142#include <x86/apicvar.h>
143#endif
144
145#include <isa/isareg.h>
146#include <isa/rtc.h>
147#include <x86/init.h>
148
149/* Sanity check for __curthread() */
150CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
151
152extern u_int64_t hammer_time(u_int64_t, u_int64_t);
153
154extern void printcpuinfo(void);	/* XXX header file */
155extern void identify_cpu(void);
156extern void panicifcpuunsupported(void);
157
158#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
159#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
160
161static void cpu_startup(void *);
162static void get_fpcontext(struct thread *td, mcontext_t *mcp,
163    char *xfpusave, size_t xfpusave_len);
164static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
165    char *xfpustate, size_t xfpustate_len);
166SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
167
168/* Preload data parse function */
169static caddr_t native_parse_preload_data(u_int64_t);
170
171/* Native function to fetch and parse the e820 map */
172static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
173
174/* Default init_ops implementation. */
175struct init_ops init_ops = {
176	.parse_preload_data =	native_parse_preload_data,
177	.early_clock_source_init =	i8254_init,
178	.early_delay =			i8254_delay,
179	.parse_memmap =			native_parse_memmap,
180#ifdef SMP
181	.mp_bootaddress =		mp_bootaddress,
182	.start_all_aps =		native_start_all_aps,
183#endif
184};
185
186/*
187 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
188 * the physical address at which the kernel is loaded.
189 */
190extern char kernphys[];
191#ifdef DDB
192extern vm_offset_t ksym_start, ksym_end;
193#endif
194
195struct msgbuf *msgbufp;
196
197/* Intel ICH registers */
198#define ICH_PMBASE	0x400
199#define ICH_SMI_EN	ICH_PMBASE + 0x30
200
201int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
202
203int cold = 1;
204
205long Maxmem = 0;
206long realmem = 0;
207
208/*
209 * The number of PHYSMAP entries must be one less than the number of
210 * PHYSSEG entries because the PHYSMAP entry that spans the largest
211 * physical address that is accessible by ISA DMA is split into two
212 * PHYSSEG entries.
213 */
214#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
215
216vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
217vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
218
219/* must be 2 less so 0 0 can signal end of chunks */
220#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
221#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
222
223struct kva_md_info kmi;
224
225static struct trapframe proc0_tf;
226struct region_descriptor r_gdt, r_idt;
227
228struct pcpu __pcpu[MAXCPU];
229
230struct mtx icu_lock;
231
232struct mem_range_softc mem_range_softc;
233
234struct mtx dt_lock;	/* lock for GDT and LDT */
235
236void (*vmm_resume_p)(void);
237
238static void
239cpu_startup(dummy)
240	void *dummy;
241{
242	uintmax_t memsize;
243	char *sysenv;
244
245	/*
246	 * On MacBooks, we need to disallow the legacy USB circuit to
247	 * generate an SMI# because this can cause several problems,
248	 * namely: incorrect CPU frequency detection and failure to
249	 * start the APs.
250	 * We do this by disabling a bit in the SMI_EN (SMI Control and
251	 * Enable register) of the Intel ICH LPC Interface Bridge.
252	 */
253	sysenv = getenv("smbios.system.product");
254	if (sysenv != NULL) {
255		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
256		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
257		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
258		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
259		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
260		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
261			if (bootverbose)
262				printf("Disabling LEGACY_USB_EN bit on "
263				    "Intel ICH.\n");
264			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
265		}
266		freeenv(sysenv);
267	}
268
269	/*
270	 * Good {morning,afternoon,evening,night}.
271	 */
272	startrtclock();
273	printcpuinfo();
274	panicifcpuunsupported();
275#ifdef PERFMON
276	perfmon_init();
277#endif
278
279	/*
280	 * Display physical memory if SMBIOS reports reasonable amount.
281	 */
282	memsize = 0;
283	sysenv = getenv("smbios.memory.enabled");
284	if (sysenv != NULL) {
285		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
286		freeenv(sysenv);
287	}
288	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
289		memsize = ptoa((uintmax_t)Maxmem);
290	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
291	realmem = atop(memsize);
292
293	/*
294	 * Display any holes after the first chunk of extended memory.
295	 */
296	if (bootverbose) {
297		int indx;
298
299		printf("Physical memory chunk(s):\n");
300		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
301			vm_paddr_t size;
302
303			size = phys_avail[indx + 1] - phys_avail[indx];
304			printf(
305			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
306			    (uintmax_t)phys_avail[indx],
307			    (uintmax_t)phys_avail[indx + 1] - 1,
308			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
309		}
310	}
311
312	vm_ksubmap_init(&kmi);
313
314	printf("avail memory = %ju (%ju MB)\n",
315	    ptoa((uintmax_t)vm_cnt.v_free_count),
316	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
317
318	/*
319	 * Set up buffers, so they can be used to read disk labels.
320	 */
321	bufinit();
322	vm_pager_bufferinit();
323
324	cpu_setregs();
325}
326
327/*
328 * Send an interrupt to process.
329 *
330 * Stack is set up to allow sigcode stored
331 * at top to call routine, followed by call
332 * to sigreturn routine below.  After sigreturn
333 * resets the signal mask, the stack, and the
334 * frame pointer, it returns to the user
335 * specified pc, psl.
336 */
337void
338sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
339{
340	struct sigframe sf, *sfp;
341	struct pcb *pcb;
342	struct proc *p;
343	struct thread *td;
344	struct sigacts *psp;
345	char *sp;
346	struct trapframe *regs;
347	char *xfpusave;
348	size_t xfpusave_len;
349	int sig;
350	int oonstack;
351
352	td = curthread;
353	pcb = td->td_pcb;
354	p = td->td_proc;
355	PROC_LOCK_ASSERT(p, MA_OWNED);
356	sig = ksi->ksi_signo;
357	psp = p->p_sigacts;
358	mtx_assert(&psp->ps_mtx, MA_OWNED);
359	regs = td->td_frame;
360	oonstack = sigonstack(regs->tf_rsp);
361
362	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
363		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
364		xfpusave = __builtin_alloca(xfpusave_len);
365	} else {
366		xfpusave_len = 0;
367		xfpusave = NULL;
368	}
369
370	/* Save user context. */
371	bzero(&sf, sizeof(sf));
372	sf.sf_uc.uc_sigmask = *mask;
373	sf.sf_uc.uc_stack = td->td_sigstk;
374	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
375	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
376	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
377	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
378	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
379	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
380	fpstate_drop(td);
381	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
382	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
383	bzero(sf.sf_uc.uc_mcontext.mc_spare,
384	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
385	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
386
387	/* Allocate space for the signal handler context. */
388	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
389	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
390		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
391#if defined(COMPAT_43)
392		td->td_sigstk.ss_flags |= SS_ONSTACK;
393#endif
394	} else
395		sp = (char *)regs->tf_rsp - 128;
396	if (xfpusave != NULL) {
397		sp -= xfpusave_len;
398		sp = (char *)((unsigned long)sp & ~0x3Ful);
399		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
400	}
401	sp -= sizeof(struct sigframe);
402	/* Align to 16 bytes. */
403	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
404
405	/* Translate the signal if appropriate. */
406	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
407		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
408
409	/* Build the argument list for the signal handler. */
410	regs->tf_rdi = sig;			/* arg 1 in %rdi */
411	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
412	bzero(&sf.sf_si, sizeof(sf.sf_si));
413	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
414		/* Signal handler installed with SA_SIGINFO. */
415		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
416		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
417
418		/* Fill in POSIX parts */
419		sf.sf_si = ksi->ksi_info;
420		sf.sf_si.si_signo = sig; /* maybe a translated signal */
421		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
422	} else {
423		/* Old FreeBSD-style arguments. */
424		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
425		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
426		sf.sf_ahu.sf_handler = catcher;
427	}
428	mtx_unlock(&psp->ps_mtx);
429	PROC_UNLOCK(p);
430
431	/*
432	 * Copy the sigframe out to the user's stack.
433	 */
434	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
435	    (xfpusave != NULL && copyout(xfpusave,
436	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
437	    != 0)) {
438#ifdef DEBUG
439		printf("process %ld has trashed its stack\n", (long)p->p_pid);
440#endif
441		PROC_LOCK(p);
442		sigexit(td, SIGILL);
443	}
444
445	regs->tf_rsp = (long)sfp;
446	regs->tf_rip = p->p_sysent->sv_sigcode_base;
447	regs->tf_rflags &= ~(PSL_T | PSL_D);
448	regs->tf_cs = _ucodesel;
449	regs->tf_ds = _udatasel;
450	regs->tf_es = _udatasel;
451	regs->tf_fs = _ufssel;
452	regs->tf_gs = _ugssel;
453	regs->tf_flags = TF_HASSEGS;
454	set_pcb_flags(pcb, PCB_FULL_IRET);
455	PROC_LOCK(p);
456	mtx_lock(&psp->ps_mtx);
457}
458
459/*
460 * System call to cleanup state after a signal
461 * has been taken.  Reset signal mask and
462 * stack state from context left by sendsig (above).
463 * Return to previous pc and psl as specified by
464 * context left by sendsig. Check carefully to
465 * make sure that the user has not modified the
466 * state to gain improper privileges.
467 *
468 * MPSAFE
469 */
470int
471sys_sigreturn(td, uap)
472	struct thread *td;
473	struct sigreturn_args /* {
474		const struct __ucontext *sigcntxp;
475	} */ *uap;
476{
477	ucontext_t uc;
478	struct pcb *pcb;
479	struct proc *p;
480	struct trapframe *regs;
481	ucontext_t *ucp;
482	char *xfpustate;
483	size_t xfpustate_len;
484	long rflags;
485	int cs, error, ret;
486	ksiginfo_t ksi;
487
488	pcb = td->td_pcb;
489	p = td->td_proc;
490
491	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
492	if (error != 0) {
493		uprintf("pid %d (%s): sigreturn copyin failed\n",
494		    p->p_pid, td->td_name);
495		return (error);
496	}
497	ucp = &uc;
498	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
499		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
500		    td->td_name, ucp->uc_mcontext.mc_flags);
501		return (EINVAL);
502	}
503	regs = td->td_frame;
504	rflags = ucp->uc_mcontext.mc_rflags;
505	/*
506	 * Don't allow users to change privileged or reserved flags.
507	 */
508	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
509		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
510		    td->td_name, rflags);
511		return (EINVAL);
512	}
513
514	/*
515	 * Don't allow users to load a valid privileged %cs.  Let the
516	 * hardware check for invalid selectors, excess privilege in
517	 * other selectors, invalid %eip's and invalid %esp's.
518	 */
519	cs = ucp->uc_mcontext.mc_cs;
520	if (!CS_SECURE(cs)) {
521		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
522		    td->td_name, cs);
523		ksiginfo_init_trap(&ksi);
524		ksi.ksi_signo = SIGBUS;
525		ksi.ksi_code = BUS_OBJERR;
526		ksi.ksi_trapno = T_PROTFLT;
527		ksi.ksi_addr = (void *)regs->tf_rip;
528		trapsignal(td, &ksi);
529		return (EINVAL);
530	}
531
532	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
533		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
534		if (xfpustate_len > cpu_max_ext_state_size -
535		    sizeof(struct savefpu)) {
536			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
537			    p->p_pid, td->td_name, xfpustate_len);
538			return (EINVAL);
539		}
540		xfpustate = __builtin_alloca(xfpustate_len);
541		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
542		    xfpustate, xfpustate_len);
543		if (error != 0) {
544			uprintf(
545	"pid %d (%s): sigreturn copying xfpustate failed\n",
546			    p->p_pid, td->td_name);
547			return (error);
548		}
549	} else {
550		xfpustate = NULL;
551		xfpustate_len = 0;
552	}
553	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
554	if (ret != 0) {
555		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
556		    p->p_pid, td->td_name, ret);
557		return (ret);
558	}
559	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
560	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
561	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
562
563#if defined(COMPAT_43)
564	if (ucp->uc_mcontext.mc_onstack & 1)
565		td->td_sigstk.ss_flags |= SS_ONSTACK;
566	else
567		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
568#endif
569
570	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
571	set_pcb_flags(pcb, PCB_FULL_IRET);
572	return (EJUSTRETURN);
573}
574
575#ifdef COMPAT_FREEBSD4
576int
577freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
578{
579
580	return sys_sigreturn(td, (struct sigreturn_args *)uap);
581}
582#endif
583
584
585/*
586 * Machine dependent boot() routine
587 *
588 * I haven't seen anything to put here yet
589 * Possibly some stuff might be grafted back here from boot()
590 */
591void
592cpu_boot(int howto)
593{
594}
595
596/*
597 * Flush the D-cache for non-DMA I/O so that the I-cache can
598 * be made coherent later.
599 */
600void
601cpu_flush_dcache(void *ptr, size_t len)
602{
603	/* Not applicable */
604}
605
606/* Get current clock frequency for the given cpu id. */
607int
608cpu_est_clockrate(int cpu_id, uint64_t *rate)
609{
610	uint64_t tsc1, tsc2;
611	uint64_t acnt, mcnt, perf;
612	register_t reg;
613
614	if (pcpu_find(cpu_id) == NULL || rate == NULL)
615		return (EINVAL);
616
617	/*
618	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
619	 * DELAY(9) based logic fails.
620	 */
621	if (tsc_is_invariant && !tsc_perf_stat)
622		return (EOPNOTSUPP);
623
624#ifdef SMP
625	if (smp_cpus > 1) {
626		/* Schedule ourselves on the indicated cpu. */
627		thread_lock(curthread);
628		sched_bind(curthread, cpu_id);
629		thread_unlock(curthread);
630	}
631#endif
632
633	/* Calibrate by measuring a short delay. */
634	reg = intr_disable();
635	if (tsc_is_invariant) {
636		wrmsr(MSR_MPERF, 0);
637		wrmsr(MSR_APERF, 0);
638		tsc1 = rdtsc();
639		DELAY(1000);
640		mcnt = rdmsr(MSR_MPERF);
641		acnt = rdmsr(MSR_APERF);
642		tsc2 = rdtsc();
643		intr_restore(reg);
644		perf = 1000 * acnt / mcnt;
645		*rate = (tsc2 - tsc1) * perf;
646	} else {
647		tsc1 = rdtsc();
648		DELAY(1000);
649		tsc2 = rdtsc();
650		intr_restore(reg);
651		*rate = (tsc2 - tsc1) * 1000;
652	}
653
654#ifdef SMP
655	if (smp_cpus > 1) {
656		thread_lock(curthread);
657		sched_unbind(curthread);
658		thread_unlock(curthread);
659	}
660#endif
661
662	return (0);
663}
664
665/*
666 * Shutdown the CPU as much as possible
667 */
668void
669cpu_halt(void)
670{
671	for (;;)
672		halt();
673}
674
675void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
676static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
677static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
678TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
679SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
680    0, "Use MONITOR/MWAIT for short idle");
681
682#define	STATE_RUNNING	0x0
683#define	STATE_MWAIT	0x1
684#define	STATE_SLEEPING	0x2
685
686static void
687cpu_idle_acpi(sbintime_t sbt)
688{
689	int *state;
690
691	state = (int *)PCPU_PTR(monitorbuf);
692	*state = STATE_SLEEPING;
693
694	/* See comments in cpu_idle_hlt(). */
695	disable_intr();
696	if (sched_runnable())
697		enable_intr();
698	else if (cpu_idle_hook)
699		cpu_idle_hook(sbt);
700	else
701		__asm __volatile("sti; hlt");
702	*state = STATE_RUNNING;
703}
704
705static void
706cpu_idle_hlt(sbintime_t sbt)
707{
708	int *state;
709
710	state = (int *)PCPU_PTR(monitorbuf);
711	*state = STATE_SLEEPING;
712
713	/*
714	 * Since we may be in a critical section from cpu_idle(), if
715	 * an interrupt fires during that critical section we may have
716	 * a pending preemption.  If the CPU halts, then that thread
717	 * may not execute until a later interrupt awakens the CPU.
718	 * To handle this race, check for a runnable thread after
719	 * disabling interrupts and immediately return if one is
720	 * found.  Also, we must absolutely guarentee that hlt is
721	 * the next instruction after sti.  This ensures that any
722	 * interrupt that fires after the call to disable_intr() will
723	 * immediately awaken the CPU from hlt.  Finally, please note
724	 * that on x86 this works fine because of interrupts enabled only
725	 * after the instruction following sti takes place, while IF is set
726	 * to 1 immediately, allowing hlt instruction to acknowledge the
727	 * interrupt.
728	 */
729	disable_intr();
730	if (sched_runnable())
731		enable_intr();
732	else
733		__asm __volatile("sti; hlt");
734	*state = STATE_RUNNING;
735}
736
737/*
738 * MWAIT cpu power states.  Lower 4 bits are sub-states.
739 */
740#define	MWAIT_C0	0xf0
741#define	MWAIT_C1	0x00
742#define	MWAIT_C2	0x10
743#define	MWAIT_C3	0x20
744#define	MWAIT_C4	0x30
745
746static void
747cpu_idle_mwait(sbintime_t sbt)
748{
749	int *state;
750
751	state = (int *)PCPU_PTR(monitorbuf);
752	*state = STATE_MWAIT;
753
754	/* See comments in cpu_idle_hlt(). */
755	disable_intr();
756	if (sched_runnable()) {
757		enable_intr();
758		*state = STATE_RUNNING;
759		return;
760	}
761	cpu_monitor(state, 0, 0);
762	if (*state == STATE_MWAIT)
763		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
764	else
765		enable_intr();
766	*state = STATE_RUNNING;
767}
768
769static void
770cpu_idle_spin(sbintime_t sbt)
771{
772	int *state;
773	int i;
774
775	state = (int *)PCPU_PTR(monitorbuf);
776	*state = STATE_RUNNING;
777
778	/*
779	 * The sched_runnable() call is racy but as long as there is
780	 * a loop missing it one time will have just a little impact if any
781	 * (and it is much better than missing the check at all).
782	 */
783	for (i = 0; i < 1000; i++) {
784		if (sched_runnable())
785			return;
786		cpu_spinwait();
787	}
788}
789
790/*
791 * C1E renders the local APIC timer dead, so we disable it by
792 * reading the Interrupt Pending Message register and clearing
793 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
794 *
795 * Reference:
796 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
797 *   #32559 revision 3.00+
798 */
799#define	MSR_AMDK8_IPM		0xc0010055
800#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
801#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
802#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
803
804static void
805cpu_probe_amdc1e(void)
806{
807
808	/*
809	 * Detect the presence of C1E capability mostly on latest
810	 * dual-cores (or future) k8 family.
811	 */
812	if (cpu_vendor_id == CPU_VENDOR_AMD &&
813	    (cpu_id & 0x00000f00) == 0x00000f00 &&
814	    (cpu_id & 0x0fff0000) >=  0x00040000) {
815		cpu_ident_amdc1e = 1;
816	}
817}
818
819void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
820
821void
822cpu_idle(int busy)
823{
824	uint64_t msr;
825	sbintime_t sbt = -1;
826
827	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
828	    busy, curcpu);
829#ifdef MP_WATCHDOG
830	ap_watchdog(PCPU_GET(cpuid));
831#endif
832	/* If we are busy - try to use fast methods. */
833	if (busy) {
834		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
835			cpu_idle_mwait(busy);
836			goto out;
837		}
838	}
839
840	/* If we have time - switch timers into idle mode. */
841	if (!busy) {
842		critical_enter();
843		sbt = cpu_idleclock();
844	}
845
846	/* Apply AMD APIC timer C1E workaround. */
847	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
848		msr = rdmsr(MSR_AMDK8_IPM);
849		if (msr & AMDK8_CMPHALT)
850			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
851	}
852
853	/* Call main idle method. */
854	cpu_idle_fn(sbt);
855
856	/* Switch timers back into active mode. */
857	if (!busy) {
858		cpu_activeclock();
859		critical_exit();
860	}
861out:
862	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
863	    busy, curcpu);
864}
865
866int
867cpu_idle_wakeup(int cpu)
868{
869	struct pcpu *pcpu;
870	int *state;
871
872	pcpu = pcpu_find(cpu);
873	state = (int *)pcpu->pc_monitorbuf;
874	/*
875	 * This doesn't need to be atomic since missing the race will
876	 * simply result in unnecessary IPIs.
877	 */
878	if (*state == STATE_SLEEPING)
879		return (0);
880	if (*state == STATE_MWAIT)
881		*state = STATE_RUNNING;
882	return (1);
883}
884
885/*
886 * Ordered by speed/power consumption.
887 */
888struct {
889	void	*id_fn;
890	char	*id_name;
891} idle_tbl[] = {
892	{ cpu_idle_spin, "spin" },
893	{ cpu_idle_mwait, "mwait" },
894	{ cpu_idle_hlt, "hlt" },
895	{ cpu_idle_acpi, "acpi" },
896	{ NULL, NULL }
897};
898
899static int
900idle_sysctl_available(SYSCTL_HANDLER_ARGS)
901{
902	char *avail, *p;
903	int error;
904	int i;
905
906	avail = malloc(256, M_TEMP, M_WAITOK);
907	p = avail;
908	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
909		if (strstr(idle_tbl[i].id_name, "mwait") &&
910		    (cpu_feature2 & CPUID2_MON) == 0)
911			continue;
912		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
913		    cpu_idle_hook == NULL)
914			continue;
915		p += sprintf(p, "%s%s", p != avail ? ", " : "",
916		    idle_tbl[i].id_name);
917	}
918	error = sysctl_handle_string(oidp, avail, 0, req);
919	free(avail, M_TEMP);
920	return (error);
921}
922
923SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
924    0, 0, idle_sysctl_available, "A", "list of available idle functions");
925
926static int
927idle_sysctl(SYSCTL_HANDLER_ARGS)
928{
929	char buf[16];
930	int error;
931	char *p;
932	int i;
933
934	p = "unknown";
935	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
936		if (idle_tbl[i].id_fn == cpu_idle_fn) {
937			p = idle_tbl[i].id_name;
938			break;
939		}
940	}
941	strncpy(buf, p, sizeof(buf));
942	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
943	if (error != 0 || req->newptr == NULL)
944		return (error);
945	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
946		if (strstr(idle_tbl[i].id_name, "mwait") &&
947		    (cpu_feature2 & CPUID2_MON) == 0)
948			continue;
949		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
950		    cpu_idle_hook == NULL)
951			continue;
952		if (strcmp(idle_tbl[i].id_name, buf))
953			continue;
954		cpu_idle_fn = idle_tbl[i].id_fn;
955		return (0);
956	}
957	return (EINVAL);
958}
959
960SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
961    idle_sysctl, "A", "currently selected idle function");
962
963/*
964 * Reset registers to default values on exec.
965 */
966void
967exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
968{
969	struct trapframe *regs = td->td_frame;
970	struct pcb *pcb = td->td_pcb;
971
972	mtx_lock(&dt_lock);
973	if (td->td_proc->p_md.md_ldt != NULL)
974		user_ldt_free(td);
975	else
976		mtx_unlock(&dt_lock);
977
978	pcb->pcb_fsbase = 0;
979	pcb->pcb_gsbase = 0;
980	clear_pcb_flags(pcb, PCB_32BIT);
981	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
982	set_pcb_flags(pcb, PCB_FULL_IRET);
983
984	bzero((char *)regs, sizeof(struct trapframe));
985	regs->tf_rip = imgp->entry_addr;
986	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
987	regs->tf_rdi = stack;		/* argv */
988	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
989	regs->tf_ss = _udatasel;
990	regs->tf_cs = _ucodesel;
991	regs->tf_ds = _udatasel;
992	regs->tf_es = _udatasel;
993	regs->tf_fs = _ufssel;
994	regs->tf_gs = _ugssel;
995	regs->tf_flags = TF_HASSEGS;
996	td->td_retval[1] = 0;
997
998	/*
999	 * Reset the hardware debug registers if they were in use.
1000	 * They won't have any meaning for the newly exec'd process.
1001	 */
1002	if (pcb->pcb_flags & PCB_DBREGS) {
1003		pcb->pcb_dr0 = 0;
1004		pcb->pcb_dr1 = 0;
1005		pcb->pcb_dr2 = 0;
1006		pcb->pcb_dr3 = 0;
1007		pcb->pcb_dr6 = 0;
1008		pcb->pcb_dr7 = 0;
1009		if (pcb == curpcb) {
1010			/*
1011			 * Clear the debug registers on the running
1012			 * CPU, otherwise they will end up affecting
1013			 * the next process we switch to.
1014			 */
1015			reset_dbregs();
1016		}
1017		clear_pcb_flags(pcb, PCB_DBREGS);
1018	}
1019
1020	/*
1021	 * Drop the FP state if we hold it, so that the process gets a
1022	 * clean FP state if it uses the FPU again.
1023	 */
1024	fpstate_drop(td);
1025}
1026
1027void
1028cpu_setregs(void)
1029{
1030	register_t cr0;
1031
1032	cr0 = rcr0();
1033	/*
1034	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1035	 * BSP.  See the comments there about why we set them.
1036	 */
1037	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1038	load_cr0(cr0);
1039}
1040
1041/*
1042 * Initialize amd64 and configure to run kernel
1043 */
1044
1045/*
1046 * Initialize segments & interrupt table
1047 */
1048
1049struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1050static struct gate_descriptor idt0[NIDT];
1051struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1052
1053static char dblfault_stack[PAGE_SIZE] __aligned(16);
1054
1055static char nmi0_stack[PAGE_SIZE] __aligned(16);
1056CTASSERT(sizeof(struct nmi_pcpu) == 16);
1057
1058struct amd64tss common_tss[MAXCPU];
1059
1060/*
1061 * Software prototypes -- in more palatable form.
1062 *
1063 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1064 * slots as corresponding segments for i386 kernel.
1065 */
1066struct soft_segment_descriptor gdt_segs[] = {
1067/* GNULL_SEL	0 Null Descriptor */
1068{	.ssd_base = 0x0,
1069	.ssd_limit = 0x0,
1070	.ssd_type = 0,
1071	.ssd_dpl = 0,
1072	.ssd_p = 0,
1073	.ssd_long = 0,
1074	.ssd_def32 = 0,
1075	.ssd_gran = 0		},
1076/* GNULL2_SEL	1 Null Descriptor */
1077{	.ssd_base = 0x0,
1078	.ssd_limit = 0x0,
1079	.ssd_type = 0,
1080	.ssd_dpl = 0,
1081	.ssd_p = 0,
1082	.ssd_long = 0,
1083	.ssd_def32 = 0,
1084	.ssd_gran = 0		},
1085/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1086{	.ssd_base = 0x0,
1087	.ssd_limit = 0xfffff,
1088	.ssd_type = SDT_MEMRWA,
1089	.ssd_dpl = SEL_UPL,
1090	.ssd_p = 1,
1091	.ssd_long = 0,
1092	.ssd_def32 = 1,
1093	.ssd_gran = 1		},
1094/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1095{	.ssd_base = 0x0,
1096	.ssd_limit = 0xfffff,
1097	.ssd_type = SDT_MEMRWA,
1098	.ssd_dpl = SEL_UPL,
1099	.ssd_p = 1,
1100	.ssd_long = 0,
1101	.ssd_def32 = 1,
1102	.ssd_gran = 1		},
1103/* GCODE_SEL	4 Code Descriptor for kernel */
1104{	.ssd_base = 0x0,
1105	.ssd_limit = 0xfffff,
1106	.ssd_type = SDT_MEMERA,
1107	.ssd_dpl = SEL_KPL,
1108	.ssd_p = 1,
1109	.ssd_long = 1,
1110	.ssd_def32 = 0,
1111	.ssd_gran = 1		},
1112/* GDATA_SEL	5 Data Descriptor for kernel */
1113{	.ssd_base = 0x0,
1114	.ssd_limit = 0xfffff,
1115	.ssd_type = SDT_MEMRWA,
1116	.ssd_dpl = SEL_KPL,
1117	.ssd_p = 1,
1118	.ssd_long = 1,
1119	.ssd_def32 = 0,
1120	.ssd_gran = 1		},
1121/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1122{	.ssd_base = 0x0,
1123	.ssd_limit = 0xfffff,
1124	.ssd_type = SDT_MEMERA,
1125	.ssd_dpl = SEL_UPL,
1126	.ssd_p = 1,
1127	.ssd_long = 0,
1128	.ssd_def32 = 1,
1129	.ssd_gran = 1		},
1130/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1131{	.ssd_base = 0x0,
1132	.ssd_limit = 0xfffff,
1133	.ssd_type = SDT_MEMRWA,
1134	.ssd_dpl = SEL_UPL,
1135	.ssd_p = 1,
1136	.ssd_long = 0,
1137	.ssd_def32 = 1,
1138	.ssd_gran = 1		},
1139/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1140{	.ssd_base = 0x0,
1141	.ssd_limit = 0xfffff,
1142	.ssd_type = SDT_MEMERA,
1143	.ssd_dpl = SEL_UPL,
1144	.ssd_p = 1,
1145	.ssd_long = 1,
1146	.ssd_def32 = 0,
1147	.ssd_gran = 1		},
1148/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1149{	.ssd_base = 0x0,
1150	.ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
1151	.ssd_type = SDT_SYSTSS,
1152	.ssd_dpl = SEL_KPL,
1153	.ssd_p = 1,
1154	.ssd_long = 0,
1155	.ssd_def32 = 0,
1156	.ssd_gran = 0		},
1157/* Actually, the TSS is a system descriptor which is double size */
1158{	.ssd_base = 0x0,
1159	.ssd_limit = 0x0,
1160	.ssd_type = 0,
1161	.ssd_dpl = 0,
1162	.ssd_p = 0,
1163	.ssd_long = 0,
1164	.ssd_def32 = 0,
1165	.ssd_gran = 0		},
1166/* GUSERLDT_SEL	11 LDT Descriptor */
1167{	.ssd_base = 0x0,
1168	.ssd_limit = 0x0,
1169	.ssd_type = 0,
1170	.ssd_dpl = 0,
1171	.ssd_p = 0,
1172	.ssd_long = 0,
1173	.ssd_def32 = 0,
1174	.ssd_gran = 0		},
1175/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1176{	.ssd_base = 0x0,
1177	.ssd_limit = 0x0,
1178	.ssd_type = 0,
1179	.ssd_dpl = 0,
1180	.ssd_p = 0,
1181	.ssd_long = 0,
1182	.ssd_def32 = 0,
1183	.ssd_gran = 0		},
1184};
1185
1186void
1187setidt(idx, func, typ, dpl, ist)
1188	int idx;
1189	inthand_t *func;
1190	int typ;
1191	int dpl;
1192	int ist;
1193{
1194	struct gate_descriptor *ip;
1195
1196	ip = idt + idx;
1197	ip->gd_looffset = (uintptr_t)func;
1198	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1199	ip->gd_ist = ist;
1200	ip->gd_xx = 0;
1201	ip->gd_type = typ;
1202	ip->gd_dpl = dpl;
1203	ip->gd_p = 1;
1204	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1205}
1206
1207extern inthand_t
1208	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1209	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1210	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1211	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1212	IDTVEC(xmm), IDTVEC(dblfault),
1213#ifdef KDTRACE_HOOKS
1214	IDTVEC(dtrace_ret),
1215#endif
1216#ifdef XENHVM
1217	IDTVEC(xen_intr_upcall),
1218#endif
1219	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1220
1221#ifdef DDB
1222/*
1223 * Display the index and function name of any IDT entries that don't use
1224 * the default 'rsvd' entry point.
1225 */
1226DB_SHOW_COMMAND(idt, db_show_idt)
1227{
1228	struct gate_descriptor *ip;
1229	int idx;
1230	uintptr_t func;
1231
1232	ip = idt;
1233	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1234		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1235		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1236			db_printf("%3d\t", idx);
1237			db_printsym(func, DB_STGY_PROC);
1238			db_printf("\n");
1239		}
1240		ip++;
1241	}
1242}
1243
1244/* Show privileged registers. */
1245DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1246{
1247	struct {
1248		uint16_t limit;
1249		uint64_t base;
1250	} __packed idtr, gdtr;
1251	uint16_t ldt, tr;
1252
1253	__asm __volatile("sidt %0" : "=m" (idtr));
1254	db_printf("idtr\t0x%016lx/%04x\n",
1255	    (u_long)idtr.base, (u_int)idtr.limit);
1256	__asm __volatile("sgdt %0" : "=m" (gdtr));
1257	db_printf("gdtr\t0x%016lx/%04x\n",
1258	    (u_long)gdtr.base, (u_int)gdtr.limit);
1259	__asm __volatile("sldt %0" : "=r" (ldt));
1260	db_printf("ldtr\t0x%04x\n", ldt);
1261	__asm __volatile("str %0" : "=r" (tr));
1262	db_printf("tr\t0x%04x\n", tr);
1263	db_printf("cr0\t0x%016lx\n", rcr0());
1264	db_printf("cr2\t0x%016lx\n", rcr2());
1265	db_printf("cr3\t0x%016lx\n", rcr3());
1266	db_printf("cr4\t0x%016lx\n", rcr4());
1267	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1268	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1269	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1270	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1271	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1272}
1273#endif
1274
1275void
1276sdtossd(sd, ssd)
1277	struct user_segment_descriptor *sd;
1278	struct soft_segment_descriptor *ssd;
1279{
1280
1281	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1282	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1283	ssd->ssd_type  = sd->sd_type;
1284	ssd->ssd_dpl   = sd->sd_dpl;
1285	ssd->ssd_p     = sd->sd_p;
1286	ssd->ssd_long  = sd->sd_long;
1287	ssd->ssd_def32 = sd->sd_def32;
1288	ssd->ssd_gran  = sd->sd_gran;
1289}
1290
1291void
1292ssdtosd(ssd, sd)
1293	struct soft_segment_descriptor *ssd;
1294	struct user_segment_descriptor *sd;
1295{
1296
1297	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1298	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1299	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1300	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1301	sd->sd_type  = ssd->ssd_type;
1302	sd->sd_dpl   = ssd->ssd_dpl;
1303	sd->sd_p     = ssd->ssd_p;
1304	sd->sd_long  = ssd->ssd_long;
1305	sd->sd_def32 = ssd->ssd_def32;
1306	sd->sd_gran  = ssd->ssd_gran;
1307}
1308
1309void
1310ssdtosyssd(ssd, sd)
1311	struct soft_segment_descriptor *ssd;
1312	struct system_segment_descriptor *sd;
1313{
1314
1315	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1316	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1317	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1318	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1319	sd->sd_type  = ssd->ssd_type;
1320	sd->sd_dpl   = ssd->ssd_dpl;
1321	sd->sd_p     = ssd->ssd_p;
1322	sd->sd_gran  = ssd->ssd_gran;
1323}
1324
1325#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1326#include <isa/isavar.h>
1327#include <isa/isareg.h>
1328/*
1329 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1330 * and is only suitable for use at probe time.
1331 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1332 * It shouldn't be here.  There should probably be an APIC centric
1333 * implementation in the apic driver code, if at all.
1334 */
1335intrmask_t
1336isa_irq_pending(void)
1337{
1338	u_char irr1;
1339	u_char irr2;
1340
1341	irr1 = inb(IO_ICU1);
1342	irr2 = inb(IO_ICU2);
1343	return ((irr2 << 8) | irr1);
1344}
1345#endif
1346
1347u_int basemem;
1348
1349static int
1350add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1351    int *physmap_idxp)
1352{
1353	int i, insert_idx, physmap_idx;
1354
1355	physmap_idx = *physmap_idxp;
1356
1357	if (length == 0)
1358		return (1);
1359
1360	/*
1361	 * Find insertion point while checking for overlap.  Start off by
1362	 * assuming the new entry will be added to the end.
1363	 */
1364	insert_idx = physmap_idx + 2;
1365	for (i = 0; i <= physmap_idx; i += 2) {
1366		if (base < physmap[i + 1]) {
1367			if (base + length <= physmap[i]) {
1368				insert_idx = i;
1369				break;
1370			}
1371			if (boothowto & RB_VERBOSE)
1372				printf(
1373		    "Overlapping memory regions, ignoring second region\n");
1374			return (1);
1375		}
1376	}
1377
1378	/* See if we can prepend to the next entry. */
1379	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1380		physmap[insert_idx] = base;
1381		return (1);
1382	}
1383
1384	/* See if we can append to the previous entry. */
1385	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1386		physmap[insert_idx - 1] += length;
1387		return (1);
1388	}
1389
1390	physmap_idx += 2;
1391	*physmap_idxp = physmap_idx;
1392	if (physmap_idx == PHYSMAP_SIZE) {
1393		printf(
1394		"Too many segments in the physical address map, giving up\n");
1395		return (0);
1396	}
1397
1398	/*
1399	 * Move the last 'N' entries down to make room for the new
1400	 * entry if needed.
1401	 */
1402	for (i = physmap_idx; i > insert_idx; i -= 2) {
1403		physmap[i] = physmap[i - 2];
1404		physmap[i + 1] = physmap[i - 1];
1405	}
1406
1407	/* Insert the new entry. */
1408	physmap[insert_idx] = base;
1409	physmap[insert_idx + 1] = base + length;
1410	return (1);
1411}
1412
1413void
1414bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
1415                      vm_paddr_t *physmap, int *physmap_idx)
1416{
1417	struct bios_smap *smap, *smapend;
1418
1419	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1420
1421	for (smap = smapbase; smap < smapend; smap++) {
1422		if (boothowto & RB_VERBOSE)
1423			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1424			    smap->type, smap->base, smap->length);
1425
1426		if (smap->type != SMAP_TYPE_MEMORY)
1427			continue;
1428
1429		if (!add_physmap_entry(smap->base, smap->length, physmap,
1430		    physmap_idx))
1431			break;
1432	}
1433}
1434
1435#define efi_next_descriptor(ptr, size) \
1436	((struct efi_md *)(((uint8_t *) ptr) + size))
1437
1438static void
1439add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1440    int *physmap_idx)
1441{
1442	struct efi_md *map, *p;
1443	const char *type;
1444	size_t efisz;
1445	int ndesc, i;
1446
1447	static const char *types[] = {
1448		"Reserved",
1449		"LoaderCode",
1450		"LoaderData",
1451		"BootServicesCode",
1452		"BootServicesData",
1453		"RuntimeServicesCode",
1454		"RuntimeServicesData",
1455		"ConventionalMemory",
1456		"UnusableMemory",
1457		"ACPIReclaimMemory",
1458		"ACPIMemoryNVS",
1459		"MemoryMappedIO",
1460		"MemoryMappedIOPortSpace",
1461		"PalCode"
1462	};
1463
1464	/*
1465	 * Memory map data provided by UEFI via the GetMemoryMap
1466	 * Boot Services API.
1467	 */
1468	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1469	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1470
1471	if (efihdr->descriptor_size == 0)
1472		return;
1473	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1474
1475	if (boothowto & RB_VERBOSE)
1476		printf("%23s %12s %12s %8s %4s\n",
1477		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1478
1479	for (i = 0, p = map; i < ndesc; i++,
1480	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1481		if (boothowto & RB_VERBOSE) {
1482			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1483				type = types[p->md_type];
1484			else
1485				type = "<INVALID>";
1486			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1487			    p->md_virt, p->md_pages);
1488			if (p->md_attr & EFI_MD_ATTR_UC)
1489				printf("UC ");
1490			if (p->md_attr & EFI_MD_ATTR_WC)
1491				printf("WC ");
1492			if (p->md_attr & EFI_MD_ATTR_WT)
1493				printf("WT ");
1494			if (p->md_attr & EFI_MD_ATTR_WB)
1495				printf("WB ");
1496			if (p->md_attr & EFI_MD_ATTR_UCE)
1497				printf("UCE ");
1498			if (p->md_attr & EFI_MD_ATTR_WP)
1499				printf("WP ");
1500			if (p->md_attr & EFI_MD_ATTR_RP)
1501				printf("RP ");
1502			if (p->md_attr & EFI_MD_ATTR_XP)
1503				printf("XP ");
1504			if (p->md_attr & EFI_MD_ATTR_RT)
1505				printf("RUNTIME");
1506			printf("\n");
1507		}
1508
1509		switch (p->md_type) {
1510		case EFI_MD_TYPE_CODE:
1511		case EFI_MD_TYPE_DATA:
1512		case EFI_MD_TYPE_BS_CODE:
1513		case EFI_MD_TYPE_BS_DATA:
1514		case EFI_MD_TYPE_FREE:
1515			/*
1516			 * We're allowed to use any entry with these types.
1517			 */
1518			break;
1519		default:
1520			continue;
1521		}
1522
1523		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1524		    physmap, physmap_idx))
1525			break;
1526	}
1527}
1528
1529static char bootmethod[16] = "";
1530SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1531    "System firmware boot method");
1532
1533static void
1534native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
1535{
1536	struct bios_smap *smap;
1537	struct efi_map_header *efihdr;
1538	u_int32_t size;
1539
1540	/*
1541	 * Memory map from INT 15:E820.
1542	 *
1543	 * subr_module.c says:
1544	 * "Consumer may safely assume that size value precedes data."
1545	 * ie: an int32_t immediately precedes smap.
1546	 */
1547
1548	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1549	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1550	smap = (struct bios_smap *)preload_search_info(kmdp,
1551	    MODINFO_METADATA | MODINFOMD_SMAP);
1552	if (efihdr == NULL && smap == NULL)
1553		panic("No BIOS smap or EFI map info from loader!");
1554
1555	if (efihdr != NULL) {
1556		add_efi_map_entries(efihdr, physmap, physmap_idx);
1557		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1558	} else {
1559		size = *((u_int32_t *)smap - 1);
1560		bios_add_smap_entries(smap, size, physmap, physmap_idx);
1561		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1562	}
1563}
1564
1565/*
1566 * Populate the (physmap) array with base/bound pairs describing the
1567 * available physical memory in the system, then test this memory and
1568 * build the phys_avail array describing the actually-available memory.
1569 *
1570 * Total memory size may be set by the kernel environment variable
1571 * hw.physmem or the compile-time define MAXMEM.
1572 *
1573 * XXX first should be vm_paddr_t.
1574 */
1575static void
1576getmemsize(caddr_t kmdp, u_int64_t first)
1577{
1578	int i, physmap_idx, pa_indx, da_indx;
1579	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1580	u_long physmem_start, physmem_tunable, memtest;
1581	pt_entry_t *pte;
1582	quad_t dcons_addr, dcons_size;
1583
1584	bzero(physmap, sizeof(physmap));
1585	basemem = 0;
1586	physmap_idx = 0;
1587
1588	init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
1589
1590	/*
1591	 * Find the 'base memory' segment for SMP
1592	 */
1593	basemem = 0;
1594	for (i = 0; i <= physmap_idx; i += 2) {
1595		if (physmap[i] == 0x00000000) {
1596			basemem = physmap[i + 1] / 1024;
1597			break;
1598		}
1599	}
1600	if (basemem == 0)
1601		panic("BIOS smap did not include a basemem segment!");
1602
1603	/*
1604	 * Make hole for "AP -> long mode" bootstrap code.  The
1605	 * mp_bootaddress vector is only available when the kernel
1606	 * is configured to support APs and APs for the system start
1607	 * in 32bit mode (e.g. SMP bare metal).
1608	 */
1609	if (init_ops.mp_bootaddress)
1610		physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
1611
1612	/*
1613	 * Maxmem isn't the "maximum memory", it's one larger than the
1614	 * highest page of the physical address space.  It should be
1615	 * called something like "Maxphyspage".  We may adjust this
1616	 * based on ``hw.physmem'' and the results of the memory test.
1617	 */
1618	Maxmem = atop(physmap[physmap_idx + 1]);
1619
1620#ifdef MAXMEM
1621	Maxmem = MAXMEM / 4;
1622#endif
1623
1624	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1625		Maxmem = atop(physmem_tunable);
1626
1627	/*
1628	 * The boot memory test is disabled by default, as it takes a
1629	 * significant amount of time on large-memory systems, and is
1630	 * unfriendly to virtual machines as it unnecessarily touches all
1631	 * pages.
1632	 *
1633	 * A general name is used as the code may be extended to support
1634	 * additional tests beyond the current "page present" test.
1635	 */
1636	memtest = 0;
1637	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1638
1639	/*
1640	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1641	 * in the system.
1642	 */
1643	if (Maxmem > atop(physmap[physmap_idx + 1]))
1644		Maxmem = atop(physmap[physmap_idx + 1]);
1645
1646	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1647	    (boothowto & RB_VERBOSE))
1648		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1649
1650	/* call pmap initialization to make new kernel address space */
1651	pmap_bootstrap(&first);
1652
1653	/*
1654	 * Size up each available chunk of physical memory.
1655	 *
1656	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1657	 * By default, mask off the first 16 pages unless we appear to be
1658	 * running in a VM.
1659	 */
1660	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1661	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1662	if (physmem_start < PAGE_SIZE)
1663		physmap[0] = PAGE_SIZE;
1664	else if (physmem_start >= physmap[1])
1665		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1666	else
1667		physmap[0] = round_page(physmem_start);
1668	pa_indx = 0;
1669	da_indx = 1;
1670	phys_avail[pa_indx++] = physmap[0];
1671	phys_avail[pa_indx] = physmap[0];
1672	dump_avail[da_indx] = physmap[0];
1673	pte = CMAP1;
1674
1675	/*
1676	 * Get dcons buffer address
1677	 */
1678	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1679	    getenv_quad("dcons.size", &dcons_size) == 0)
1680		dcons_addr = 0;
1681
1682	/*
1683	 * physmap is in bytes, so when converting to page boundaries,
1684	 * round up the start address and round down the end address.
1685	 */
1686	for (i = 0; i <= physmap_idx; i += 2) {
1687		vm_paddr_t end;
1688
1689		end = ptoa((vm_paddr_t)Maxmem);
1690		if (physmap[i + 1] < end)
1691			end = trunc_page(physmap[i + 1]);
1692		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1693			int tmp, page_bad, full;
1694			int *ptr = (int *)CADDR1;
1695
1696			full = FALSE;
1697			/*
1698			 * block out kernel memory as not available.
1699			 */
1700			if (pa >= (vm_paddr_t)kernphys && pa < first)
1701				goto do_dump_avail;
1702
1703			/*
1704			 * block out dcons buffer
1705			 */
1706			if (dcons_addr > 0
1707			    && pa >= trunc_page(dcons_addr)
1708			    && pa < dcons_addr + dcons_size)
1709				goto do_dump_avail;
1710
1711			page_bad = FALSE;
1712			if (memtest == 0)
1713				goto skip_memtest;
1714
1715			/*
1716			 * map page into kernel: valid, read/write,non-cacheable
1717			 */
1718			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1719			invltlb();
1720
1721			tmp = *(int *)ptr;
1722			/*
1723			 * Test for alternating 1's and 0's
1724			 */
1725			*(volatile int *)ptr = 0xaaaaaaaa;
1726			if (*(volatile int *)ptr != 0xaaaaaaaa)
1727				page_bad = TRUE;
1728			/*
1729			 * Test for alternating 0's and 1's
1730			 */
1731			*(volatile int *)ptr = 0x55555555;
1732			if (*(volatile int *)ptr != 0x55555555)
1733				page_bad = TRUE;
1734			/*
1735			 * Test for all 1's
1736			 */
1737			*(volatile int *)ptr = 0xffffffff;
1738			if (*(volatile int *)ptr != 0xffffffff)
1739				page_bad = TRUE;
1740			/*
1741			 * Test for all 0's
1742			 */
1743			*(volatile int *)ptr = 0x0;
1744			if (*(volatile int *)ptr != 0x0)
1745				page_bad = TRUE;
1746			/*
1747			 * Restore original value.
1748			 */
1749			*(int *)ptr = tmp;
1750
1751skip_memtest:
1752			/*
1753			 * Adjust array of valid/good pages.
1754			 */
1755			if (page_bad == TRUE)
1756				continue;
1757			/*
1758			 * If this good page is a continuation of the
1759			 * previous set of good pages, then just increase
1760			 * the end pointer. Otherwise start a new chunk.
1761			 * Note that "end" points one higher than end,
1762			 * making the range >= start and < end.
1763			 * If we're also doing a speculative memory
1764			 * test and we at or past the end, bump up Maxmem
1765			 * so that we keep going. The first bad page
1766			 * will terminate the loop.
1767			 */
1768			if (phys_avail[pa_indx] == pa) {
1769				phys_avail[pa_indx] += PAGE_SIZE;
1770			} else {
1771				pa_indx++;
1772				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1773					printf(
1774		"Too many holes in the physical address space, giving up\n");
1775					pa_indx--;
1776					full = TRUE;
1777					goto do_dump_avail;
1778				}
1779				phys_avail[pa_indx++] = pa;	/* start */
1780				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1781			}
1782			physmem++;
1783do_dump_avail:
1784			if (dump_avail[da_indx] == pa) {
1785				dump_avail[da_indx] += PAGE_SIZE;
1786			} else {
1787				da_indx++;
1788				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1789					da_indx--;
1790					goto do_next;
1791				}
1792				dump_avail[da_indx++] = pa; /* start */
1793				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1794			}
1795do_next:
1796			if (full)
1797				break;
1798		}
1799	}
1800	*pte = 0;
1801	invltlb();
1802
1803	/*
1804	 * XXX
1805	 * The last chunk must contain at least one page plus the message
1806	 * buffer to avoid complicating other code (message buffer address
1807	 * calculation, etc.).
1808	 */
1809	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1810	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1811		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1812		phys_avail[pa_indx--] = 0;
1813		phys_avail[pa_indx--] = 0;
1814	}
1815
1816	Maxmem = atop(phys_avail[pa_indx]);
1817
1818	/* Trim off space for the message buffer. */
1819	phys_avail[pa_indx] -= round_page(msgbufsize);
1820
1821	/* Map the message buffer. */
1822	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1823}
1824
1825static caddr_t
1826native_parse_preload_data(u_int64_t modulep)
1827{
1828	caddr_t kmdp;
1829
1830	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1831	preload_bootstrap_relocate(KERNBASE);
1832	kmdp = preload_search_by_type("elf kernel");
1833	if (kmdp == NULL)
1834		kmdp = preload_search_by_type("elf64 kernel");
1835	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1836	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1837#ifdef DDB
1838	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1839	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1840#endif
1841
1842	return (kmdp);
1843}
1844
1845u_int64_t
1846hammer_time(u_int64_t modulep, u_int64_t physfree)
1847{
1848	caddr_t kmdp;
1849	int gsel_tss, x;
1850	struct pcpu *pc;
1851	struct nmi_pcpu *np;
1852	struct xstate_hdr *xhdr;
1853	u_int64_t msr;
1854	char *env;
1855	size_t kstack0_sz;
1856
1857	thread0.td_kstack = physfree + KERNBASE;
1858	thread0.td_kstack_pages = KSTACK_PAGES;
1859	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1860	bzero((void *)thread0.td_kstack, kstack0_sz);
1861	physfree += kstack0_sz;
1862
1863	/*
1864 	 * This may be done better later if it gets more high level
1865 	 * components in it. If so just link td->td_proc here.
1866	 */
1867	proc_linkup0(&proc0, &thread0);
1868
1869	kmdp = init_ops.parse_preload_data(modulep);
1870
1871	/* Init basic tunables, hz etc */
1872	init_param1();
1873
1874	/*
1875	 * make gdt memory segments
1876	 */
1877	for (x = 0; x < NGDT; x++) {
1878		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1879		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1880			ssdtosd(&gdt_segs[x], &gdt[x]);
1881	}
1882	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1883	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1884	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1885
1886	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1887	r_gdt.rd_base =  (long) gdt;
1888	lgdt(&r_gdt);
1889	pc = &__pcpu[0];
1890
1891	wrmsr(MSR_FSBASE, 0);		/* User value */
1892	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1893	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1894
1895	pcpu_init(pc, 0, sizeof(struct pcpu));
1896	dpcpu_init((void *)(physfree + KERNBASE), 0);
1897	physfree += DPCPU_SIZE;
1898	PCPU_SET(prvspace, pc);
1899	PCPU_SET(curthread, &thread0);
1900	PCPU_SET(tssp, &common_tss[0]);
1901	PCPU_SET(commontssp, &common_tss[0]);
1902	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1903	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1904	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1905	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1906
1907	/*
1908	 * Initialize mutexes.
1909	 *
1910	 * icu_lock: in order to allow an interrupt to occur in a critical
1911	 * 	     section, to set pcpu->ipending (etc...) properly, we
1912	 *	     must be able to get the icu lock, so it can't be
1913	 *	     under witness.
1914	 */
1915	mutex_init();
1916	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1917	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1918
1919	/* exceptions */
1920	for (x = 0; x < NIDT; x++)
1921		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1922	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1923	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1924	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1925 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1926	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1927	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1928	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1929	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1930	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1931	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1932	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1933	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1934	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1935	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1936	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1937	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1938	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1939	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1940	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1941#ifdef KDTRACE_HOOKS
1942	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1943#endif
1944#ifdef XENHVM
1945	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1946#endif
1947
1948	r_idt.rd_limit = sizeof(idt0) - 1;
1949	r_idt.rd_base = (long) idt;
1950	lidt(&r_idt);
1951
1952	/*
1953	 * Initialize the clock before the console so that console
1954	 * initialization can use DELAY().
1955	 */
1956	clock_init();
1957
1958	/*
1959	 * Initialize the console before we print anything out.
1960	 */
1961	cninit();
1962
1963#ifdef DEV_ISA
1964#ifdef DEV_ATPIC
1965	elcr_probe();
1966	atpic_startup();
1967#else
1968	/* Reset and mask the atpics and leave them shut down. */
1969	atpic_reset();
1970
1971	/*
1972	 * Point the ICU spurious interrupt vectors at the APIC spurious
1973	 * interrupt handler.
1974	 */
1975	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1976	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1977#endif
1978#else
1979#error "have you forgotten the isa device?";
1980#endif
1981
1982	kdb_init();
1983
1984#ifdef KDB
1985	if (boothowto & RB_KDB)
1986		kdb_enter(KDB_WHY_BOOTFLAGS,
1987		    "Boot flags requested debugger");
1988#endif
1989
1990	identify_cpu();		/* Final stage of CPU initialization */
1991	initializecpu();	/* Initialize CPU registers */
1992	initializecpucache();
1993
1994	/* doublefault stack space, runs on ist1 */
1995	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1996
1997	/*
1998	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1999	 * above the start of the ist2 stack.
2000	 */
2001	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
2002	np->np_pcpu = (register_t) pc;
2003	common_tss[0].tss_ist2 = (long) np;
2004
2005	/* Set the IO permission bitmap (empty due to tss seg limit) */
2006	common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
2007
2008	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2009	ltr(gsel_tss);
2010
2011	/* Set up the fast syscall stuff */
2012	msr = rdmsr(MSR_EFER) | EFER_SCE;
2013	wrmsr(MSR_EFER, msr);
2014	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2015	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2016	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2017	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2018	wrmsr(MSR_STAR, msr);
2019	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
2020
2021	getmemsize(kmdp, physfree);
2022	init_param2(physmem);
2023
2024	/* now running on new page tables, configured,and u/iom is accessible */
2025
2026	msgbufinit(msgbufp, msgbufsize);
2027	fpuinit();
2028
2029	/*
2030	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
2031	 * area size.  Zero out the extended state header in fpu save
2032	 * area.
2033	 */
2034	thread0.td_pcb = get_pcb_td(&thread0);
2035	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2036	if (use_xsave) {
2037		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2038		    1);
2039		xhdr->xstate_bv = xsave_mask;
2040	}
2041	/* make an initial tss so cpu can get interrupt stack on syscall! */
2042	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
2043	/* Ensure the stack is aligned to 16 bytes */
2044	common_tss[0].tss_rsp0 &= ~0xFul;
2045	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
2046	PCPU_SET(curpcb, thread0.td_pcb);
2047
2048	/* transfer to user mode */
2049
2050	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2051	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2052	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2053	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
2054	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
2055
2056	load_ds(_udatasel);
2057	load_es(_udatasel);
2058	load_fs(_ufssel);
2059
2060	/* setup proc 0's pcb */
2061	thread0.td_pcb->pcb_flags = 0;
2062	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
2063	thread0.td_frame = &proc0_tf;
2064
2065        env = getenv("kernelname");
2066	if (env != NULL)
2067		strlcpy(kernelname, env, sizeof(kernelname));
2068
2069	cpu_probe_amdc1e();
2070
2071#ifdef FDT
2072	x86_init_fdt();
2073#endif
2074
2075	/* Location of kernel stack for locore */
2076	return ((u_int64_t)thread0.td_pcb);
2077}
2078
2079void
2080cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2081{
2082
2083	pcpu->pc_acpi_id = 0xffffffff;
2084}
2085
2086void
2087spinlock_enter(void)
2088{
2089	struct thread *td;
2090	register_t flags;
2091
2092	td = curthread;
2093	if (td->td_md.md_spinlock_count == 0) {
2094		flags = intr_disable();
2095		td->td_md.md_spinlock_count = 1;
2096		td->td_md.md_saved_flags = flags;
2097	} else
2098		td->td_md.md_spinlock_count++;
2099	critical_enter();
2100}
2101
2102void
2103spinlock_exit(void)
2104{
2105	struct thread *td;
2106	register_t flags;
2107
2108	td = curthread;
2109	critical_exit();
2110	flags = td->td_md.md_saved_flags;
2111	td->td_md.md_spinlock_count--;
2112	if (td->td_md.md_spinlock_count == 0)
2113		intr_restore(flags);
2114}
2115
2116/*
2117 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2118 * we want to start a backtrace from the function that caused us to enter
2119 * the debugger. We have the context in the trapframe, but base the trace
2120 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2121 * enough for a backtrace.
2122 */
2123void
2124makectx(struct trapframe *tf, struct pcb *pcb)
2125{
2126
2127	pcb->pcb_r12 = tf->tf_r12;
2128	pcb->pcb_r13 = tf->tf_r13;
2129	pcb->pcb_r14 = tf->tf_r14;
2130	pcb->pcb_r15 = tf->tf_r15;
2131	pcb->pcb_rbp = tf->tf_rbp;
2132	pcb->pcb_rbx = tf->tf_rbx;
2133	pcb->pcb_rip = tf->tf_rip;
2134	pcb->pcb_rsp = tf->tf_rsp;
2135}
2136
2137int
2138ptrace_set_pc(struct thread *td, unsigned long addr)
2139{
2140	td->td_frame->tf_rip = addr;
2141	return (0);
2142}
2143
2144int
2145ptrace_single_step(struct thread *td)
2146{
2147	td->td_frame->tf_rflags |= PSL_T;
2148	return (0);
2149}
2150
2151int
2152ptrace_clear_single_step(struct thread *td)
2153{
2154	td->td_frame->tf_rflags &= ~PSL_T;
2155	return (0);
2156}
2157
2158int
2159fill_regs(struct thread *td, struct reg *regs)
2160{
2161	struct trapframe *tp;
2162
2163	tp = td->td_frame;
2164	return (fill_frame_regs(tp, regs));
2165}
2166
2167int
2168fill_frame_regs(struct trapframe *tp, struct reg *regs)
2169{
2170	regs->r_r15 = tp->tf_r15;
2171	regs->r_r14 = tp->tf_r14;
2172	regs->r_r13 = tp->tf_r13;
2173	regs->r_r12 = tp->tf_r12;
2174	regs->r_r11 = tp->tf_r11;
2175	regs->r_r10 = tp->tf_r10;
2176	regs->r_r9  = tp->tf_r9;
2177	regs->r_r8  = tp->tf_r8;
2178	regs->r_rdi = tp->tf_rdi;
2179	regs->r_rsi = tp->tf_rsi;
2180	regs->r_rbp = tp->tf_rbp;
2181	regs->r_rbx = tp->tf_rbx;
2182	regs->r_rdx = tp->tf_rdx;
2183	regs->r_rcx = tp->tf_rcx;
2184	regs->r_rax = tp->tf_rax;
2185	regs->r_rip = tp->tf_rip;
2186	regs->r_cs = tp->tf_cs;
2187	regs->r_rflags = tp->tf_rflags;
2188	regs->r_rsp = tp->tf_rsp;
2189	regs->r_ss = tp->tf_ss;
2190	if (tp->tf_flags & TF_HASSEGS) {
2191		regs->r_ds = tp->tf_ds;
2192		regs->r_es = tp->tf_es;
2193		regs->r_fs = tp->tf_fs;
2194		regs->r_gs = tp->tf_gs;
2195	} else {
2196		regs->r_ds = 0;
2197		regs->r_es = 0;
2198		regs->r_fs = 0;
2199		regs->r_gs = 0;
2200	}
2201	return (0);
2202}
2203
2204int
2205set_regs(struct thread *td, struct reg *regs)
2206{
2207	struct trapframe *tp;
2208	register_t rflags;
2209
2210	tp = td->td_frame;
2211	rflags = regs->r_rflags & 0xffffffff;
2212	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2213		return (EINVAL);
2214	tp->tf_r15 = regs->r_r15;
2215	tp->tf_r14 = regs->r_r14;
2216	tp->tf_r13 = regs->r_r13;
2217	tp->tf_r12 = regs->r_r12;
2218	tp->tf_r11 = regs->r_r11;
2219	tp->tf_r10 = regs->r_r10;
2220	tp->tf_r9  = regs->r_r9;
2221	tp->tf_r8  = regs->r_r8;
2222	tp->tf_rdi = regs->r_rdi;
2223	tp->tf_rsi = regs->r_rsi;
2224	tp->tf_rbp = regs->r_rbp;
2225	tp->tf_rbx = regs->r_rbx;
2226	tp->tf_rdx = regs->r_rdx;
2227	tp->tf_rcx = regs->r_rcx;
2228	tp->tf_rax = regs->r_rax;
2229	tp->tf_rip = regs->r_rip;
2230	tp->tf_cs = regs->r_cs;
2231	tp->tf_rflags = rflags;
2232	tp->tf_rsp = regs->r_rsp;
2233	tp->tf_ss = regs->r_ss;
2234	if (0) {	/* XXXKIB */
2235		tp->tf_ds = regs->r_ds;
2236		tp->tf_es = regs->r_es;
2237		tp->tf_fs = regs->r_fs;
2238		tp->tf_gs = regs->r_gs;
2239		tp->tf_flags = TF_HASSEGS;
2240		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2241	}
2242	return (0);
2243}
2244
2245/* XXX check all this stuff! */
2246/* externalize from sv_xmm */
2247static void
2248fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2249{
2250	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2251	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2252	int i;
2253
2254	/* pcb -> fpregs */
2255	bzero(fpregs, sizeof(*fpregs));
2256
2257	/* FPU control/status */
2258	penv_fpreg->en_cw = penv_xmm->en_cw;
2259	penv_fpreg->en_sw = penv_xmm->en_sw;
2260	penv_fpreg->en_tw = penv_xmm->en_tw;
2261	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2262	penv_fpreg->en_rip = penv_xmm->en_rip;
2263	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2264	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2265	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2266
2267	/* FPU registers */
2268	for (i = 0; i < 8; ++i)
2269		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2270
2271	/* SSE registers */
2272	for (i = 0; i < 16; ++i)
2273		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2274}
2275
2276/* internalize from fpregs into sv_xmm */
2277static void
2278set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2279{
2280	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2281	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2282	int i;
2283
2284	/* fpregs -> pcb */
2285	/* FPU control/status */
2286	penv_xmm->en_cw = penv_fpreg->en_cw;
2287	penv_xmm->en_sw = penv_fpreg->en_sw;
2288	penv_xmm->en_tw = penv_fpreg->en_tw;
2289	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2290	penv_xmm->en_rip = penv_fpreg->en_rip;
2291	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2292	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2293	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2294
2295	/* FPU registers */
2296	for (i = 0; i < 8; ++i)
2297		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2298
2299	/* SSE registers */
2300	for (i = 0; i < 16; ++i)
2301		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2302}
2303
2304/* externalize from td->pcb */
2305int
2306fill_fpregs(struct thread *td, struct fpreg *fpregs)
2307{
2308
2309	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2310	    P_SHOULDSTOP(td->td_proc),
2311	    ("not suspended thread %p", td));
2312	fpugetregs(td);
2313	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2314	return (0);
2315}
2316
2317/* internalize to td->pcb */
2318int
2319set_fpregs(struct thread *td, struct fpreg *fpregs)
2320{
2321
2322	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2323	fpuuserinited(td);
2324	return (0);
2325}
2326
2327/*
2328 * Get machine context.
2329 */
2330int
2331get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2332{
2333	struct pcb *pcb;
2334	struct trapframe *tp;
2335
2336	pcb = td->td_pcb;
2337	tp = td->td_frame;
2338	PROC_LOCK(curthread->td_proc);
2339	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2340	PROC_UNLOCK(curthread->td_proc);
2341	mcp->mc_r15 = tp->tf_r15;
2342	mcp->mc_r14 = tp->tf_r14;
2343	mcp->mc_r13 = tp->tf_r13;
2344	mcp->mc_r12 = tp->tf_r12;
2345	mcp->mc_r11 = tp->tf_r11;
2346	mcp->mc_r10 = tp->tf_r10;
2347	mcp->mc_r9  = tp->tf_r9;
2348	mcp->mc_r8  = tp->tf_r8;
2349	mcp->mc_rdi = tp->tf_rdi;
2350	mcp->mc_rsi = tp->tf_rsi;
2351	mcp->mc_rbp = tp->tf_rbp;
2352	mcp->mc_rbx = tp->tf_rbx;
2353	mcp->mc_rcx = tp->tf_rcx;
2354	mcp->mc_rflags = tp->tf_rflags;
2355	if (flags & GET_MC_CLEAR_RET) {
2356		mcp->mc_rax = 0;
2357		mcp->mc_rdx = 0;
2358		mcp->mc_rflags &= ~PSL_C;
2359	} else {
2360		mcp->mc_rax = tp->tf_rax;
2361		mcp->mc_rdx = tp->tf_rdx;
2362	}
2363	mcp->mc_rip = tp->tf_rip;
2364	mcp->mc_cs = tp->tf_cs;
2365	mcp->mc_rsp = tp->tf_rsp;
2366	mcp->mc_ss = tp->tf_ss;
2367	mcp->mc_ds = tp->tf_ds;
2368	mcp->mc_es = tp->tf_es;
2369	mcp->mc_fs = tp->tf_fs;
2370	mcp->mc_gs = tp->tf_gs;
2371	mcp->mc_flags = tp->tf_flags;
2372	mcp->mc_len = sizeof(*mcp);
2373	get_fpcontext(td, mcp, NULL, 0);
2374	mcp->mc_fsbase = pcb->pcb_fsbase;
2375	mcp->mc_gsbase = pcb->pcb_gsbase;
2376	mcp->mc_xfpustate = 0;
2377	mcp->mc_xfpustate_len = 0;
2378	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2379	return (0);
2380}
2381
2382/*
2383 * Set machine context.
2384 *
2385 * However, we don't set any but the user modifiable flags, and we won't
2386 * touch the cs selector.
2387 */
2388int
2389set_mcontext(struct thread *td, const mcontext_t *mcp)
2390{
2391	struct pcb *pcb;
2392	struct trapframe *tp;
2393	char *xfpustate;
2394	long rflags;
2395	int ret;
2396
2397	pcb = td->td_pcb;
2398	tp = td->td_frame;
2399	if (mcp->mc_len != sizeof(*mcp) ||
2400	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2401		return (EINVAL);
2402	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2403	    (tp->tf_rflags & ~PSL_USERCHANGE);
2404	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2405		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2406		    sizeof(struct savefpu))
2407			return (EINVAL);
2408		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2409		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2410		    mcp->mc_xfpustate_len);
2411		if (ret != 0)
2412			return (ret);
2413	} else
2414		xfpustate = NULL;
2415	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2416	if (ret != 0)
2417		return (ret);
2418	tp->tf_r15 = mcp->mc_r15;
2419	tp->tf_r14 = mcp->mc_r14;
2420	tp->tf_r13 = mcp->mc_r13;
2421	tp->tf_r12 = mcp->mc_r12;
2422	tp->tf_r11 = mcp->mc_r11;
2423	tp->tf_r10 = mcp->mc_r10;
2424	tp->tf_r9  = mcp->mc_r9;
2425	tp->tf_r8  = mcp->mc_r8;
2426	tp->tf_rdi = mcp->mc_rdi;
2427	tp->tf_rsi = mcp->mc_rsi;
2428	tp->tf_rbp = mcp->mc_rbp;
2429	tp->tf_rbx = mcp->mc_rbx;
2430	tp->tf_rdx = mcp->mc_rdx;
2431	tp->tf_rcx = mcp->mc_rcx;
2432	tp->tf_rax = mcp->mc_rax;
2433	tp->tf_rip = mcp->mc_rip;
2434	tp->tf_rflags = rflags;
2435	tp->tf_rsp = mcp->mc_rsp;
2436	tp->tf_ss = mcp->mc_ss;
2437	tp->tf_flags = mcp->mc_flags;
2438	if (tp->tf_flags & TF_HASSEGS) {
2439		tp->tf_ds = mcp->mc_ds;
2440		tp->tf_es = mcp->mc_es;
2441		tp->tf_fs = mcp->mc_fs;
2442		tp->tf_gs = mcp->mc_gs;
2443	}
2444	if (mcp->mc_flags & _MC_HASBASES) {
2445		pcb->pcb_fsbase = mcp->mc_fsbase;
2446		pcb->pcb_gsbase = mcp->mc_gsbase;
2447	}
2448	set_pcb_flags(pcb, PCB_FULL_IRET);
2449	return (0);
2450}
2451
2452static void
2453get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2454    size_t xfpusave_len)
2455{
2456	size_t max_len, len;
2457
2458	mcp->mc_ownedfp = fpugetregs(td);
2459	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2460	    sizeof(mcp->mc_fpstate));
2461	mcp->mc_fpformat = fpuformat();
2462	if (!use_xsave || xfpusave_len == 0)
2463		return;
2464	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2465	len = xfpusave_len;
2466	if (len > max_len) {
2467		len = max_len;
2468		bzero(xfpusave + max_len, len - max_len);
2469	}
2470	mcp->mc_flags |= _MC_HASFPXSTATE;
2471	mcp->mc_xfpustate_len = len;
2472	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2473}
2474
2475static int
2476set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2477    size_t xfpustate_len)
2478{
2479	struct savefpu *fpstate;
2480	int error;
2481
2482	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2483		return (0);
2484	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2485		return (EINVAL);
2486	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2487		/* We don't care what state is left in the FPU or PCB. */
2488		fpstate_drop(td);
2489		error = 0;
2490	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2491	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2492		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2493		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2494		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2495	} else
2496		return (EINVAL);
2497	return (error);
2498}
2499
2500void
2501fpstate_drop(struct thread *td)
2502{
2503
2504	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2505	critical_enter();
2506	if (PCPU_GET(fpcurthread) == td)
2507		fpudrop();
2508	/*
2509	 * XXX force a full drop of the fpu.  The above only drops it if we
2510	 * owned it.
2511	 *
2512	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2513	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2514	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2515	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2516	 * have too many layers.
2517	 */
2518	clear_pcb_flags(curthread->td_pcb,
2519	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2520	critical_exit();
2521}
2522
2523int
2524fill_dbregs(struct thread *td, struct dbreg *dbregs)
2525{
2526	struct pcb *pcb;
2527
2528	if (td == NULL) {
2529		dbregs->dr[0] = rdr0();
2530		dbregs->dr[1] = rdr1();
2531		dbregs->dr[2] = rdr2();
2532		dbregs->dr[3] = rdr3();
2533		dbregs->dr[6] = rdr6();
2534		dbregs->dr[7] = rdr7();
2535	} else {
2536		pcb = td->td_pcb;
2537		dbregs->dr[0] = pcb->pcb_dr0;
2538		dbregs->dr[1] = pcb->pcb_dr1;
2539		dbregs->dr[2] = pcb->pcb_dr2;
2540		dbregs->dr[3] = pcb->pcb_dr3;
2541		dbregs->dr[6] = pcb->pcb_dr6;
2542		dbregs->dr[7] = pcb->pcb_dr7;
2543	}
2544	dbregs->dr[4] = 0;
2545	dbregs->dr[5] = 0;
2546	dbregs->dr[8] = 0;
2547	dbregs->dr[9] = 0;
2548	dbregs->dr[10] = 0;
2549	dbregs->dr[11] = 0;
2550	dbregs->dr[12] = 0;
2551	dbregs->dr[13] = 0;
2552	dbregs->dr[14] = 0;
2553	dbregs->dr[15] = 0;
2554	return (0);
2555}
2556
2557int
2558set_dbregs(struct thread *td, struct dbreg *dbregs)
2559{
2560	struct pcb *pcb;
2561	int i;
2562
2563	if (td == NULL) {
2564		load_dr0(dbregs->dr[0]);
2565		load_dr1(dbregs->dr[1]);
2566		load_dr2(dbregs->dr[2]);
2567		load_dr3(dbregs->dr[3]);
2568		load_dr6(dbregs->dr[6]);
2569		load_dr7(dbregs->dr[7]);
2570	} else {
2571		/*
2572		 * Don't let an illegal value for dr7 get set.  Specifically,
2573		 * check for undefined settings.  Setting these bit patterns
2574		 * result in undefined behaviour and can lead to an unexpected
2575		 * TRCTRAP or a general protection fault right here.
2576		 * Upper bits of dr6 and dr7 must not be set
2577		 */
2578		for (i = 0; i < 4; i++) {
2579			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2580				return (EINVAL);
2581			if (td->td_frame->tf_cs == _ucode32sel &&
2582			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2583				return (EINVAL);
2584		}
2585		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2586		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2587			return (EINVAL);
2588
2589		pcb = td->td_pcb;
2590
2591		/*
2592		 * Don't let a process set a breakpoint that is not within the
2593		 * process's address space.  If a process could do this, it
2594		 * could halt the system by setting a breakpoint in the kernel
2595		 * (if ddb was enabled).  Thus, we need to check to make sure
2596		 * that no breakpoints are being enabled for addresses outside
2597		 * process's address space.
2598		 *
2599		 * XXX - what about when the watched area of the user's
2600		 * address space is written into from within the kernel
2601		 * ... wouldn't that still cause a breakpoint to be generated
2602		 * from within kernel mode?
2603		 */
2604
2605		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2606			/* dr0 is enabled */
2607			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2608				return (EINVAL);
2609		}
2610		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2611			/* dr1 is enabled */
2612			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2613				return (EINVAL);
2614		}
2615		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2616			/* dr2 is enabled */
2617			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2618				return (EINVAL);
2619		}
2620		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2621			/* dr3 is enabled */
2622			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2623				return (EINVAL);
2624		}
2625
2626		pcb->pcb_dr0 = dbregs->dr[0];
2627		pcb->pcb_dr1 = dbregs->dr[1];
2628		pcb->pcb_dr2 = dbregs->dr[2];
2629		pcb->pcb_dr3 = dbregs->dr[3];
2630		pcb->pcb_dr6 = dbregs->dr[6];
2631		pcb->pcb_dr7 = dbregs->dr[7];
2632
2633		set_pcb_flags(pcb, PCB_DBREGS);
2634	}
2635
2636	return (0);
2637}
2638
2639void
2640reset_dbregs(void)
2641{
2642
2643	load_dr7(0);	/* Turn off the control bits first */
2644	load_dr0(0);
2645	load_dr1(0);
2646	load_dr2(0);
2647	load_dr3(0);
2648	load_dr6(0);
2649}
2650
2651/*
2652 * Return > 0 if a hardware breakpoint has been hit, and the
2653 * breakpoint was in user space.  Return 0, otherwise.
2654 */
2655int
2656user_dbreg_trap(void)
2657{
2658        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2659        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2660        int nbp;            /* number of breakpoints that triggered */
2661        caddr_t addr[4];    /* breakpoint addresses */
2662        int i;
2663
2664        dr7 = rdr7();
2665        if ((dr7 & 0x000000ff) == 0) {
2666                /*
2667                 * all GE and LE bits in the dr7 register are zero,
2668                 * thus the trap couldn't have been caused by the
2669                 * hardware debug registers
2670                 */
2671                return 0;
2672        }
2673
2674        nbp = 0;
2675        dr6 = rdr6();
2676        bp = dr6 & 0x0000000f;
2677
2678        if (!bp) {
2679                /*
2680                 * None of the breakpoint bits are set meaning this
2681                 * trap was not caused by any of the debug registers
2682                 */
2683                return 0;
2684        }
2685
2686        /*
2687         * at least one of the breakpoints were hit, check to see
2688         * which ones and if any of them are user space addresses
2689         */
2690
2691        if (bp & 0x01) {
2692                addr[nbp++] = (caddr_t)rdr0();
2693        }
2694        if (bp & 0x02) {
2695                addr[nbp++] = (caddr_t)rdr1();
2696        }
2697        if (bp & 0x04) {
2698                addr[nbp++] = (caddr_t)rdr2();
2699        }
2700        if (bp & 0x08) {
2701                addr[nbp++] = (caddr_t)rdr3();
2702        }
2703
2704        for (i = 0; i < nbp; i++) {
2705                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2706                        /*
2707                         * addr[i] is in user space
2708                         */
2709                        return nbp;
2710                }
2711        }
2712
2713        /*
2714         * None of the breakpoints are in user space.
2715         */
2716        return 0;
2717}
2718
2719#ifdef KDB
2720
2721/*
2722 * Provide inb() and outb() as functions.  They are normally only available as
2723 * inline functions, thus cannot be called from the debugger.
2724 */
2725
2726/* silence compiler warnings */
2727u_char inb_(u_short);
2728void outb_(u_short, u_char);
2729
2730u_char
2731inb_(u_short port)
2732{
2733	return inb(port);
2734}
2735
2736void
2737outb_(u_short port, u_char data)
2738{
2739	outb(port, data);
2740}
2741
2742#endif /* KDB */
2743