machdep.c revision 231781
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 231781 2012-02-15 21:32:05Z jkim $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57#include "opt_kdtrace.h"
58
59#include <sys/param.h>
60#include <sys/proc.h>
61#include <sys/systm.h>
62#include <sys/bio.h>
63#include <sys/buf.h>
64#include <sys/bus.h>
65#include <sys/callout.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#ifdef SMP
85#include <sys/smp.h>
86#endif
87#include <sys/syscallsubr.h>
88#include <sys/sysctl.h>
89#include <sys/sysent.h>
90#include <sys/sysproto.h>
91#include <sys/ucontext.h>
92#include <sys/vmmeter.h>
93
94#include <vm/vm.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_object.h>
100#include <vm/vm_pager.h>
101#include <vm/vm_param.h>
102
103#ifdef DDB
104#ifndef KDB
105#error KDB must be enabled in order for DDB to work!
106#endif
107#include <ddb/ddb.h>
108#include <ddb/db_sym.h>
109#endif
110
111#include <net/netisr.h>
112
113#include <machine/clock.h>
114#include <machine/cpu.h>
115#include <machine/cputypes.h>
116#include <machine/intr_machdep.h>
117#include <x86/mca.h>
118#include <machine/md_var.h>
119#include <machine/metadata.h>
120#include <machine/mp_watchdog.h>
121#include <machine/pc/bios.h>
122#include <machine/pcb.h>
123#include <machine/proc.h>
124#include <machine/reg.h>
125#include <machine/sigframe.h>
126#include <machine/specialreg.h>
127#ifdef PERFMON
128#include <machine/perfmon.h>
129#endif
130#include <machine/tss.h>
131#ifdef SMP
132#include <machine/smp.h>
133#endif
134
135#ifdef DEV_ATPIC
136#include <x86/isa/icu.h>
137#else
138#include <machine/apicvar.h>
139#endif
140
141#include <isa/isareg.h>
142#include <isa/rtc.h>
143
144/* Sanity check for __curthread() */
145CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
146
147extern u_int64_t hammer_time(u_int64_t, u_int64_t);
148
149extern void printcpuinfo(void);	/* XXX header file */
150extern void identify_cpu(void);
151extern void panicifcpuunsupported(void);
152
153#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
154#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
155
156static void cpu_startup(void *);
157static void get_fpcontext(struct thread *td, mcontext_t *mcp,
158    char *xfpusave, size_t xfpusave_len);
159static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
160    char *xfpustate, size_t xfpustate_len);
161SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
162
163/*
164 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
165 * the physical address at which the kernel is loaded.
166 */
167extern char kernphys[];
168#ifdef DDB
169extern vm_offset_t ksym_start, ksym_end;
170#endif
171
172struct msgbuf *msgbufp;
173
174/* Intel ICH registers */
175#define ICH_PMBASE	0x400
176#define ICH_SMI_EN	ICH_PMBASE + 0x30
177
178int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
179
180int cold = 1;
181
182long Maxmem = 0;
183long realmem = 0;
184
185/*
186 * The number of PHYSMAP entries must be one less than the number of
187 * PHYSSEG entries because the PHYSMAP entry that spans the largest
188 * physical address that is accessible by ISA DMA is split into two
189 * PHYSSEG entries.
190 */
191#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
192
193vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
194vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
195
196/* must be 2 less so 0 0 can signal end of chunks */
197#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
198#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
199
200struct kva_md_info kmi;
201
202static struct trapframe proc0_tf;
203struct region_descriptor r_gdt, r_idt;
204
205struct pcpu __pcpu[MAXCPU];
206
207struct mtx icu_lock;
208
209struct mtx dt_lock;	/* lock for GDT and LDT */
210
211static void
212cpu_startup(dummy)
213	void *dummy;
214{
215	uintmax_t memsize;
216	char *sysenv;
217
218	/*
219	 * On MacBooks, we need to disallow the legacy USB circuit to
220	 * generate an SMI# because this can cause several problems,
221	 * namely: incorrect CPU frequency detection and failure to
222	 * start the APs.
223	 * We do this by disabling a bit in the SMI_EN (SMI Control and
224	 * Enable register) of the Intel ICH LPC Interface Bridge.
225	 */
226	sysenv = getenv("smbios.system.product");
227	if (sysenv != NULL) {
228		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
229		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
230		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
231		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
232		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
233		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
234			if (bootverbose)
235				printf("Disabling LEGACY_USB_EN bit on "
236				    "Intel ICH.\n");
237			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
238		}
239		freeenv(sysenv);
240	}
241
242	/*
243	 * Good {morning,afternoon,evening,night}.
244	 */
245	startrtclock();
246	printcpuinfo();
247	panicifcpuunsupported();
248#ifdef PERFMON
249	perfmon_init();
250#endif
251	realmem = Maxmem;
252
253	/*
254	 * Display physical memory if SMBIOS reports reasonable amount.
255	 */
256	memsize = 0;
257	sysenv = getenv("smbios.memory.enabled");
258	if (sysenv != NULL) {
259		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
260		freeenv(sysenv);
261	}
262	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
263		memsize = ptoa((uintmax_t)Maxmem);
264	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
265
266	/*
267	 * Display any holes after the first chunk of extended memory.
268	 */
269	if (bootverbose) {
270		int indx;
271
272		printf("Physical memory chunk(s):\n");
273		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
274			vm_paddr_t size;
275
276			size = phys_avail[indx + 1] - phys_avail[indx];
277			printf(
278			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
279			    (uintmax_t)phys_avail[indx],
280			    (uintmax_t)phys_avail[indx + 1] - 1,
281			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
282		}
283	}
284
285	vm_ksubmap_init(&kmi);
286
287	printf("avail memory = %ju (%ju MB)\n",
288	    ptoa((uintmax_t)cnt.v_free_count),
289	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
290
291	/*
292	 * Set up buffers, so they can be used to read disk labels.
293	 */
294	bufinit();
295	vm_pager_bufferinit();
296
297	cpu_setregs();
298}
299
300/*
301 * Send an interrupt to process.
302 *
303 * Stack is set up to allow sigcode stored
304 * at top to call routine, followed by call
305 * to sigreturn routine below.  After sigreturn
306 * resets the signal mask, the stack, and the
307 * frame pointer, it returns to the user
308 * specified pc, psl.
309 */
310void
311sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
312{
313	struct sigframe sf, *sfp;
314	struct pcb *pcb;
315	struct proc *p;
316	struct thread *td;
317	struct sigacts *psp;
318	char *sp;
319	struct trapframe *regs;
320	char *xfpusave;
321	size_t xfpusave_len;
322	int sig;
323	int oonstack;
324
325	td = curthread;
326	pcb = td->td_pcb;
327	p = td->td_proc;
328	PROC_LOCK_ASSERT(p, MA_OWNED);
329	sig = ksi->ksi_signo;
330	psp = p->p_sigacts;
331	mtx_assert(&psp->ps_mtx, MA_OWNED);
332	regs = td->td_frame;
333	oonstack = sigonstack(regs->tf_rsp);
334
335	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
336		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
337		xfpusave = __builtin_alloca(xfpusave_len);
338	} else {
339		xfpusave_len = 0;
340		xfpusave = NULL;
341	}
342
343	/* Save user context. */
344	bzero(&sf, sizeof(sf));
345	sf.sf_uc.uc_sigmask = *mask;
346	sf.sf_uc.uc_stack = td->td_sigstk;
347	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
348	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
349	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
350	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
351	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
352	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
353	fpstate_drop(td);
354	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
355	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
356	bzero(sf.sf_uc.uc_mcontext.mc_spare,
357	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
358	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
359
360	/* Allocate space for the signal handler context. */
361	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
362	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
363		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
364#if defined(COMPAT_43)
365		td->td_sigstk.ss_flags |= SS_ONSTACK;
366#endif
367	} else
368		sp = (char *)regs->tf_rsp - 128;
369	if (xfpusave != NULL) {
370		sp -= xfpusave_len;
371		sp = (char *)((unsigned long)sp & ~0x3Ful);
372		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
373	}
374	sp -= sizeof(struct sigframe);
375	/* Align to 16 bytes. */
376	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
377
378	/* Translate the signal if appropriate. */
379	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
380		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
381
382	/* Build the argument list for the signal handler. */
383	regs->tf_rdi = sig;			/* arg 1 in %rdi */
384	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
385	bzero(&sf.sf_si, sizeof(sf.sf_si));
386	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
387		/* Signal handler installed with SA_SIGINFO. */
388		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
389		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
390
391		/* Fill in POSIX parts */
392		sf.sf_si = ksi->ksi_info;
393		sf.sf_si.si_signo = sig; /* maybe a translated signal */
394		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
395	} else {
396		/* Old FreeBSD-style arguments. */
397		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
398		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
399		sf.sf_ahu.sf_handler = catcher;
400	}
401	mtx_unlock(&psp->ps_mtx);
402	PROC_UNLOCK(p);
403
404	/*
405	 * Copy the sigframe out to the user's stack.
406	 */
407	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
408	    (xfpusave != NULL && copyout(xfpusave,
409	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
410	    != 0)) {
411#ifdef DEBUG
412		printf("process %ld has trashed its stack\n", (long)p->p_pid);
413#endif
414		PROC_LOCK(p);
415		sigexit(td, SIGILL);
416	}
417
418	regs->tf_rsp = (long)sfp;
419	regs->tf_rip = p->p_sysent->sv_sigcode_base;
420	regs->tf_rflags &= ~(PSL_T | PSL_D);
421	regs->tf_cs = _ucodesel;
422	regs->tf_ds = _udatasel;
423	regs->tf_es = _udatasel;
424	regs->tf_fs = _ufssel;
425	regs->tf_gs = _ugssel;
426	regs->tf_flags = TF_HASSEGS;
427	set_pcb_flags(pcb, PCB_FULL_IRET);
428	PROC_LOCK(p);
429	mtx_lock(&psp->ps_mtx);
430}
431
432/*
433 * System call to cleanup state after a signal
434 * has been taken.  Reset signal mask and
435 * stack state from context left by sendsig (above).
436 * Return to previous pc and psl as specified by
437 * context left by sendsig. Check carefully to
438 * make sure that the user has not modified the
439 * state to gain improper privileges.
440 *
441 * MPSAFE
442 */
443int
444sys_sigreturn(td, uap)
445	struct thread *td;
446	struct sigreturn_args /* {
447		const struct __ucontext *sigcntxp;
448	} */ *uap;
449{
450	ucontext_t uc;
451	struct pcb *pcb;
452	struct proc *p;
453	struct trapframe *regs;
454	ucontext_t *ucp;
455	char *xfpustate;
456	size_t xfpustate_len;
457	long rflags;
458	int cs, error, ret;
459	ksiginfo_t ksi;
460
461	pcb = td->td_pcb;
462	p = td->td_proc;
463
464	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
465	if (error != 0) {
466		uprintf("pid %d (%s): sigreturn copyin failed\n",
467		    p->p_pid, td->td_name);
468		return (error);
469	}
470	ucp = &uc;
471	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
472		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
473		    td->td_name, ucp->uc_mcontext.mc_flags);
474		return (EINVAL);
475	}
476	regs = td->td_frame;
477	rflags = ucp->uc_mcontext.mc_rflags;
478	/*
479	 * Don't allow users to change privileged or reserved flags.
480	 */
481	/*
482	 * XXX do allow users to change the privileged flag PSL_RF.
483	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
484	 * should sometimes set it there too.  tf_rflags is kept in
485	 * the signal context during signal handling and there is no
486	 * other place to remember it, so the PSL_RF bit may be
487	 * corrupted by the signal handler without us knowing.
488	 * Corruption of the PSL_RF bit at worst causes one more or
489	 * one less debugger trap, so allowing it is fairly harmless.
490	 */
491	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
492		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
493		    td->td_name, rflags);
494		return (EINVAL);
495	}
496
497	/*
498	 * Don't allow users to load a valid privileged %cs.  Let the
499	 * hardware check for invalid selectors, excess privilege in
500	 * other selectors, invalid %eip's and invalid %esp's.
501	 */
502	cs = ucp->uc_mcontext.mc_cs;
503	if (!CS_SECURE(cs)) {
504		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
505		    td->td_name, cs);
506		ksiginfo_init_trap(&ksi);
507		ksi.ksi_signo = SIGBUS;
508		ksi.ksi_code = BUS_OBJERR;
509		ksi.ksi_trapno = T_PROTFLT;
510		ksi.ksi_addr = (void *)regs->tf_rip;
511		trapsignal(td, &ksi);
512		return (EINVAL);
513	}
514
515	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
516		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
517		if (xfpustate_len > cpu_max_ext_state_size -
518		    sizeof(struct savefpu)) {
519			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
520			    p->p_pid, td->td_name, xfpustate_len);
521			return (EINVAL);
522		}
523		xfpustate = __builtin_alloca(xfpustate_len);
524		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
525		    xfpustate, xfpustate_len);
526		if (error != 0) {
527			uprintf(
528	"pid %d (%s): sigreturn copying xfpustate failed\n",
529			    p->p_pid, td->td_name);
530			return (error);
531		}
532	} else {
533		xfpustate = NULL;
534		xfpustate_len = 0;
535	}
536	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
537	if (ret != 0) {
538		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
539		    p->p_pid, td->td_name, ret);
540		return (ret);
541	}
542	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
543	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
544	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
545
546#if defined(COMPAT_43)
547	if (ucp->uc_mcontext.mc_onstack & 1)
548		td->td_sigstk.ss_flags |= SS_ONSTACK;
549	else
550		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
551#endif
552
553	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
554	set_pcb_flags(pcb, PCB_FULL_IRET);
555	return (EJUSTRETURN);
556}
557
558#ifdef COMPAT_FREEBSD4
559int
560freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
561{
562
563	return sys_sigreturn(td, (struct sigreturn_args *)uap);
564}
565#endif
566
567
568/*
569 * Machine dependent boot() routine
570 *
571 * I haven't seen anything to put here yet
572 * Possibly some stuff might be grafted back here from boot()
573 */
574void
575cpu_boot(int howto)
576{
577}
578
579/*
580 * Flush the D-cache for non-DMA I/O so that the I-cache can
581 * be made coherent later.
582 */
583void
584cpu_flush_dcache(void *ptr, size_t len)
585{
586	/* Not applicable */
587}
588
589/* Get current clock frequency for the given cpu id. */
590int
591cpu_est_clockrate(int cpu_id, uint64_t *rate)
592{
593	uint64_t tsc1, tsc2;
594	uint64_t acnt, mcnt, perf;
595	register_t reg;
596
597	if (pcpu_find(cpu_id) == NULL || rate == NULL)
598		return (EINVAL);
599
600	/*
601	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
602	 * DELAY(9) based logic fails.
603	 */
604	if (tsc_is_invariant && !tsc_perf_stat)
605		return (EOPNOTSUPP);
606
607#ifdef SMP
608	if (smp_cpus > 1) {
609		/* Schedule ourselves on the indicated cpu. */
610		thread_lock(curthread);
611		sched_bind(curthread, cpu_id);
612		thread_unlock(curthread);
613	}
614#endif
615
616	/* Calibrate by measuring a short delay. */
617	reg = intr_disable();
618	if (tsc_is_invariant) {
619		wrmsr(MSR_MPERF, 0);
620		wrmsr(MSR_APERF, 0);
621		tsc1 = rdtsc();
622		DELAY(1000);
623		mcnt = rdmsr(MSR_MPERF);
624		acnt = rdmsr(MSR_APERF);
625		tsc2 = rdtsc();
626		intr_restore(reg);
627		perf = 1000 * acnt / mcnt;
628		*rate = (tsc2 - tsc1) * perf;
629	} else {
630		tsc1 = rdtsc();
631		DELAY(1000);
632		tsc2 = rdtsc();
633		intr_restore(reg);
634		*rate = (tsc2 - tsc1) * 1000;
635	}
636
637#ifdef SMP
638	if (smp_cpus > 1) {
639		thread_lock(curthread);
640		sched_unbind(curthread);
641		thread_unlock(curthread);
642	}
643#endif
644
645	return (0);
646}
647
648/*
649 * Shutdown the CPU as much as possible
650 */
651void
652cpu_halt(void)
653{
654	for (;;)
655		halt();
656}
657
658void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
659static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
660static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
661TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
662SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
663    0, "Use MONITOR/MWAIT for short idle");
664
665#define	STATE_RUNNING	0x0
666#define	STATE_MWAIT	0x1
667#define	STATE_SLEEPING	0x2
668
669static void
670cpu_idle_acpi(int busy)
671{
672	int *state;
673
674	state = (int *)PCPU_PTR(monitorbuf);
675	*state = STATE_SLEEPING;
676
677	/* See comments in cpu_idle_hlt(). */
678	disable_intr();
679	if (sched_runnable())
680		enable_intr();
681	else if (cpu_idle_hook)
682		cpu_idle_hook();
683	else
684		__asm __volatile("sti; hlt");
685	*state = STATE_RUNNING;
686}
687
688static void
689cpu_idle_hlt(int busy)
690{
691	int *state;
692
693	state = (int *)PCPU_PTR(monitorbuf);
694	*state = STATE_SLEEPING;
695
696	/*
697	 * Since we may be in a critical section from cpu_idle(), if
698	 * an interrupt fires during that critical section we may have
699	 * a pending preemption.  If the CPU halts, then that thread
700	 * may not execute until a later interrupt awakens the CPU.
701	 * To handle this race, check for a runnable thread after
702	 * disabling interrupts and immediately return if one is
703	 * found.  Also, we must absolutely guarentee that hlt is
704	 * the next instruction after sti.  This ensures that any
705	 * interrupt that fires after the call to disable_intr() will
706	 * immediately awaken the CPU from hlt.  Finally, please note
707	 * that on x86 this works fine because of interrupts enabled only
708	 * after the instruction following sti takes place, while IF is set
709	 * to 1 immediately, allowing hlt instruction to acknowledge the
710	 * interrupt.
711	 */
712	disable_intr();
713	if (sched_runnable())
714		enable_intr();
715	else
716		__asm __volatile("sti; hlt");
717	*state = STATE_RUNNING;
718}
719
720/*
721 * MWAIT cpu power states.  Lower 4 bits are sub-states.
722 */
723#define	MWAIT_C0	0xf0
724#define	MWAIT_C1	0x00
725#define	MWAIT_C2	0x10
726#define	MWAIT_C3	0x20
727#define	MWAIT_C4	0x30
728
729static void
730cpu_idle_mwait(int busy)
731{
732	int *state;
733
734	state = (int *)PCPU_PTR(monitorbuf);
735	*state = STATE_MWAIT;
736
737	/* See comments in cpu_idle_hlt(). */
738	disable_intr();
739	if (sched_runnable()) {
740		enable_intr();
741		*state = STATE_RUNNING;
742		return;
743	}
744	cpu_monitor(state, 0, 0);
745	if (*state == STATE_MWAIT)
746		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
747	else
748		enable_intr();
749	*state = STATE_RUNNING;
750}
751
752static void
753cpu_idle_spin(int busy)
754{
755	int *state;
756	int i;
757
758	state = (int *)PCPU_PTR(monitorbuf);
759	*state = STATE_RUNNING;
760
761	/*
762	 * The sched_runnable() call is racy but as long as there is
763	 * a loop missing it one time will have just a little impact if any
764	 * (and it is much better than missing the check at all).
765	 */
766	for (i = 0; i < 1000; i++) {
767		if (sched_runnable())
768			return;
769		cpu_spinwait();
770	}
771}
772
773/*
774 * C1E renders the local APIC timer dead, so we disable it by
775 * reading the Interrupt Pending Message register and clearing
776 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
777 *
778 * Reference:
779 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
780 *   #32559 revision 3.00+
781 */
782#define	MSR_AMDK8_IPM		0xc0010055
783#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
784#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
785#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
786
787static void
788cpu_probe_amdc1e(void)
789{
790
791	/*
792	 * Detect the presence of C1E capability mostly on latest
793	 * dual-cores (or future) k8 family.
794	 */
795	if (cpu_vendor_id == CPU_VENDOR_AMD &&
796	    (cpu_id & 0x00000f00) == 0x00000f00 &&
797	    (cpu_id & 0x0fff0000) >=  0x00040000) {
798		cpu_ident_amdc1e = 1;
799	}
800}
801
802void (*cpu_idle_fn)(int) = cpu_idle_acpi;
803
804void
805cpu_idle(int busy)
806{
807	uint64_t msr;
808
809	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
810	    busy, curcpu);
811#ifdef MP_WATCHDOG
812	ap_watchdog(PCPU_GET(cpuid));
813#endif
814	/* If we are busy - try to use fast methods. */
815	if (busy) {
816		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
817			cpu_idle_mwait(busy);
818			goto out;
819		}
820	}
821
822	/* If we have time - switch timers into idle mode. */
823	if (!busy) {
824		critical_enter();
825		cpu_idleclock();
826	}
827
828	/* Apply AMD APIC timer C1E workaround. */
829	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
830		msr = rdmsr(MSR_AMDK8_IPM);
831		if (msr & AMDK8_CMPHALT)
832			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
833	}
834
835	/* Call main idle method. */
836	cpu_idle_fn(busy);
837
838	/* Switch timers mack into active mode. */
839	if (!busy) {
840		cpu_activeclock();
841		critical_exit();
842	}
843out:
844	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
845	    busy, curcpu);
846}
847
848int
849cpu_idle_wakeup(int cpu)
850{
851	struct pcpu *pcpu;
852	int *state;
853
854	pcpu = pcpu_find(cpu);
855	state = (int *)pcpu->pc_monitorbuf;
856	/*
857	 * This doesn't need to be atomic since missing the race will
858	 * simply result in unnecessary IPIs.
859	 */
860	if (*state == STATE_SLEEPING)
861		return (0);
862	if (*state == STATE_MWAIT)
863		*state = STATE_RUNNING;
864	return (1);
865}
866
867/*
868 * Ordered by speed/power consumption.
869 */
870struct {
871	void	*id_fn;
872	char	*id_name;
873} idle_tbl[] = {
874	{ cpu_idle_spin, "spin" },
875	{ cpu_idle_mwait, "mwait" },
876	{ cpu_idle_hlt, "hlt" },
877	{ cpu_idle_acpi, "acpi" },
878	{ NULL, NULL }
879};
880
881static int
882idle_sysctl_available(SYSCTL_HANDLER_ARGS)
883{
884	char *avail, *p;
885	int error;
886	int i;
887
888	avail = malloc(256, M_TEMP, M_WAITOK);
889	p = avail;
890	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
891		if (strstr(idle_tbl[i].id_name, "mwait") &&
892		    (cpu_feature2 & CPUID2_MON) == 0)
893			continue;
894		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
895		    cpu_idle_hook == NULL)
896			continue;
897		p += sprintf(p, "%s%s", p != avail ? ", " : "",
898		    idle_tbl[i].id_name);
899	}
900	error = sysctl_handle_string(oidp, avail, 0, req);
901	free(avail, M_TEMP);
902	return (error);
903}
904
905SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
906    0, 0, idle_sysctl_available, "A", "list of available idle functions");
907
908static int
909idle_sysctl(SYSCTL_HANDLER_ARGS)
910{
911	char buf[16];
912	int error;
913	char *p;
914	int i;
915
916	p = "unknown";
917	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
918		if (idle_tbl[i].id_fn == cpu_idle_fn) {
919			p = idle_tbl[i].id_name;
920			break;
921		}
922	}
923	strncpy(buf, p, sizeof(buf));
924	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
925	if (error != 0 || req->newptr == NULL)
926		return (error);
927	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
928		if (strstr(idle_tbl[i].id_name, "mwait") &&
929		    (cpu_feature2 & CPUID2_MON) == 0)
930			continue;
931		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
932		    cpu_idle_hook == NULL)
933			continue;
934		if (strcmp(idle_tbl[i].id_name, buf))
935			continue;
936		cpu_idle_fn = idle_tbl[i].id_fn;
937		return (0);
938	}
939	return (EINVAL);
940}
941
942SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
943    idle_sysctl, "A", "currently selected idle function");
944
945/*
946 * Reset registers to default values on exec.
947 */
948void
949exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
950{
951	struct trapframe *regs = td->td_frame;
952	struct pcb *pcb = td->td_pcb;
953
954	mtx_lock(&dt_lock);
955	if (td->td_proc->p_md.md_ldt != NULL)
956		user_ldt_free(td);
957	else
958		mtx_unlock(&dt_lock);
959
960	pcb->pcb_fsbase = 0;
961	pcb->pcb_gsbase = 0;
962	clear_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
963	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
964	set_pcb_flags(pcb, PCB_FULL_IRET);
965
966	bzero((char *)regs, sizeof(struct trapframe));
967	regs->tf_rip = imgp->entry_addr;
968	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
969	regs->tf_rdi = stack;		/* argv */
970	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
971	regs->tf_ss = _udatasel;
972	regs->tf_cs = _ucodesel;
973	regs->tf_ds = _udatasel;
974	regs->tf_es = _udatasel;
975	regs->tf_fs = _ufssel;
976	regs->tf_gs = _ugssel;
977	regs->tf_flags = TF_HASSEGS;
978	td->td_retval[1] = 0;
979
980	/*
981	 * Reset the hardware debug registers if they were in use.
982	 * They won't have any meaning for the newly exec'd process.
983	 */
984	if (pcb->pcb_flags & PCB_DBREGS) {
985		pcb->pcb_dr0 = 0;
986		pcb->pcb_dr1 = 0;
987		pcb->pcb_dr2 = 0;
988		pcb->pcb_dr3 = 0;
989		pcb->pcb_dr6 = 0;
990		pcb->pcb_dr7 = 0;
991		if (pcb == PCPU_GET(curpcb)) {
992			/*
993			 * Clear the debug registers on the running
994			 * CPU, otherwise they will end up affecting
995			 * the next process we switch to.
996			 */
997			reset_dbregs();
998		}
999		clear_pcb_flags(pcb, PCB_DBREGS);
1000	}
1001
1002	/*
1003	 * Drop the FP state if we hold it, so that the process gets a
1004	 * clean FP state if it uses the FPU again.
1005	 */
1006	fpstate_drop(td);
1007}
1008
1009void
1010cpu_setregs(void)
1011{
1012	register_t cr0;
1013
1014	cr0 = rcr0();
1015	/*
1016	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1017	 * BSP.  See the comments there about why we set them.
1018	 */
1019	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1020	load_cr0(cr0);
1021}
1022
1023/*
1024 * Initialize amd64 and configure to run kernel
1025 */
1026
1027/*
1028 * Initialize segments & interrupt table
1029 */
1030
1031struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1032static struct gate_descriptor idt0[NIDT];
1033struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1034
1035static char dblfault_stack[PAGE_SIZE] __aligned(16);
1036
1037static char nmi0_stack[PAGE_SIZE] __aligned(16);
1038CTASSERT(sizeof(struct nmi_pcpu) == 16);
1039
1040struct amd64tss common_tss[MAXCPU];
1041
1042/*
1043 * Software prototypes -- in more palatable form.
1044 *
1045 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1046 * slots as corresponding segments for i386 kernel.
1047 */
1048struct soft_segment_descriptor gdt_segs[] = {
1049/* GNULL_SEL	0 Null Descriptor */
1050{	.ssd_base = 0x0,
1051	.ssd_limit = 0x0,
1052	.ssd_type = 0,
1053	.ssd_dpl = 0,
1054	.ssd_p = 0,
1055	.ssd_long = 0,
1056	.ssd_def32 = 0,
1057	.ssd_gran = 0		},
1058/* GNULL2_SEL	1 Null Descriptor */
1059{	.ssd_base = 0x0,
1060	.ssd_limit = 0x0,
1061	.ssd_type = 0,
1062	.ssd_dpl = 0,
1063	.ssd_p = 0,
1064	.ssd_long = 0,
1065	.ssd_def32 = 0,
1066	.ssd_gran = 0		},
1067/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1068{	.ssd_base = 0x0,
1069	.ssd_limit = 0xfffff,
1070	.ssd_type = SDT_MEMRWA,
1071	.ssd_dpl = SEL_UPL,
1072	.ssd_p = 1,
1073	.ssd_long = 0,
1074	.ssd_def32 = 1,
1075	.ssd_gran = 1		},
1076/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1077{	.ssd_base = 0x0,
1078	.ssd_limit = 0xfffff,
1079	.ssd_type = SDT_MEMRWA,
1080	.ssd_dpl = SEL_UPL,
1081	.ssd_p = 1,
1082	.ssd_long = 0,
1083	.ssd_def32 = 1,
1084	.ssd_gran = 1		},
1085/* GCODE_SEL	4 Code Descriptor for kernel */
1086{	.ssd_base = 0x0,
1087	.ssd_limit = 0xfffff,
1088	.ssd_type = SDT_MEMERA,
1089	.ssd_dpl = SEL_KPL,
1090	.ssd_p = 1,
1091	.ssd_long = 1,
1092	.ssd_def32 = 0,
1093	.ssd_gran = 1		},
1094/* GDATA_SEL	5 Data Descriptor for kernel */
1095{	.ssd_base = 0x0,
1096	.ssd_limit = 0xfffff,
1097	.ssd_type = SDT_MEMRWA,
1098	.ssd_dpl = SEL_KPL,
1099	.ssd_p = 1,
1100	.ssd_long = 1,
1101	.ssd_def32 = 0,
1102	.ssd_gran = 1		},
1103/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1104{	.ssd_base = 0x0,
1105	.ssd_limit = 0xfffff,
1106	.ssd_type = SDT_MEMERA,
1107	.ssd_dpl = SEL_UPL,
1108	.ssd_p = 1,
1109	.ssd_long = 0,
1110	.ssd_def32 = 1,
1111	.ssd_gran = 1		},
1112/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1113{	.ssd_base = 0x0,
1114	.ssd_limit = 0xfffff,
1115	.ssd_type = SDT_MEMRWA,
1116	.ssd_dpl = SEL_UPL,
1117	.ssd_p = 1,
1118	.ssd_long = 0,
1119	.ssd_def32 = 1,
1120	.ssd_gran = 1		},
1121/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1122{	.ssd_base = 0x0,
1123	.ssd_limit = 0xfffff,
1124	.ssd_type = SDT_MEMERA,
1125	.ssd_dpl = SEL_UPL,
1126	.ssd_p = 1,
1127	.ssd_long = 1,
1128	.ssd_def32 = 0,
1129	.ssd_gran = 1		},
1130/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1131{	.ssd_base = 0x0,
1132	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1133	.ssd_type = SDT_SYSTSS,
1134	.ssd_dpl = SEL_KPL,
1135	.ssd_p = 1,
1136	.ssd_long = 0,
1137	.ssd_def32 = 0,
1138	.ssd_gran = 0		},
1139/* Actually, the TSS is a system descriptor which is double size */
1140{	.ssd_base = 0x0,
1141	.ssd_limit = 0x0,
1142	.ssd_type = 0,
1143	.ssd_dpl = 0,
1144	.ssd_p = 0,
1145	.ssd_long = 0,
1146	.ssd_def32 = 0,
1147	.ssd_gran = 0		},
1148/* GUSERLDT_SEL	11 LDT Descriptor */
1149{	.ssd_base = 0x0,
1150	.ssd_limit = 0x0,
1151	.ssd_type = 0,
1152	.ssd_dpl = 0,
1153	.ssd_p = 0,
1154	.ssd_long = 0,
1155	.ssd_def32 = 0,
1156	.ssd_gran = 0		},
1157/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1158{	.ssd_base = 0x0,
1159	.ssd_limit = 0x0,
1160	.ssd_type = 0,
1161	.ssd_dpl = 0,
1162	.ssd_p = 0,
1163	.ssd_long = 0,
1164	.ssd_def32 = 0,
1165	.ssd_gran = 0		},
1166};
1167
1168void
1169setidt(idx, func, typ, dpl, ist)
1170	int idx;
1171	inthand_t *func;
1172	int typ;
1173	int dpl;
1174	int ist;
1175{
1176	struct gate_descriptor *ip;
1177
1178	ip = idt + idx;
1179	ip->gd_looffset = (uintptr_t)func;
1180	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1181	ip->gd_ist = ist;
1182	ip->gd_xx = 0;
1183	ip->gd_type = typ;
1184	ip->gd_dpl = dpl;
1185	ip->gd_p = 1;
1186	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1187}
1188
1189extern inthand_t
1190	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1191	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1192	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1193	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1194	IDTVEC(xmm), IDTVEC(dblfault),
1195#ifdef KDTRACE_HOOKS
1196	IDTVEC(dtrace_ret),
1197#endif
1198	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1199
1200#ifdef DDB
1201/*
1202 * Display the index and function name of any IDT entries that don't use
1203 * the default 'rsvd' entry point.
1204 */
1205DB_SHOW_COMMAND(idt, db_show_idt)
1206{
1207	struct gate_descriptor *ip;
1208	int idx;
1209	uintptr_t func;
1210
1211	ip = idt;
1212	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1213		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1214		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1215			db_printf("%3d\t", idx);
1216			db_printsym(func, DB_STGY_PROC);
1217			db_printf("\n");
1218		}
1219		ip++;
1220	}
1221}
1222#endif
1223
1224void
1225sdtossd(sd, ssd)
1226	struct user_segment_descriptor *sd;
1227	struct soft_segment_descriptor *ssd;
1228{
1229
1230	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1231	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1232	ssd->ssd_type  = sd->sd_type;
1233	ssd->ssd_dpl   = sd->sd_dpl;
1234	ssd->ssd_p     = sd->sd_p;
1235	ssd->ssd_long  = sd->sd_long;
1236	ssd->ssd_def32 = sd->sd_def32;
1237	ssd->ssd_gran  = sd->sd_gran;
1238}
1239
1240void
1241ssdtosd(ssd, sd)
1242	struct soft_segment_descriptor *ssd;
1243	struct user_segment_descriptor *sd;
1244{
1245
1246	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1247	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1248	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1249	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1250	sd->sd_type  = ssd->ssd_type;
1251	sd->sd_dpl   = ssd->ssd_dpl;
1252	sd->sd_p     = ssd->ssd_p;
1253	sd->sd_long  = ssd->ssd_long;
1254	sd->sd_def32 = ssd->ssd_def32;
1255	sd->sd_gran  = ssd->ssd_gran;
1256}
1257
1258void
1259ssdtosyssd(ssd, sd)
1260	struct soft_segment_descriptor *ssd;
1261	struct system_segment_descriptor *sd;
1262{
1263
1264	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1265	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1266	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1267	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1268	sd->sd_type  = ssd->ssd_type;
1269	sd->sd_dpl   = ssd->ssd_dpl;
1270	sd->sd_p     = ssd->ssd_p;
1271	sd->sd_gran  = ssd->ssd_gran;
1272}
1273
1274#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1275#include <isa/isavar.h>
1276#include <isa/isareg.h>
1277/*
1278 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1279 * and is only suitable for use at probe time.
1280 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1281 * It shouldn't be here.  There should probably be an APIC centric
1282 * implementation in the apic driver code, if at all.
1283 */
1284intrmask_t
1285isa_irq_pending(void)
1286{
1287	u_char irr1;
1288	u_char irr2;
1289
1290	irr1 = inb(IO_ICU1);
1291	irr2 = inb(IO_ICU2);
1292	return ((irr2 << 8) | irr1);
1293}
1294#endif
1295
1296u_int basemem;
1297
1298static int
1299add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1300{
1301	int i, insert_idx, physmap_idx;
1302
1303	physmap_idx = *physmap_idxp;
1304
1305	if (boothowto & RB_VERBOSE)
1306		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1307		    smap->type, smap->base, smap->length);
1308
1309	if (smap->type != SMAP_TYPE_MEMORY)
1310		return (1);
1311
1312	if (smap->length == 0)
1313		return (0);
1314
1315	/*
1316	 * Find insertion point while checking for overlap.  Start off by
1317	 * assuming the new entry will be added to the end.
1318	 */
1319	insert_idx = physmap_idx + 2;
1320	for (i = 0; i <= physmap_idx; i += 2) {
1321		if (smap->base < physmap[i + 1]) {
1322			if (smap->base + smap->length <= physmap[i]) {
1323				insert_idx = i;
1324				break;
1325			}
1326			if (boothowto & RB_VERBOSE)
1327				printf(
1328		    "Overlapping memory regions, ignoring second region\n");
1329			return (1);
1330		}
1331	}
1332
1333	/* See if we can prepend to the next entry. */
1334	if (insert_idx <= physmap_idx &&
1335	    smap->base + smap->length == physmap[insert_idx]) {
1336		physmap[insert_idx] = smap->base;
1337		return (1);
1338	}
1339
1340	/* See if we can append to the previous entry. */
1341	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1342		physmap[insert_idx - 1] += smap->length;
1343		return (1);
1344	}
1345
1346	physmap_idx += 2;
1347	*physmap_idxp = physmap_idx;
1348	if (physmap_idx == PHYSMAP_SIZE) {
1349		printf(
1350		"Too many segments in the physical address map, giving up\n");
1351		return (0);
1352	}
1353
1354	/*
1355	 * Move the last 'N' entries down to make room for the new
1356	 * entry if needed.
1357	 */
1358	for (i = physmap_idx; i > insert_idx; i -= 2) {
1359		physmap[i] = physmap[i - 2];
1360		physmap[i + 1] = physmap[i - 1];
1361	}
1362
1363	/* Insert the new entry. */
1364	physmap[insert_idx] = smap->base;
1365	physmap[insert_idx + 1] = smap->base + smap->length;
1366	return (1);
1367}
1368
1369/*
1370 * Populate the (physmap) array with base/bound pairs describing the
1371 * available physical memory in the system, then test this memory and
1372 * build the phys_avail array describing the actually-available memory.
1373 *
1374 * Total memory size may be set by the kernel environment variable
1375 * hw.physmem or the compile-time define MAXMEM.
1376 *
1377 * XXX first should be vm_paddr_t.
1378 */
1379static void
1380getmemsize(caddr_t kmdp, u_int64_t first)
1381{
1382	int i, physmap_idx, pa_indx, da_indx;
1383	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1384	u_long physmem_start, physmem_tunable, memtest;
1385	pt_entry_t *pte;
1386	struct bios_smap *smapbase, *smap, *smapend;
1387	u_int32_t smapsize;
1388	quad_t dcons_addr, dcons_size;
1389
1390	bzero(physmap, sizeof(physmap));
1391	basemem = 0;
1392	physmap_idx = 0;
1393
1394	/*
1395	 * get memory map from INT 15:E820, kindly supplied by the loader.
1396	 *
1397	 * subr_module.c says:
1398	 * "Consumer may safely assume that size value precedes data."
1399	 * ie: an int32_t immediately precedes smap.
1400	 */
1401	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1402	    MODINFO_METADATA | MODINFOMD_SMAP);
1403	if (smapbase == NULL)
1404		panic("No BIOS smap info from loader!");
1405
1406	smapsize = *((u_int32_t *)smapbase - 1);
1407	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1408
1409	for (smap = smapbase; smap < smapend; smap++)
1410		if (!add_smap_entry(smap, physmap, &physmap_idx))
1411			break;
1412
1413	/*
1414	 * Find the 'base memory' segment for SMP
1415	 */
1416	basemem = 0;
1417	for (i = 0; i <= physmap_idx; i += 2) {
1418		if (physmap[i] == 0x00000000) {
1419			basemem = physmap[i + 1] / 1024;
1420			break;
1421		}
1422	}
1423	if (basemem == 0)
1424		panic("BIOS smap did not include a basemem segment!");
1425
1426#ifdef SMP
1427	/* make hole for AP bootstrap code */
1428	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1429#endif
1430
1431	/*
1432	 * Maxmem isn't the "maximum memory", it's one larger than the
1433	 * highest page of the physical address space.  It should be
1434	 * called something like "Maxphyspage".  We may adjust this
1435	 * based on ``hw.physmem'' and the results of the memory test.
1436	 */
1437	Maxmem = atop(physmap[physmap_idx + 1]);
1438
1439#ifdef MAXMEM
1440	Maxmem = MAXMEM / 4;
1441#endif
1442
1443	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1444		Maxmem = atop(physmem_tunable);
1445
1446	/*
1447	 * By default enable the memory test on real hardware, and disable
1448	 * it if we appear to be running in a VM.  This avoids touching all
1449	 * pages unnecessarily, which doesn't matter on real hardware but is
1450	 * bad for shared VM hosts.  Use a general name so that
1451	 * one could eventually do more with the code than just disable it.
1452	 */
1453	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1454	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1455
1456	/*
1457	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1458	 * in the system.
1459	 */
1460	if (Maxmem > atop(physmap[physmap_idx + 1]))
1461		Maxmem = atop(physmap[physmap_idx + 1]);
1462
1463	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1464	    (boothowto & RB_VERBOSE))
1465		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1466
1467	/* call pmap initialization to make new kernel address space */
1468	pmap_bootstrap(&first);
1469
1470	/*
1471	 * Size up each available chunk of physical memory.
1472	 *
1473	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1474	 * By default, mask off the first 16 pages unless we appear to be
1475	 * running in a VM.
1476	 */
1477	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1478	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1479	if (physmem_start < PAGE_SIZE)
1480		physmap[0] = PAGE_SIZE;
1481	else if (physmem_start >= physmap[1])
1482		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1483	else
1484		physmap[0] = round_page(physmem_start);
1485	pa_indx = 0;
1486	da_indx = 1;
1487	phys_avail[pa_indx++] = physmap[0];
1488	phys_avail[pa_indx] = physmap[0];
1489	dump_avail[da_indx] = physmap[0];
1490	pte = CMAP1;
1491
1492	/*
1493	 * Get dcons buffer address
1494	 */
1495	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1496	    getenv_quad("dcons.size", &dcons_size) == 0)
1497		dcons_addr = 0;
1498
1499	/*
1500	 * physmap is in bytes, so when converting to page boundaries,
1501	 * round up the start address and round down the end address.
1502	 */
1503	for (i = 0; i <= physmap_idx; i += 2) {
1504		vm_paddr_t end;
1505
1506		end = ptoa((vm_paddr_t)Maxmem);
1507		if (physmap[i + 1] < end)
1508			end = trunc_page(physmap[i + 1]);
1509		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1510			int tmp, page_bad, full;
1511			int *ptr = (int *)CADDR1;
1512
1513			full = FALSE;
1514			/*
1515			 * block out kernel memory as not available.
1516			 */
1517			if (pa >= (vm_paddr_t)kernphys && pa < first)
1518				goto do_dump_avail;
1519
1520			/*
1521			 * block out dcons buffer
1522			 */
1523			if (dcons_addr > 0
1524			    && pa >= trunc_page(dcons_addr)
1525			    && pa < dcons_addr + dcons_size)
1526				goto do_dump_avail;
1527
1528			page_bad = FALSE;
1529			if (memtest == 0)
1530				goto skip_memtest;
1531
1532			/*
1533			 * map page into kernel: valid, read/write,non-cacheable
1534			 */
1535			*pte = pa | PG_V | PG_RW | PG_N;
1536			invltlb();
1537
1538			tmp = *(int *)ptr;
1539			/*
1540			 * Test for alternating 1's and 0's
1541			 */
1542			*(volatile int *)ptr = 0xaaaaaaaa;
1543			if (*(volatile int *)ptr != 0xaaaaaaaa)
1544				page_bad = TRUE;
1545			/*
1546			 * Test for alternating 0's and 1's
1547			 */
1548			*(volatile int *)ptr = 0x55555555;
1549			if (*(volatile int *)ptr != 0x55555555)
1550				page_bad = TRUE;
1551			/*
1552			 * Test for all 1's
1553			 */
1554			*(volatile int *)ptr = 0xffffffff;
1555			if (*(volatile int *)ptr != 0xffffffff)
1556				page_bad = TRUE;
1557			/*
1558			 * Test for all 0's
1559			 */
1560			*(volatile int *)ptr = 0x0;
1561			if (*(volatile int *)ptr != 0x0)
1562				page_bad = TRUE;
1563			/*
1564			 * Restore original value.
1565			 */
1566			*(int *)ptr = tmp;
1567
1568skip_memtest:
1569			/*
1570			 * Adjust array of valid/good pages.
1571			 */
1572			if (page_bad == TRUE)
1573				continue;
1574			/*
1575			 * If this good page is a continuation of the
1576			 * previous set of good pages, then just increase
1577			 * the end pointer. Otherwise start a new chunk.
1578			 * Note that "end" points one higher than end,
1579			 * making the range >= start and < end.
1580			 * If we're also doing a speculative memory
1581			 * test and we at or past the end, bump up Maxmem
1582			 * so that we keep going. The first bad page
1583			 * will terminate the loop.
1584			 */
1585			if (phys_avail[pa_indx] == pa) {
1586				phys_avail[pa_indx] += PAGE_SIZE;
1587			} else {
1588				pa_indx++;
1589				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1590					printf(
1591		"Too many holes in the physical address space, giving up\n");
1592					pa_indx--;
1593					full = TRUE;
1594					goto do_dump_avail;
1595				}
1596				phys_avail[pa_indx++] = pa;	/* start */
1597				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1598			}
1599			physmem++;
1600do_dump_avail:
1601			if (dump_avail[da_indx] == pa) {
1602				dump_avail[da_indx] += PAGE_SIZE;
1603			} else {
1604				da_indx++;
1605				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1606					da_indx--;
1607					goto do_next;
1608				}
1609				dump_avail[da_indx++] = pa; /* start */
1610				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1611			}
1612do_next:
1613			if (full)
1614				break;
1615		}
1616	}
1617	*pte = 0;
1618	invltlb();
1619
1620	/*
1621	 * XXX
1622	 * The last chunk must contain at least one page plus the message
1623	 * buffer to avoid complicating other code (message buffer address
1624	 * calculation, etc.).
1625	 */
1626	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1627	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1628		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1629		phys_avail[pa_indx--] = 0;
1630		phys_avail[pa_indx--] = 0;
1631	}
1632
1633	Maxmem = atop(phys_avail[pa_indx]);
1634
1635	/* Trim off space for the message buffer. */
1636	phys_avail[pa_indx] -= round_page(msgbufsize);
1637
1638	/* Map the message buffer. */
1639	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1640}
1641
1642u_int64_t
1643hammer_time(u_int64_t modulep, u_int64_t physfree)
1644{
1645	caddr_t kmdp;
1646	int gsel_tss, x;
1647	struct pcpu *pc;
1648	struct nmi_pcpu *np;
1649	struct xstate_hdr *xhdr;
1650	u_int64_t msr;
1651	char *env;
1652	size_t kstack0_sz;
1653
1654	thread0.td_kstack = physfree + KERNBASE;
1655	thread0.td_kstack_pages = KSTACK_PAGES;
1656	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1657	bzero((void *)thread0.td_kstack, kstack0_sz);
1658	physfree += kstack0_sz;
1659
1660	/*
1661 	 * This may be done better later if it gets more high level
1662 	 * components in it. If so just link td->td_proc here.
1663	 */
1664	proc_linkup0(&proc0, &thread0);
1665
1666	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1667	preload_bootstrap_relocate(KERNBASE);
1668	kmdp = preload_search_by_type("elf kernel");
1669	if (kmdp == NULL)
1670		kmdp = preload_search_by_type("elf64 kernel");
1671	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1672	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1673#ifdef DDB
1674	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1675	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1676#endif
1677
1678	/* Init basic tunables, hz etc */
1679	init_param1();
1680
1681	/*
1682	 * make gdt memory segments
1683	 */
1684	for (x = 0; x < NGDT; x++) {
1685		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1686		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1687			ssdtosd(&gdt_segs[x], &gdt[x]);
1688	}
1689	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1690	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1691	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1692
1693	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1694	r_gdt.rd_base =  (long) gdt;
1695	lgdt(&r_gdt);
1696	pc = &__pcpu[0];
1697
1698	wrmsr(MSR_FSBASE, 0);		/* User value */
1699	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1700	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1701
1702	pcpu_init(pc, 0, sizeof(struct pcpu));
1703	dpcpu_init((void *)(physfree + KERNBASE), 0);
1704	physfree += DPCPU_SIZE;
1705	PCPU_SET(prvspace, pc);
1706	PCPU_SET(curthread, &thread0);
1707	PCPU_SET(tssp, &common_tss[0]);
1708	PCPU_SET(commontssp, &common_tss[0]);
1709	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1710	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1711	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1712	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1713
1714	/*
1715	 * Initialize mutexes.
1716	 *
1717	 * icu_lock: in order to allow an interrupt to occur in a critical
1718	 * 	     section, to set pcpu->ipending (etc...) properly, we
1719	 *	     must be able to get the icu lock, so it can't be
1720	 *	     under witness.
1721	 */
1722	mutex_init();
1723	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1724	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1725
1726	/* exceptions */
1727	for (x = 0; x < NIDT; x++)
1728		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1729	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1730	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1731	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1732 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1733	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1734	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1735	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1736	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1737	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1738	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1739	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1740	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1741	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1742	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1743	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1744	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1745	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1746	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1747	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1748#ifdef KDTRACE_HOOKS
1749	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1750#endif
1751
1752	r_idt.rd_limit = sizeof(idt0) - 1;
1753	r_idt.rd_base = (long) idt;
1754	lidt(&r_idt);
1755
1756	/*
1757	 * Initialize the i8254 before the console so that console
1758	 * initialization can use DELAY().
1759	 */
1760	i8254_init();
1761
1762	/*
1763	 * Initialize the console before we print anything out.
1764	 */
1765	cninit();
1766
1767#ifdef DEV_ISA
1768#ifdef DEV_ATPIC
1769	elcr_probe();
1770	atpic_startup();
1771#else
1772	/* Reset and mask the atpics and leave them shut down. */
1773	atpic_reset();
1774
1775	/*
1776	 * Point the ICU spurious interrupt vectors at the APIC spurious
1777	 * interrupt handler.
1778	 */
1779	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1780	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1781#endif
1782#else
1783#error "have you forgotten the isa device?";
1784#endif
1785
1786	kdb_init();
1787
1788#ifdef KDB
1789	if (boothowto & RB_KDB)
1790		kdb_enter(KDB_WHY_BOOTFLAGS,
1791		    "Boot flags requested debugger");
1792#endif
1793
1794	identify_cpu();		/* Final stage of CPU initialization */
1795	initializecpu();	/* Initialize CPU registers */
1796	initializecpucache();
1797
1798	/* doublefault stack space, runs on ist1 */
1799	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1800
1801	/*
1802	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1803	 * above the start of the ist2 stack.
1804	 */
1805	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1806	np->np_pcpu = (register_t) pc;
1807	common_tss[0].tss_ist2 = (long) np;
1808
1809	/* Set the IO permission bitmap (empty due to tss seg limit) */
1810	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1811	    IOPAGES * PAGE_SIZE;
1812
1813	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1814	ltr(gsel_tss);
1815
1816	/* Set up the fast syscall stuff */
1817	msr = rdmsr(MSR_EFER) | EFER_SCE;
1818	wrmsr(MSR_EFER, msr);
1819	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1820	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1821	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1822	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1823	wrmsr(MSR_STAR, msr);
1824	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1825
1826	getmemsize(kmdp, physfree);
1827	init_param2(physmem);
1828
1829	/* now running on new page tables, configured,and u/iom is accessible */
1830
1831	msgbufinit(msgbufp, msgbufsize);
1832	fpuinit();
1833
1834	/*
1835	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1836	 * area size.  Zero out the extended state header in fpu save
1837	 * area.
1838	 */
1839	thread0.td_pcb = get_pcb_td(&thread0);
1840	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1841	if (use_xsave) {
1842		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1843		    1);
1844		xhdr->xstate_bv = xsave_mask;
1845	}
1846	/* make an initial tss so cpu can get interrupt stack on syscall! */
1847	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1848	/* Ensure the stack is aligned to 16 bytes */
1849	common_tss[0].tss_rsp0 &= ~0xFul;
1850	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1851	PCPU_SET(curpcb, thread0.td_pcb);
1852
1853	/* transfer to user mode */
1854
1855	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1856	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1857	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1858	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1859	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1860
1861	load_ds(_udatasel);
1862	load_es(_udatasel);
1863	load_fs(_ufssel);
1864
1865	/* setup proc 0's pcb */
1866	thread0.td_pcb->pcb_flags = 0;
1867	thread0.td_pcb->pcb_cr3 = KPML4phys;
1868	thread0.td_frame = &proc0_tf;
1869
1870        env = getenv("kernelname");
1871	if (env != NULL)
1872		strlcpy(kernelname, env, sizeof(kernelname));
1873
1874#ifdef XENHVM
1875	if (inw(0x10) == 0x49d2) {
1876		if (bootverbose)
1877			printf("Xen detected: disabling emulated block and network devices\n");
1878		outw(0x10, 3);
1879	}
1880#endif
1881
1882	cpu_probe_amdc1e();
1883
1884	/* Location of kernel stack for locore */
1885	return ((u_int64_t)thread0.td_pcb);
1886}
1887
1888void
1889cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1890{
1891
1892	pcpu->pc_acpi_id = 0xffffffff;
1893}
1894
1895void
1896spinlock_enter(void)
1897{
1898	struct thread *td;
1899	register_t flags;
1900
1901	td = curthread;
1902	if (td->td_md.md_spinlock_count == 0) {
1903		flags = intr_disable();
1904		td->td_md.md_spinlock_count = 1;
1905		td->td_md.md_saved_flags = flags;
1906	} else
1907		td->td_md.md_spinlock_count++;
1908	critical_enter();
1909}
1910
1911void
1912spinlock_exit(void)
1913{
1914	struct thread *td;
1915	register_t flags;
1916
1917	td = curthread;
1918	critical_exit();
1919	flags = td->td_md.md_saved_flags;
1920	td->td_md.md_spinlock_count--;
1921	if (td->td_md.md_spinlock_count == 0)
1922		intr_restore(flags);
1923}
1924
1925/*
1926 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1927 * we want to start a backtrace from the function that caused us to enter
1928 * the debugger. We have the context in the trapframe, but base the trace
1929 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1930 * enough for a backtrace.
1931 */
1932void
1933makectx(struct trapframe *tf, struct pcb *pcb)
1934{
1935
1936	pcb->pcb_r12 = tf->tf_r12;
1937	pcb->pcb_r13 = tf->tf_r13;
1938	pcb->pcb_r14 = tf->tf_r14;
1939	pcb->pcb_r15 = tf->tf_r15;
1940	pcb->pcb_rbp = tf->tf_rbp;
1941	pcb->pcb_rbx = tf->tf_rbx;
1942	pcb->pcb_rip = tf->tf_rip;
1943	pcb->pcb_rsp = tf->tf_rsp;
1944}
1945
1946int
1947ptrace_set_pc(struct thread *td, unsigned long addr)
1948{
1949	td->td_frame->tf_rip = addr;
1950	return (0);
1951}
1952
1953int
1954ptrace_single_step(struct thread *td)
1955{
1956	td->td_frame->tf_rflags |= PSL_T;
1957	return (0);
1958}
1959
1960int
1961ptrace_clear_single_step(struct thread *td)
1962{
1963	td->td_frame->tf_rflags &= ~PSL_T;
1964	return (0);
1965}
1966
1967int
1968fill_regs(struct thread *td, struct reg *regs)
1969{
1970	struct trapframe *tp;
1971
1972	tp = td->td_frame;
1973	return (fill_frame_regs(tp, regs));
1974}
1975
1976int
1977fill_frame_regs(struct trapframe *tp, struct reg *regs)
1978{
1979	regs->r_r15 = tp->tf_r15;
1980	regs->r_r14 = tp->tf_r14;
1981	regs->r_r13 = tp->tf_r13;
1982	regs->r_r12 = tp->tf_r12;
1983	regs->r_r11 = tp->tf_r11;
1984	regs->r_r10 = tp->tf_r10;
1985	regs->r_r9  = tp->tf_r9;
1986	regs->r_r8  = tp->tf_r8;
1987	regs->r_rdi = tp->tf_rdi;
1988	regs->r_rsi = tp->tf_rsi;
1989	regs->r_rbp = tp->tf_rbp;
1990	regs->r_rbx = tp->tf_rbx;
1991	regs->r_rdx = tp->tf_rdx;
1992	regs->r_rcx = tp->tf_rcx;
1993	regs->r_rax = tp->tf_rax;
1994	regs->r_rip = tp->tf_rip;
1995	regs->r_cs = tp->tf_cs;
1996	regs->r_rflags = tp->tf_rflags;
1997	regs->r_rsp = tp->tf_rsp;
1998	regs->r_ss = tp->tf_ss;
1999	if (tp->tf_flags & TF_HASSEGS) {
2000		regs->r_ds = tp->tf_ds;
2001		regs->r_es = tp->tf_es;
2002		regs->r_fs = tp->tf_fs;
2003		regs->r_gs = tp->tf_gs;
2004	} else {
2005		regs->r_ds = 0;
2006		regs->r_es = 0;
2007		regs->r_fs = 0;
2008		regs->r_gs = 0;
2009	}
2010	return (0);
2011}
2012
2013int
2014set_regs(struct thread *td, struct reg *regs)
2015{
2016	struct trapframe *tp;
2017	register_t rflags;
2018
2019	tp = td->td_frame;
2020	rflags = regs->r_rflags & 0xffffffff;
2021	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2022		return (EINVAL);
2023	tp->tf_r15 = regs->r_r15;
2024	tp->tf_r14 = regs->r_r14;
2025	tp->tf_r13 = regs->r_r13;
2026	tp->tf_r12 = regs->r_r12;
2027	tp->tf_r11 = regs->r_r11;
2028	tp->tf_r10 = regs->r_r10;
2029	tp->tf_r9  = regs->r_r9;
2030	tp->tf_r8  = regs->r_r8;
2031	tp->tf_rdi = regs->r_rdi;
2032	tp->tf_rsi = regs->r_rsi;
2033	tp->tf_rbp = regs->r_rbp;
2034	tp->tf_rbx = regs->r_rbx;
2035	tp->tf_rdx = regs->r_rdx;
2036	tp->tf_rcx = regs->r_rcx;
2037	tp->tf_rax = regs->r_rax;
2038	tp->tf_rip = regs->r_rip;
2039	tp->tf_cs = regs->r_cs;
2040	tp->tf_rflags = rflags;
2041	tp->tf_rsp = regs->r_rsp;
2042	tp->tf_ss = regs->r_ss;
2043	if (0) {	/* XXXKIB */
2044		tp->tf_ds = regs->r_ds;
2045		tp->tf_es = regs->r_es;
2046		tp->tf_fs = regs->r_fs;
2047		tp->tf_gs = regs->r_gs;
2048		tp->tf_flags = TF_HASSEGS;
2049		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2050	}
2051	return (0);
2052}
2053
2054/* XXX check all this stuff! */
2055/* externalize from sv_xmm */
2056static void
2057fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2058{
2059	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2060	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2061	int i;
2062
2063	/* pcb -> fpregs */
2064	bzero(fpregs, sizeof(*fpregs));
2065
2066	/* FPU control/status */
2067	penv_fpreg->en_cw = penv_xmm->en_cw;
2068	penv_fpreg->en_sw = penv_xmm->en_sw;
2069	penv_fpreg->en_tw = penv_xmm->en_tw;
2070	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2071	penv_fpreg->en_rip = penv_xmm->en_rip;
2072	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2073	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2074	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2075
2076	/* FPU registers */
2077	for (i = 0; i < 8; ++i)
2078		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2079
2080	/* SSE registers */
2081	for (i = 0; i < 16; ++i)
2082		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2083}
2084
2085/* internalize from fpregs into sv_xmm */
2086static void
2087set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2088{
2089	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2090	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2091	int i;
2092
2093	/* fpregs -> pcb */
2094	/* FPU control/status */
2095	penv_xmm->en_cw = penv_fpreg->en_cw;
2096	penv_xmm->en_sw = penv_fpreg->en_sw;
2097	penv_xmm->en_tw = penv_fpreg->en_tw;
2098	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2099	penv_xmm->en_rip = penv_fpreg->en_rip;
2100	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2101	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2102	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2103
2104	/* FPU registers */
2105	for (i = 0; i < 8; ++i)
2106		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2107
2108	/* SSE registers */
2109	for (i = 0; i < 16; ++i)
2110		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2111}
2112
2113/* externalize from td->pcb */
2114int
2115fill_fpregs(struct thread *td, struct fpreg *fpregs)
2116{
2117
2118	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2119	    P_SHOULDSTOP(td->td_proc),
2120	    ("not suspended thread %p", td));
2121	fpugetregs(td);
2122	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2123	return (0);
2124}
2125
2126/* internalize to td->pcb */
2127int
2128set_fpregs(struct thread *td, struct fpreg *fpregs)
2129{
2130
2131	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2132	fpuuserinited(td);
2133	return (0);
2134}
2135
2136/*
2137 * Get machine context.
2138 */
2139int
2140get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2141{
2142	struct pcb *pcb;
2143	struct trapframe *tp;
2144
2145	pcb = td->td_pcb;
2146	tp = td->td_frame;
2147	PROC_LOCK(curthread->td_proc);
2148	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2149	PROC_UNLOCK(curthread->td_proc);
2150	mcp->mc_r15 = tp->tf_r15;
2151	mcp->mc_r14 = tp->tf_r14;
2152	mcp->mc_r13 = tp->tf_r13;
2153	mcp->mc_r12 = tp->tf_r12;
2154	mcp->mc_r11 = tp->tf_r11;
2155	mcp->mc_r10 = tp->tf_r10;
2156	mcp->mc_r9  = tp->tf_r9;
2157	mcp->mc_r8  = tp->tf_r8;
2158	mcp->mc_rdi = tp->tf_rdi;
2159	mcp->mc_rsi = tp->tf_rsi;
2160	mcp->mc_rbp = tp->tf_rbp;
2161	mcp->mc_rbx = tp->tf_rbx;
2162	mcp->mc_rcx = tp->tf_rcx;
2163	mcp->mc_rflags = tp->tf_rflags;
2164	if (flags & GET_MC_CLEAR_RET) {
2165		mcp->mc_rax = 0;
2166		mcp->mc_rdx = 0;
2167		mcp->mc_rflags &= ~PSL_C;
2168	} else {
2169		mcp->mc_rax = tp->tf_rax;
2170		mcp->mc_rdx = tp->tf_rdx;
2171	}
2172	mcp->mc_rip = tp->tf_rip;
2173	mcp->mc_cs = tp->tf_cs;
2174	mcp->mc_rsp = tp->tf_rsp;
2175	mcp->mc_ss = tp->tf_ss;
2176	mcp->mc_ds = tp->tf_ds;
2177	mcp->mc_es = tp->tf_es;
2178	mcp->mc_fs = tp->tf_fs;
2179	mcp->mc_gs = tp->tf_gs;
2180	mcp->mc_flags = tp->tf_flags;
2181	mcp->mc_len = sizeof(*mcp);
2182	get_fpcontext(td, mcp, NULL, 0);
2183	mcp->mc_fsbase = pcb->pcb_fsbase;
2184	mcp->mc_gsbase = pcb->pcb_gsbase;
2185	mcp->mc_xfpustate = 0;
2186	mcp->mc_xfpustate_len = 0;
2187	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2188	return (0);
2189}
2190
2191/*
2192 * Set machine context.
2193 *
2194 * However, we don't set any but the user modifiable flags, and we won't
2195 * touch the cs selector.
2196 */
2197int
2198set_mcontext(struct thread *td, const mcontext_t *mcp)
2199{
2200	struct pcb *pcb;
2201	struct trapframe *tp;
2202	char *xfpustate;
2203	long rflags;
2204	int ret;
2205
2206	pcb = td->td_pcb;
2207	tp = td->td_frame;
2208	if (mcp->mc_len != sizeof(*mcp) ||
2209	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2210		return (EINVAL);
2211	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2212	    (tp->tf_rflags & ~PSL_USERCHANGE);
2213	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2214		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2215		    sizeof(struct savefpu))
2216			return (EINVAL);
2217		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2218		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2219		    mcp->mc_xfpustate_len);
2220		if (ret != 0)
2221			return (ret);
2222	} else
2223		xfpustate = NULL;
2224	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2225	if (ret != 0)
2226		return (ret);
2227	tp->tf_r15 = mcp->mc_r15;
2228	tp->tf_r14 = mcp->mc_r14;
2229	tp->tf_r13 = mcp->mc_r13;
2230	tp->tf_r12 = mcp->mc_r12;
2231	tp->tf_r11 = mcp->mc_r11;
2232	tp->tf_r10 = mcp->mc_r10;
2233	tp->tf_r9  = mcp->mc_r9;
2234	tp->tf_r8  = mcp->mc_r8;
2235	tp->tf_rdi = mcp->mc_rdi;
2236	tp->tf_rsi = mcp->mc_rsi;
2237	tp->tf_rbp = mcp->mc_rbp;
2238	tp->tf_rbx = mcp->mc_rbx;
2239	tp->tf_rdx = mcp->mc_rdx;
2240	tp->tf_rcx = mcp->mc_rcx;
2241	tp->tf_rax = mcp->mc_rax;
2242	tp->tf_rip = mcp->mc_rip;
2243	tp->tf_rflags = rflags;
2244	tp->tf_rsp = mcp->mc_rsp;
2245	tp->tf_ss = mcp->mc_ss;
2246	tp->tf_flags = mcp->mc_flags;
2247	if (tp->tf_flags & TF_HASSEGS) {
2248		tp->tf_ds = mcp->mc_ds;
2249		tp->tf_es = mcp->mc_es;
2250		tp->tf_fs = mcp->mc_fs;
2251		tp->tf_gs = mcp->mc_gs;
2252	}
2253	if (mcp->mc_flags & _MC_HASBASES) {
2254		pcb->pcb_fsbase = mcp->mc_fsbase;
2255		pcb->pcb_gsbase = mcp->mc_gsbase;
2256	}
2257	set_pcb_flags(pcb, PCB_FULL_IRET);
2258	return (0);
2259}
2260
2261static void
2262get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2263    size_t xfpusave_len)
2264{
2265	size_t max_len, len;
2266
2267	mcp->mc_ownedfp = fpugetregs(td);
2268	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate,
2269	    sizeof(mcp->mc_fpstate));
2270	mcp->mc_fpformat = fpuformat();
2271	if (!use_xsave || xfpusave_len == 0)
2272		return;
2273	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2274	len = xfpusave_len;
2275	if (len > max_len) {
2276		len = max_len;
2277		bzero(xfpusave + max_len, len - max_len);
2278	}
2279	mcp->mc_flags |= _MC_HASFPXSTATE;
2280	mcp->mc_xfpustate_len = len;
2281	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2282}
2283
2284static int
2285set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2286    size_t xfpustate_len)
2287{
2288	struct savefpu *fpstate;
2289	int error;
2290
2291	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2292		return (0);
2293	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2294		return (EINVAL);
2295	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2296		/* We don't care what state is left in the FPU or PCB. */
2297		fpstate_drop(td);
2298		error = 0;
2299	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2300	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2301		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2302		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2303		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2304	} else
2305		return (EINVAL);
2306	return (error);
2307}
2308
2309void
2310fpstate_drop(struct thread *td)
2311{
2312
2313	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2314	critical_enter();
2315	if (PCPU_GET(fpcurthread) == td)
2316		fpudrop();
2317	/*
2318	 * XXX force a full drop of the fpu.  The above only drops it if we
2319	 * owned it.
2320	 *
2321	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2322	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2323	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2324	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2325	 * have too many layers.
2326	 */
2327	clear_pcb_flags(curthread->td_pcb,
2328	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2329	critical_exit();
2330}
2331
2332int
2333fill_dbregs(struct thread *td, struct dbreg *dbregs)
2334{
2335	struct pcb *pcb;
2336
2337	if (td == NULL) {
2338		dbregs->dr[0] = rdr0();
2339		dbregs->dr[1] = rdr1();
2340		dbregs->dr[2] = rdr2();
2341		dbregs->dr[3] = rdr3();
2342		dbregs->dr[6] = rdr6();
2343		dbregs->dr[7] = rdr7();
2344	} else {
2345		pcb = td->td_pcb;
2346		dbregs->dr[0] = pcb->pcb_dr0;
2347		dbregs->dr[1] = pcb->pcb_dr1;
2348		dbregs->dr[2] = pcb->pcb_dr2;
2349		dbregs->dr[3] = pcb->pcb_dr3;
2350		dbregs->dr[6] = pcb->pcb_dr6;
2351		dbregs->dr[7] = pcb->pcb_dr7;
2352	}
2353	dbregs->dr[4] = 0;
2354	dbregs->dr[5] = 0;
2355	dbregs->dr[8] = 0;
2356	dbregs->dr[9] = 0;
2357	dbregs->dr[10] = 0;
2358	dbregs->dr[11] = 0;
2359	dbregs->dr[12] = 0;
2360	dbregs->dr[13] = 0;
2361	dbregs->dr[14] = 0;
2362	dbregs->dr[15] = 0;
2363	return (0);
2364}
2365
2366int
2367set_dbregs(struct thread *td, struct dbreg *dbregs)
2368{
2369	struct pcb *pcb;
2370	int i;
2371
2372	if (td == NULL) {
2373		load_dr0(dbregs->dr[0]);
2374		load_dr1(dbregs->dr[1]);
2375		load_dr2(dbregs->dr[2]);
2376		load_dr3(dbregs->dr[3]);
2377		load_dr6(dbregs->dr[6]);
2378		load_dr7(dbregs->dr[7]);
2379	} else {
2380		/*
2381		 * Don't let an illegal value for dr7 get set.  Specifically,
2382		 * check for undefined settings.  Setting these bit patterns
2383		 * result in undefined behaviour and can lead to an unexpected
2384		 * TRCTRAP or a general protection fault right here.
2385		 * Upper bits of dr6 and dr7 must not be set
2386		 */
2387		for (i = 0; i < 4; i++) {
2388			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2389				return (EINVAL);
2390			if (td->td_frame->tf_cs == _ucode32sel &&
2391			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2392				return (EINVAL);
2393		}
2394		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2395		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2396			return (EINVAL);
2397
2398		pcb = td->td_pcb;
2399
2400		/*
2401		 * Don't let a process set a breakpoint that is not within the
2402		 * process's address space.  If a process could do this, it
2403		 * could halt the system by setting a breakpoint in the kernel
2404		 * (if ddb was enabled).  Thus, we need to check to make sure
2405		 * that no breakpoints are being enabled for addresses outside
2406		 * process's address space.
2407		 *
2408		 * XXX - what about when the watched area of the user's
2409		 * address space is written into from within the kernel
2410		 * ... wouldn't that still cause a breakpoint to be generated
2411		 * from within kernel mode?
2412		 */
2413
2414		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2415			/* dr0 is enabled */
2416			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2417				return (EINVAL);
2418		}
2419		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2420			/* dr1 is enabled */
2421			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2422				return (EINVAL);
2423		}
2424		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2425			/* dr2 is enabled */
2426			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2427				return (EINVAL);
2428		}
2429		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2430			/* dr3 is enabled */
2431			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2432				return (EINVAL);
2433		}
2434
2435		pcb->pcb_dr0 = dbregs->dr[0];
2436		pcb->pcb_dr1 = dbregs->dr[1];
2437		pcb->pcb_dr2 = dbregs->dr[2];
2438		pcb->pcb_dr3 = dbregs->dr[3];
2439		pcb->pcb_dr6 = dbregs->dr[6];
2440		pcb->pcb_dr7 = dbregs->dr[7];
2441
2442		set_pcb_flags(pcb, PCB_DBREGS);
2443	}
2444
2445	return (0);
2446}
2447
2448void
2449reset_dbregs(void)
2450{
2451
2452	load_dr7(0);	/* Turn off the control bits first */
2453	load_dr0(0);
2454	load_dr1(0);
2455	load_dr2(0);
2456	load_dr3(0);
2457	load_dr6(0);
2458}
2459
2460/*
2461 * Return > 0 if a hardware breakpoint has been hit, and the
2462 * breakpoint was in user space.  Return 0, otherwise.
2463 */
2464int
2465user_dbreg_trap(void)
2466{
2467        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2468        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2469        int nbp;            /* number of breakpoints that triggered */
2470        caddr_t addr[4];    /* breakpoint addresses */
2471        int i;
2472
2473        dr7 = rdr7();
2474        if ((dr7 & 0x000000ff) == 0) {
2475                /*
2476                 * all GE and LE bits in the dr7 register are zero,
2477                 * thus the trap couldn't have been caused by the
2478                 * hardware debug registers
2479                 */
2480                return 0;
2481        }
2482
2483        nbp = 0;
2484        dr6 = rdr6();
2485        bp = dr6 & 0x0000000f;
2486
2487        if (!bp) {
2488                /*
2489                 * None of the breakpoint bits are set meaning this
2490                 * trap was not caused by any of the debug registers
2491                 */
2492                return 0;
2493        }
2494
2495        /*
2496         * at least one of the breakpoints were hit, check to see
2497         * which ones and if any of them are user space addresses
2498         */
2499
2500        if (bp & 0x01) {
2501                addr[nbp++] = (caddr_t)rdr0();
2502        }
2503        if (bp & 0x02) {
2504                addr[nbp++] = (caddr_t)rdr1();
2505        }
2506        if (bp & 0x04) {
2507                addr[nbp++] = (caddr_t)rdr2();
2508        }
2509        if (bp & 0x08) {
2510                addr[nbp++] = (caddr_t)rdr3();
2511        }
2512
2513        for (i = 0; i < nbp; i++) {
2514                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2515                        /*
2516                         * addr[i] is in user space
2517                         */
2518                        return nbp;
2519                }
2520        }
2521
2522        /*
2523         * None of the breakpoints are in user space.
2524         */
2525        return 0;
2526}
2527
2528#ifdef KDB
2529
2530/*
2531 * Provide inb() and outb() as functions.  They are normally only available as
2532 * inline functions, thus cannot be called from the debugger.
2533 */
2534
2535/* silence compiler warnings */
2536u_char inb_(u_short);
2537void outb_(u_short, u_char);
2538
2539u_char
2540inb_(u_short port)
2541{
2542	return inb(port);
2543}
2544
2545void
2546outb_(u_short port, u_char data)
2547{
2548	outb(port, data);
2549}
2550
2551#endif /* KDB */
2552