machdep.c revision 206553
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 206553 2010-04-13 10:12:58Z kib $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57
58#include <sys/param.h>
59#include <sys/proc.h>
60#include <sys/systm.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/bus.h>
64#include <sys/callout.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#include <sys/sysctl.h>
85#include <sys/sysent.h>
86#include <sys/sysproto.h>
87#include <sys/ucontext.h>
88#include <sys/vmmeter.h>
89
90#include <vm/vm.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_param.h>
98
99#ifdef DDB
100#ifndef KDB
101#error KDB must be enabled in order for DDB to work!
102#endif
103#include <ddb/ddb.h>
104#include <ddb/db_sym.h>
105#endif
106
107#include <net/netisr.h>
108
109#include <machine/clock.h>
110#include <machine/cpu.h>
111#include <machine/cputypes.h>
112#include <machine/intr_machdep.h>
113#include <machine/mca.h>
114#include <machine/md_var.h>
115#include <machine/metadata.h>
116#include <machine/pc/bios.h>
117#include <machine/pcb.h>
118#include <machine/proc.h>
119#include <machine/reg.h>
120#include <machine/sigframe.h>
121#include <machine/specialreg.h>
122#ifdef PERFMON
123#include <machine/perfmon.h>
124#endif
125#include <machine/tss.h>
126#ifdef SMP
127#include <machine/smp.h>
128#endif
129
130#ifdef DEV_ATPIC
131#include <x86/isa/icu.h>
132#else
133#include <machine/apicvar.h>
134#endif
135
136#include <isa/isareg.h>
137#include <isa/rtc.h>
138
139/* Sanity check for __curthread() */
140CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
141
142extern u_int64_t hammer_time(u_int64_t, u_int64_t);
143
144extern void printcpuinfo(void);	/* XXX header file */
145extern void identify_cpu(void);
146extern void panicifcpuunsupported(void);
147
148#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
149#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
150
151static void cpu_startup(void *);
152static void get_fpcontext(struct thread *td, mcontext_t *mcp);
153static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
154SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155
156#ifdef DDB
157extern vm_offset_t ksym_start, ksym_end;
158#endif
159
160struct msgbuf *msgbufp;
161
162/* Intel ICH registers */
163#define ICH_PMBASE	0x400
164#define ICH_SMI_EN	ICH_PMBASE + 0x30
165
166int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
167
168int cold = 1;
169
170long Maxmem = 0;
171long realmem = 0;
172
173/*
174 * The number of PHYSMAP entries must be one less than the number of
175 * PHYSSEG entries because the PHYSMAP entry that spans the largest
176 * physical address that is accessible by ISA DMA is split into two
177 * PHYSSEG entries.
178 */
179#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
180
181vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
182vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
183
184/* must be 2 less so 0 0 can signal end of chunks */
185#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
186#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
187
188struct kva_md_info kmi;
189
190static struct trapframe proc0_tf;
191struct region_descriptor r_gdt, r_idt;
192
193struct pcpu __pcpu[MAXCPU];
194
195struct mtx icu_lock;
196
197struct mem_range_softc mem_range_softc;
198
199struct mtx dt_lock;	/* lock for GDT and LDT */
200
201static void
202cpu_startup(dummy)
203	void *dummy;
204{
205	uintmax_t memsize;
206	char *sysenv;
207
208	/*
209	 * On MacBooks, we need to disallow the legacy USB circuit to
210	 * generate an SMI# because this can cause several problems,
211	 * namely: incorrect CPU frequency detection and failure to
212	 * start the APs.
213	 * We do this by disabling a bit in the SMI_EN (SMI Control and
214	 * Enable register) of the Intel ICH LPC Interface Bridge.
215	 */
216	sysenv = getenv("smbios.system.product");
217	if (sysenv != NULL) {
218		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
219		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
220		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
221		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
222		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
223		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
224			if (bootverbose)
225				printf("Disabling LEGACY_USB_EN bit on "
226				    "Intel ICH.\n");
227			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
228		}
229		freeenv(sysenv);
230	}
231
232	/*
233	 * Good {morning,afternoon,evening,night}.
234	 */
235	startrtclock();
236	printcpuinfo();
237	panicifcpuunsupported();
238#ifdef PERFMON
239	perfmon_init();
240#endif
241	realmem = Maxmem;
242
243	/*
244	 * Display physical memory if SMBIOS reports reasonable amount.
245	 */
246	memsize = 0;
247	sysenv = getenv("smbios.memory.enabled");
248	if (sysenv != NULL) {
249		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
250		freeenv(sysenv);
251	}
252	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
253		memsize = ptoa((uintmax_t)Maxmem);
254	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
255
256	/*
257	 * Display any holes after the first chunk of extended memory.
258	 */
259	if (bootverbose) {
260		int indx;
261
262		printf("Physical memory chunk(s):\n");
263		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
264			vm_paddr_t size;
265
266			size = phys_avail[indx + 1] - phys_avail[indx];
267			printf(
268			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
269			    (uintmax_t)phys_avail[indx],
270			    (uintmax_t)phys_avail[indx + 1] - 1,
271			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
272		}
273	}
274
275	vm_ksubmap_init(&kmi);
276
277	printf("avail memory = %ju (%ju MB)\n",
278	    ptoa((uintmax_t)cnt.v_free_count),
279	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
280
281	/*
282	 * Set up buffers, so they can be used to read disk labels.
283	 */
284	bufinit();
285	vm_pager_bufferinit();
286
287	cpu_setregs();
288	mca_init();
289}
290
291/*
292 * Send an interrupt to process.
293 *
294 * Stack is set up to allow sigcode stored
295 * at top to call routine, followed by call
296 * to sigreturn routine below.  After sigreturn
297 * resets the signal mask, the stack, and the
298 * frame pointer, it returns to the user
299 * specified pc, psl.
300 */
301void
302sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
303{
304	struct sigframe sf, *sfp;
305	struct proc *p;
306	struct thread *td;
307	struct sigacts *psp;
308	char *sp;
309	struct trapframe *regs;
310	int sig;
311	int oonstack;
312
313	td = curthread;
314	p = td->td_proc;
315	PROC_LOCK_ASSERT(p, MA_OWNED);
316	sig = ksi->ksi_signo;
317	psp = p->p_sigacts;
318	mtx_assert(&psp->ps_mtx, MA_OWNED);
319	regs = td->td_frame;
320	oonstack = sigonstack(regs->tf_rsp);
321
322	/* Save user context. */
323	bzero(&sf, sizeof(sf));
324	sf.sf_uc.uc_sigmask = *mask;
325	sf.sf_uc.uc_stack = td->td_sigstk;
326	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
327	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
328	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
329	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
330	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
331	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
332	fpstate_drop(td);
333	sf.sf_uc.uc_mcontext.mc_fsbase = td->td_pcb->pcb_fsbase;
334	sf.sf_uc.uc_mcontext.mc_gsbase = td->td_pcb->pcb_gsbase;
335
336	/* Allocate space for the signal handler context. */
337	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
338	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
339		sp = td->td_sigstk.ss_sp +
340		    td->td_sigstk.ss_size - sizeof(struct sigframe);
341#if defined(COMPAT_43)
342		td->td_sigstk.ss_flags |= SS_ONSTACK;
343#endif
344	} else
345		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
346	/* Align to 16 bytes. */
347	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
348
349	/* Translate the signal if appropriate. */
350	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
351		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
352
353	/* Build the argument list for the signal handler. */
354	regs->tf_rdi = sig;			/* arg 1 in %rdi */
355	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
356	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
357		/* Signal handler installed with SA_SIGINFO. */
358		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
359		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
360
361		/* Fill in POSIX parts */
362		sf.sf_si = ksi->ksi_info;
363		sf.sf_si.si_signo = sig; /* maybe a translated signal */
364		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
365	} else {
366		/* Old FreeBSD-style arguments. */
367		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
368		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
369		sf.sf_ahu.sf_handler = catcher;
370	}
371	mtx_unlock(&psp->ps_mtx);
372	PROC_UNLOCK(p);
373
374	/*
375	 * Copy the sigframe out to the user's stack.
376	 */
377	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
378#ifdef DEBUG
379		printf("process %ld has trashed its stack\n", (long)p->p_pid);
380#endif
381		PROC_LOCK(p);
382		sigexit(td, SIGILL);
383	}
384
385	regs->tf_rsp = (long)sfp;
386	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
387	regs->tf_rflags &= ~(PSL_T | PSL_D);
388	regs->tf_cs = _ucodesel;
389	regs->tf_ds = _udatasel;
390	regs->tf_es = _udatasel;
391	regs->tf_fs = _ufssel;
392	regs->tf_gs = _ugssel;
393	regs->tf_flags = TF_HASSEGS;
394	td->td_pcb->pcb_full_iret = 1;
395	PROC_LOCK(p);
396	mtx_lock(&psp->ps_mtx);
397}
398
399/*
400 * System call to cleanup state after a signal
401 * has been taken.  Reset signal mask and
402 * stack state from context left by sendsig (above).
403 * Return to previous pc and psl as specified by
404 * context left by sendsig. Check carefully to
405 * make sure that the user has not modified the
406 * state to gain improper privileges.
407 *
408 * MPSAFE
409 */
410int
411sigreturn(td, uap)
412	struct thread *td;
413	struct sigreturn_args /* {
414		const struct __ucontext *sigcntxp;
415	} */ *uap;
416{
417	ucontext_t uc;
418	struct proc *p = td->td_proc;
419	struct trapframe *regs;
420	ucontext_t *ucp;
421	long rflags;
422	int cs, error, ret;
423	ksiginfo_t ksi;
424
425	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
426	if (error != 0) {
427		uprintf("pid %d (%s): sigreturn copyin failed\n",
428		    p->p_pid, td->td_name);
429		return (error);
430	}
431	ucp = &uc;
432	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
433		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
434		    td->td_name, ucp->uc_mcontext.mc_flags);
435		return (EINVAL);
436	}
437	regs = td->td_frame;
438	rflags = ucp->uc_mcontext.mc_rflags;
439	/*
440	 * Don't allow users to change privileged or reserved flags.
441	 */
442	/*
443	 * XXX do allow users to change the privileged flag PSL_RF.
444	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
445	 * should sometimes set it there too.  tf_rflags is kept in
446	 * the signal context during signal handling and there is no
447	 * other place to remember it, so the PSL_RF bit may be
448	 * corrupted by the signal handler without us knowing.
449	 * Corruption of the PSL_RF bit at worst causes one more or
450	 * one less debugger trap, so allowing it is fairly harmless.
451	 */
452	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
453		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
454		    td->td_name, rflags);
455		return (EINVAL);
456	}
457
458	/*
459	 * Don't allow users to load a valid privileged %cs.  Let the
460	 * hardware check for invalid selectors, excess privilege in
461	 * other selectors, invalid %eip's and invalid %esp's.
462	 */
463	cs = ucp->uc_mcontext.mc_cs;
464	if (!CS_SECURE(cs)) {
465		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
466		    td->td_name, cs);
467		ksiginfo_init_trap(&ksi);
468		ksi.ksi_signo = SIGBUS;
469		ksi.ksi_code = BUS_OBJERR;
470		ksi.ksi_trapno = T_PROTFLT;
471		ksi.ksi_addr = (void *)regs->tf_rip;
472		trapsignal(td, &ksi);
473		return (EINVAL);
474	}
475
476	ret = set_fpcontext(td, &ucp->uc_mcontext);
477	if (ret != 0) {
478		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
479		    p->p_pid, td->td_name, ret);
480		return (ret);
481	}
482	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
483	td->td_pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
484	td->td_pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
485
486#if defined(COMPAT_43)
487	if (ucp->uc_mcontext.mc_onstack & 1)
488		td->td_sigstk.ss_flags |= SS_ONSTACK;
489	else
490		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
491#endif
492
493	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
494	td->td_pcb->pcb_flags |= PCB_FULLCTX;
495	td->td_pcb->pcb_full_iret = 1;
496	return (EJUSTRETURN);
497}
498
499#ifdef COMPAT_FREEBSD4
500int
501freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
502{
503
504	return sigreturn(td, (struct sigreturn_args *)uap);
505}
506#endif
507
508
509/*
510 * Machine dependent boot() routine
511 *
512 * I haven't seen anything to put here yet
513 * Possibly some stuff might be grafted back here from boot()
514 */
515void
516cpu_boot(int howto)
517{
518}
519
520/*
521 * Flush the D-cache for non-DMA I/O so that the I-cache can
522 * be made coherent later.
523 */
524void
525cpu_flush_dcache(void *ptr, size_t len)
526{
527	/* Not applicable */
528}
529
530/* Get current clock frequency for the given cpu id. */
531int
532cpu_est_clockrate(int cpu_id, uint64_t *rate)
533{
534	register_t reg;
535	uint64_t tsc1, tsc2;
536
537	if (pcpu_find(cpu_id) == NULL || rate == NULL)
538		return (EINVAL);
539
540	/* If we're booting, trust the rate calibrated moments ago. */
541	if (cold) {
542		*rate = tsc_freq;
543		return (0);
544	}
545
546#ifdef SMP
547	/* Schedule ourselves on the indicated cpu. */
548	thread_lock(curthread);
549	sched_bind(curthread, cpu_id);
550	thread_unlock(curthread);
551#endif
552
553	/* Calibrate by measuring a short delay. */
554	reg = intr_disable();
555	tsc1 = rdtsc();
556	DELAY(1000);
557	tsc2 = rdtsc();
558	intr_restore(reg);
559
560#ifdef SMP
561	thread_lock(curthread);
562	sched_unbind(curthread);
563	thread_unlock(curthread);
564#endif
565
566	/*
567	 * Calculate the difference in readings, convert to Mhz, and
568	 * subtract 0.5% of the total.  Empirical testing has shown that
569	 * overhead in DELAY() works out to approximately this value.
570	 */
571	tsc2 -= tsc1;
572	*rate = tsc2 * 1000 - tsc2 * 5;
573	return (0);
574}
575
576/*
577 * Shutdown the CPU as much as possible
578 */
579void
580cpu_halt(void)
581{
582	for (;;)
583		__asm__ ("hlt");
584}
585
586void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
587
588static void
589cpu_idle_hlt(int busy)
590{
591	/*
592	 * we must absolutely guarentee that hlt is the next instruction
593	 * after sti or we introduce a timing window.
594	 */
595	disable_intr();
596  	if (sched_runnable())
597		enable_intr();
598	else
599		__asm __volatile("sti; hlt");
600}
601
602static void
603cpu_idle_acpi(int busy)
604{
605	disable_intr();
606  	if (sched_runnable())
607		enable_intr();
608	else if (cpu_idle_hook)
609		cpu_idle_hook();
610	else
611		__asm __volatile("sti; hlt");
612}
613
614static int cpu_ident_amdc1e = 0;
615
616static int
617cpu_probe_amdc1e(void)
618{
619	int i;
620
621	/*
622	 * Forget it, if we're not using local APIC timer.
623	 */
624	if (resource_disabled("apic", 0) ||
625	    (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
626		return (0);
627
628	/*
629	 * Detect the presence of C1E capability mostly on latest
630	 * dual-cores (or future) k8 family.
631	 */
632	if (cpu_vendor_id == CPU_VENDOR_AMD &&
633	    (cpu_id & 0x00000f00) == 0x00000f00 &&
634	    (cpu_id & 0x0fff0000) >=  0x00040000) {
635		cpu_ident_amdc1e = 1;
636		return (1);
637	}
638
639	return (0);
640}
641
642/*
643 * C1E renders the local APIC timer dead, so we disable it by
644 * reading the Interrupt Pending Message register and clearing
645 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
646 *
647 * Reference:
648 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
649 *   #32559 revision 3.00+
650 */
651#define	MSR_AMDK8_IPM		0xc0010055
652#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
653#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
654#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
655
656static void
657cpu_idle_amdc1e(int busy)
658{
659
660	disable_intr();
661	if (sched_runnable())
662		enable_intr();
663	else {
664		uint64_t msr;
665
666		msr = rdmsr(MSR_AMDK8_IPM);
667		if (msr & AMDK8_CMPHALT)
668			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
669
670		if (cpu_idle_hook)
671			cpu_idle_hook();
672		else
673			__asm __volatile("sti; hlt");
674	}
675}
676
677static void
678cpu_idle_spin(int busy)
679{
680	return;
681}
682
683void (*cpu_idle_fn)(int) = cpu_idle_acpi;
684
685void
686cpu_idle(int busy)
687{
688#ifdef SMP
689	if (mp_grab_cpu_hlt())
690		return;
691#endif
692	cpu_idle_fn(busy);
693}
694
695/*
696 * mwait cpu power states.  Lower 4 bits are sub-states.
697 */
698#define	MWAIT_C0	0xf0
699#define	MWAIT_C1	0x00
700#define	MWAIT_C2	0x10
701#define	MWAIT_C3	0x20
702#define	MWAIT_C4	0x30
703
704#define	MWAIT_DISABLED	0x0
705#define	MWAIT_WOKEN	0x1
706#define	MWAIT_WAITING	0x2
707
708static void
709cpu_idle_mwait(int busy)
710{
711	int *mwait;
712
713	mwait = (int *)PCPU_PTR(monitorbuf);
714	*mwait = MWAIT_WAITING;
715	if (sched_runnable())
716		return;
717	cpu_monitor(mwait, 0, 0);
718	if (*mwait == MWAIT_WAITING)
719		cpu_mwait(0, MWAIT_C1);
720}
721
722static void
723cpu_idle_mwait_hlt(int busy)
724{
725	int *mwait;
726
727	mwait = (int *)PCPU_PTR(monitorbuf);
728	if (busy == 0) {
729		*mwait = MWAIT_DISABLED;
730		cpu_idle_hlt(busy);
731		return;
732	}
733	*mwait = MWAIT_WAITING;
734	if (sched_runnable())
735		return;
736	cpu_monitor(mwait, 0, 0);
737	if (*mwait == MWAIT_WAITING)
738		cpu_mwait(0, MWAIT_C1);
739}
740
741int
742cpu_idle_wakeup(int cpu)
743{
744	struct pcpu *pcpu;
745	int *mwait;
746
747	if (cpu_idle_fn == cpu_idle_spin)
748		return (1);
749	if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
750		return (0);
751	pcpu = pcpu_find(cpu);
752	mwait = (int *)pcpu->pc_monitorbuf;
753	/*
754	 * This doesn't need to be atomic since missing the race will
755	 * simply result in unnecessary IPIs.
756	 */
757	if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
758		return (0);
759	*mwait = MWAIT_WOKEN;
760
761	return (1);
762}
763
764/*
765 * Ordered by speed/power consumption.
766 */
767struct {
768	void	*id_fn;
769	char	*id_name;
770} idle_tbl[] = {
771	{ cpu_idle_spin, "spin" },
772	{ cpu_idle_mwait, "mwait" },
773	{ cpu_idle_mwait_hlt, "mwait_hlt" },
774	{ cpu_idle_amdc1e, "amdc1e" },
775	{ cpu_idle_hlt, "hlt" },
776	{ cpu_idle_acpi, "acpi" },
777	{ NULL, NULL }
778};
779
780static int
781idle_sysctl_available(SYSCTL_HANDLER_ARGS)
782{
783	char *avail, *p;
784	int error;
785	int i;
786
787	avail = malloc(256, M_TEMP, M_WAITOK);
788	p = avail;
789	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
790		if (strstr(idle_tbl[i].id_name, "mwait") &&
791		    (cpu_feature2 & CPUID2_MON) == 0)
792			continue;
793		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
794		    cpu_ident_amdc1e == 0)
795			continue;
796		p += sprintf(p, "%s, ", idle_tbl[i].id_name);
797	}
798	error = sysctl_handle_string(oidp, avail, 0, req);
799	free(avail, M_TEMP);
800	return (error);
801}
802
803static int
804idle_sysctl(SYSCTL_HANDLER_ARGS)
805{
806	char buf[16];
807	int error;
808	char *p;
809	int i;
810
811	p = "unknown";
812	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
813		if (idle_tbl[i].id_fn == cpu_idle_fn) {
814			p = idle_tbl[i].id_name;
815			break;
816		}
817	}
818	strncpy(buf, p, sizeof(buf));
819	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
820	if (error != 0 || req->newptr == NULL)
821		return (error);
822	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
823		if (strstr(idle_tbl[i].id_name, "mwait") &&
824		    (cpu_feature2 & CPUID2_MON) == 0)
825			continue;
826		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
827		    cpu_ident_amdc1e == 0)
828			continue;
829		if (strcmp(idle_tbl[i].id_name, buf))
830			continue;
831		cpu_idle_fn = idle_tbl[i].id_fn;
832		return (0);
833	}
834	return (EINVAL);
835}
836
837SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
838    0, 0, idle_sysctl_available, "A", "list of available idle functions");
839
840SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
841    idle_sysctl, "A", "currently selected idle function");
842
843/*
844 * Reset registers to default values on exec.
845 */
846void
847exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
848{
849	struct trapframe *regs = td->td_frame;
850	struct pcb *pcb = td->td_pcb;
851
852	mtx_lock(&dt_lock);
853	if (td->td_proc->p_md.md_ldt != NULL)
854		user_ldt_free(td);
855	else
856		mtx_unlock(&dt_lock);
857
858	pcb->pcb_fsbase = 0;
859	pcb->pcb_gsbase = 0;
860	pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
861	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
862	pcb->pcb_full_iret = 1;
863
864	bzero((char *)regs, sizeof(struct trapframe));
865	regs->tf_rip = imgp->entry_addr;
866	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
867	regs->tf_rdi = stack;		/* argv */
868	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
869	regs->tf_ss = _udatasel;
870	regs->tf_cs = _ucodesel;
871	regs->tf_ds = _udatasel;
872	regs->tf_es = _udatasel;
873	regs->tf_fs = _ufssel;
874	regs->tf_gs = _ugssel;
875	regs->tf_flags = TF_HASSEGS;
876
877	/*
878	 * Reset the hardware debug registers if they were in use.
879	 * They won't have any meaning for the newly exec'd process.
880	 */
881	if (pcb->pcb_flags & PCB_DBREGS) {
882		pcb->pcb_dr0 = 0;
883		pcb->pcb_dr1 = 0;
884		pcb->pcb_dr2 = 0;
885		pcb->pcb_dr3 = 0;
886		pcb->pcb_dr6 = 0;
887		pcb->pcb_dr7 = 0;
888		if (pcb == PCPU_GET(curpcb)) {
889			/*
890			 * Clear the debug registers on the running
891			 * CPU, otherwise they will end up affecting
892			 * the next process we switch to.
893			 */
894			reset_dbregs();
895		}
896		pcb->pcb_flags &= ~PCB_DBREGS;
897	}
898
899	/*
900	 * Drop the FP state if we hold it, so that the process gets a
901	 * clean FP state if it uses the FPU again.
902	 */
903	fpstate_drop(td);
904}
905
906void
907cpu_setregs(void)
908{
909	register_t cr0;
910
911	cr0 = rcr0();
912	/*
913	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
914	 * BSP.  See the comments there about why we set them.
915	 */
916	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
917	load_cr0(cr0);
918}
919
920/*
921 * Initialize amd64 and configure to run kernel
922 */
923
924/*
925 * Initialize segments & interrupt table
926 */
927
928struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
929static struct gate_descriptor idt0[NIDT];
930struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
931
932static char dblfault_stack[PAGE_SIZE] __aligned(16);
933
934static char nmi0_stack[PAGE_SIZE] __aligned(16);
935CTASSERT(sizeof(struct nmi_pcpu) == 16);
936
937struct amd64tss common_tss[MAXCPU];
938
939/*
940 * Software prototypes -- in more palatable form.
941 *
942 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
943 * slots as corresponding segments for i386 kernel.
944 */
945struct soft_segment_descriptor gdt_segs[] = {
946/* GNULL_SEL	0 Null Descriptor */
947{	.ssd_base = 0x0,
948	.ssd_limit = 0x0,
949	.ssd_type = 0,
950	.ssd_dpl = 0,
951	.ssd_p = 0,
952	.ssd_long = 0,
953	.ssd_def32 = 0,
954	.ssd_gran = 0		},
955/* GNULL2_SEL	1 Null Descriptor */
956{	.ssd_base = 0x0,
957	.ssd_limit = 0x0,
958	.ssd_type = 0,
959	.ssd_dpl = 0,
960	.ssd_p = 0,
961	.ssd_long = 0,
962	.ssd_def32 = 0,
963	.ssd_gran = 0		},
964/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
965{	.ssd_base = 0x0,
966	.ssd_limit = 0xfffff,
967	.ssd_type = SDT_MEMRWA,
968	.ssd_dpl = SEL_UPL,
969	.ssd_p = 1,
970	.ssd_long = 0,
971	.ssd_def32 = 1,
972	.ssd_gran = 1		},
973/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
974{	.ssd_base = 0x0,
975	.ssd_limit = 0xfffff,
976	.ssd_type = SDT_MEMRWA,
977	.ssd_dpl = SEL_UPL,
978	.ssd_p = 1,
979	.ssd_long = 0,
980	.ssd_def32 = 1,
981	.ssd_gran = 1		},
982/* GCODE_SEL	4 Code Descriptor for kernel */
983{	.ssd_base = 0x0,
984	.ssd_limit = 0xfffff,
985	.ssd_type = SDT_MEMERA,
986	.ssd_dpl = SEL_KPL,
987	.ssd_p = 1,
988	.ssd_long = 1,
989	.ssd_def32 = 0,
990	.ssd_gran = 1		},
991/* GDATA_SEL	5 Data Descriptor for kernel */
992{	.ssd_base = 0x0,
993	.ssd_limit = 0xfffff,
994	.ssd_type = SDT_MEMRWA,
995	.ssd_dpl = SEL_KPL,
996	.ssd_p = 1,
997	.ssd_long = 1,
998	.ssd_def32 = 0,
999	.ssd_gran = 1		},
1000/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1001{	.ssd_base = 0x0,
1002	.ssd_limit = 0xfffff,
1003	.ssd_type = SDT_MEMERA,
1004	.ssd_dpl = SEL_UPL,
1005	.ssd_p = 1,
1006	.ssd_long = 0,
1007	.ssd_def32 = 1,
1008	.ssd_gran = 1		},
1009/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1010{	.ssd_base = 0x0,
1011	.ssd_limit = 0xfffff,
1012	.ssd_type = SDT_MEMRWA,
1013	.ssd_dpl = SEL_UPL,
1014	.ssd_p = 1,
1015	.ssd_long = 0,
1016	.ssd_def32 = 1,
1017	.ssd_gran = 1		},
1018/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1019{	.ssd_base = 0x0,
1020	.ssd_limit = 0xfffff,
1021	.ssd_type = SDT_MEMERA,
1022	.ssd_dpl = SEL_UPL,
1023	.ssd_p = 1,
1024	.ssd_long = 1,
1025	.ssd_def32 = 0,
1026	.ssd_gran = 1		},
1027/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1028{	.ssd_base = 0x0,
1029	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1030	.ssd_type = SDT_SYSTSS,
1031	.ssd_dpl = SEL_KPL,
1032	.ssd_p = 1,
1033	.ssd_long = 0,
1034	.ssd_def32 = 0,
1035	.ssd_gran = 0		},
1036/* Actually, the TSS is a system descriptor which is double size */
1037{	.ssd_base = 0x0,
1038	.ssd_limit = 0x0,
1039	.ssd_type = 0,
1040	.ssd_dpl = 0,
1041	.ssd_p = 0,
1042	.ssd_long = 0,
1043	.ssd_def32 = 0,
1044	.ssd_gran = 0		},
1045/* GUSERLDT_SEL	11 LDT Descriptor */
1046{	.ssd_base = 0x0,
1047	.ssd_limit = 0x0,
1048	.ssd_type = 0,
1049	.ssd_dpl = 0,
1050	.ssd_p = 0,
1051	.ssd_long = 0,
1052	.ssd_def32 = 0,
1053	.ssd_gran = 0		},
1054/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1055{	.ssd_base = 0x0,
1056	.ssd_limit = 0x0,
1057	.ssd_type = 0,
1058	.ssd_dpl = 0,
1059	.ssd_p = 0,
1060	.ssd_long = 0,
1061	.ssd_def32 = 0,
1062	.ssd_gran = 0		},
1063};
1064
1065void
1066setidt(idx, func, typ, dpl, ist)
1067	int idx;
1068	inthand_t *func;
1069	int typ;
1070	int dpl;
1071	int ist;
1072{
1073	struct gate_descriptor *ip;
1074
1075	ip = idt + idx;
1076	ip->gd_looffset = (uintptr_t)func;
1077	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1078	ip->gd_ist = ist;
1079	ip->gd_xx = 0;
1080	ip->gd_type = typ;
1081	ip->gd_dpl = dpl;
1082	ip->gd_p = 1;
1083	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1084}
1085
1086extern inthand_t
1087	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1088	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1089	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1090	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1091	IDTVEC(xmm), IDTVEC(dblfault),
1092	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1093
1094#ifdef DDB
1095/*
1096 * Display the index and function name of any IDT entries that don't use
1097 * the default 'rsvd' entry point.
1098 */
1099DB_SHOW_COMMAND(idt, db_show_idt)
1100{
1101	struct gate_descriptor *ip;
1102	int idx;
1103	uintptr_t func;
1104
1105	ip = idt;
1106	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1107		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1108		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1109			db_printf("%3d\t", idx);
1110			db_printsym(func, DB_STGY_PROC);
1111			db_printf("\n");
1112		}
1113		ip++;
1114	}
1115}
1116#endif
1117
1118void
1119sdtossd(sd, ssd)
1120	struct user_segment_descriptor *sd;
1121	struct soft_segment_descriptor *ssd;
1122{
1123
1124	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1125	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1126	ssd->ssd_type  = sd->sd_type;
1127	ssd->ssd_dpl   = sd->sd_dpl;
1128	ssd->ssd_p     = sd->sd_p;
1129	ssd->ssd_long  = sd->sd_long;
1130	ssd->ssd_def32 = sd->sd_def32;
1131	ssd->ssd_gran  = sd->sd_gran;
1132}
1133
1134void
1135ssdtosd(ssd, sd)
1136	struct soft_segment_descriptor *ssd;
1137	struct user_segment_descriptor *sd;
1138{
1139
1140	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1141	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1142	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1143	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1144	sd->sd_type  = ssd->ssd_type;
1145	sd->sd_dpl   = ssd->ssd_dpl;
1146	sd->sd_p     = ssd->ssd_p;
1147	sd->sd_long  = ssd->ssd_long;
1148	sd->sd_def32 = ssd->ssd_def32;
1149	sd->sd_gran  = ssd->ssd_gran;
1150}
1151
1152void
1153ssdtosyssd(ssd, sd)
1154	struct soft_segment_descriptor *ssd;
1155	struct system_segment_descriptor *sd;
1156{
1157
1158	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1159	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1160	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1161	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1162	sd->sd_type  = ssd->ssd_type;
1163	sd->sd_dpl   = ssd->ssd_dpl;
1164	sd->sd_p     = ssd->ssd_p;
1165	sd->sd_gran  = ssd->ssd_gran;
1166}
1167
1168#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1169#include <isa/isavar.h>
1170#include <isa/isareg.h>
1171/*
1172 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1173 * and is only suitable for use at probe time.
1174 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1175 * It shouldn't be here.  There should probably be an APIC centric
1176 * implementation in the apic driver code, if at all.
1177 */
1178intrmask_t
1179isa_irq_pending(void)
1180{
1181	u_char irr1;
1182	u_char irr2;
1183
1184	irr1 = inb(IO_ICU1);
1185	irr2 = inb(IO_ICU2);
1186	return ((irr2 << 8) | irr1);
1187}
1188#endif
1189
1190u_int basemem;
1191
1192static int
1193add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1194{
1195	int i, insert_idx, physmap_idx;
1196
1197	physmap_idx = *physmap_idxp;
1198
1199	if (boothowto & RB_VERBOSE)
1200		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1201		    smap->type, smap->base, smap->length);
1202
1203	if (smap->type != SMAP_TYPE_MEMORY)
1204		return (1);
1205
1206	if (smap->length == 0)
1207		return (0);
1208
1209	/*
1210	 * Find insertion point while checking for overlap.  Start off by
1211	 * assuming the new entry will be added to the end.
1212	 */
1213	insert_idx = physmap_idx + 2;
1214	for (i = 0; i <= physmap_idx; i += 2) {
1215		if (smap->base < physmap[i + 1]) {
1216			if (smap->base + smap->length <= physmap[i]) {
1217				insert_idx = i;
1218				break;
1219			}
1220			if (boothowto & RB_VERBOSE)
1221				printf(
1222		    "Overlapping memory regions, ignoring second region\n");
1223			return (1);
1224		}
1225	}
1226
1227	/* See if we can prepend to the next entry. */
1228	if (insert_idx <= physmap_idx &&
1229	    smap->base + smap->length == physmap[insert_idx]) {
1230		physmap[insert_idx] = smap->base;
1231		return (1);
1232	}
1233
1234	/* See if we can append to the previous entry. */
1235	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1236		physmap[insert_idx - 1] += smap->length;
1237		return (1);
1238	}
1239
1240	physmap_idx += 2;
1241	*physmap_idxp = physmap_idx;
1242	if (physmap_idx == PHYSMAP_SIZE) {
1243		printf(
1244		"Too many segments in the physical address map, giving up\n");
1245		return (0);
1246	}
1247
1248	/*
1249	 * Move the last 'N' entries down to make room for the new
1250	 * entry if needed.
1251	 */
1252	for (i = physmap_idx; i > insert_idx; i -= 2) {
1253		physmap[i] = physmap[i - 2];
1254		physmap[i + 1] = physmap[i - 1];
1255	}
1256
1257	/* Insert the new entry. */
1258	physmap[insert_idx] = smap->base;
1259	physmap[insert_idx + 1] = smap->base + smap->length;
1260	return (1);
1261}
1262
1263/*
1264 * Populate the (physmap) array with base/bound pairs describing the
1265 * available physical memory in the system, then test this memory and
1266 * build the phys_avail array describing the actually-available memory.
1267 *
1268 * If we cannot accurately determine the physical memory map, then use
1269 * value from the 0xE801 call, and failing that, the RTC.
1270 *
1271 * Total memory size may be set by the kernel environment variable
1272 * hw.physmem or the compile-time define MAXMEM.
1273 *
1274 * XXX first should be vm_paddr_t.
1275 */
1276static void
1277getmemsize(caddr_t kmdp, u_int64_t first)
1278{
1279	int i, physmap_idx, pa_indx, da_indx;
1280	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1281	u_long physmem_tunable;
1282	pt_entry_t *pte;
1283	struct bios_smap *smapbase, *smap, *smapend;
1284	u_int32_t smapsize;
1285	quad_t dcons_addr, dcons_size;
1286
1287	bzero(physmap, sizeof(physmap));
1288	basemem = 0;
1289	physmap_idx = 0;
1290
1291	/*
1292	 * get memory map from INT 15:E820, kindly supplied by the loader.
1293	 *
1294	 * subr_module.c says:
1295	 * "Consumer may safely assume that size value precedes data."
1296	 * ie: an int32_t immediately precedes smap.
1297	 */
1298	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1299	    MODINFO_METADATA | MODINFOMD_SMAP);
1300	if (smapbase == NULL)
1301		panic("No BIOS smap info from loader!");
1302
1303	smapsize = *((u_int32_t *)smapbase - 1);
1304	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1305
1306	for (smap = smapbase; smap < smapend; smap++)
1307		if (!add_smap_entry(smap, physmap, &physmap_idx))
1308			break;
1309
1310	/*
1311	 * Find the 'base memory' segment for SMP
1312	 */
1313	basemem = 0;
1314	for (i = 0; i <= physmap_idx; i += 2) {
1315		if (physmap[i] == 0x00000000) {
1316			basemem = physmap[i + 1] / 1024;
1317			break;
1318		}
1319	}
1320	if (basemem == 0)
1321		panic("BIOS smap did not include a basemem segment!");
1322
1323#ifdef SMP
1324	/* make hole for AP bootstrap code */
1325	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1326#endif
1327
1328	/*
1329	 * Maxmem isn't the "maximum memory", it's one larger than the
1330	 * highest page of the physical address space.  It should be
1331	 * called something like "Maxphyspage".  We may adjust this
1332	 * based on ``hw.physmem'' and the results of the memory test.
1333	 */
1334	Maxmem = atop(physmap[physmap_idx + 1]);
1335
1336#ifdef MAXMEM
1337	Maxmem = MAXMEM / 4;
1338#endif
1339
1340	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1341		Maxmem = atop(physmem_tunable);
1342
1343	/*
1344	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1345	 * in the system.
1346	 */
1347	if (Maxmem > atop(physmap[physmap_idx + 1]))
1348		Maxmem = atop(physmap[physmap_idx + 1]);
1349
1350	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1351	    (boothowto & RB_VERBOSE))
1352		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1353
1354	/* call pmap initialization to make new kernel address space */
1355	pmap_bootstrap(&first);
1356
1357	/*
1358	 * Size up each available chunk of physical memory.
1359	 */
1360	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1361	pa_indx = 0;
1362	da_indx = 1;
1363	phys_avail[pa_indx++] = physmap[0];
1364	phys_avail[pa_indx] = physmap[0];
1365	dump_avail[da_indx] = physmap[0];
1366	pte = CMAP1;
1367
1368	/*
1369	 * Get dcons buffer address
1370	 */
1371	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1372	    getenv_quad("dcons.size", &dcons_size) == 0)
1373		dcons_addr = 0;
1374
1375	/*
1376	 * physmap is in bytes, so when converting to page boundaries,
1377	 * round up the start address and round down the end address.
1378	 */
1379	for (i = 0; i <= physmap_idx; i += 2) {
1380		vm_paddr_t end;
1381
1382		end = ptoa((vm_paddr_t)Maxmem);
1383		if (physmap[i + 1] < end)
1384			end = trunc_page(physmap[i + 1]);
1385		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1386			int tmp, page_bad, full;
1387			int *ptr = (int *)CADDR1;
1388
1389			full = FALSE;
1390			/*
1391			 * block out kernel memory as not available.
1392			 */
1393			if (pa >= 0x100000 && pa < first)
1394				goto do_dump_avail;
1395
1396			/*
1397			 * block out dcons buffer
1398			 */
1399			if (dcons_addr > 0
1400			    && pa >= trunc_page(dcons_addr)
1401			    && pa < dcons_addr + dcons_size)
1402				goto do_dump_avail;
1403
1404			page_bad = FALSE;
1405
1406			/*
1407			 * map page into kernel: valid, read/write,non-cacheable
1408			 */
1409			*pte = pa | PG_V | PG_RW | PG_N;
1410			invltlb();
1411
1412			tmp = *(int *)ptr;
1413			/*
1414			 * Test for alternating 1's and 0's
1415			 */
1416			*(volatile int *)ptr = 0xaaaaaaaa;
1417			if (*(volatile int *)ptr != 0xaaaaaaaa)
1418				page_bad = TRUE;
1419			/*
1420			 * Test for alternating 0's and 1's
1421			 */
1422			*(volatile int *)ptr = 0x55555555;
1423			if (*(volatile int *)ptr != 0x55555555)
1424				page_bad = TRUE;
1425			/*
1426			 * Test for all 1's
1427			 */
1428			*(volatile int *)ptr = 0xffffffff;
1429			if (*(volatile int *)ptr != 0xffffffff)
1430				page_bad = TRUE;
1431			/*
1432			 * Test for all 0's
1433			 */
1434			*(volatile int *)ptr = 0x0;
1435			if (*(volatile int *)ptr != 0x0)
1436				page_bad = TRUE;
1437			/*
1438			 * Restore original value.
1439			 */
1440			*(int *)ptr = tmp;
1441
1442			/*
1443			 * Adjust array of valid/good pages.
1444			 */
1445			if (page_bad == TRUE)
1446				continue;
1447			/*
1448			 * If this good page is a continuation of the
1449			 * previous set of good pages, then just increase
1450			 * the end pointer. Otherwise start a new chunk.
1451			 * Note that "end" points one higher than end,
1452			 * making the range >= start and < end.
1453			 * If we're also doing a speculative memory
1454			 * test and we at or past the end, bump up Maxmem
1455			 * so that we keep going. The first bad page
1456			 * will terminate the loop.
1457			 */
1458			if (phys_avail[pa_indx] == pa) {
1459				phys_avail[pa_indx] += PAGE_SIZE;
1460			} else {
1461				pa_indx++;
1462				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1463					printf(
1464		"Too many holes in the physical address space, giving up\n");
1465					pa_indx--;
1466					full = TRUE;
1467					goto do_dump_avail;
1468				}
1469				phys_avail[pa_indx++] = pa;	/* start */
1470				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1471			}
1472			physmem++;
1473do_dump_avail:
1474			if (dump_avail[da_indx] == pa) {
1475				dump_avail[da_indx] += PAGE_SIZE;
1476			} else {
1477				da_indx++;
1478				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1479					da_indx--;
1480					goto do_next;
1481				}
1482				dump_avail[da_indx++] = pa; /* start */
1483				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1484			}
1485do_next:
1486			if (full)
1487				break;
1488		}
1489	}
1490	*pte = 0;
1491	invltlb();
1492
1493	/*
1494	 * XXX
1495	 * The last chunk must contain at least one page plus the message
1496	 * buffer to avoid complicating other code (message buffer address
1497	 * calculation, etc.).
1498	 */
1499	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1500	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1501		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1502		phys_avail[pa_indx--] = 0;
1503		phys_avail[pa_indx--] = 0;
1504	}
1505
1506	Maxmem = atop(phys_avail[pa_indx]);
1507
1508	/* Trim off space for the message buffer. */
1509	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1510
1511	/* Map the message buffer. */
1512	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1513}
1514
1515u_int64_t
1516hammer_time(u_int64_t modulep, u_int64_t physfree)
1517{
1518	caddr_t kmdp;
1519	int gsel_tss, x;
1520	struct pcpu *pc;
1521	struct nmi_pcpu *np;
1522	u_int64_t msr;
1523	char *env;
1524
1525	thread0.td_kstack = physfree + KERNBASE;
1526	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1527	physfree += KSTACK_PAGES * PAGE_SIZE;
1528	thread0.td_pcb = (struct pcb *)
1529	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1530
1531	/*
1532 	 * This may be done better later if it gets more high level
1533 	 * components in it. If so just link td->td_proc here.
1534	 */
1535	proc_linkup0(&proc0, &thread0);
1536
1537	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1538	preload_bootstrap_relocate(KERNBASE);
1539	kmdp = preload_search_by_type("elf kernel");
1540	if (kmdp == NULL)
1541		kmdp = preload_search_by_type("elf64 kernel");
1542	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1543	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1544#ifdef DDB
1545	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1546	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1547#endif
1548
1549	/* Init basic tunables, hz etc */
1550	init_param1();
1551
1552	/*
1553	 * make gdt memory segments
1554	 */
1555	for (x = 0; x < NGDT; x++) {
1556		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1557		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1558			ssdtosd(&gdt_segs[x], &gdt[x]);
1559	}
1560	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1561	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1562	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1563
1564	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1565	r_gdt.rd_base =  (long) gdt;
1566	lgdt(&r_gdt);
1567	pc = &__pcpu[0];
1568
1569	wrmsr(MSR_FSBASE, 0);		/* User value */
1570	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1571	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1572
1573	pcpu_init(pc, 0, sizeof(struct pcpu));
1574	dpcpu_init((void *)(physfree + KERNBASE), 0);
1575	physfree += DPCPU_SIZE;
1576	PCPU_SET(prvspace, pc);
1577	PCPU_SET(curthread, &thread0);
1578	PCPU_SET(curpcb, thread0.td_pcb);
1579	PCPU_SET(tssp, &common_tss[0]);
1580	PCPU_SET(commontssp, &common_tss[0]);
1581	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1582	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1583	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1584	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1585
1586	/*
1587	 * Initialize mutexes.
1588	 *
1589	 * icu_lock: in order to allow an interrupt to occur in a critical
1590	 * 	     section, to set pcpu->ipending (etc...) properly, we
1591	 *	     must be able to get the icu lock, so it can't be
1592	 *	     under witness.
1593	 */
1594	mutex_init();
1595	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1596	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1597
1598	/* exceptions */
1599	for (x = 0; x < NIDT; x++)
1600		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1601	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1602	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1603	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1604 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1605	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1606	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1607	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1608	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1609	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1610	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1611	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1612	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1613	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1614	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1615	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1616	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1617	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1618	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1619	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1620
1621	r_idt.rd_limit = sizeof(idt0) - 1;
1622	r_idt.rd_base = (long) idt;
1623	lidt(&r_idt);
1624
1625	/*
1626	 * Initialize the i8254 before the console so that console
1627	 * initialization can use DELAY().
1628	 */
1629	i8254_init();
1630
1631	/*
1632	 * Initialize the console before we print anything out.
1633	 */
1634	cninit();
1635
1636#ifdef DEV_ISA
1637#ifdef DEV_ATPIC
1638	elcr_probe();
1639	atpic_startup();
1640#else
1641	/* Reset and mask the atpics and leave them shut down. */
1642	atpic_reset();
1643
1644	/*
1645	 * Point the ICU spurious interrupt vectors at the APIC spurious
1646	 * interrupt handler.
1647	 */
1648	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1649	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1650#endif
1651#else
1652#error "have you forgotten the isa device?";
1653#endif
1654
1655	kdb_init();
1656
1657#ifdef KDB
1658	if (boothowto & RB_KDB)
1659		kdb_enter(KDB_WHY_BOOTFLAGS,
1660		    "Boot flags requested debugger");
1661#endif
1662
1663	identify_cpu();		/* Final stage of CPU initialization */
1664	initializecpu();	/* Initialize CPU registers */
1665	initializecpucache();
1666
1667	/* make an initial tss so cpu can get interrupt stack on syscall! */
1668	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1669	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1670	/* Ensure the stack is aligned to 16 bytes */
1671	common_tss[0].tss_rsp0 &= ~0xFul;
1672	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1673
1674	/* doublefault stack space, runs on ist1 */
1675	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1676
1677	/*
1678	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1679	 * above the start of the ist2 stack.
1680	 */
1681	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1682	np->np_pcpu = (register_t) pc;
1683	common_tss[0].tss_ist2 = (long) np;
1684
1685	/* Set the IO permission bitmap (empty due to tss seg limit) */
1686	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1687	    IOPAGES * PAGE_SIZE;
1688
1689	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1690	ltr(gsel_tss);
1691
1692	/* Set up the fast syscall stuff */
1693	msr = rdmsr(MSR_EFER) | EFER_SCE;
1694	wrmsr(MSR_EFER, msr);
1695	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1696	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1697	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1698	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1699	wrmsr(MSR_STAR, msr);
1700	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1701
1702	getmemsize(kmdp, physfree);
1703	init_param2(physmem);
1704
1705	/* now running on new page tables, configured,and u/iom is accessible */
1706
1707	msgbufinit(msgbufp, MSGBUF_SIZE);
1708	fpuinit();
1709
1710	/* transfer to user mode */
1711
1712	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1713	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1714	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1715	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1716	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1717
1718	load_ds(_udatasel);
1719	load_es(_udatasel);
1720	load_fs(_ufssel);
1721
1722	/* setup proc 0's pcb */
1723	thread0.td_pcb->pcb_flags = 0;
1724	thread0.td_pcb->pcb_cr3 = KPML4phys;
1725	thread0.td_frame = &proc0_tf;
1726
1727        env = getenv("kernelname");
1728	if (env != NULL)
1729		strlcpy(kernelname, env, sizeof(kernelname));
1730
1731#ifdef XENHVM
1732	if (inw(0x10) == 0x49d2) {
1733		if (bootverbose)
1734			printf("Xen detected: disabling emulated block and network devices\n");
1735		outw(0x10, 3);
1736	}
1737#endif
1738
1739	if (cpu_probe_amdc1e())
1740		cpu_idle_fn = cpu_idle_amdc1e;
1741
1742	/* Location of kernel stack for locore */
1743	return ((u_int64_t)thread0.td_pcb);
1744}
1745
1746void
1747cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1748{
1749
1750	pcpu->pc_acpi_id = 0xffffffff;
1751}
1752
1753void
1754spinlock_enter(void)
1755{
1756	struct thread *td;
1757
1758	td = curthread;
1759	if (td->td_md.md_spinlock_count == 0)
1760		td->td_md.md_saved_flags = intr_disable();
1761	td->td_md.md_spinlock_count++;
1762	critical_enter();
1763}
1764
1765void
1766spinlock_exit(void)
1767{
1768	struct thread *td;
1769
1770	td = curthread;
1771	critical_exit();
1772	td->td_md.md_spinlock_count--;
1773	if (td->td_md.md_spinlock_count == 0)
1774		intr_restore(td->td_md.md_saved_flags);
1775}
1776
1777/*
1778 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1779 * we want to start a backtrace from the function that caused us to enter
1780 * the debugger. We have the context in the trapframe, but base the trace
1781 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1782 * enough for a backtrace.
1783 */
1784void
1785makectx(struct trapframe *tf, struct pcb *pcb)
1786{
1787
1788	pcb->pcb_r12 = tf->tf_r12;
1789	pcb->pcb_r13 = tf->tf_r13;
1790	pcb->pcb_r14 = tf->tf_r14;
1791	pcb->pcb_r15 = tf->tf_r15;
1792	pcb->pcb_rbp = tf->tf_rbp;
1793	pcb->pcb_rbx = tf->tf_rbx;
1794	pcb->pcb_rip = tf->tf_rip;
1795	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1796}
1797
1798int
1799ptrace_set_pc(struct thread *td, unsigned long addr)
1800{
1801	td->td_frame->tf_rip = addr;
1802	return (0);
1803}
1804
1805int
1806ptrace_single_step(struct thread *td)
1807{
1808	td->td_frame->tf_rflags |= PSL_T;
1809	return (0);
1810}
1811
1812int
1813ptrace_clear_single_step(struct thread *td)
1814{
1815	td->td_frame->tf_rflags &= ~PSL_T;
1816	return (0);
1817}
1818
1819int
1820fill_regs(struct thread *td, struct reg *regs)
1821{
1822	struct trapframe *tp;
1823
1824	tp = td->td_frame;
1825	regs->r_r15 = tp->tf_r15;
1826	regs->r_r14 = tp->tf_r14;
1827	regs->r_r13 = tp->tf_r13;
1828	regs->r_r12 = tp->tf_r12;
1829	regs->r_r11 = tp->tf_r11;
1830	regs->r_r10 = tp->tf_r10;
1831	regs->r_r9  = tp->tf_r9;
1832	regs->r_r8  = tp->tf_r8;
1833	regs->r_rdi = tp->tf_rdi;
1834	regs->r_rsi = tp->tf_rsi;
1835	regs->r_rbp = tp->tf_rbp;
1836	regs->r_rbx = tp->tf_rbx;
1837	regs->r_rdx = tp->tf_rdx;
1838	regs->r_rcx = tp->tf_rcx;
1839	regs->r_rax = tp->tf_rax;
1840	regs->r_rip = tp->tf_rip;
1841	regs->r_cs = tp->tf_cs;
1842	regs->r_rflags = tp->tf_rflags;
1843	regs->r_rsp = tp->tf_rsp;
1844	regs->r_ss = tp->tf_ss;
1845	if (tp->tf_flags & TF_HASSEGS) {
1846		regs->r_ds = tp->tf_ds;
1847		regs->r_es = tp->tf_es;
1848		regs->r_fs = tp->tf_fs;
1849		regs->r_gs = tp->tf_gs;
1850	} else {
1851		regs->r_ds = 0;
1852		regs->r_es = 0;
1853		regs->r_fs = 0;
1854		regs->r_gs = 0;
1855	}
1856	return (0);
1857}
1858
1859int
1860set_regs(struct thread *td, struct reg *regs)
1861{
1862	struct trapframe *tp;
1863	register_t rflags;
1864
1865	tp = td->td_frame;
1866	rflags = regs->r_rflags & 0xffffffff;
1867	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1868		return (EINVAL);
1869	tp->tf_r15 = regs->r_r15;
1870	tp->tf_r14 = regs->r_r14;
1871	tp->tf_r13 = regs->r_r13;
1872	tp->tf_r12 = regs->r_r12;
1873	tp->tf_r11 = regs->r_r11;
1874	tp->tf_r10 = regs->r_r10;
1875	tp->tf_r9  = regs->r_r9;
1876	tp->tf_r8  = regs->r_r8;
1877	tp->tf_rdi = regs->r_rdi;
1878	tp->tf_rsi = regs->r_rsi;
1879	tp->tf_rbp = regs->r_rbp;
1880	tp->tf_rbx = regs->r_rbx;
1881	tp->tf_rdx = regs->r_rdx;
1882	tp->tf_rcx = regs->r_rcx;
1883	tp->tf_rax = regs->r_rax;
1884	tp->tf_rip = regs->r_rip;
1885	tp->tf_cs = regs->r_cs;
1886	tp->tf_rflags = rflags;
1887	tp->tf_rsp = regs->r_rsp;
1888	tp->tf_ss = regs->r_ss;
1889	if (0) {	/* XXXKIB */
1890		tp->tf_ds = regs->r_ds;
1891		tp->tf_es = regs->r_es;
1892		tp->tf_fs = regs->r_fs;
1893		tp->tf_gs = regs->r_gs;
1894		tp->tf_flags = TF_HASSEGS;
1895	}
1896	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1897	return (0);
1898}
1899
1900/* XXX check all this stuff! */
1901/* externalize from sv_xmm */
1902static void
1903fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1904{
1905	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1906	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1907	int i;
1908
1909	/* pcb -> fpregs */
1910	bzero(fpregs, sizeof(*fpregs));
1911
1912	/* FPU control/status */
1913	penv_fpreg->en_cw = penv_xmm->en_cw;
1914	penv_fpreg->en_sw = penv_xmm->en_sw;
1915	penv_fpreg->en_tw = penv_xmm->en_tw;
1916	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1917	penv_fpreg->en_rip = penv_xmm->en_rip;
1918	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1919	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1920	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1921
1922	/* FPU registers */
1923	for (i = 0; i < 8; ++i)
1924		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1925
1926	/* SSE registers */
1927	for (i = 0; i < 16; ++i)
1928		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1929}
1930
1931/* internalize from fpregs into sv_xmm */
1932static void
1933set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1934{
1935	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1936	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1937	int i;
1938
1939	/* fpregs -> pcb */
1940	/* FPU control/status */
1941	penv_xmm->en_cw = penv_fpreg->en_cw;
1942	penv_xmm->en_sw = penv_fpreg->en_sw;
1943	penv_xmm->en_tw = penv_fpreg->en_tw;
1944	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1945	penv_xmm->en_rip = penv_fpreg->en_rip;
1946	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1947	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1948	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1949
1950	/* FPU registers */
1951	for (i = 0; i < 8; ++i)
1952		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1953
1954	/* SSE registers */
1955	for (i = 0; i < 16; ++i)
1956		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1957}
1958
1959/* externalize from td->pcb */
1960int
1961fill_fpregs(struct thread *td, struct fpreg *fpregs)
1962{
1963
1964	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1965	return (0);
1966}
1967
1968/* internalize to td->pcb */
1969int
1970set_fpregs(struct thread *td, struct fpreg *fpregs)
1971{
1972
1973	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1974	return (0);
1975}
1976
1977/*
1978 * Get machine context.
1979 */
1980int
1981get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1982{
1983	struct trapframe *tp;
1984
1985	tp = td->td_frame;
1986	PROC_LOCK(curthread->td_proc);
1987	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1988	PROC_UNLOCK(curthread->td_proc);
1989	mcp->mc_r15 = tp->tf_r15;
1990	mcp->mc_r14 = tp->tf_r14;
1991	mcp->mc_r13 = tp->tf_r13;
1992	mcp->mc_r12 = tp->tf_r12;
1993	mcp->mc_r11 = tp->tf_r11;
1994	mcp->mc_r10 = tp->tf_r10;
1995	mcp->mc_r9  = tp->tf_r9;
1996	mcp->mc_r8  = tp->tf_r8;
1997	mcp->mc_rdi = tp->tf_rdi;
1998	mcp->mc_rsi = tp->tf_rsi;
1999	mcp->mc_rbp = tp->tf_rbp;
2000	mcp->mc_rbx = tp->tf_rbx;
2001	mcp->mc_rcx = tp->tf_rcx;
2002	mcp->mc_rflags = tp->tf_rflags;
2003	if (flags & GET_MC_CLEAR_RET) {
2004		mcp->mc_rax = 0;
2005		mcp->mc_rdx = 0;
2006		mcp->mc_rflags &= ~PSL_C;
2007	} else {
2008		mcp->mc_rax = tp->tf_rax;
2009		mcp->mc_rdx = tp->tf_rdx;
2010	}
2011	mcp->mc_rip = tp->tf_rip;
2012	mcp->mc_cs = tp->tf_cs;
2013	mcp->mc_rsp = tp->tf_rsp;
2014	mcp->mc_ss = tp->tf_ss;
2015	mcp->mc_ds = tp->tf_ds;
2016	mcp->mc_es = tp->tf_es;
2017	mcp->mc_fs = tp->tf_fs;
2018	mcp->mc_gs = tp->tf_gs;
2019	mcp->mc_flags = tp->tf_flags;
2020	mcp->mc_len = sizeof(*mcp);
2021	get_fpcontext(td, mcp);
2022	mcp->mc_fsbase = td->td_pcb->pcb_fsbase;
2023	mcp->mc_gsbase = td->td_pcb->pcb_gsbase;
2024	return (0);
2025}
2026
2027/*
2028 * Set machine context.
2029 *
2030 * However, we don't set any but the user modifiable flags, and we won't
2031 * touch the cs selector.
2032 */
2033int
2034set_mcontext(struct thread *td, const mcontext_t *mcp)
2035{
2036	struct trapframe *tp;
2037	long rflags;
2038	int ret;
2039
2040	tp = td->td_frame;
2041	if (mcp->mc_len != sizeof(*mcp) ||
2042	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2043		return (EINVAL);
2044	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2045	    (tp->tf_rflags & ~PSL_USERCHANGE);
2046	ret = set_fpcontext(td, mcp);
2047	if (ret != 0)
2048		return (ret);
2049	tp->tf_r15 = mcp->mc_r15;
2050	tp->tf_r14 = mcp->mc_r14;
2051	tp->tf_r13 = mcp->mc_r13;
2052	tp->tf_r12 = mcp->mc_r12;
2053	tp->tf_r11 = mcp->mc_r11;
2054	tp->tf_r10 = mcp->mc_r10;
2055	tp->tf_r9  = mcp->mc_r9;
2056	tp->tf_r8  = mcp->mc_r8;
2057	tp->tf_rdi = mcp->mc_rdi;
2058	tp->tf_rsi = mcp->mc_rsi;
2059	tp->tf_rbp = mcp->mc_rbp;
2060	tp->tf_rbx = mcp->mc_rbx;
2061	tp->tf_rdx = mcp->mc_rdx;
2062	tp->tf_rcx = mcp->mc_rcx;
2063	tp->tf_rax = mcp->mc_rax;
2064	tp->tf_rip = mcp->mc_rip;
2065	tp->tf_rflags = rflags;
2066	tp->tf_rsp = mcp->mc_rsp;
2067	tp->tf_ss = mcp->mc_ss;
2068	tp->tf_flags = mcp->mc_flags;
2069	if (tp->tf_flags & TF_HASSEGS) {
2070		tp->tf_ds = mcp->mc_ds;
2071		tp->tf_es = mcp->mc_es;
2072		tp->tf_fs = mcp->mc_fs;
2073		tp->tf_gs = mcp->mc_gs;
2074	}
2075	if (mcp->mc_flags & _MC_HASBASES) {
2076		td->td_pcb->pcb_fsbase = mcp->mc_fsbase;
2077		td->td_pcb->pcb_gsbase = mcp->mc_gsbase;
2078	}
2079	td->td_pcb->pcb_flags |= PCB_FULLCTX;
2080	td->td_pcb->pcb_full_iret = 1;
2081	return (0);
2082}
2083
2084static void
2085get_fpcontext(struct thread *td, mcontext_t *mcp)
2086{
2087
2088	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
2089	mcp->mc_fpformat = fpuformat();
2090}
2091
2092static int
2093set_fpcontext(struct thread *td, const mcontext_t *mcp)
2094{
2095	struct savefpu *fpstate;
2096
2097	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2098		return (0);
2099	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2100		return (EINVAL);
2101	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2102		/* We don't care what state is left in the FPU or PCB. */
2103		fpstate_drop(td);
2104	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2105	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2106		/*
2107		 * XXX we violate the dubious requirement that fpusetregs()
2108		 * be called with interrupts disabled.
2109		 * XXX obsolete on trap-16 systems?
2110		 */
2111		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2112		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2113		fpusetregs(td, fpstate);
2114	} else
2115		return (EINVAL);
2116	return (0);
2117}
2118
2119void
2120fpstate_drop(struct thread *td)
2121{
2122	register_t s;
2123
2124	s = intr_disable();
2125	if (PCPU_GET(fpcurthread) == td)
2126		fpudrop();
2127	/*
2128	 * XXX force a full drop of the fpu.  The above only drops it if we
2129	 * owned it.
2130	 *
2131	 * XXX I don't much like fpugetregs()'s semantics of doing a full
2132	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2133	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2134	 * sendsig() is the only caller of fpugetregs()... perhaps we just
2135	 * have too many layers.
2136	 */
2137	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
2138	intr_restore(s);
2139}
2140
2141int
2142fill_dbregs(struct thread *td, struct dbreg *dbregs)
2143{
2144	struct pcb *pcb;
2145
2146	if (td == NULL) {
2147		dbregs->dr[0] = rdr0();
2148		dbregs->dr[1] = rdr1();
2149		dbregs->dr[2] = rdr2();
2150		dbregs->dr[3] = rdr3();
2151		dbregs->dr[6] = rdr6();
2152		dbregs->dr[7] = rdr7();
2153	} else {
2154		pcb = td->td_pcb;
2155		dbregs->dr[0] = pcb->pcb_dr0;
2156		dbregs->dr[1] = pcb->pcb_dr1;
2157		dbregs->dr[2] = pcb->pcb_dr2;
2158		dbregs->dr[3] = pcb->pcb_dr3;
2159		dbregs->dr[6] = pcb->pcb_dr6;
2160		dbregs->dr[7] = pcb->pcb_dr7;
2161	}
2162	dbregs->dr[4] = 0;
2163	dbregs->dr[5] = 0;
2164	dbregs->dr[8] = 0;
2165	dbregs->dr[9] = 0;
2166	dbregs->dr[10] = 0;
2167	dbregs->dr[11] = 0;
2168	dbregs->dr[12] = 0;
2169	dbregs->dr[13] = 0;
2170	dbregs->dr[14] = 0;
2171	dbregs->dr[15] = 0;
2172	return (0);
2173}
2174
2175int
2176set_dbregs(struct thread *td, struct dbreg *dbregs)
2177{
2178	struct pcb *pcb;
2179	int i;
2180
2181	if (td == NULL) {
2182		load_dr0(dbregs->dr[0]);
2183		load_dr1(dbregs->dr[1]);
2184		load_dr2(dbregs->dr[2]);
2185		load_dr3(dbregs->dr[3]);
2186		load_dr6(dbregs->dr[6]);
2187		load_dr7(dbregs->dr[7]);
2188	} else {
2189		/*
2190		 * Don't let an illegal value for dr7 get set.  Specifically,
2191		 * check for undefined settings.  Setting these bit patterns
2192		 * result in undefined behaviour and can lead to an unexpected
2193		 * TRCTRAP or a general protection fault right here.
2194		 * Upper bits of dr6 and dr7 must not be set
2195		 */
2196		for (i = 0; i < 4; i++) {
2197			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2198				return (EINVAL);
2199			if (td->td_frame->tf_cs == _ucode32sel &&
2200			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2201				return (EINVAL);
2202		}
2203		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2204		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2205			return (EINVAL);
2206
2207		pcb = td->td_pcb;
2208
2209		/*
2210		 * Don't let a process set a breakpoint that is not within the
2211		 * process's address space.  If a process could do this, it
2212		 * could halt the system by setting a breakpoint in the kernel
2213		 * (if ddb was enabled).  Thus, we need to check to make sure
2214		 * that no breakpoints are being enabled for addresses outside
2215		 * process's address space.
2216		 *
2217		 * XXX - what about when the watched area of the user's
2218		 * address space is written into from within the kernel
2219		 * ... wouldn't that still cause a breakpoint to be generated
2220		 * from within kernel mode?
2221		 */
2222
2223		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2224			/* dr0 is enabled */
2225			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2226				return (EINVAL);
2227		}
2228		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2229			/* dr1 is enabled */
2230			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2231				return (EINVAL);
2232		}
2233		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2234			/* dr2 is enabled */
2235			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2236				return (EINVAL);
2237		}
2238		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2239			/* dr3 is enabled */
2240			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2241				return (EINVAL);
2242		}
2243
2244		pcb->pcb_dr0 = dbregs->dr[0];
2245		pcb->pcb_dr1 = dbregs->dr[1];
2246		pcb->pcb_dr2 = dbregs->dr[2];
2247		pcb->pcb_dr3 = dbregs->dr[3];
2248		pcb->pcb_dr6 = dbregs->dr[6];
2249		pcb->pcb_dr7 = dbregs->dr[7];
2250
2251		pcb->pcb_flags |= PCB_DBREGS;
2252	}
2253
2254	return (0);
2255}
2256
2257void
2258reset_dbregs(void)
2259{
2260
2261	load_dr7(0);	/* Turn off the control bits first */
2262	load_dr0(0);
2263	load_dr1(0);
2264	load_dr2(0);
2265	load_dr3(0);
2266	load_dr6(0);
2267}
2268
2269/*
2270 * Return > 0 if a hardware breakpoint has been hit, and the
2271 * breakpoint was in user space.  Return 0, otherwise.
2272 */
2273int
2274user_dbreg_trap(void)
2275{
2276        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2277        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2278        int nbp;            /* number of breakpoints that triggered */
2279        caddr_t addr[4];    /* breakpoint addresses */
2280        int i;
2281
2282        dr7 = rdr7();
2283        if ((dr7 & 0x000000ff) == 0) {
2284                /*
2285                 * all GE and LE bits in the dr7 register are zero,
2286                 * thus the trap couldn't have been caused by the
2287                 * hardware debug registers
2288                 */
2289                return 0;
2290        }
2291
2292        nbp = 0;
2293        dr6 = rdr6();
2294        bp = dr6 & 0x0000000f;
2295
2296        if (!bp) {
2297                /*
2298                 * None of the breakpoint bits are set meaning this
2299                 * trap was not caused by any of the debug registers
2300                 */
2301                return 0;
2302        }
2303
2304        /*
2305         * at least one of the breakpoints were hit, check to see
2306         * which ones and if any of them are user space addresses
2307         */
2308
2309        if (bp & 0x01) {
2310                addr[nbp++] = (caddr_t)rdr0();
2311        }
2312        if (bp & 0x02) {
2313                addr[nbp++] = (caddr_t)rdr1();
2314        }
2315        if (bp & 0x04) {
2316                addr[nbp++] = (caddr_t)rdr2();
2317        }
2318        if (bp & 0x08) {
2319                addr[nbp++] = (caddr_t)rdr3();
2320        }
2321
2322        for (i = 0; i < nbp; i++) {
2323                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2324                        /*
2325                         * addr[i] is in user space
2326                         */
2327                        return nbp;
2328                }
2329        }
2330
2331        /*
2332         * None of the breakpoints are in user space.
2333         */
2334        return 0;
2335}
2336
2337#ifdef KDB
2338
2339/*
2340 * Provide inb() and outb() as functions.  They are normally only available as
2341 * inline functions, thus cannot be called from the debugger.
2342 */
2343
2344/* silence compiler warnings */
2345u_char inb_(u_short);
2346void outb_(u_short, u_char);
2347
2348u_char
2349inb_(u_short port)
2350{
2351	return inb(port);
2352}
2353
2354void
2355outb_(u_short port, u_char data)
2356{
2357	outb(port, data);
2358}
2359
2360#endif /* KDB */
2361